JP2011213763A - Grafted polyimide electrolyte - Google Patents
Grafted polyimide electrolyte Download PDFInfo
- Publication number
- JP2011213763A JP2011213763A JP2010080479A JP2010080479A JP2011213763A JP 2011213763 A JP2011213763 A JP 2011213763A JP 2010080479 A JP2010080479 A JP 2010080479A JP 2010080479 A JP2010080479 A JP 2010080479A JP 2011213763 A JP2011213763 A JP 2011213763A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- membrane
- graft
- electrolyte
- side chain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 C*(C)N(C(c(cc1)c(c2ccc3C(N4**(C)=C)=O)c3c1C4=O)=O)C2=O Chemical compound C*(C)N(C(c(cc1)c(c2ccc3C(N4**(C)=C)=O)c3c1C4=O)=O)C2=O 0.000 description 2
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Conductive Materials (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、ポリイミド樹脂、特に固体高分子形燃料電池などの燃料電池に用いられるポリイミド電解質、またこれによって構成される高分子電解質膜および触媒層、並びにこれらを含む膜−電極接合体さらには燃料電池に関するものである。 The present invention relates to a polyimide resin, particularly a polyimide electrolyte used in a fuel cell such as a solid polymer fuel cell, a polymer electrolyte membrane and a catalyst layer constituted thereby, a membrane-electrode assembly including these, and a fuel It relates to batteries.
燃料電池は、水素と酸素を燃料とし排出ガスは水だけというクリーンエネルギーであり、また燃料電池自体は静かで、しかも電力への変換効率が高く、小型にしても効率の低下がなく、廃熱を利用するコージェネレーションや高温の排熱でタービンを動かして発電する複合発電とすることで、さらに高い燃料の総合利用効率が期待されている。 Fuel cells are clean energy that uses hydrogen and oxygen as fuel and the only exhaust gas is water, and the fuel cell itself is quiet and has high conversion efficiency to power. Higher overall utilization efficiency of fuels is expected by using cogeneration that uses heat and combined power generation that generates power by moving the turbine with high-temperature exhaust heat.
中でも固体高分子形燃料電池(Polymer Electrolyte Fuel Cell)は、室温でも起動できる、電解質膜状として用いることで制御が容易となる、高電流密度を得ることができるなどの特徴から、車載用、定置用電源、携帯用電源などの小型分散電源用途への幅広い用途が期待される次世代エネルギー源として注目されている。 Among them, the polymer electrolyte fuel cell can be activated even at room temperature, can be controlled as an electrolyte membrane, can be easily controlled, and can obtain a high current density. It is attracting attention as a next-generation energy source that is expected to be used in a wide range of applications such as small-sized distributed power sources such as power sources for power supplies and portable power sources.
従来、固体高分子形燃料電池の電解質膜としては、Nafion(登録商標)などのいわゆるフッ素系電解質膜が知られているが、高コストであることや高温でのプロトン伝導性の低い耐久性、燃料である水素や酸素のガス遮断性の面などで問題がある。ガス遮断性が低い電解質膜は、燃料のクロスオーバーを引き起こし、発電効率の低下や電解質膜と触媒の劣化を促進する原因となる。そこで、前記フッ素系電解質膜の代替材料として、スルホン酸基を有する炭化水素系電解質膜の研究が行われている。特にスルホン化ポリイミドは、高い熱的安定性、機械的強度および化学耐性のため、さまざまな構造の電解質膜が作製されてきたが、プロトン伝導性および膜安定性をさらに向上することが望まれている。 Conventionally, as an electrolyte membrane of a polymer electrolyte fuel cell, a so-called fluorine-based electrolyte membrane such as Nafion (registered trademark) is known. However, it is expensive and has a low proton conductivity at high temperatures, There are problems in terms of gas barrier properties of hydrogen and oxygen as fuel. An electrolyte membrane having a low gas barrier property causes fuel crossover, which causes a decrease in power generation efficiency and promotes deterioration of the electrolyte membrane and the catalyst. Therefore, research has been conducted on hydrocarbon electrolyte membranes having sulfonic acid groups as alternative materials for the fluorine electrolyte membranes. In particular, sulfonated polyimide has produced electrolyte membranes with various structures due to its high thermal stability, mechanical strength, and chemical resistance. However, it is desired to further improve proton conductivity and membrane stability. Yes.
また、固体高分子形燃料電池は、100℃を超える高温での作動条件により触媒被毒の低下やプロトン伝導性の向上などのさまざまな利点がある。しかし、現在、主に固体高分子形燃料電池用の電解質膜として用いられている前記フッ素系高分子電解質は、ガラス転移点が低く、高温でプロトン輸送を司るスルホン酸基のチャネル構造が壊れることによるプロトン伝導性の低下が起こるため、100℃以上での作動が困難である。そのためフッ素系電解質膜の代わりとなる代替材料の早期開発が望まれており、その中でもポリスルホン(PS)やポリエーテルスルホン(PES)、ポリアリレンエーテルスルホン(PAES)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリベンズイミダゾール(PBI)、ポリ(オルガノ)フォスファゼン(POP)、ポリエーテルケトン(PEK)、ポリフェニレンスルフィド(PPS)、ポリ四フッ化エチレン(PTFE)、ポリアミドイミド(PAI)、ポリアリレート(PAR)、ポリアリレンエーテルエーテルケトン(PEEK)などをスルホン化された炭化水素系高分子電解質は、安価である、高温での高い機械的強度、スルホン酸基の導入の容易さなど点から盛んに研究が行われている。 In addition, the polymer electrolyte fuel cell has various advantages such as reduction in catalyst poisoning and improvement in proton conductivity depending on operating conditions at a high temperature exceeding 100 ° C. However, the fluorinated polymer electrolyte currently used mainly as an electrolyte membrane for a polymer electrolyte fuel cell has a low glass transition point and breaks the channel structure of the sulfonic acid group that controls proton transport at high temperatures. The proton conductivity decreases due to the above, and operation at 100 ° C. or higher is difficult. Therefore, early development of alternative materials that can replace the fluorine-based electrolyte membrane is desired, and among them, polysulfone (PS), polyethersulfone (PES), polyarylene ethersulfone (PAES), polyimide (PI), polyether Imide (PEI), Polybenzimidazole (PBI), Poly (organo) phosphazene (POP), Polyetherketone (PEK), Polyphenylene sulfide (PPS), Polytetrafluoroethylene (PTFE), Polyamideimide (PAI), Poly Hydrocarbon polymer electrolytes sulfonated with arylate (PAR), polyarylene ether ether ketone (PEEK), etc. are inexpensive, have high mechanical strength at high temperatures, and ease of introduction of sulfonic acid groups. Research has been actively conducted since.
しかし、炭化水素系高分子電解質膜は、フッ素系電解質膜に見られるようなチャネル構造を形成していないため、プロトン伝導性を向上させるためにはスルホン酸基量を増加させなければならない。しかしイオン交換容量値を上げると膜の膨潤が大きくなり、機械的強度の低下や加水分解やクロスリークガスの電極触媒上での反応が原因で発生するラジカルにより膜や触媒担体が著しく劣化するなどの加水分解安定性、酸化安定性などの問題がある。 However, since the hydrocarbon-based polymer electrolyte membrane does not form a channel structure as found in a fluorine-based electrolyte membrane, the amount of sulfonic acid groups must be increased in order to improve proton conductivity. However, if the ion exchange capacity value is increased, the membrane will swell, and the membrane and catalyst carrier will be significantly degraded by radicals generated due to the decrease in mechanical strength, hydrolysis and reaction of the cross leak gas on the electrode catalyst. There are problems such as hydrolytic stability and oxidation stability.
この問題に対し、ポリマーの親水性部と疎水性部を制御したスルホン化ブロックコポリイミドが提案され、それにより同じイオン交換容量でランダムコポリイミドと比較して高いプロトン伝導性を示すことが報告されている。これはポリマーのユニットをナノあるいはマイクロレベルで規則的に制御することで相分離を形成させ、プロトンの輸送を容易にさせていることに起因する(特許文献1、非特許文献1参照)。しかし、実用化のためには、プロトン伝導性および膜安定性についての更なる改善が求められている。 To solve this problem, sulfonated block copolyimides with controlled hydrophilic and hydrophobic parts of the polymer have been proposed, and reported to exhibit higher proton conductivity than random copolyimides with the same ion exchange capacity. ing. This is due to the fact that polymer units are regularly controlled at the nano or micro level to form phase separation and facilitate proton transport (see Patent Document 1 and Non-Patent Document 1). However, further improvement in proton conductivity and membrane stability is required for practical use.
上述したように、高分子ユニットの相分離構造を制御することで、イオン交換容量を増加させることなくプロトン伝導性や膜安定性を向上させることができる。相分離構造制御には、先に示したブロックポリマーのほかに、グラフトポリマーや2種類以上のポリマーを混合したブレンドポリマーがある。ブロックポリマーやグラフトポリマーの相分離構造は、通常、ミクロ相分離構造と呼ばれ、これらの示す特性のため電解質膜材料として盛んに研究されている。 As described above, by controlling the phase separation structure of the polymer unit, proton conductivity and membrane stability can be improved without increasing the ion exchange capacity. In addition to the block polymer shown above, the phase separation structure control includes a graft polymer and a blend polymer obtained by mixing two or more kinds of polymers. A phase separation structure of a block polymer or a graft polymer is usually called a microphase separation structure, and has been actively studied as an electrolyte membrane material because of the characteristics shown.
