KR100654244B1 - High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell - Google Patents

High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell Download PDF

Info

Publication number
KR100654244B1
KR100654244B1 KR1020060015710A KR20060015710A KR100654244B1 KR 100654244 B1 KR100654244 B1 KR 100654244B1 KR 1020060015710 A KR1020060015710 A KR 1020060015710A KR 20060015710 A KR20060015710 A KR 20060015710A KR 100654244 B1 KR100654244 B1 KR 100654244B1
Authority
KR
South Korea
Prior art keywords
fuel cell
electrolyte membrane
membrane
polymer electrolyte
electrode assembly
Prior art date
Application number
KR1020060015710A
Other languages
Korean (ko)
Inventor
이범진
소우나이
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR1020060015710A priority Critical patent/KR100654244B1/en
Application granted granted Critical
Publication of KR100654244B1 publication Critical patent/KR100654244B1/en
Priority to CN200680052875XA priority patent/CN101375444B/en
Priority to PCT/KR2006/005902 priority patent/WO2007094561A1/en
Priority to TW096105902A priority patent/TWI347962B/en
Priority to US12/191,689 priority patent/US20080305379A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

Provided are a polymer electrolyte membrane for a fuel cell, a membrane electrode assembly containing the electrolyte membrane which is excellent in phosphoric acid infiltration, is high in the ion conductivity even under the condition of high temperature and no moisture and is minimized in the deterioration of durability due to the CO poisoning of an electrode, and a fuel cell containing the assembly. The polymer electrolyte membrane comprises a polyimide copolymer film represented by the formula 1; and an acid infiltrated in the polyimide copolymer film, wherein A and P are an acid dianhydride; B is a divalent organic group derived from diaminophenylbenzimidazole represented by the formula 2; and D is a divalent organic group selected from an aromatic diamine. The membrane electrode assembly comprises the polymer electrolyte membrane; a catalyst layer coated on the both sides of the polymer electrolyte membrane by vapor deposition; and a gas diffusion layer located on the both sides of the catalyst layer.

Description

연료전지용 고분자 전해질막, 및 이를 이용한 막-전극 접합체, 연료전지{High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell}Polymer electrolyte membrane for fuel cell, and membrane-electrode assembly using the same, fuel cell {High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell}

도 1은 상기의 방법에 의해 제조된 고분자 전해질막을 이용하여 제조된 막-전극 접합체(Membrane-Electrode assembly; MEA)를 모식적으로 나타낸 단면도이다.1 is a cross-sectional view schematically showing a membrane-electrode assembly (MEA) manufactured using a polymer electrolyte membrane prepared by the above method.

도 2는 상기의 막-전극 접합체를 포함하는 연료전지를 모식적으로 나타낸 분해 사시도이다.2 is an exploded perspective view schematically showing a fuel cell including the membrane-electrode assembly described above.

도 3은 본 발명의 실시예 1의 고분자 전해질막을 이용하여 제작된 연료전지의 I-V특성 데이터이다.3 is I-V characteristic data of a fuel cell manufactured using the polymer electrolyte membrane of Example 1 of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10: 막-전극 접합체 20: 바이폴라 플레이트10 membrane-electrode assembly 20 bipolar plate

100: 고분자 전해질막 110, 110': 촉매100: polymer electrolyte membrane 110, 110 ': catalyst

120,120': 기체확산막120,120 ': gas diffusion membrane

본 발명은 연료전지용 고분자 전해질막, 및 이를 이용한 막-전극 접합체, 연료전지에 관한 것으로, 보다 상세하게는 고온에서 안정적으로 수소이온의 전도성을 발현하여 고온 무가습 연료전지 시스템에 적합하게 사용될 수 있는 연료전지용 고분자 전해질막, 및 이를 이용한 막-전극 접합체, 연료전지에 관한 것이다.The present invention relates to a polymer electrolyte membrane for a fuel cell, a membrane-electrode assembly using the same, and a fuel cell, and more particularly, to express hydrogen conductivity stably at a high temperature to be suitably used for a high temperature unhumidified fuel cell system. The present invention relates to a polymer electrolyte membrane for a fuel cell, a membrane-electrode assembly using the same, and a fuel cell.

고분자 이온 교환막은 확산투석(diffusion dialysis), 전기투석(eloctrodialysis) 및 증기투과성 분리(vapor permeation separation) 등에 주로 응용되어 왔으나 최근에는 양이온 교환 고분자를 이용한 고분자 전해질 연료전지의 개발에 관심이 집중되고 있다.Polymeric ion exchange membranes have been mainly applied to diffusion dialysis, electrodialysis, and vapor permeation separation, but recently, attention has been focused on the development of polymer electrolyte fuel cells using cation exchange polymers.

연료전지는 연료 내에 저장된 화학에너지를 전기에너지로 효과적으로 전환시키는 에너지 전환장치의 일종으로 가스로서 저장되는 수소 또는 액체나 가스로 저장되는 메탄올 등을 산소와 결합하여 전력을 발생시킨다. 특히, 수소이온 교환막 연료전지(proton exchange membrane fuel cell; PEMFC)는 화석연료를 대체할 수 있는 청정 에너지원으로서 출력밀도 및 에너지 전환 효율이 우수하다.A fuel cell is a type of energy conversion device that effectively converts chemical energy stored in fuel into electrical energy and generates electric power by combining hydrogen stored as a gas or methanol stored as a liquid or gas with oxygen. In particular, a proton exchange membrane fuel cell (PEMFC) is a clean energy source that can replace fossil fuels and has excellent power density and energy conversion efficiency.