本発明は、主鎖ポリマーに多数の側鎖ポリマーを結合させることで、ブロック構造よりも劇的な相分離構造の変化が期待できるグラフト構造に着目し、疎水性の主鎖ポリマーと親水性の側鎖ポリマーからなるスルホン化グラフトコポリイミドを合成し、それらの電解質膜を作製してプロトン伝導性やガス遮断性を向上させることを目的する。また、本発明は、この電解質によって構成される電解質膜および触媒層、それらを含む膜−電極接合体さらにはそれらを用いた燃料電池を提供することも目的とする。 The present invention focuses on a graft structure that can be expected to change the phase separation structure more drastically than the block structure by binding a large number of side chain polymers to the main chain polymer. The purpose is to synthesize sulfonated graft copolyimides composed of side chain polymers and to produce electrolyte membranes thereof to improve proton conductivity and gas barrier properties. Another object of the present invention is to provide an electrolyte membrane and a catalyst layer constituted by the electrolyte, a membrane-electrode assembly including them, and a fuel cell using them.
本発明の第1は、6員環構造のイミド基を含む主鎖と、スルホン酸基を含む側鎖とからなる、グラフト型ポリイミド電解質である。 The first of the present invention is a graft-type polyimide electrolyte comprising a main chain containing an imide group having a 6-membered ring structure and a side chain containing a sulfonic acid group.
好ましい実施形態は、前記スルホン酸基を含む側鎖が、6員環構造のイミド基を含む構造である上記のグラフト型ポリイミド電解質である。 In a preferred embodiment, the graft-type polyimide electrolyte has a structure in which a side chain including the sulfonic acid group includes an imide group having a 6-membered ring structure.
好ましい実施形態は、前記6員環構造のイミド基を含む主鎖が、下記一般式(1)で示される構造を含む上記のグラフト型ポリイミド電解質である。 In a preferred embodiment, the graft type polyimide electrolyte includes a main chain including an imide group having a 6-membered ring structure including a structure represented by the following general formula (1).
好ましい実施形態は、前記スルホン酸基を含む側鎖が、下記一般式(2)で示される構造を含む上記のグラフト型ポリイミド電解質である。 In a preferred embodiment, the graft type polyimide electrolyte includes a side chain including the sulfonic acid group including a structure represented by the following general formula (2).
好ましい実施形態は、前記スルホン酸基が、実質的に側鎖のみに含まれる上記のグラフト型ポリイミド電解質である。 A preferred embodiment is the above graft-type polyimide electrolyte in which the sulfonic acid group is substantially contained only in the side chain.
好ましい実施形態は、グラフト側鎖の重量平均分子量と、主鎖の重量平均分子量の比[Mw(グラフト側鎖)/Mw(主鎖)]が、
0.01<[Mw(グラフト側鎖)/Mw(主鎖)]<4
を満たす上記のグラフト型ポリイミド電解質である。
In a preferred embodiment, the ratio of the weight average molecular weight of the graft side chain to the weight average molecular weight of the main chain [Mw (graft side chain) / Mw (main chain)] is
0.01 <[Mw (graft side chain) / Mw (main chain)] <4
The graft-type polyimide electrolyte satisfying the above.
本発明の第2は、上記のグラフト型ポリイミド電解質を含む燃料電池用電解質膜である。 A second aspect of the present invention is an electrolyte membrane for a fuel cell containing the graft type polyimide electrolyte.
本発明の第3は、上記のグラフト型ポリイミド電解質を含む燃料電池用触媒層である。 A third aspect of the present invention is a fuel cell catalyst layer containing the graft-type polyimide electrolyte.
本発明の第4は、上記の燃料電池用電解質膜および/または上記の燃料電池用触媒層を含む膜−電極接合体である。 A fourth aspect of the present invention is a membrane-electrode assembly including the fuel cell electrolyte membrane and / or the fuel cell catalyst layer.
さらに、本発明の第5は、上記の燃料電池用電解質膜および/または上記の燃料電池用触媒層および/または上記の膜−電極接合体を含む燃料電池である。 Furthermore, a fifth aspect of the present invention is a fuel cell including the fuel cell electrolyte membrane and / or the fuel cell catalyst layer and / or the membrane-electrode assembly.
本発明によれば、特に高温でのプロトン伝導性に優れ、ガス遮断性に優れたポリイミド樹脂、特に固体高分子形燃料電池などの燃料電池に用いられるポリイミド電解質を提供することができる。また、本発明によれば、前記のような高温でのプロトン伝導性に優れ、ガス遮断性に優れたポリイミド電解質によって構成される高分子電解質膜、触媒層、膜−電極接合体、燃料電池を提供することができる。 According to the present invention, it is possible to provide a polyimide resin that is particularly excellent in proton conductivity at high temperatures and excellent in gas barrier properties, particularly a polyimide electrolyte used in a fuel cell such as a polymer electrolyte fuel cell. In addition, according to the present invention, a polymer electrolyte membrane, a catalyst layer, a membrane-electrode assembly, and a fuel cell constituted by a polyimide electrolyte having excellent proton conductivity at high temperatures and excellent gas barrier properties as described above are provided. Can be provided.
本発明の一実施形態について説明すれば以下の通りである。なお、本発明は以下に説明する実施形態に限定されるものではない。 An embodiment of the present invention will be described as follows. The present invention is not limited to the embodiments described below.
<1.高分子電解質>
本発明にかかる高分子電解質は、6員環構造のイミド基を含む主鎖と、スルホン酸基を含む側鎖とからなる、グラフト型ポリイミド電解質である。主鎖に含まれる前記6員環構造のイミド基とは、下記式(3)に例示される構造を有し、イミド基を形成する部分が6つの原子で環状に構成されたものである。
<1. Polymer electrolyte>
The polymer electrolyte according to the present invention is a graft-type polyimide electrolyte composed of a main chain containing an imide group having a 6-membered ring structure and a side chain containing a sulfonic acid group. The imide group having a 6-membered ring structure contained in the main chain has a structure exemplified by the following formula (3), and the portion forming the imide group is constituted cyclically by 6 atoms.
このような構造のイミド基は、化学的安定性が高く、それにより、この構造のイミド基を含んで形成されるポリイミド電解質は、高い安定性、耐久性を有する。このような主鎖構造の中でも、下記一般式(1)で示される構造は、合成の容易さ、耐久性、取り扱いなどの点から好ましい。 The imide group having such a structure has high chemical stability, and the polyimide electrolyte formed by including the imide group having this structure has high stability and durability. Among such main chain structures, the structure represented by the following general formula (1) is preferable from the viewpoint of ease of synthesis, durability, handling, and the like.
このような構造としては、具体的には下記式群(4)が例示される。
Specific examples of such a structure include the following formula group (4).
本発明における主鎖の重量平均分子量は、1万g/mol以上、100万g/mol以下が好ましい。主鎖の重量平均分子量がこれより小さいと、膜としての強度が出にくく、主鎖の重量平均分子量がこれより大きいと、溶解性などが不足し製膜ができない場合がある。また、主鎖の重量平均分子量は、さらに好ましくは3万g/mol以上、50万g/mol以下である。この範囲であれば、膜の強度や生産性のバランスが取れており、優れた膜が作製できる。 The weight average molecular weight of the main chain in the present invention is preferably 10,000 g / mol or more and 1,000,000 g / mol or less. If the weight average molecular weight of the main chain is smaller than this, the strength of the film is difficult to be obtained, and if the weight average molecular weight of the main chain is larger than this, the film may not be formed due to insufficient solubility. Further, the weight average molecular weight of the main chain is more preferably 30,000 g / mol or more and 500,000 g / mol or less. Within this range, the strength and productivity of the film are balanced, and an excellent film can be produced.
本発明における主鎖ポリマーの合成については、従来公知の方法が適用可能である。つまり、例えば、前記特許文献1(特開2005−272666号公報)や、前記非特許文献1(Polym. Adv. Technol. 2005;16:753−757)に記載の方法などが適用できる。 A conventionally known method can be applied to the synthesis of the main chain polymer in the present invention. That is, for example, the method described in Patent Document 1 (Japanese Patent Laid-Open No. 2005-272666) and Non-Patent Document 1 (Polym. Adv. Technol. 2005; 16: 753-757) can be applied.
また、本発明の電解質は、スルホン酸基を含む側鎖(以下、「グラフト側鎖」と記すこともある。)を有する。ここで、グラフト側鎖の構造は、スルホン酸基を含むこと以外に制約は受けないが、耐久性の高さや合成の容易さから、イミド基を含む構造、中でも、上述の主鎖構造と同じ理由から、6員環構造のイミド基を持つものが好ましい。このような構造の中でも、下記一般式(2)に示す構造は、合成が容易であり好ましい。 Further, the electrolyte of the present invention has a side chain containing a sulfonic acid group (hereinafter sometimes referred to as “graft side chain”). Here, the structure of the graft side chain is not limited except for including a sulfonic acid group, but from the viewpoint of high durability and ease of synthesis, a structure including an imide group, among which the same as the main chain structure described above. For the reason, those having an imide group having a 6-membered ring structure are preferable. Among such structures, the structure represented by the following general formula (2) is preferable because it can be easily synthesized.
このような構造としては、具体的には下記式群(5)が例示される。 Specific examples of such a structure include the following formula group (5).
本発明におけるグラフト側鎖の重量平均分子量は、1万(g/mol)以上、100万(g/mol)以下が好ましい。グラフト側鎖の重量平均分子量がこれより小さいと、膜としてのイオン交換容量が小さくなり、十分なプロトン伝導性が発現しない場合がある。グラフト側鎖の重量平均分子量がこれより大きいと、溶解性などが不足し、主鎖との反応がうまく進まない場合がある。また、グラフト側鎖の重量平均分子量は、さらに好ましくは3万(g/mol)以上、50万(g/mol)以下である。この範囲であれば、膜のイオン交換容量や生産性のバランスが取れており、優れた膜が作製できる。 The weight average molecular weight of the graft side chain in the present invention is preferably 10,000 (g / mol) to 1,000,000 (g / mol). When the weight average molecular weight of the graft side chain is smaller than this, the ion exchange capacity as a membrane becomes small, and sufficient proton conductivity may not be exhibited. If the weight average molecular weight of the graft side chain is larger than this, solubility may be insufficient, and the reaction with the main chain may not proceed well. Further, the weight average molecular weight of the graft side chain is more preferably 30,000 (g / mol) to 500,000 (g / mol). Within this range, the ion exchange capacity and productivity of the membrane are balanced, and an excellent membrane can be produced.
さらに、グラフト側鎖の重量平均分子量(Mw)と主鎖の重量平均分子量(Mw)の比、すなわちMw(グラフト側鎖)/Mw(主鎖)が、0.01より大きく、4より小さい場合が好ましい。0.01以下の場合は、相分離構造の変化が起こらずに本発明の目的であるプロトン伝導性の向上が見られない場合があり、4以上の場合は膜としての強度が低下する場合がある。 Further, when the ratio of the weight average molecular weight (Mw) of the graft side chain to the weight average molecular weight (Mw) of the main chain, that is, Mw (graft side chain) / Mw (main chain) is larger than 0.01 and smaller than 4 Is preferred. In the case of 0.01 or less, there is a case where the phase separation structure does not change and the proton conductivity which is the object of the present invention is not improved, and in the case of 4 or more, the strength as a membrane may be lowered. is there.
また、相分離構造の変化を起きやすくし、本発明の目的であるプロトン伝導性の向上のため、スルホン酸基が、実質的に側鎖のみに含まれることが好ましい。 Moreover, it is preferable that the sulfonic acid group is substantially contained only in the side chain in order to facilitate the change of the phase separation structure and to improve the proton conductivity which is the object of the present invention.
本発明における側鎖ポリマーの合成については、従来公知の方法が適用可能であり、上記主鎖の合成についての文献が参考にできる。 Conventionally known methods can be applied to the synthesis of the side chain polymer in the present invention, and the literature on the synthesis of the main chain can be referred to.
主鎖構造を持つ高分子と、側鎖構造を持つ高分子の反応については特に限定されないが、上記式(1)の構造の場合、例えば、前記特許文献1(特開2005−272666号公報)、前記非特許文献1(European Polymer Journal 43 (2007) 5047−5054、Journal of Membrane Science 311 (2008) 349−359)などに示される反応を適用しうる。 The reaction between the polymer having a main chain structure and the polymer having a side chain structure is not particularly limited. However, in the case of the structure of the above formula (1), for example, Patent Document 1 (Japanese Patent Laid-Open No. 2005-272666). The reaction shown in the said nonpatent literature 1 (European Polymer Journal 43 (2007) 5047-5054, Journal of Membrane Science 311 (2008) 349-359) etc. can be applied.
また、電解質のイオン交換容量は、主鎖と側鎖のモル比により適宜設定できる。例えば、主鎖中の側鎖分岐点の数、側鎖の分子量によって調整できる。イオン交換容量は、電解質のプロトン伝導性、含水率、ガス遮断性などの特性に大きく影響する。よって、使用する用途に応じて、適宜設定すればよい。具体的には、好ましいイオン交換容量は、0.5〜4.0[meq./g]であり、さらに好ましくは1.5〜3.5[meq./g]である。これら下限よりイオン交換容量が小さいと、好ましいプロトン伝導性が発現しなくなる可能性があり、これら上限より大きいと、機械強度が低下し、電解質膜や電極の材料として用いた場合、十分な強度を持てない可能性がある。なお、スルホン酸基の一部が水素以外のカチオンと置換されている形態も、本発明の電解質の範疇である。 Further, the ion exchange capacity of the electrolyte can be appropriately set depending on the molar ratio of the main chain to the side chain. For example, it can be adjusted by the number of side chain branch points in the main chain and the molecular weight of the side chain. The ion exchange capacity greatly affects the properties of the electrolyte such as proton conductivity, water content, and gas barrier properties. Therefore, it may be set as appropriate according to the intended use. Specifically, a preferable ion exchange capacity is 0.5 to 4.0 [meq. / G], more preferably 1.5 to 3.5 [meq. / G]. If the ion exchange capacity is smaller than these lower limits, there is a possibility that preferable proton conductivity will not be expressed. It may not be possible. A form in which a part of the sulfonic acid group is substituted with a cation other than hydrogen is also included in the category of the electrolyte of the present invention.
<2.電解質膜>
本発明にかかる燃料電池用高分子電解質膜は、グラフト型ポリイミドからなる本発明にかかる高分子電解質を含んでなる電解質膜である。電解質膜の製法には、従来公知の方法が適用可能である。その中でも、材料となる高分子電解質を、適当な溶媒に溶解/分散させ、それらを十分に攪拌した後、溶媒を留去するキャスト法が望ましい。キャスト法とは、ガラス板などの平板上に、バーコーター、ブレードコーターなどを用いて電解質溶液を塗布し、溶媒を気化、留去させて膜を得る方法である。工業的には溶液を連続的にコートダイからベルト上に塗布し、溶媒を気化させて長尺物を得る方法も一般的である。この時の溶液の濃度、粘度や、溶媒の気化条件などは、適宜調整される。さらに、電解質膜を得た後に、分子配向などを制御するため二軸延伸などの処理を施したり、結晶化度や残存応力を制御するための熱処理を施したりしても構わない。さらに、フィルムの機械強度を上げるために各種フィラーを添加したり、ガラス不織布などの補強剤とプレスにより複合化させたりすることも本発明の範疇である。また、製膜時に適当な化学的処理を施してもよい。例えば、膜の強度を上げるための架橋、伝導性を挙げるためのプロトン性化合物の添加、などである。いずれにしても、本発明にかかる高分子電解質を用いて、従来公知の技術と組み合わせて製造する高分子電解質膜は、本発明の範疇である。また、本発明の電解質膜において、通常用いられる各種添加剤、例えば相溶性向上のための相溶化剤、樹脂劣化防止のための酸化防止剤、フィルムとしての成形加工における取り扱いを向上するための帯電防止剤や滑剤などは、電解質膜としての加工や性能に影響を及ぼさない範囲で適宜用いることが可能である。
<2. Electrolyte membrane>
The polymer electrolyte membrane for fuel cells according to the present invention is an electrolyte membrane comprising the polymer electrolyte according to the present invention made of graft type polyimide. A conventionally well-known method is applicable to the manufacturing method of an electrolyte membrane. Among them, a casting method in which the polymer electrolyte as a material is dissolved / dispersed in an appropriate solvent, sufficiently stirred, and then the solvent is distilled off is desirable. The casting method is a method of obtaining a film by applying an electrolyte solution on a flat plate such as a glass plate using a bar coater, a blade coater or the like, and evaporating and distilling off the solvent. Industrially, it is also common to apply a solution continuously from a coating die onto a belt and vaporize the solvent to obtain a long product. At this time, the concentration and viscosity of the solution, the vaporization conditions of the solvent, and the like are appropriately adjusted. Furthermore, after obtaining the electrolyte membrane, a treatment such as biaxial stretching may be performed to control the molecular orientation or the like, or a heat treatment may be performed to control the crystallinity and the residual stress. Furthermore, it is also within the scope of the present invention to add various fillers in order to increase the mechanical strength of the film or to combine them with a reinforcing agent such as a glass nonwoven fabric by pressing. Moreover, you may perform an appropriate chemical process at the time of film forming. For example, crosslinking for increasing the strength of the membrane, addition of a protic compound for increasing conductivity, and the like. In any case, a polymer electrolyte membrane manufactured using a polymer electrolyte according to the present invention in combination with a conventionally known technique is within the scope of the present invention. Further, in the electrolyte membrane of the present invention, various commonly used additives, for example, a compatibilizer for improving compatibility, an antioxidant for preventing resin deterioration, and charging for improving handling in a film forming process. An inhibitor, a lubricant, or the like can be appropriately used as long as it does not affect the processing and performance of the electrolyte membrane.