이러한 연료전지의 전해질로서 통상적으로 퍼플루오로설포닉산 및 테트라플루오로에틸렌의 공중합체에 근거한 수소 이온 전도성 고분자막이 알려져 있다. 상기 연료전지의 구성요소로는 고분자 전해질막, 전극, 스택을 구성하기 위한 분리판(separator) 등이 있다.As electrolytes for such fuel cells, hydrogen ion conductive polymer membranes based on copolymers of perfluorosulphonic acid and tetrafluoroethylene are known. Components of the fuel cell include a polymer electrolyte membrane, an electrode, a separator for forming a stack, and the like.

일반적으로, 백금 촉매의 표면적을 극대화하기 위하여 나노크기의 백금 입자 가 카본 블랙과 같은 탄소 재료 표면에 흡착되어 있는 양극과 음극의 두 전극을 고분자 전해질 막에 다양한 방법으로 부착시킨 것을 막-전극 접합체(membrane-electrode assembly)라 하는데, 상기 탄소 재료는 통상적으로 수백 m2/g의 유효 표면적을 갖는 분말 형태이고, 백금 입자는 산화/환원반응의 촉매로 작용한다.In general, in order to maximize the surface area of the platinum catalyst, two electrodes, the anode and the cathode, in which nano-sized platinum particles are adsorbed on the surface of a carbon material such as carbon black, are attached to the polymer electrolyte membrane in various ways. membrane-electrode assembly, which is typically in powder form with an effective surface area of several hundred m2 / g, and the platinum particles act as a catalyst for oxidation / reduction reactions.

이러한 막-전극 접합체의 구성 및 성능이 고분자 전해질 연료전지 기술의 핵심이라 할 수 있다. 상기 연료전지에서 전기를 발생시키는 원리는 하기 반응식 1과 같이 연료 기체인 수소가 음극(cathode)으로 공급되어 음극의 백금 촉매에 흡착되고 산화 반응에 의하여 수소 이온 및 전자가 발생한다.The construction and performance of such a membrane-electrode assembly are the core of the polymer electrolyte fuel cell technology. The principle of generating electricity in the fuel cell is hydrogen as fuel gas is supplied to the cathode (cathode) as adsorbed on the cathode (cathode) as shown in Scheme 1 and the hydrogen ions and electrons are generated by the oxidation reaction.

2H2 → 4H+ + 4e- 2H 2 → 4H + + 4e -

이때, 발생된 전자는 외부회로를 따라 양극(anode)에 도달하고, 수소이온은 고분자 전해질 막을 통과하여 양극으로 전달된다. 양극에서는 하기 반응식 2와 같이 산소분자가 양극으로 전달된 전자를 받아 산소이온으로 환원되고, 상기 환원된 산소와 수소이온이 반응하여 물을 생산하면서 전기를 발생시키게 된다.At this time, the generated electrons reach the anode along the external circuit, and hydrogen ions pass through the polymer electrolyte membrane and are transferred to the anode. At the anode, as shown in Reaction Formula 2, the oxygen molecules receive electrons transferred to the anode and are reduced to oxygen ions, and the reduced oxygen reacts with hydrogen ions to generate electricity while producing water.

O2 + 4e- → 2O2 - O 2 + 4e - → 2O 2 -

2O2 - + 4H+ → 2H2O 2O 2 - + 4H + → 2H 2 O

이러한 연료전지용 고분자 전해질막은 전기적으로는 절연체이나, 전지 작동 중에 음극으로부터 양극으로 수소이온(H+)을 전달하는 매개체로 작용하며, 연료 기체 또는 액체와 산화제 기체를 분리하는 역할을 동시에 수행한다. 따라서, 연료전지용 이온교환막은 기계적 성질 및 전기화학적 안정성이 우수해야 하고 고전류 밀도에서 저항 손실(ohmic loss)이 적어야 한다.The fuel cell polymer electrolyte membrane is electrically insulated, but acts as a medium for transferring hydrogen ions (H + ) from the negative electrode to the positive electrode during battery operation, and simultaneously serves to separate the fuel gas or the liquid from the oxidant gas. Therefore, the fuel cell ion exchange membrane should have excellent mechanical properties and electrochemical stability and low ohmic loss at high current density.

연료전지용 고분자 전해질막에 대하여 1960년대 개발초기에는 탄화수소 계통의 고분자 막에 대한 많은 연구가 진행되었으나, 1968년 듀퐁(E.I.Du Pont de Nemours, Inc.) 사에서 퍼플루오리네이티드 설폰산(perfluorinated sulfonic acid; Nafion)을 개발함으로써 본격화 되었고, 현재까지 설치용 연료전지 및 휴대용 연료전지에 있어서 주로 적용되어 개발이 진행되고 있다.In the early 1960s, many studies on the polymer electrolyte membrane for fuel cells were carried out. However, perfluorinated sulfonic acid was produced by EIDu Pont de Nemours, Inc. in 1968. Nafion has been developed in earnest, and it is mainly applied in fuel cells for installation and portable fuel cells.