本発明にかかる燃料電池用高分子電解質膜の厚さは、用途に応じて任意の厚さを選択することができる。例えば、高分子電解質膜の抵抗を低減することを考慮した場合、高分子フィルムの厚みは薄い程よい。一方、高分子電解質膜のガス遮断性やハンドリング性、電極との接合時の耐破れ性などを考慮すると、高分子電解質膜の厚みが薄すぎると好ましくない場合がある。これらを考慮すると、高分子電解質膜の厚みは、1.2μm以上350μm以下、さらには5μm以上200μm以下が好ましい。上記高分子電解質膜の厚さがこの範囲内であれば、製造が容易となり、かつ加工時や乾燥時にもシワが発生しにくい。また、破損が生じ難いなどハンドリング性が向上する。 The thickness of the polymer electrolyte membrane for a fuel cell according to the present invention can be selected arbitrarily depending on the application. For example, in consideration of reducing the resistance of the polymer electrolyte membrane, the polymer film is preferably as thin as possible. On the other hand, considering the gas barrier properties and handling properties of the polymer electrolyte membrane, the tear resistance during bonding with the electrode, and the like, it may be undesirable if the thickness of the polymer electrolyte membrane is too thin. Considering these, the thickness of the polymer electrolyte membrane is preferably 1.2 μm or more and 350 μm or less, and more preferably 5 μm or more and 200 μm or less. When the thickness of the polymer electrolyte membrane is within this range, the production becomes easy, and wrinkles are hardly generated during processing and drying. In addition, handling is improved such that damage is unlikely to occur.
本発明にかかる燃料電池用高分子電解質膜のイオン交換容量は、上述のように高分子電解質のイオン交換容量により調整すればよい。高分子電解質膜として、たとえば電解質以外の材料を含む場合は、それによって膜としてのイオン交換容量は低下するので、例えば電解質のイオン交換容量を高めに設定するなど、適宜調整しうる。なお、膜としての好ましいイオン交換容量は、0.5〜4.0[meq./g]であり、さらに好ましくは1.5〜3.5[meq./g]である。これら下限よりイオン交換容量が小さいと、好ましいプロトン伝導性が発現しなくなる可能性があり、これら上限より大きいと、機械強度が低下し、十分な強度を持てない可能性がある。 The ion exchange capacity of the polymer electrolyte membrane for fuel cells according to the present invention may be adjusted by the ion exchange capacity of the polymer electrolyte as described above. When the polymer electrolyte membrane includes, for example, a material other than the electrolyte, the ion exchange capacity as the membrane is thereby lowered. Therefore, for example, the ion exchange capacity of the electrolyte can be set to be high. In addition, the preferable ion exchange capacity as a membrane is 0.5 to 4.0 [meq. / G], more preferably 1.5 to 3.5 [meq. / G]. If the ion exchange capacity is smaller than these lower limits, preferable proton conductivity may not be exhibited. If the ion exchange capacity is larger than these upper limits, the mechanical strength may be lowered and sufficient strength may not be obtained.
<3.触媒層>
本発明にかかる燃料電池用触媒層は、本発明にかかる高分子電解質を含んでなる触媒層である。燃料電池用触媒層は、一般に触媒、導電性の触媒担持体、イオノマーと呼ばれる高分子電解質、その他撥水剤などの添加物からなる。本発明の燃料電池用触媒層は、その他材料や製法は従来公知のものが使用できる。これについては、後述の本発明にかかる燃料電池に関する記載中で詳細に説明する。
<3. Catalyst layer>
The catalyst layer for a fuel cell according to the present invention is a catalyst layer comprising the polymer electrolyte according to the present invention. The catalyst layer for a fuel cell is generally composed of an additive such as a catalyst, a conductive catalyst carrier, a polymer electrolyte called ionomer, and other water repellents. As the fuel cell catalyst layer of the present invention, conventionally known materials and production methods can be used. This will be described in detail later in the description of the fuel cell according to the present invention.
<4.膜−電極接合体>
本発明にかかる燃料電池用膜−電極接合体(以下、MEA:Menbrane Electrode Assembly:と記すことがある。)は、本発明にかかる高分子電解質を含んでなるMEAである。MEAは、電解質膜と、該電解質膜の少なくとも片側に配置された触媒層とからなるものと、さらに該電解質の外側に配置された拡散層と呼ばれる導電性多孔質体をあわせたものからなるものとがある。本発明のMEAは、MEA中の電解質膜、または/および触媒中のイオノマーとして本発明の電解質を含むものである。本発明のMEAにおける、その他材料や製法は、従来公知のものが使用できる。これについては、後述の本発明にかかる燃料電池に関する記載中で詳細に説明する。
<4. Membrane-electrode assembly>
The fuel cell membrane-electrode assembly according to the present invention (hereinafter sometimes referred to as MEA: Menbrane Electrode Assembly) is an MEA comprising the polymer electrolyte according to the present invention. The MEA is composed of an electrolyte membrane and a catalyst layer disposed on at least one side of the electrolyte membrane, and a conductive porous body called a diffusion layer disposed outside the electrolyte. There is. The MEA of the present invention includes the electrolyte of the present invention as an electrolyte membrane in MEA and / or an ionomer in a catalyst. For the MEA of the present invention, conventionally known materials and production methods can be used. This will be described in detail later in the description of the fuel cell according to the present invention.
<5.本発明にかかる燃料電池>
本発明にかかる燃料電池は、本発明にかかる高分子電解質を含んでなる燃料電池である。このとき、電解質膜として、または触媒層のイオノマーとして、またはこの両方として含んでいても良い。
<5. Fuel Cell According to the Present Invention>
The fuel cell according to the present invention is a fuel cell comprising the polymer electrolyte according to the present invention. At this time, it may be included as an electrolyte membrane, an ionomer of the catalyst layer, or both.
本発明にかかる高分子電解質を含んでなる燃料電池は、上述した高温におけるプロトン伝導度など優れた性能を持つ本発明の高分子電解質を備えているため、高い発電特性を有する。 Since the fuel cell comprising the polymer electrolyte according to the present invention includes the polymer electrolyte of the present invention having excellent performance such as proton conductivity at a high temperature as described above, it has high power generation characteristics.
次に、本発明の高分子電解質を使用した固体高分子形燃料電池の一実施形態について、図面を用いて説明する。なお、本実施の形態では、固体高分子形燃料電池を例に挙げて説明するが、本発明は、直接液体形燃料電池、直接メタノール形燃料電池についても、固体高分子形燃料電池と同様に実施可能である。 Next, an embodiment of a solid polymer fuel cell using the polymer electrolyte of the present invention will be described with reference to the drawings. In this embodiment, a solid polymer fuel cell will be described as an example. However, the present invention also applies to a direct liquid fuel cell and a direct methanol fuel cell in the same manner as the solid polymer fuel cell. It can be implemented.
図1は、本実施の形態にかかる高分子電解質を使用した固体高分子形燃料電池の要部断面の構造を模式的に示す図である。同図に示すように、本実施の形態にかかる固体高分子形燃料電池10は、高分子電解質膜1、触媒層2,2、拡散層3,3、セパレーター4,4を備えている。
FIG. 1 is a diagram schematically showing a cross-sectional structure of a main part of a polymer electrolyte fuel cell using a polymer electrolyte according to the present embodiment. As shown in the figure, a polymer
高分子電解質膜1は、固体高分子形燃料電池10のセルの略中心部に位置している。触媒層2は、高分子電解質膜1に接触するように設けられている。拡散層3は、触媒層2に隣接して設けられており、さらにその外側にセパレーター4が配置されている。セパレーター4には、燃料となるガス(水素ガスなど)または液体(メタノール水溶液など)、並びに、酸化剤を送り込むための流路5が形成されている。
The polymer electrolyte membrane 1 is located substantially at the center of the cell of the solid
一般的に、高分子電解質膜1に触媒層2を接合したものや、高分子電解質膜1に触媒層2と拡散層3を接合したものは、MEAといわれ、固体高分子形燃料電池(直接液体形燃料電池、直接メタノール形燃料電池)の基本部材として使用される。
In general, a polymer electrolyte membrane 1 joined with a
MEAを作製する方法は、従来検討されている、パーフルオロカーボンスルホン酸からなる高分子電解質膜やその他の炭化水素系高分子電解質膜(例えば、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリイミド、スルホン化ポリフェニレンサルファイドなど)で行われる公知の方法が適用可能である。 Methods for producing MEA are conventionally studied polymer electrolyte membranes made of perfluorocarbon sulfonic acid and other hydrocarbon polymer electrolyte membranes (for example, sulfonated polyetheretherketone, sulfonated polyethersulfone, sulfone). A known method performed with a sulfonated polysulfone, a sulfonated polyimide, a sulfonated polyphenylene sulfide, or the like is applicable.
MEAの具体的作製方法の一例を下記に示すが、本発明はこれに限定されるものではない。 An example of a specific method for producing MEA is shown below, but the present invention is not limited to this.