그러나, 나피온계를 사용한 연료전지는 80℃ 이하의 저온 구동에 따른 전극촉매의 CO 피독(poisoning) 문제와 직접메탄올 연료전지(Direct methanol fuel cell; DMFC)에 있어서의 메탄올 크로스오버(cross over)로 인해 연료전지의 특성을 저하시키고 수명을 단축시키는 주요 요인이 되므로 이 문제를 해결하기 위해 많은 연구가 진행되고 있다.However, the fuel cell using Nafion system has a problem of CO poisoning of the electrode catalyst due to the low temperature operation below 80 ° C and the methanol crossover in the direct methanol fuel cell (DMFC). Due to this is a major factor to deteriorate the characteristics of fuel cells and shorten the life cycle, many studies have been conducted to solve this problem.

또한, 최근에는 나피온 등의 불소계 고분자 전해질막의 경우 90℃이상의 온도에서 열안정성이 없는 문제와, 합성이 어렵고 재료의 가격이 비싸다는 문제점이 있어, 막의 열안정성 증가와 비용의 저하시키기 위해 술폰화된 탄화수소계 고분자 전해질이 개발되고 있다.In addition, in the case of fluorine-based polymer electrolyte membranes such as Nafion, there is a problem of no thermal stability at a temperature above 90 ° C, a problem of difficulty in synthesis and expensive materials, and sulfonation to increase the thermal stability of the membrane and lower the cost. Hydrocarbon-based polymer electrolytes have been developed.

그러나, 술폰화된 탄화수소계 전해질막 역시 수분 존재하에 프로톤 전도가 가능한 시스템이므로 100℃ 이상의 고온 구동에 있어서는 막 내부에서의 수분 탈수 현상이 발생하여 수소이온 전도도가 급격히 저하되는 문제를 안고 있다.However, since sulfonated hydrocarbon electrolyte membranes are also capable of proton conduction in the presence of water, water dehydration occurs in the membrane at high temperatures of 100 ° C. or higher, and hydrogen ion conductivity rapidly decreases.

뿐만 아니라, 최근의 연료전지 시스템은 발전효율과 가정용 연료전지에 있어서 배열 이용을 위해 고온 구동에 적합한 연료전지용 고분자 전해질막의 개발이 요구되고 있다.In addition, the recent fuel cell system is required to develop a polymer electrolyte membrane for fuel cells suitable for high temperature driving in order to use the power generation efficiency and the array in the domestic fuel cell.

본 발명은 130℃이상의 고온에서 안정적인 수소 이온 전도도를 가지고, 고온 무가습 조건에서 전지 특성이 발현가능한 연료전지용 고분자 전해질막, 및 이를 이용한 막-전극 접합체, 연료전지를 제공하는데에 있다.The present invention provides a polymer electrolyte membrane for a fuel cell having stable hydrogen ion conductivity at a high temperature of 130 ° C. or higher and expressing battery characteristics at high temperature and no humidification conditions, and a membrane-electrode assembly and a fuel cell using the same.

본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved by the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.

상기의 기술적 과제를 해결하기 위한 본 발명의 실시예에 따른 연료전지용 고분자 전해질막은 페닐 벤즈이미다졸(phenyl benzimidazole)을 포함하는 하기 화학식 1의 폴리이미드 공중합체 필름, 및 폴리이미드 공중합체 필름 내부에 함침되는 산을 포함한다.     A polymer electrolyte membrane for a fuel cell according to an embodiment of the present invention for solving the above technical problem is impregnated into a polyimide copolymer film of Formula 1, and a polyimide copolymer film including phenyl benzimidazole Contains acids that become.

Figure 112006011918785-pat00002
Figure 112006011918785-pat00002

다만, 상기 화학식 1에서 B는 디아미노 페닐벤즈이미다졸(diamino phenyl benzimidazole)로부터 유도된 2가의 유기기로서 하기 화학식 2로 표시되는 그룹으로부터 선택된 하나이다.However, in Formula 1, B is a divalent organic group derived from diamino phenyl benzimidazole and is selected from the group represented by the following Formula 2.

Figure 112006011918785-pat00003
Figure 112006011918785-pat00003

또한, 상기 화학식 1에서 A와 P는 산이무수물(dianhydride)로부터 유도된 4가의 유기기로, 화학식 3로 표시되는 그룹으로부터 선택된 하나이다In addition, in Formula 1, A and P are tetravalent organic groups derived from dianhydride, and are selected from the group represented by Formula 3.

Figure 112006011918785-pat00004
Figure 112006011918785-pat00004

상기 화학식 1에서 D는 방향족 디아민으로부터 유도된 2가의 유기기로서, 하기 화학식 5로 표시되는 그룹으로부터 선택 된 하나이다.In Formula 1, D is a divalent organic group derived from an aromatic diamine, and is selected from the group represented by the following Formula 5.

Figure 112006011918785-pat00005
Figure 112006011918785-pat00005

상기 화학식 1에서 A:P의 몰비는 기본적으로 1:1로 구성되고, A와 P의 몰% 및 B와 D의 몰%의 합은 100이다.In Formula 1, the molar ratio of A: P is basically 1: 1, and the sum of the mole% of A and P and the mole% of B and D is 100.

하지만, 필요에 따라서 적절한 분자량으로 조절하여 중합체를 제조하기 위하여 1 : 0.9 ~ 0.9 : 1의 몰비까지도 변경할 수도 있으며, 이 경우에는 A와 P의 몰% 합이나 B와 D의 몰% 합은 100이 아닐 수도 있다.However, if necessary, the molar ratio of 1: 0.9 to 0.9: 1 may be changed in order to prepare the polymer by adjusting the appropriate molecular weight. In this case, the mole% sum of A and P or the mole% sum of B and D may be 100. Maybe not.

또한, 화학식 1에서 A와 P는 동일한 화학 구조의 산이무수물(dianhydride)일 수도 있고, 다른 화학 구조의 산이무수물일 수도 있는데, A와 P가 다른 화학구조의 산이무수물을 사용할 경우에는 B와 D의 몰%가 상기 화학식 1에서 m과 n의 비율과 동일하지 않으며, A와 P의 몰% 비율은 1:99%가 될 수 있으며, 바람직하게는 30:70%의 비율로 제조한다.In addition, in Formula 1, A and P may be acid dianhydrides having the same chemical structure, or acid dianhydrides having different chemical structures, and when A and P are acid dianhydrides having different chemical structures, The mole% is not the same as the ratio of m and n in Formula 1, the mole% ratio of A and P may be 1: 99%, preferably prepared in a ratio of 30: 70%.

이때, B는 100~10 몰%를 사용할 수 있고, D는 0~90몰%를 사용할 수 있는데, 바람직하게 B는 50~100몰%를 사용하고 D는 0~50 몰%, 더욱 바람직하게 B는 60~95 몰%를 사용하고 D는 5~40 몰%를 사용한다.At this time, B may be used from 100 to 10 mol%, D may be used from 0 to 90 mol%, preferably B is used 50 to 100 mol% and D is 0 to 50 mol%, more preferably B Uses 60 to 95 mole percent and D uses 5 to 40 mole percent.

상기의 화학식 1로 제조 가능한 폴리이미드 중합체에 대한 대표적인 예들을 하기의 화학식 5에 나타내었다. 다만, 이는 본 발명의 이해를 돕기 위하여 제시하는 일례일 뿐 본 발명의 폴리이미드 중합체 구조를 제한하는 것이 아니다.Representative examples of the polyimide polymer that can be prepared by Chemical Formula 1 are shown in Chemical Formula 5 below. However, this is merely an example to help understand the present invention and does not limit the polyimide polymer structure of the present invention.

Figure 112006011918785-pat00006
Figure 112006011918785-pat00006

이하에서는, 상기와 같은 폴리이미드 중합체를 이용하여 연료전지용 고분자 전해질막을 제조하는 방법을 설명한다.Hereinafter, a method of manufacturing a polymer electrolyte membrane for a fuel cell using the polyimide polymer as described above will be described.

상기의 폴리이미드 중합체를 이용하여 연료전지용 고분자 전해질막을 제조하기 위해서는 먼저, 고분자 필름을 제조하여야 하는데, 이러한 고분자 필름을 제조하기 위한 방법으로는 중합공정 및 필름제조공정에 따라서 다음 2가지 방법이 사용될 수 있다.In order to manufacture a polymer electrolyte membrane for a fuel cell using the polyimide polymer, a polymer film must first be prepared. As a method for preparing the polymer film, the following two methods can be used according to a polymerization process and a film manufacturing process. have.

첫번째 방법은, 폴리이미드의 전구체(precursor)인 폴리아믹산(polyamic acid)을 제조한 후, 그 용액을 캐스팅(casting)하고, 젖은 필름 상태에서 200℃ 이상의 열을 가하여 탈수반응을 통해 이미드 고리를 형성, 건조 후 10 ~ 500㎛의 두께를 갖는 필름을 제조하는 방법이다.The first method is to prepare a polyamic acid, which is a precursor of polyimide, and then cast the solution, apply heat of 200 ° C. or more in a wet film state, and dehydrate the imide ring through dehydration. It is a method of manufacturing the film which has a thickness of 10-500 micrometers after formation and drying.

두번째 방법은, 용액상태에서 아세틱디안하이드라이드(acetic dianhydride)와 피리딘(pyridine)을 이용하는 화학적 이미드화 반응(chemical imidization)이나 메타크레졸(m-cresol)과 같은 산성 용매에 아이소퀴놀린(isoquinoline) 등의 염기성 촉매를 이용하여 용액중합 하는 방법(반대로 염기성 용매에 산성 촉매를 이용하는 방법도 가능), 및 N-메틸피롤리돈(N-methyl-2-pyrrolidone)과 같은 염기성 용매에 톨루엔 등과 같은 용매를 사용하여 아지오트로프(azeotrope) 현상을 이용하여 이미드화 반응을 진행한 후, 이를 침전하여 고체 고분자를 얻고, 다시 이것을 유기용매에 용해하여 캐스팅한 후, 이미드화 반응 없이 단순 용매 휘발을 통하여 필름을 제조하는 방법이다.The second method is chemical imidization using acetic dianhydride and pyridine in solution or isoquinoline in acidic solvents such as m-cresol. Solution polymerization using a basic catalyst of (in contrast to the method of using an acidic catalyst in a basic solvent), and a solvent such as toluene in a basic solvent such as N-methylpyrrolidone (N-methyl-2-pyrrolidone) After the imidation reaction was carried out by using the agiotrope phenomenon, the precipitate was obtained to obtain a solid polymer, which was then dissolved and cast in an organic solvent to prepare a film through simple solvent volatilization without imidization reaction. That's how.