触媒層2の形成は、高分子電解質の溶液あるいは分散液に、金属担持触媒を分散させて、触媒層形成用の分散溶液を調合する。この分散溶液をポリテトラフルオロエチレンなどの離型フィルム上にスプレーで塗布して分散溶液中の溶媒を乾燥・除去し、離型フィルム上に所定の触媒層2を形成させる。この離型フィルム上に形成した触媒層2を高分子電解質膜1の両面に配置し、所定の加熱・加圧条件下でホットプレスし、高分子電解質膜1と触媒層2を接合し、離型フィルムをはがすことによって、高分子電解質膜1の両面に触媒層2が形成されたMEAが作製できる。
The
また、上記分散溶液を、コーターなどを用いて拡散層3上に塗工して、分散溶液中の溶媒を乾燥・除去し、拡散層3上に触媒層2が形成された触媒担持ガス拡散電極を作製し、高分子電解質膜1の両側にその触媒担持ガス拡散電極の触媒層2側を配置し、所定の加熱・加圧条件下でホットプレスすることによって、高分子電解質膜1の両面に触媒層2と拡散層3とが形成されたMEAが製造できる。なお、上記触媒担持ガス拡散電極には、市販のガス拡散電極(米国E−TEK社製、など)を使用しても構わない。
Also, a catalyst-carrying gas diffusion electrode in which the dispersion solution is coated on the
上記高分子電解質の溶液としては、パーフルオロカーボンスルホン酸高分子化合物のアルコール溶液(アルドリッチ社製ナフィオン(登録商標)溶液など)やスルホン化された芳香族高分子化合物(例えば、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリイミド、スルホン化ポリフェニレンサルファイドなど)の有機溶媒溶液などが使用できる。 Examples of the polymer electrolyte solution include an alcohol solution of a perfluorocarbon sulfonic acid polymer compound (such as Nafion (registered trademark) solution manufactured by Aldrich) or a sulfonated aromatic polymer compound (eg, sulfonated polyether ether ketone). , Sulfonated polyethersulfone, sulfonated polysulfone, sulfonated polyimide, sulfonated polyphenylene sulfide, and the like) can be used.
上記金属担持触媒は、担体と該担体に担持されている金属触媒とを有するものであるが、前記担体としては、高比表面積の導電性粒子が使用可能であり、例えば、活性炭、カーボンブラック、ケッチェンブラック、バルカン、カーボンナノホーン、フラーレン、カーボンナノチューブなどの炭素材料が例示できる。また、金属触媒としては、燃料の酸化反応および酸素の還元反応を促進するものであれば使用可能であり、燃料極と酸化剤極で同じであっても異なっていても構わない。例えば、白金、ルテニウムなどの貴金属あるいはそれらの合金などが例示でき、それらの触媒活性の促進や、反応副生物による被毒を抑制するための助触媒を添加しても構わない。 The metal-supported catalyst has a carrier and a metal catalyst supported on the carrier, and as the carrier, conductive particles having a high specific surface area can be used. For example, activated carbon, carbon black, Examples thereof include carbon materials such as ketjen black, vulcan, carbon nanohorn, fullerene, and carbon nanotube. As the metal catalyst, any catalyst that promotes the oxidation reaction of fuel and the reduction reaction of oxygen can be used, and the fuel electrode and the oxidant electrode may be the same or different. For example, noble metals such as platinum and ruthenium or alloys thereof can be exemplified, and a promoter for promoting their catalytic activity or suppressing poisoning by reaction by-products may be added.
上記触媒層形成用の分散溶液は、スプレーで塗布したり、コーターで塗工したりしやすい粘度に調整するため、水や有機溶媒で適宜希釈しても構わない。また、必要に応じて触媒層2に撥水性を付与するため、テトラフルオロエチレンなどのフッ素系化合物を混合してもよい。
The dispersion solution for forming the catalyst layer may be appropriately diluted with water or an organic solvent in order to adjust the viscosity so that it can be easily applied by spraying or coated by a coater. Moreover, you may mix fluorine-type compounds, such as tetrafluoroethylene, in order to provide water repellency to the
上記拡散層3としては、カーボンクロスやカーボンペーパーなどの多孔質の導電性材料が使用可能である。これらは燃料や酸化剤の拡散性や反応副生物や未反応物質の排出性を促進するため、テトラフルオロエチレンなどで被覆して撥水性を付与したものを使用するのが好ましい。また、高分子電解質膜1と触媒層2との間に必要に応じて前述したような高分子電解質からなる接着層を設けてもよい。
As the
高分子電解質膜1と触媒層2を加熱・加圧条件下でホットプレスする条件は、使用する高分子電解質膜1や触媒層2に含まれる高分子電解質の種類に応じて適宜設定する必要がある。上記条件としては、一般的に高分子電解質膜1や触媒層2に含まれる高分子電解質の熱劣化や熱分解温度以下であって、高分子電解質膜1あるいは触媒層2に含まれる高分子電解質のガラス転移点や軟化点以上の温度条件下であることが好ましい。
The conditions for hot pressing the polymer electrolyte membrane 1 and the
加圧条件としては、概ね0.1MPa以上20MPa以下の範囲であることが、高分子電解質膜1と触媒層2が充分に接触するとともに、使用材料の著しい変形にともなう特性低下がなく好ましい。特にMEAが高分子電解質膜1と触媒層2とからのみ形成される場合は、拡散層3を触媒層2の外側に配置して特に接合することなく接触させるのみで使用しても構わない。
As the pressurizing condition, it is preferable that the pressure is in the range of about 0.1 MPa or more and 20 MPa or less because the polymer electrolyte membrane 1 and the
上記のような方法で得られたMEAを、燃料となるガスまたは液体、並びに、酸化剤を送り込む流路5が形成された一対のセパレーター4,4などの間に挿入することにより、本実施の形態にかかる固体高分子形燃料電池10が得られる。
The MEA obtained by the method as described above is inserted between a pair of
上記セパレーター4としては、カーボングラファイトやステンレス鋼の導電性材料のものが使用できる。特にステンレス鋼などの金属製材料を使用する場合は、耐腐食性の処理を施していることが好ましい。
As the
上記の固体高分子形燃料電池10に対して、燃料となるガスまたは液体として、水素を主たる成分とするガスや、メタノールを主たる成分とするガスまたは液体を、酸化剤として、酸素を含むガス(酸素あるいは空気)を、それぞれ別個の流路5より、拡散層3を経由して触媒層2に供給することにより、固体高分子形燃料電池は発電する。このとき燃料として、例えば、含水素液体を使用する場合には直接液体形燃料電池となるし、メタノールを使用する場合には直接メタノール形燃料電池となる。つまり、固体高分子形燃料電池10について例示した上記実施形態は、そのまま直接液体形燃料電池、直接メタノール形燃料電池についても適用可能といえる。
For the polymer
なお、本実施の形態にかかる固体高分子形燃料電池10を単独で、あるいは複数積層して、スタックを形成し使用することや、それらを組み込んだ燃料電池システムとすることもできる。
In addition, the polymer
なお、上述した例以外にも、本発明にかかる高分子電解質膜は、特開2000−90944、特開2001−313046号公報、特開2001−313047号公報、特開2001−93551号公報、特開2001−93558号公報、特開2001−93561号公報、特開2001−102069号公報、特開2001−102070号公報、特開2001−283888号公報、特開2000−268835号公報、特開2000−268836号公報、特開2001−283892号公報等で公知になっている固体高分子形燃料電池や直接メタノール形燃料電池の電解質膜として、使用可能である。これらの公知文献に基づけば、当業者であれば、本発明の高分子電解質を用いて容易に固体高分子形燃料電池や直接メタノール形燃料電池を構成することができる。 In addition to the examples described above, the polymer electrolyte membrane according to the present invention is disclosed in JP 2000-90944, JP 2001-313046, JP 2001-313047, JP 2001-93551, JP 2001-93558, JP 2001-93561, JP 2001-102069, JP 2001-102070, JP 2001-283888, JP 2000-268835, JP 2000. It can be used as an electrolyte membrane of a polymer electrolyte fuel cell or a direct methanol fuel cell, which are known in Japanese Patent Application Publication No. 268836, Japanese Patent Application Laid-Open No. 2001-283893, and the like. Based on these known documents, those skilled in the art can easily construct a solid polymer fuel cell or a direct methanol fuel cell using the polymer electrolyte of the present invention.
以下、実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to examples. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Furthermore, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. Embodiments obtained by appropriately combining the respective technical means disclosed herein are also the present invention. Is included in the technical scope.
(合成例1)
<高分子電解質前駆体(主鎖部分)の作製>
フラスコに4,4’−[ヘキサフルオロイソプロピリデンビス(p−フェニレンオキシ)]ジアニリン(以下、APPF)を2.15g(0.0042 mol)と3,5−ジアミノ安息香酸(以下、DABA)を0.61g(0.0041mol)量り取り、m−クレゾールを加えて4時間80℃で攪拌した。その後、(1,4,5,8)−ナフタレンテトラカルボン酸二無水物(以下、NTDA)を2.2g(0.0082mol)加えて120℃で24時間攪拌した。トリエチルアミン1.4mL(2.4倍mol)と安息香酸0.56g(1.12倍mol)を触媒として加えて180℃で24時間攪拌した。ポリマー溶液を室温まで冷まし、酢酸エチルで再沈した後、シャーレに移して150℃で15時間真空乾燥させ、下記(式6)で示される、主鎖ポリマーNTDA−APPF−r−DABA(50:50)を得た。
(Synthesis Example 1)
<Preparation of polymer electrolyte precursor (main chain portion)>
Into the flask, 2.15 g (0.0042 mol) of 4,4 ′-[hexafluoroisopropylidenebis (p-phenyleneoxy)] dianiline (hereinafter, APPF) and 3,5-diaminobenzoic acid (hereinafter, DABA) were added. 0.61 g (0.0041 mol) was weighed, m-cresol was added, and the mixture was stirred at 80 ° C. for 4 hours. Thereafter, 2.2 g (0.0082 mol) of (1,4,5,8) -naphthalenetetracarboxylic dianhydride (hereinafter referred to as NTDA) was added and stirred at 120 ° C. for 24 hours. 1.4 mL (2.4 times mol) of triethylamine and 0.56 g (1.12 times mol) of benzoic acid were added as a catalyst and stirred at 180 ° C. for 24 hours. The polymer solution was cooled to room temperature, reprecipitated with ethyl acetate, transferred to a petri dish and vacuum dried at 150 ° C. for 15 hours, and the main chain polymer NTDA-APPF-r-DABA (50: 50) was obtained.
(合成例2)
<高分子電解質前駆体(側鎖部分:短鎖長)の作製>
ジムロートと窒素流入器を取り付けた三つ口フラスコに2,2−ベンジジンジスルホン酸(以下、BDSA)5.5g(0.0159mol)を量り取り、m−クレゾール50mL(28倍mol)とトリエチルアミン5.4mL(2.4倍mol)を加えて80℃で溶解させた。続いてNTDA4.4g(0.0164mol)を加えて120℃で4時間攪拌し、さらに安息香酸2.2g(1.12倍mol)を加えて数時間120℃で攪拌した。これにより、下記(式7)で示される側鎖部分(短鎖長)を得た。
(Synthesis Example 2)
<Preparation of polymer electrolyte precursor (side chain portion: short chain length)>
In a three-necked flask equipped with a Dimroth and a nitrogen inflower, 5.5 g (0.0159 mol) of 2,2-benzidinedisulfonic acid (hereinafter referred to as BDSA) was weighed, and 50 mL (28-fold mol) of m-cresol and
(合成例3)
<高分子電解質前駆体(側鎖部分:長鎖長)の作製>
ジムロートと窒素流入器を取り付けた三つ口フラスコにBDSA5.5g(0.0159mol)を量り取り、m−クレゾール50mL(28倍mol)とトリエチルアミン5.4mL(2.4倍mol)を加えて80℃で溶解させた。続いてNTDA4.4g(0.0164mol)を加えて120℃で24時間攪拌し、さらに安息香酸2.2g(1.12倍mol)を加えて数時間120℃で攪拌した。これにより、合成例2と構造は同様で分子量の異なる側鎖部分(長鎖長、式7中、繰り返し単位の数を示す「l」が約200)を得た。
(Synthesis Example 3)
<Preparation of polymer electrolyte precursor (side chain portion: long chain length)>
BDSA (5.5 g, 0.0159 mol) was weighed into a three-necked flask equipped with a Dimroth and a nitrogen inflow device, and m-cresol (50 mL, 28 times mol) and triethylamine (5.4 mL, 2.4 times mol) were added. It was dissolved at ° C. Subsequently, 4.4 g (0.0164 mol) of NTDA was added and stirred at 120 ° C. for 24 hours, and 2.2 g (1.12 times mol) of benzoic acid was further added and stirred at 120 ° C. for several hours. As a result, side chain portions having the same structure as Synthesis Example 2 but different molecular weights (long chain length, “l” indicating the number of repeating units in Formula 7 was about 200) were obtained.
(実施例1)
<グラフト型スルホン化ポリイミドの作製>
(合成例1)で作製した主鎖ポリマーNTDA−APPF−r−DABA(50:50)を、(合成例2)で作製したNTDA−BDSA溶液(主鎖ポリマーに対して10倍mol)に加え、120℃で24時間反応させた。トリフェニルホスフィン(DABAの2.4倍mol)とピリジン(DABAの5倍mol)を加えて180℃で24時間反応させることにより、目的とするスルホン化グラフトコポリイミドNTDA−APPF−r−DABA−g−NTDA−BDSA(短鎖長)を合成した(実施例1、下記式8)。合成したポリマー溶液は室温まで冷却した後、メタノールで再沈して未反応の側鎖を除去し、シャーレに移して150℃で15時間真空乾燥した。
Example 1
<Preparation of grafted sulfonated polyimide>
The main chain polymer NTDA-APPF-r-DABA (50:50) prepared in (Synthesis Example 1) is added to the NTDA-BDSA solution (10-fold mol with respect to the main chain polymer) prepared in (Synthesis Example 2). , And reacted at 120 ° C. for 24 hours. Triphenylphosphine (2.4 times mol of DABA) and pyridine (5 times mol of DABA) were added and reacted at 180 ° C. for 24 hours to obtain the desired sulfonated graft copolyimide NTDA-APPF-r-DABA- g-NTDA-BDSA (short chain length) was synthesized (Example 1, Formula 8 below). The synthesized polymer solution was cooled to room temperature, then reprecipitated with methanol to remove unreacted side chains, transferred to a petri dish, and vacuum dried at 150 ° C. for 15 hours.
(実施例2)
<グラフト型スルホン化ポリイミドの作製>
(合成例1)で作製した主鎖ポリマーNTDA−APPF−r−DABA(50:50)を、(合成例3)で作製したNTDA−BDSA溶液(主鎖ポリマーに対して10倍mol)に加え、120℃で24時間反応させた。トリフェニルホスフィン(DABAの2.4倍mol)とピリジン(DABAの5倍mol)を加えて180℃で24時間反応させることにより、目的とするスルホン化グラフトコポリイミドNTDA−APPF−r−DABA−g−NTDA−BDSA(長鎖長)を合成した(実施例2)。実施例1に対し、構造は同様で側鎖の分子量が異なる(式8中、繰り返し単位の数を示す「l」が約200)。合成したポリマー溶液は室温まで冷却した後、メタノールで再沈して未反応の側鎖を除去し、シャーレに移して150℃で15時間真空乾燥した。
(Example 2)
<Preparation of grafted sulfonated polyimide>
The main chain polymer NTDA-APPF-r-DABA (50:50) prepared in (Synthesis Example 1) is added to the NTDA-BDSA solution (10-fold mol with respect to the main chain polymer) prepared in (Synthesis Example 3). , And reacted at 120 ° C. for 24 hours. Triphenylphosphine (2.4 times mol of DABA) and pyridine (5 times mol of DABA) were added and reacted at 180 ° C. for 24 hours to obtain the desired sulfonated graft copolyimide NTDA-APPF-r-DABA- g-NTDA-BDSA (long chain length) was synthesized (Example 2). Compared to Example 1, the structure is the same and the molecular weight of the side chain is different (in Formula 8, “l” indicating the number of repeating units is about 200). The synthesized polymer solution was cooled to room temperature, then reprecipitated with methanol to remove unreacted side chains, transferred to a petri dish, and vacuum dried at 150 ° C. for 15 hours.
(実施例3、4)
<グラフト型スルホン化ポリイミド膜の作製>
実施例1、2でそれぞれ示したグラフト型スルホン化ポリイミドを0.4g/10mlの濃度(0.04g/ml)でジメチルスルホキシド(以下、DMSO)に一晩かけて溶解させ、そのポリマー溶液をシャーレ(外径90mm、内径86mm、深さ20mm)に注ぎいれて平滑にした真空オーブン中に設置した。常圧のまま110℃まで加熱した後、0.1MPaまで0.01MPa/h程度の速さで減圧して溶媒を蒸発させた。0.1MPaまで減圧した時点から、さらにそのまま110℃で12時間熱処理を行った。室温になるまで冷ましてから取り出すことでポリイミド固体電解質膜を作製した。
作製した膜をエタノールに4時間浸して膜を膨潤させ、不純物や残存溶媒を除去した。その後エタノールを捨て、イオン交換水に4時間浸漬してエタノールを除去した。次にイオン交換水を捨て、0.1N塩酸水溶液に4時間浸してスルホン酸基のプロトン化を行い、最後にイオン交換水に4時間浸漬させて余分な塩酸を除去して、膜厚50μmの目的の電解質膜を作製した。実施例1、2にそれぞれ対応する電解質膜を実施例3、4とする。
(Examples 3 and 4)
<Production of graft type sulfonated polyimide membrane>
The graft type sulfonated polyimide shown in each of Examples 1 and 2 was dissolved in dimethyl sulfoxide (hereinafter, DMSO) overnight at a concentration of 0.4 g / 10 ml (0.04 g / ml), and the polymer solution was dissolved in a petri dish. It was placed in a vacuum oven smoothed by pouring into (outer diameter 90 mm, inner diameter 86 mm, depth 20 mm). After heating to 110 ° C. with normal pressure, the solvent was evaporated by reducing the pressure to 0.1 MPa at a rate of about 0.01 MPa / h. From the time when the pressure was reduced to 0.1 MPa, heat treatment was further performed at 110 ° C. for 12 hours. The polyimide solid electrolyte membrane was produced by taking out after cooling to room temperature.
The produced film was immersed in ethanol for 4 hours to swell the film and remove impurities and residual solvent. Thereafter, the ethanol was discarded, and the ethanol was removed by immersion in ion-exchanged water for 4 hours. Next, the ion-exchanged water is discarded, and the sulfonic acid group is protonated by immersing it in a 0.1N hydrochloric acid aqueous solution for 4 hours. Finally, the excess hydrochloric acid is removed by immersing in ion-exchanged water for 4 hours. The target electrolyte membrane was produced. The electrolyte membranes corresponding to Examples 1 and 2 are referred to as Examples 3 and 4, respectively.
(比較例1)
<直鎖型スルホン化ポリイミド膜の作製>
ジムロートと窒素流入器を取り付けた三つ口フラスコに2,2−ベンジジンジスルホン酸(BDSA)1.8g(0.0053mol)と4,4’−[ヘキサフルオロイソプロピリデンビス(p−フェニレンオキシ)]ジアニリン(APPF)1.17g(0.0022mol)を量り取り、トリエチルアミン2.5mLとm−クレゾール20mLを加えて80℃で4時間溶解させた。NTDA2.0g(0.0075mol)を加え、120℃で24時間攪拌加熱した。トリエチルアミン2.5mLと安息香酸1.03g(0.084mol)を加えてさらに180℃で24時間攪拌加熱を行い、放冷した後、酢酸エチルで再沈した。得られた粒状のポリマーを150℃で15時間真空乾燥させ、NTDA−BDSA−r−APPF 70:30ポリマーを得た。
ジメチルスルホキシド10mLに、前記NTDA−BDSA−r−APPF 70:30ポリマーを0.4g加えて、一晩攪拌し、溶解させ、スルホン化ランダムコポリイミド塩溶液を調製した。次に、スルホン化ランダムコポリイミド塩溶液をガラスシャーレ上にキャストし、110℃、減圧下で溶媒を蒸発させ、キャスト膜を作製した。
作製した膜をエタノールに4時間浸して膜を膨潤させ、不純物や残存溶媒を除去した。その後、エタノールを捨て、イオン交換水に4時間浸漬してエタノールを除去した。次にイオン交換水を捨て、0.1N塩酸水溶液に4時間浸してスルホン酸基のプロトン化を行い、最後にイオン交換水に4時間浸漬させて余分な塩酸を除去して、膜厚50μmの目的の電解質膜を作製した。
(Comparative Example 1)
<Production of linear sulfonated polyimide membrane>
In a three-necked flask equipped with a Dimroth and a nitrogen inlet, 1.8 g (0.0053 mol) of 2,2-benzidinedisulfonic acid (BDSA) and 4,4 ′-[hexafluoroisopropylidenebis (p-phenyleneoxy)] 1.17 g (0.0022 mol) of dianiline (APPF) was weighed out, 2.5 mL of triethylamine and 20 mL of m-cresol were added, and dissolved at 80 ° C. for 4 hours. NTDA 2.0g (0.0075mol) was added, and it stirred and heated at 120 degreeC for 24 hours. After adding 2.5 mL of triethylamine and 1.03 g (0.084 mol) of benzoic acid, the mixture was further stirred and heated at 180 ° C. for 24 hours, allowed to cool, and then reprecipitated with ethyl acetate. The obtained granular polymer was vacuum-dried at 150 ° C. for 15 hours to obtain an NTDA-BDSA-r-APPF 70:30 polymer.
0.4 g of the NTDA-BDSA-r-APPF 70:30 polymer was added to 10 mL of dimethyl sulfoxide, and the mixture was stirred and dissolved overnight to prepare a sulfonated random copolyimide salt solution. Next, the sulfonated random copolyimide salt solution was cast on a glass petri dish, and the solvent was evaporated at 110 ° C. under reduced pressure to prepare a cast film.
The produced film was immersed in ethanol for 4 hours to swell the film and remove impurities and residual solvent. Thereafter, the ethanol was discarded, and the ethanol was removed by immersion in ion-exchanged water for 4 hours. Next, the ion-exchanged water is discarded, and the sulfonic acid group is protonated by immersing it in a 0.1N hydrochloric acid aqueous solution for 4 hours. Finally, the excess hydrochloric acid is removed by immersing in ion-exchanged water for 4 hours. The target electrolyte membrane was produced.
(比較例2)
市販のナフィオン117(膜厚150μm)を用いた。
(Comparative Example 2)
Commercially available Nafion 117 (film thickness 150 μm) was used.
<GPC(ゲル浸透クロマトグラフィー)による分子量の測定方法>
微量のLiBr(10mM)を添加したジメチルホルムアミド(以下DMF)を用い、合成した側鎖ポリマーの分子量をポリスチレン換算で測定した。サンプル溶液は1mg/mlの濃度でポリマーを臭化リチウム添加DMFに溶解させて作製した。
測定の結果、主鎖ポリマー(合成例1)の重量平均分子量(Mw)は7.1×104g/molであった。実施例1、2で用いた側鎖ポリマー(合成例2)と(合成例3)の重量平均分子量(Mw)はそれぞれ、7.0×104g/molと1.3×105g/molとなった。
<Measurement method of molecular weight by GPC (gel permeation chromatography)>
Using dimethylformamide (hereinafter DMF) to which a small amount of LiBr (10 mM) was added, the molecular weight of the synthesized side chain polymer was measured in terms of polystyrene. The sample solution was prepared by dissolving the polymer in DMF with lithium bromide at a concentration of 1 mg / ml.
As a result of the measurement, the weight average molecular weight (Mw) of the main chain polymer (Synthesis Example 1) was 7.1 × 10 4 g / mol. The weight average molecular weights (Mw) of the side chain polymers (Synthesis Example 2) and (Synthesis Example 3) used in Examples 1 and 2 were 7.0 × 10 4 g / mol and 1.3 × 10 5 g / mol, respectively. mol.
<イオン交換容量の測定方法>
イオン交換容量(IEC)は滴定法により算出した。はじめにサンプルとなる膜を真空オーブンを用いて80℃で12時間乾燥させた。その後、膜サンプルを約10mgサンプル瓶に量り取り、十分量の0.1N塩化ナトリウム溶液に浸漬させ、一晩以上放置し膜中のスルホン酸基のプロトンをNaイオンに置換した。置換した塩化ナトリウム溶液にフェノールフタレイン水溶液を数滴滴下した後、0.01N水酸化ナトリウムを用いて赤紫色に溶液が変化するまで滴定した。IEC[meq./g]は下式により算出した。
IEC(meq./g)=滴定量(μL)×規定度(N)/膜重量(mg)
<Measurement method of ion exchange capacity>
The ion exchange capacity (IEC) was calculated by a titration method. First, a sample film was dried at 80 ° C. for 12 hours using a vacuum oven. Thereafter, the membrane sample was weighed into a sample bottle of about 10 mg, immersed in a sufficient amount of 0.1N sodium chloride solution, and allowed to stand overnight or more to replace protons of sulfonic acid groups in the membrane with Na ions. After dropping a few drops of a phenolphthalein aqueous solution into the substituted sodium chloride solution, the solution was titrated with 0.01N sodium hydroxide until the solution changed to reddish purple. IEC [meq. / G] was calculated by the following equation.
IEC (meq./g)=Titration (μL) × Normality (N) / Membrane weight (mg)
作製した電解質膜のIEC(meq./g)の値は、実施例1,2でそれぞれ2.38、2.40であった。またIEC値から算出したグラフト率はそれぞれ2.2%、1.5%であった。また比較例1、2のIEC(meq./g)は2.2、0.91であった。 The IEC (meq./g) value of the produced electrolyte membrane was 2.38 and 2.40 in Examples 1 and 2, respectively. The graft ratios calculated from the IEC values were 2.2% and 1.5%, respectively. Moreover, IEC (meq./g) of Comparative Examples 1 and 2 was 2.2 and 0.91.
なお、ここでグラフト率とは、主鎖中の側鎖導入部位すべてに側鎖が導入された場合を100%として計算した割合である。例えば実施例3、4では、合成例1で用いたDABAのカルボン酸基すべてに合成例2、3で作製した側鎖部分末端のアミノ基が反応しアミド結合を形成した場合100%である。具体的には以下の式で算出される。
グラフト率(%)={(主鎖分子量×IEC)/[2000−(側鎖分子量×IEC)]}×100
Here, the graft ratio is a ratio calculated with 100% as the side chain introduced into all side chain introduction sites in the main chain. For example, in Examples 3 and 4, it is 100% when all the carboxylic acid groups of DABA used in Synthesis Example 1 react with the amino groups at the side chain partial ends prepared in Synthesis Examples 2 and 3 to form amide bonds. Specifically, it is calculated by the following formula.
Graft ratio (%) = {(main chain molecular weight × IEC) / [2000− (side chain molecular weight × IEC)]} × 100
<プロトン伝導度の測定方法>
プロトン伝導度測定は恒温恒湿器(ESPEC社製、SH−221)を用いて温度と湿度を一定に保ち(約3時間)、インピーダンスアナライザー(日置電気(株)製、3532−50)を用いて、電解質の抵抗を測定した。具体的にはインピーダンスアナライザーにより50kHz〜5MHzまでの周波数応答性を測定し、次式からプロトン伝導度を算出した。
プロトン伝導度(S/cm)=D/(W×T×R)
ここでDは電極間距離(cm)、Wは膜幅(cm)、Tは膜厚(cm)、Rは測定した抵抗値(Ω)である。本測定においては、D=1cm、W=1cmで行い、膜厚はそれぞれのサンプルについてマイクロメーターを用いて測定した値を用いた。温度と湿度はそれぞれ90℃、98%RHとした。
<Measurement method of proton conductivity>
Proton conductivity measurement is performed using a constant temperature and humidity chamber (manufactured by ESPEC, SH-221), keeping the temperature and humidity constant (about 3 hours), and using an impedance analyzer (manufactured by Hioki Electric Co., Ltd., 3532-50). Then, the resistance of the electrolyte was measured. Specifically, the frequency response from 50 kHz to 5 MHz was measured with an impedance analyzer, and the proton conductivity was calculated from the following equation.
Proton conductivity (S / cm) = D / (W × T × R)
Here, D is a distance between electrodes (cm), W is a film width (cm), T is a film thickness (cm), and R is a measured resistance value (Ω). In this measurement, D = 1 cm and W = 1 cm, and the film thickness was a value measured using a micrometer for each sample. The temperature and humidity were 90 ° C. and 98% RH, respectively.
<ガス透過係数の測定方法>
ガス透過測定は透過測定装置(Rika Seiki, Inc., K−315−H)を用いて行った。酸素ガスを用い、測定条件は低圧側容量57.41(cc)、膜面積7.065(cm2)、1atm、測定温度35℃である。ガス透過係数の算出方法は、
P=DS
と、
D=L2/6×θ
を用いた。ここでPはガス透過係数[×10-10(cm3(STP)・cm/cm2・sec・cmHg)]、Dは拡散係数(diffusion coefficient)[×10-8(cm2/sec)]、Sは溶解度係数(solubility coefficient)[×10-2(cm3(STP)/cm3・sec・cmHg)]、Lは膜厚[cm]、θは遅れ時間[sec]である。
<Measurement method of gas permeability coefficient>
Gas permeation measurement was performed using a permeation measuring device (Rika Seiki, Inc., K-315-H). Using oxygen gas, the measurement conditions are a low-pressure side capacity of 57.41 (cc), a membrane area of 7.065 (cm 2 ), 1 atm, and a measurement temperature of 35 ° C. The calculation method of gas permeability coefficient is
P = DS
When,
D = L 2/6 × θ
Was used. Here, P is a gas permeation coefficient [× 10 −10 (cm 3 (STP) · cm / cm 2 · sec · cmHg)], and D is a diffusion coefficient (× 10 −8 (cm 2 / sec)). , S is a solubility coefficient [× 10 −2 (cm 3 (STP) / cm 3 · sec · cmHg)], L is a film thickness [cm], and θ is a delay time [sec].
実施例3、4、比較例1、2について上記方法で評価を行った。結果を表1に示す。表1より、本発明のグラフト型ポリイミド電解質を用いた実施例は、直鎖型スルホン化ポリイミドやフッ素系電解質膜を用いた比較例に比べ、高いプロトン伝導度を示し、低いガス透過係数つまり高いガス遮断性を示すことがわかった。 Examples 3 and 4 and Comparative Examples 1 and 2 were evaluated by the above method. The results are shown in Table 1. From Table 1, the example using the graft type polyimide electrolyte of the present invention shows higher proton conductivity and lower gas permeability coefficient, that is, higher than the comparative example using the linear sulfonated polyimide or the fluorine-based electrolyte membrane. It was found that gas barrier properties were exhibited.
1 高分子電解質膜
2 触媒層
3 拡散層
4 セパレーター
5 流路
10 固体高分子形燃料電池
DESCRIPTION OF SYMBOLS 1
Claims (10)
0.01<[Mw(グラフト側鎖)/Mw(主鎖)]<4
を満たすことを特徴とする、請求項1〜5のいずれか1項に記載のグラフト型ポリイミド電解質。 The ratio of the weight average molecular weight of the graft side chain and the weight average molecular weight of the main chain [Mw (graft side chain) / Mw (main chain)]
0.01 <[Mw (graft side chain) / Mw (main chain)] <4
The graft-type polyimide electrolyte according to any one of claims 1 to 5, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010080479A JP2011213763A (en) | 2010-03-31 | 2010-03-31 | Grafted polyimide electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010080479A JP2011213763A (en) | 2010-03-31 | 2010-03-31 | Grafted polyimide electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011213763A true JP2011213763A (en) | 2011-10-27 |
Family
ID=44943853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010080479A Pending JP2011213763A (en) | 2010-03-31 | 2010-03-31 | Grafted polyimide electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011213763A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011231281A (en) * | 2010-04-30 | 2011-11-17 | Tokyo Metropolitan Univ | Polyimide resin and use thereof |
CN103073702A (en) * | 2013-01-23 | 2013-05-01 | 中国科学技术大学 | Polyimide with sulfonated side chain and preparation method thereof |
JP2013229121A (en) * | 2012-04-24 | 2013-11-07 | Nitto Denko Corp | Proton conductivity polymer electrolyte membrane, and membrane electrode assembly and fuel battery using the same |
JP2014175111A (en) * | 2013-03-07 | 2014-09-22 | Japan Advanced Institute Of Science & Technology Hokuriku | Polymer electrolyte, proton conducting membrane and fuel cell |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004155998A (en) * | 2002-11-08 | 2004-06-03 | Yamaguchi Technology Licensing Organization Ltd | Alkoxy-sulfonated aromatic polyimide and electrolyte membrane containing the same |
WO2005054339A1 (en) * | 2003-12-08 | 2005-06-16 | University Of Yamanashi | Polyimide resin, method for producing polyimide resin, and electrolyte membrane, catalyst layer, membrane/electrode assembly and device each containing polyimide resin |
JP2006070116A (en) * | 2004-08-31 | 2006-03-16 | Yamaguchi Univ | Sulfonated aromatic polyimide and electrolyte membrane made from the polyimide |
JP2009243031A (en) * | 2008-03-11 | 2009-10-22 | Tokyo Metropolitan Univ | Nanofiber, electrolyte membrane, membrane electrode assembly, and fuel cell |
-
2010
- 2010-03-31 JP JP2010080479A patent/JP2011213763A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004155998A (en) * | 2002-11-08 | 2004-06-03 | Yamaguchi Technology Licensing Organization Ltd | Alkoxy-sulfonated aromatic polyimide and electrolyte membrane containing the same |
WO2005054339A1 (en) * | 2003-12-08 | 2005-06-16 | University Of Yamanashi | Polyimide resin, method for producing polyimide resin, and electrolyte membrane, catalyst layer, membrane/electrode assembly and device each containing polyimide resin |
JP2006070116A (en) * | 2004-08-31 | 2006-03-16 | Yamaguchi Univ | Sulfonated aromatic polyimide and electrolyte membrane made from the polyimide |
JP2009243031A (en) * | 2008-03-11 | 2009-10-22 | Tokyo Metropolitan Univ | Nanofiber, electrolyte membrane, membrane electrode assembly, and fuel cell |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011231281A (en) * | 2010-04-30 | 2011-11-17 | Tokyo Metropolitan Univ | Polyimide resin and use thereof |
JP2013229121A (en) * | 2012-04-24 | 2013-11-07 | Nitto Denko Corp | Proton conductivity polymer electrolyte membrane, and membrane electrode assembly and fuel battery using the same |
CN103073702A (en) * | 2013-01-23 | 2013-05-01 | 中国科学技术大学 | Polyimide with sulfonated side chain and preparation method thereof |
JP2014175111A (en) * | 2013-03-07 | 2014-09-22 | Japan Advanced Institute Of Science & Technology Hokuriku | Polymer electrolyte, proton conducting membrane and fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bose et al. | Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges | |
Chandan et al. | High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)–A review | |
JP5427688B2 (en) | Polyimide resin and its use | |
JP5881194B2 (en) | Phosphate-doped electrolyte membrane, method for producing the same, and fuel cell including the same | |
WO2005124911A1 (en) | Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell | |
JP2011523766A5 (en) | ||
WO2007032541A1 (en) | Polymer electrolyte, polymer electrolyte membrane using same, membrane-electrode assembly and fuel cell | |
US20100183941A1 (en) | Assembly of membrane, electrode, gas diffusion layer and gasket, method for producing the same, and solid polymer fuel cell | |
JP2006344578A (en) | Solid electrolyte, electrode membrane assembly, and fuel cell | |
JP2011213763A (en) | Grafted polyimide electrolyte | |
US20100167162A1 (en) | Membrane-electrode assembly, method for producing the same and solid polymer fuel cell | |
JP2010209157A (en) | Grafted polyimide electrolyte | |
JP2009021233A (en) | Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell | |
JP5458765B2 (en) | Proton conducting membrane and method for producing the same, membrane-electrode assembly, polymer electrolyte fuel cell | |
JP2011028990A (en) | Polymer electrolyte and electrolyte for fuel cell containing the same | |
KR100654244B1 (en) | High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell | |
US20140080037A1 (en) | Electrode for fuel cell and fuel cell including the same | |
WO2007094561A1 (en) | High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell | |
JP6090971B2 (en) | Polymer electrolyte membrane and use thereof | |
JP5950323B2 (en) | POLYMER ELECTROLYTE AND USE THEREOF | |
JP2006294544A (en) | Jointing method of polymer electrolyte membrane to electrode, electrolyte membrane-electrode assembly and fuel cell using it | |
JPWO2008038702A1 (en) | Sulfonic acid group-containing polymer, production method thereof, polymer electrolyte membrane using sulfonic acid group-containing polymer, membrane / electrode assembly, and fuel cell | |
JP2009021235A (en) | Membrane-electrode-gas diffusion layer assembly and fuel cell having the same | |
JP2011517037A (en) | How to operate the fuel cell | |
JP2007149592A (en) | Manufacturing method of polymer electrolyte membrane-electrode assembly, and polymer electrolyte membrane-electrode assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130311 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130311 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130730 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131126 |