다만, 상기의 두번째 방법은 최종 중합된 폴리이미드가 유기용매에 용해성이 있어야 하므로 지환족 산이무수물 등의 특정 단량체를 사용할 경우로 한정된다.However, the second method is limited to the case of using a specific monomer such as alicyclic acid dianhydride because the final polymerized polyimide should be soluble in the organic solvent.

상기와 같은 방법들에 의해 제조된 고분자 필름에 수소이온, 즉 프로톤(proton) 전도성을 부여하기 위해서는 인산(H3PO4; phosphor acid) 등과 같은 산의 함침(impregnation)을 필요로 한다.Impregnation of an acid such as phosphoric acid (H 3 PO 4 ; phosphoric acid) is required in order to impart hydrogen ions, that is, proton conductivity, to the polymer film prepared by the above methods.

본 발명에서는 85%이 농도를 가진 인산을 사용하여 상기의 제조된 고분자 필름을 도핑하였으나, 더 나아가 인산 뿐만 아니라 황산(H2SO4)과 같은 강산 및 에틸포스포릭산(Ethylphosphoric acid)과 같이 변성산 등을 사용하여도 고분자 필름에 프로톤 전도성을 부여하는 것이 가능하다.In the present invention, the above prepared polymer film was doped with phosphoric acid having a concentration of 85%, but further modified with phosphoric acid as well as strong acids such as sulfuric acid (H 2 SO 4 ) and ethylphosphoric acid. It is possible to impart proton conductivity to the polymer film even if an acid or the like is used.

상기와 같이 고분자 필름에 산을 함침시키게 되면 프로톤 전도성이 있는 연 료전지용 고분자 전해질막의 제조가 완성된다.When the polymer film is impregnated with acid as described above, the production of a polymer electrolyte membrane for fuel cell having proton conductivity is completed.

도 1은 상기의 방법에 의해 제조된 고분자 전해질막을 이용하여 제조된 막-전극 접합체(Membrane-Electrode assembly; MEA)를 모식적으로 나타낸 단면도이다.1 is a cross-sectional view schematically showing a membrane-electrode assembly (MEA) manufactured using a polymer electrolyte membrane prepared by the above method.

도 1을 참고하면, 본 발명의 막-전극 접합체(10)는 연료전지용 고분자 전해질막(100), 고분자 전해질막(100)의 양면에 증착 코팅된 촉매층(110, 110'), 및 촉매층의 양면에 배치되는 기체확산층(120, 120')을 포함한다.Referring to FIG. 1, the membrane-electrode assembly 10 of the present invention is a polymer electrolyte membrane 100 for fuel cells, catalyst layers 110 and 110 ′ deposited on both sides of the polymer electrolyte membrane 100, and both sides of the catalyst layer. It includes a gas diffusion layer (120, 120 ') disposed in.

촉매층(110, 110')은 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금, 또는 백금-M 합금(M=Ga, Ti, V, Cr, Mn, Fe, Co, Ni, Cu 및 Zn으로 이루어진 군으로부터 선택되는 1종 이상의 전이금속) 중에서 선택되는 하나 이상의 촉매를 포함하는 것이 바람직하며, 상기 촉매를 카본블랙(carbon black)과 혼합하여 제조된다.The catalyst layers 110, 110 'may comprise platinum, ruthenium, osmium, platinum-ruthenium alloys, platinum-osmium alloys, platinum-palladium alloys, or platinum-M alloys (M = Ga, Ti, V, Cr, Mn, Fe, Co). , At least one catalyst selected from the group consisting of Ni, Cu, and Zn), and is prepared by mixing the catalyst with carbon black.

촉매층(110, 110')의 양면에는 기체확산층(gas diffusion layer; GDL)(120, 120')이 배치된다.Gas diffusion layers (GDLs) 120 and 120 'are disposed on both surfaces of the catalyst layers 110 and 110'.

기체확산층(120, 120')은 외부로부터 공급되는 수소기체 및 산소기체를 상기 촉매층에 원활히 공급하여 촉매-전해질막-기체의 삼상계면의 형성을 돕는 역할을 하는 것으로서, 탄소지(carbon pater) 또는 탄소천(carbon cloth)으로 제조하는 것이 바람직하다.The gas diffusion layers 120 and 120 'serve to smoothly supply the hydrogen gas and the oxygen gas supplied from the outside to the catalyst layer to assist in the formation of the three-phase interface of the catalyst-electrolyte membrane-gas, and the carbon paper or carbon It is preferable to make with a carbon cloth.

또한, 상기 촉매층(110, 110')과 기체확산층(120, 120') 사이에 수소기체 및 산소기체의 확산을 돕기 위해서, 미세기공층(micro porous layer; MPL)(121,121')을 더 포함할 수도 있다.Further, in order to assist diffusion of hydrogen gas and oxygen gas between the catalyst layers 110 and 110 ′ and the gas diffusion layers 120 and 120 ′, a micro porous layer (MPL) 121 and 121 ′ may further be included. It may be.

도 2는 상기의 막-전극 접합체를 포함하는 연료전지를 모식적으로 나타낸 분해 사시도이다.2 is an exploded perspective view schematically showing a fuel cell including the membrane-electrode assembly described above.

도 2를 참고하면, 본 발명의 연료전지는(1)는 막-전극 접합체(10) 및 상기 막-전극 접합체의 양면에 배치되는 바이폴라 플레이트(bypolar plate; 20)를 포함한다.Referring to FIG. 2, the fuel cell 1 of the present invention includes a membrane-electrode assembly 10 and a bipolar plate 20 disposed on both sides of the membrane-electrode assembly.

이하 본 발명의 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세하게 설명한다. 다만, 하기의 실시예들은 본 발명을 보다 명확하게 이해시키기 위해 제공되는 것일 뿐, 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the configuration and effects of the present invention will be described in detail with specific examples and comparative examples. However, the following examples are merely provided to more clearly understand the present invention and do not limit the scope of the present invention.

<< 실시예Example 1> 1>

교반기, 온도조절장치, 질소가스주입장치 및 냉각기가 장착된 4구 플라스크에 질소를 통과시키면서, 디아민 성분으로서, 하기 화학식 6으로 표시되는 6,4'-디아미노-2-페닐벤즈이미다졸 1mol을 넣고, N-메틸-2-피롤리돈(NMP; Junsei chemical))을 넣어 용해 시켰다.1 mol of 6,4'-diamino-2-phenylbenzimidazole represented by the following formula (6) was added as a diamine component while passing nitrogen through a four-necked flask equipped with a stirrer, a temperature controller, a nitrogen gas injection device, and a cooler. N-methyl-2-pyrrolidone (NMP; Junsei chemical) was added and dissolved.

피로메리트산이무수물(PMDA; 東京化成, Cat. No. B0040) 1mol을 넣고 격렬하게 교반하였다. 이때의 고형분 함량은 질량비로 15 중량%이며, 온도는 25℃ 미만으로 유지하면서 24시간 동안 반응을 수행하여 폴리아믹산 용액(PAA-1)을 제조하였다.  1 mole of pyromellitic dianhydride (PMDA; Cat. No. B0040) was added thereto, followed by vigorous stirring. The solid content at this time is 15% by weight in mass ratio, the reaction was carried out for 24 hours while maintaining the temperature below 25 ℃ to prepare a polyamic acid solution (PAA-1).

Figure 112006011918785-pat00007
Figure 112006011918785-pat00007

<< 실시예Example 2> 2>

실시예 1과 같은 방법을 사용하되, 디아민 성분으로서, 4, 4'-디아미노디페닐에테르(東京化成, Cat. No. 00088) 0.5mol과 6,4'-디아미노-2-페닐벤즈이미다졸 0.5mol을 사용하여 폴리아믹산 용액(PAA-2)을 제조하였다.The same method as in Example 1 was used, but 0.5 mol of 4,4'-diaminodiphenyl ether (cat. No. 00088) and 6,4'-diamino-2-phenylbenzimi were used as diamine components. A polyamic acid solution (PAA-2) was prepared using 0.5 mol of dazole.

<< 실시예Example 3> 3>

실시예 1과 같은 방법을 사용하되, 4, 4'-디아미노디페닐에테르 0.3mol과 6,4'-디아미노-2-페닐벤즈이미다졸 0.7mol, 피로메리트산이무수물(PMDA) 1mol을 사용하여 폴리아믹산 용액(PAA-3)을 제조하였다.Using the same method as Example 1, using 0.3 mol of 4,4'-diaminodiphenyl ether, 0.7 mol of 6,4'-diamino-2-phenylbenzimidazole, and 1 mol of pyromellitic dianhydride (PMDA) To prepare a polyamic acid solution (PAA-3).

<< 실시예Example 4> 4>

실시예 1과 같은 방법을 사용하되, 4, 4'-디아미노디페닐에테르 0.3mol과 6,4'-디아미노-2-페닐벤즈이미다졸 0.7mol, 1,4,5,8-naphthalene tetracarboxylic dianhydride(東京化成, Cat. No. N0369) 1mol을 사용하여 폴리아믹산 용액(PAA-4)을 제조하였다.Using the same method as Example 1, except that 0.3 mol of 4,4'-diaminodiphenylether and 0.7 mol of 6,4'-diamino-2-phenylbenzimidazole, 1,4,5,8-naphthalene tetracarboxylic A polyamic acid solution (PAA-4) was prepared using 1 mol of dianhydride (Ca. No. N0369).

<< 실시예Example 5> 5>

실시예 1과 같은 방법을 사용하되, 6,4'-디아미노-2-페닐벤즈이미다졸 1mol, 1,4,5,8-naphthalene tetracarboxylic dianhydride 1mol을 사용하여 폴리아믹산 용액(PAA-5)을 제조하였다.Using the same method as in Example 1, using 1 mol of 6,4'-diamino-2-phenylbenzimidazole, 1 mol of 1,4,5,8-naphthalene tetracarboxylic dianhydride (PAA-5) Prepared.

<< 실시예Example 6> 6>

실시예 1과 같은 방법을 사용하되, 4, 4'-디아미노디페닐에테르 0.3mol과 6,4'-디아미노-2-페닐벤즈이미다졸 0.7mol, 3,3',4,4'-benzophenonetetra -carboxylic dianhydride(東京化成, Cat. No. N0369) 1mol을 사용하여 폴리아믹산 용액(PAA-6)을 제조하였다.Using the same method as in Example 1, 0.3 mol of 4,4'-diaminodiphenylether and 0.7 mol of 6,4'-diamino-2-phenylbenzimidazole, 3,3 ', 4,4'- A polyamic acid solution (PAA-6) was prepared using 1 mol of benzophenonetetra -carboxylic dianhydride (東京 化成, Cat. No. N0369).

<< 실시예Example 7> 7>

실시예 1과 같은 방법을 사용하되, 6,4'-디아미노-2-페닐벤즈이미다졸 1mol, 3,3',4,4'-benzophenonetetracarboxylic dianhydride 1mol을 사용하여 폴리아믹산 용액(PAA-7)을 제조하였다.Using the same method as Example 1, using 1 mol of 6,4'-diamino-2-phenylbenzimidazole, 1 mol of 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride (PAA-7) Was prepared.

표 1은 상기의 실시예들과 같이 제조된 폴리이미드 중합체 고분자막의 특성 및 인산에 대한 함침 특성을 나타낸다.Table 1 shows the properties of the polyimide polymer polymer film prepared as in the above embodiments and the impregnation property for phosphoric acid.

Figure 112006011918785-pat00008
Figure 112006011918785-pat00008

표 1에 나타낸 바와 같이 본 발명에 의해 제조된 폴리이미드 고분자막은 인산에 함침율이 매우 우수함을 알 수 있다.As shown in Table 1, it can be seen that the polyimide polymer membrane prepared by the present invention has an excellent impregnation rate in phosphoric acid.

도 3는 본 발명의 실시예 3의 고분자 전해질막을 이용하여 제작된 연료전지를 150℃의 무가습 조건에서 실험한 I-V특성 데이터이다.FIG. 3 is I-V characteristic data of a fuel cell fabricated using the polymer electrolyte membrane of Example 3 of the present invention at 150 ° C. without humidification.

도 3에 나타낸 바와 같이 본 발명의 실시예 1에 의해 제조된 고분자 전해질막을 이용하여 제작된 연료전지는 인가되는 전류인 0~0.3A/cm2에 걸쳐 600mV 이상의 전압값을 보이는 것을 알 수 있다.As shown in FIG. 3, the fuel cell fabricated using the polymer electrolyte membrane prepared according to Example 1 of the present invention exhibits a voltage value of 600 mV or more over a current of 0 to 0.3 A / cm 2 .

본 발명의 실시예에 따른 연료전지용 고분자 전해질막에 의하면, 우수한 인산함침율을 나타내고 있으며, 또한, 130℃ 이상의 고온 무가습 조건에서도 높은 이 온전도도를 나타냄으로써 전극의 CO 피독에 대한 내구성 저하를 최소화하고 연료전지의 발전 효율 및 열효율을 높일 수 있다.According to the polymer electrolyte membrane for a fuel cell according to the embodiment of the present invention, it shows an excellent phosphoric acid impregnation rate, and also exhibits a high ion conductivity even under a high temperature and no humidification condition of 130 ° C. or more, thereby minimizing the durability degradation of the electrode against CO poisoning. The power generation efficiency and thermal efficiency of the fuel cell can be improved.

Claims (7)

Figure 112006011918785-pat00009
Figure 112006011918785-pat00009
상기 화학식으로 표시되는 폴리이미드 공중합체 필름; 및Polyimide copolymer film represented by the above formula; And 상기 폴리이미드 공중합체 필름 내부에 함침되는 산을 포함하는 연료전지용 고분자 전해질막.A polymer electrolyte membrane for a fuel cell comprising an acid impregnated in the polyimide copolymer film. (단, 상기 화학식에서 A와 P는 산이무수물(dianhydride) 중 선택되는 하나이고, 상기 화학식에서 B는 하기 화학식으로 표시되는 그룹으로부터 선택된 하나이며, 상기 D는 방향족 디아민으로부터 유도된 2가의 유기기 중 선택되는 하나이다.)(Wherein A and P are one selected from dianhydrides, B is one selected from the group represented by the following formula, and D is a divalent organic group derived from aromatic diamine). It is one that is chosen.)
Figure 112006011918785-pat00010
Figure 112006011918785-pat00010
제 1 항에 있어서,The method of claim 1, 상기 A와 P는 하기의 화학식으로 표시되는 그룹으로부터 선택되는 하나인 것 을 특징으로 하는 연료전지용 고분자 전해질막.Wherein A and P is a polymer electrolyte membrane for a fuel cell, characterized in that one selected from the group represented by the following formula.
Figure 112006011918785-pat00011
Figure 112006011918785-pat00011
제 1 항에 있어서,       The method of claim 1, 상기 A와 P는 동일한 화학구조의 산이무수물이며 1:1의 몰비를 가지는 것을 특징으로 하는 연료전지용 고분자 전해질막.A and P are acid dianhydrides having the same chemical structure and have a molar ratio of 1: 1. 제 1 항에 있어서,The method of claim 1, 상기 A와 P는 다른 화학구조의 산이무수물이며 1:1의 몰비를 가지는 것을 특징으로 하는 연료전지용 고분자 전해질막.A and P are acid dianhydrides having different chemical structures and have a molar ratio of 1: 1. 제 1 항에 있어서,The method of claim 1, 상기 D는 하기의 화학식으로 표시되는 그룹으로부터 선택되는 하나인 것을 특징으로 하는 연료전지용 고분자 전해질막.D is a polymer electrolyte membrane for a fuel cell, characterized in that one selected from the group represented by the following formula.
Figure 112006011918785-pat00012
Figure 112006011918785-pat00012
제 1 내지 5항 중 어느 한 항의 연료전지용 고분자 전해질막;A polymer electrolyte membrane for a fuel cell according to any one of claims 1 to 5; 상기 고분자 전해질막의 양면에 증착 코팅된 촉매층; 및A catalyst layer coated on both surfaces of the polymer electrolyte membrane; And 상기 촉매층의 양면에 배치되는 기체확산층을 포함하는 막-전극 접합체.Membrane-electrode assembly comprising a gas diffusion layer disposed on both sides of the catalyst layer. 제 6 항의 막-전극 접합체; 및The membrane-electrode assembly of claim 6; And 상기 막-전극 접합체의 양면에 배치되는 바이폴라 플레이트(bypolar plate)를 포함하는 연료전지.A fuel cell comprising a bipolar plate disposed on both sides of the membrane-electrode assembly.
KR1020060015710A 2006-02-17 2006-02-17 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell KR100654244B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020060015710A KR100654244B1 (en) 2006-02-17 2006-02-17 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
CN200680052875XA CN101375444B (en) 2006-02-17 2006-12-29 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
PCT/KR2006/005902 WO2007094561A1 (en) 2006-02-17 2006-12-29 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
TW096105902A TWI347962B (en) 2006-02-17 2007-02-16 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
US12/191,689 US20080305379A1 (en) 2006-02-17 2008-08-14 Polymer Electrolyte Membrane for Fuel Cell and Membrane-Electrode Assembly and Fuel Cell Including the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060015710A KR100654244B1 (en) 2006-02-17 2006-02-17 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell

Publications (1)

Publication Number Publication Date
KR100654244B1 true KR100654244B1 (en) 2006-12-05

Family

ID=37732199

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060015710A KR100654244B1 (en) 2006-02-17 2006-02-17 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell

Country Status (2)

Country Link
KR (1) KR100654244B1 (en)
CN (1) CN101375444B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810683B1 (en) 2006-11-06 2008-03-07 제일모직주식회사 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111073282B (en) * 2019-11-28 2022-05-31 李南文 Solvent-resistant colorless transparent cross-linked polyimide film and preparation method thereof
CN111073283B (en) * 2019-11-28 2022-05-31 李南文 Cross-linked polyimide film, optical film and preparation method thereof
TWI774321B (en) * 2021-04-15 2022-08-11 李長榮化學工業股份有限公司 Polyamic acid, polyimide, and element formed therefrom

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586561B1 (en) * 1999-02-18 2003-07-01 Case Western Reserve University Rigid rod ion conducting copolymers
KR100464317B1 (en) * 2002-07-06 2005-01-03 삼성에스디아이 주식회사 Proton-conducting polymer containing acid group in side chain, polymer membrane prepared with them and fuel cell using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810683B1 (en) 2006-11-06 2008-03-07 제일모직주식회사 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell

Also Published As

Publication number Publication date
CN101375444A (en) 2009-02-25
CN101375444B (en) 2011-01-26

Similar Documents

Publication Publication Date Title
Wang et al. Acid-base membranes of imidazole-based sulfonated polyimides for vanadium flow batteries
Kim et al. Polybenzimidazoles for high temperature fuel cell applications
KR100542203B1 (en) Binder solution for fuel cell, membrane electrode assemblymea for fuel cell, and method for preparating the membrane electrode assembly
KR100464317B1 (en) Proton-conducting polymer containing acid group in side chain, polymer membrane prepared with them and fuel cell using the same
KR100697813B1 (en) Electrolyte for fuel cell, membrane electrode assembly, fuel cell stack and fuel cell using the same and method of producing the same
US7754843B2 (en) Proton conducting aromatic polyether type copolymers bearing main and side chain pyridine groups for use in proton exchange membrane fuel cells
JP2012519929A (en) Improved membrane electrode assembly
KR20120114194A (en) Porous support and polymer electrolyte membrane for fuel cell including the same
KR20070000689A (en) Polymer electrolyte for fuel cell, method of producing same and fuel cell system comprising same
Jung et al. Advances in ion conducting membranes and binders for high temperature polymer electrolyte membrane fuel cells
KR100654244B1 (en) High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
US20100159350A1 (en) Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell
JP5233208B2 (en) Cross-linked polymer electrolyte membrane
WO2010137275A1 (en) Proton conducting polymer electrolyte membrane, membrane-electrode assembly using same, and polymer electrolyte fuel cell
US20080305379A1 (en) Polymer Electrolyte Membrane for Fuel Cell and Membrane-Electrode Assembly and Fuel Cell Including the Same
EP2128185B1 (en) Polymer and membrane-electrode assembly for fuel cell, and fuel cell system including the same
JP2009021233A (en) Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell
KR100810683B1 (en) High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
JP2008311146A (en) Membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell
Daletou et al. 6 Materials, Proton Conductivity and Electrocatalysis in High-Temperature PEM Fuel Cells
JP2002373674A (en) Electrode assembly for solid polymer fuel cell
JP5870495B2 (en) POLYMER ELECTROLYTE, MEMBRANE ELECTRODE ASSEMBLY USING THE POLYMER ELECTROLYTE, AND FUEL CELL
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2009021235A (en) Membrane-electrode-gas diffusion layer assembly and fuel cell having the same
JP2018502053A (en) Compound containing aromatic ring and polymer electrolyte membrane using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121114

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130913

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee