JP2006067760A - 分散型電源装置 - Google Patents

分散型電源装置 Download PDF

Info

Publication number
JP2006067760A
JP2006067760A JP2004250332A JP2004250332A JP2006067760A JP 2006067760 A JP2006067760 A JP 2006067760A JP 2004250332 A JP2004250332 A JP 2004250332A JP 2004250332 A JP2004250332 A JP 2004250332A JP 2006067760 A JP2006067760 A JP 2006067760A
Authority
JP
Japan
Prior art keywords
power
power supply
distributed
reactive
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004250332A
Other languages
English (en)
Inventor
Kenichi Suzuki
健一 鈴木
Kenji Obe
健二 大部
Noriko Kawakami
紀子 川上
Yuukikiyu Iijima
由紀久 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2004250332A priority Critical patent/JP2006067760A/ja
Publication of JP2006067760A publication Critical patent/JP2006067760A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

【課題】受電点の力率を悪化することなく、負荷を平準化する分散型電源装置を提供する。
【解決手段】分散型電源装置は、受電点において商用電力系統に接続する負荷と並列に接続され、電力を貯蔵する分散型電源、上記商用電力系統から受電した電力を直流に変換して上記分散型電源に充電し、上記分散型電源に貯蔵された電力を交流に変換して出力する交直変換装置および所定の有効電力基準および無効電力基準に従って上記交直変換装置からの出力を制御する制御装置を備える分散型電源装置において、上記制御装置は、上記受電点の力率が所望の値になるように上記出力の無効電力を制御する。
【選択図】図1

Description

この発明は、負荷平準化のための商用電力系統に連系する分散型電源装置に関する。
ナトリウム−硫黄電池などの二次電池を用いた分散型電源装置は、電力使用量の少ない夜間に電力を充電し、電力ピークの昼間に放電することにより、契約電力の削減や電気料金の削減に寄与できる。そして、接続点の力率が100%になるように運転されている。有効電力は予め設定された電力値になるように制御され、無効電力は零になるように制御される。または、受電点の電力に応じて契約電力を逸脱しないように充放電電力を制御することがあるが、この場合でも無効電力は零に制御される。
そして、個々の分散型電源装置が力率100%になるように運転され、需要家受電力率は力率改善用コンデンサにより改善されている(例えば、特許文献1参照。)。
特開2003−116222号公報
しかし、分散型電源装置を設置する需要家において、設置以前の受電点の力率が力率改善用コンデンサをすべて使用しても100%に達していない場合、力率100%運転の分散型電源装置を設置すると、受電点の有効電力のみ変化することになり、受電点の力率は悪化する。受電点の無効電力が僅かであっても、分散型電源装置からの放電により受電点の有効電力が小さくなり、力率が大きく悪化する。このため、電気料金削減のために分散型電源装置を設置しても力率割引率が下がり料金メリットが享受できない、あるいは逆に電気料金が増加してしまうという問題がある。
この発明の目的は、受電点の力率を悪化することなく、負荷を平準化する分散型電源装置を提供することである。
この発明に係わる分散型電源装置は、受電点において商用電力系統に接続する負荷と並列に接続され、分散型電源、上記商用電力系統から受電した電力を直流に変換して上記分散型電源に充電し、上記分散型電源に貯蔵された電力を交流に変換して出力する交直変換装置および所定の有効電力基準および無効電力基準に従って上記交直変換装置からの出力を制御する制御装置を備える分散型電源装置において、上記制御装置は、上記受電点の力率が所望の値になるように上記出力の無効電力を制御する。
この発明に係わる分散型電源装置の効果は、有効電力を出力する分散型電源装置が設置前の力率に相当する無効電力のうちフィルタコンデンサで補償できない分を出力するので、受電点における力率が設置前と同等に維持されるので、負荷平準化に伴う力率悪化を防ぐことができ、最大需要電力の低下にともなう基本料金の削減という効果が得られる。
実施の形態1.
図1は、この発明の実施の形態1に係わる分散型電源装置が連系された電力系統図である。図2は、分散型電源装置の制御装置のブロック線図である。
この発明に係わる分散型電源装置1Aは、図1に示すように、接続点4において負荷5および進相コンデンサ7と並列に接続され、さらに受電点2と接続点4との間に設置される受電用遮断器10を通して受電点2において商用電力系統3に連系される。負荷5は、負荷用遮断器12により接続点4に接続・解列される。
この分散型電源装置1Aは、電力使用量の少ない夜間に商用電力系統3から受電して分散型電源としてのナトリウム−硫黄電池6に電力を貯え、電力使用量の多い昼間にナトリウム−硫黄電池6から電力を放出し、負荷5に電力を供給する。このようにすると商用電力系統3から受電点2を経由して負荷5および分散型電源装置1Aに供給される電力が平準化されて最大需要電力が低下する。そして最大需要電力に比例して決められている契約電力が小さくなるので、基本料金を削減することができる。
また、この分散型電源装置1Aは、負荷5に必要な無効電力を供給することにより、受電点2の力率が85%を上回るようにするので、力率割引を受けて基本料金を削減することができる。すなわち、基本料金は、受電点2の力率により割引または割増される。85%の遅れ力率を基準にして、力率が85%を上回る場合、その上回る1%につき基本料金が1%割引され、力率が85%を下回る場合、その下回る1%につき基本料金が1%割増される。ところで、負荷5により低下した受電点2の力率を戻すために進相コンデンサ7が負荷5に対して並列に接続され、負荷5に供給しなければならない無効電力を進相コンデンサ7から出力している。このような状態において、分散型電源装置1Aから電力を負荷5に供給するとき、その電力が有効電力だけの場合、商用電力系統3から負荷5に供給される無効電力が変わらずに有効電力だけが減少するので、受電点2の力率は分散型電源装置1Aを設置する前に比べて大幅に低下し、基本料金が割増されてしまう。
この発明の分散型電源装置1Aは、負荷5に有効電力と一緒に無効電力も供給するので、商用電力系統3から受電点2を経由して供給される有効電力と無効電力がともに減少し、力率が85%を上回るようにすることができる。
そこで、以下の説明において負荷5に必要な無効電力を分散型電源装置1Aから供給するための形態を説明する。
最初に、この発明を適用する電力系統について図1を参照して詳細に説明する。
接続点4に負荷5、進相コンデンサ7および分散型電源装置1Aが並列に接続されている。進相コンデンサ7は自動力率調整器28の出力端子29から出力される信号に基づき投入・開放が行われている。
受電点2と接続点4との間には、受電用遮断器10および受電電力を計測するために受電点計器用変圧器11、受電点計器用変流器13が備えられている。
次に、分散型電源装置1Aについて説明する。
分散型電源装置1Aは、分散型電源装置1Aを連系・解列させるための連系用遮断器15、分散型電源装置1Aの出力電流を計測する電源側計器用変流器8、電源側電圧を計測する電源側計器用変圧器14、接続点4の電圧を交直変換装置20に適する電圧に変換する連系変圧器16から構成されている。
さらに、分散型電源装置1Aは、交流電力を直流電力に変換してナトリウム−硫黄電池6に充電し、逆に、ナトリウム−硫黄電池6から放電された直流電力を交流電力に変換する交直変換装置20、交直変換装置20の出力電流を計測するための交直変換装置用変流器22、ナトリウム−硫黄電池6と交直変換装置20とを接続するための直流開閉器23、交直変換装置20が発生する高調波を抑制するためのフィルタコンデンサ9および直列リアクトル17から構成されている。
さらに、分散型電源装置1Aには、分散型電源装置1Aを所望の電力に制御するための制御装置21Aが備えられる。
制御装置21Aには、受電点2の電力値を計測するために設置する受電点電力検出器18Aからの信号が送られて、受電点電力の調整および力率を所望の値になるように制御している。
この分散型電源装置1Aでは、分散型電源としてナトリウム−硫黄電池6を用いている。なお、分散型電源は、ナトリウム−硫黄電池6以外にもレドックスフロー電池、超電導コイル電力貯蔵装置、フライホイール電力貯蔵装置、電気二重層コンデンサ、リチウムイオン二次電池など商用電力系統3から電力を受電して貯蔵し、逆に電力を放電して負荷5に供給できるものであれば、この発明をナトリウム−硫黄電池6と同様に適用することができる。さらに、分散型電源として、燃料電池、太陽光発電装置、風力発電装置など燃料が供給されて発電された、または太陽光や風により発電された直流電力を交流電力に変換して出力することができるものであれば、この発明を適用することができる。
次に、分散型電源装置1Aの制御装置21Aに入力される信号について説明する。
電源側計器用変圧器14から3相の電源側電圧VLa、VLb、VLcが入力され、連系変圧器16の接続点4側に備えられる電源側計器用変流器8から3相の電源出力電流ILa、ILb、ILcが入力される。そして、制御装置21Aにおいて、電源側電圧VLa、VLb、VLcと電源出力電流ILa、ILb、ILcから交直変換装置20の出力している有効電力値Pおよび無効電力値Qが演算される。
また、受電点2の電力または力率を所望の値に制御するために、受電点電力検出器18Aから有効電力検出値Pと無効電力検出値Qが入力される。
さらに、交直変換装置20の交流側に備えられる交直変換装置用変流器22により計測される3相の交直変換装置出力電流IPa、IPb、IPcが入力される。
次に、制御装置21Aについて説明する。
制御装置21Aは、図1に示すように、交直変換装置20のPWM制御において用いられる商用電力系統3の系統電圧位相を検出する位相検出部26、分散型電源装置1Aの出力が所望の電力値になるように制御する電力制御部30A、交直変換装置20の出力電流が所望の電流値になるように制御ずる電流制御部31、交直変換装置20のPWM制御を行うPWM制御部27から構成されている。
次に、制御装置21Aの動作について図2を参照して説明する。すなわち、ナトリウム−硫黄電池6に貯えられている電力を負荷5に供給するときの交直変換装置20の制御について説明する。図2は、制御装置21Aの制御に係わるブロック線図である。
予め定められた有効電力基準PREFは、時間毎に負荷5の稼動状況を考慮して分散型電源装置1Aから供給する有効電力の目標値である。
有効電力差検出部41Aは、予め定められた有効電力基準PREFと有効電力検出値Pとの有効電力差分ΔPを求める。そして、有効電力調整部42は、有効電力差分ΔPを例えば(比例+積分)演算し、有効電流基準IdREFを求める。
また、無効電力調整部43は、有効電流基準IdREFを比例演算し、その演算結果とフィルタコンデンサ9の補償分とを加算して無効電流基準IqREFを求める。フィルタコンデンサ9の補償分は、マイナス値として設定されている。
また、交直変換装置3相/αβ変換部44は、交直変換装置用変流器22からの交直変換装置出力電流IPa、IPb、IPcを式(1)に従って交直変換装置α相電流IPαと交直変換装置β相電流IPβとを求める。次に、交直変換装置αβ/dq変換部45は、交直変換装置α相電流IPαと交直変換装置β相電流IPβとから式(2)に従って有効電流検出値IPdと無効電流検出値IPqとを求める。
Figure 2006067760
次に、有効電流差検出部46は、有効電流基準IdREFと有効電流検出値Ipdとから有効電流差分ΔIを求める。また、無効電流差検出部47は、無効電流基準IqREFと無効電流検出値IPqとから無効電流差分ΔIを求める。
次に、有効電流調整部48は、有効電流差分ΔIを例えば(比例+積分)演算し、その演算結果に後述するd軸系統側電圧VSdを加算して有効電圧指令値V(ハット)を求める。また、無効電流調整部49は、無効電流差分ΔIを例えば(比例+積分)演算し、その演算結果に後述するq軸系統側電圧VSqを加算して無効電圧指令値V(ハット)を求める。
電源側3相/αβ変換部31は、電源側計器用変圧器14からの電源側電圧VLa、VLb、VLcをα相電源側電圧VLαとβ相電源側電圧VLβとに式(3)に従って変換する。さらに、電源側αβ/dq変換部32は、位相検出部26にて検出された系統電圧位相θを用いて、α相電源側電圧VLαとβ相電源側電圧VLβをd軸電源側電圧VLdとq軸電源側電圧VLqとに式(4)に従って変換する。
Figure 2006067760
ここで、有効電流調整部48、無効電流調整部49の演算結果にd軸電源側電圧VLd、q軸電源側電圧VLqを加算するのは、フィードフォーワード制御を行うためであり、必ずしも必要ではないので省略してもよい。
交直変換装置20が小容量で高速に変換動作が可能な場合には省略されたり、固定値が入力されたりする。
次に、dq/αβ変換部52は、有効電圧指令値V(ハット)と無効電圧指令値V(ハット)とを位相検出部26にて検出された系統電圧位相θを用いて、α相電圧指令値V(ハット)αとβ相電圧指令値V(ハット)βとに式(5)を用いて変換する。さらに、αβ/3相変換部53は、α相電圧指令値V(ハット)αとβ相電圧指令値V(ハット)βとを3相の電圧指令値V(ハット)、V(ハット)、V(ハット)に式(6)を用いて変換する。
Figure 2006067760
最後に、3相の電圧指令値V(ハット)、V(ハット)、V(ハット)が入力されたゲートパルス発生部54は、これら電圧指令値に従って交直変換装置20のスイッチング素子のゲートを制御するゲートパルス信号を出力する。
このように分散型電源装置1Aから所定の有効電力を負荷5に供給するとき、その有効電力に比例した無効電力を分散型電源装置1Aから負荷5に供給するので、図3に示すように、受電点2の力率が改善される。図3は、受電点2における電力ベクトルを示す図である。
負荷5に供給される皮相電力が2222KVA(有効電力が2000kW、無効電力が969kvar)で、進相コンデンサ7から684Kvarの無効電力が補償され、分散型電源装置1Aが接続されていないときの力率pfは99%となっている。そして、分散型電源装置1Aを接続し、有効電力基準PREFを1000kWとしたときについて説明する。なお、フィルタコンデンサ9が供給する無効電力は100kvarである。
まず、分散型電源装置1Aから接続点4に向かって有効電力1000kWだけ流したとき、受電点2から供給される皮相電力1040KVA(図3に一点鎖線で示す。有効電力が1000kW、無効電力が284kvar)となるので、力率が0.96となり、接続前に比べて3%悪化する。
次に、有効電力基準PREFのK倍の無効電力を接続点に流すことを検討する。なお、比例演算子KがK=tan{arccos(pf)}であるので、K=0.142となる。
有効電力基準PREFが1000kWであるので、無効電力基準QREFは(1000×0.142)=142kvarとなる。そして、フィルタコンデンサ9が補償する分(100kvar)を差し引くと42kvarが分散型電源装置1Aから無効電力が供給される。
そこで、受電点2から受電する電力は、有効電力が1000kW、無効電力が142kvarとなる。だから、受電点2の力率は、cos{arctan(142/1000)}=0.99となり、分散型電源装置1Aを設置する前の力率に戻すことができる。
このような分散型電源装置1Aは、有効電力を出力するとともに設置前の力率に戻るように無効電力のうちフィルタコンデンサ9で補償できない分を出力するので、受電点2における力率が設置前と同等に維持されるので、負荷平準化に伴う力率悪化を防ぐことができ、最大需要電力の低下にともなう基本料金の削減という効果が得られる。
なお、比例演算子KとしてK=tan{arccos(pf)}を用いて説明したが、この関数に限るものではなく、所望の値になるように適宜決めることができる。
実施の形態2.
図4は、この発明の実施の形態2に係わる分散型電源装置が配備された電力系統図である。図5は、実施の形態2に係わる分散型電源装置の制御装置のブロック線図である。
実施の形態1ではフィルタコンデンサ9からの無効電力も含めて分散型電源装置1Aから接続点4に流れる有効電力に比例した無効電力が供給されている。一方、実施の形態2に係わる分散型電源装置1Bは、受電点2から接続点4に流れる無効電力が所定の値以下になるように分散型電源装置1Bから必要な無効電力を供給している。そのため、受電点2と接続点4との間に、そこを流れる有効電力および無効電力を計測する受電点電力検出器18Bが備えられている。また、実施の形態2に係わる制御装置21Bの電力制御部30Bでは、有効電流基準と無効電流基準の算出が実施の形態1に係わる制御装置21Aの電力制御部30Aと異なっている。その他は、実施の形態1と同様であるので、同様な部分には同様な符号を付記して説明を省略する。
図4に示すように、受電点2と接続点4との間に受電点計器用変圧器11と受電点計器用変流器13が備えられている。そして、受電点計器用変圧器11から受電点2の瞬時電圧値と受電点計器用変流器13から受電点2から接続点4に流れる瞬時電流値とが受電点電力検出器18Bに入力されている。そして、受電点電力検出器18Bから有効電力検出値Pと無効電力検出値Qとが制御装置21Bに入力されている。
また、予め定められた受電点有効電力基準PSREFと受電点無効電力基準QSREFは、時間毎に負荷5および分散型電源装置1Bの稼動状況を考慮して商用電力系統3から受電する有効電力および無効電力の目標値である。
次に、制御装置21Bについて図5のブロック線図を参照して説明する。
有効電力差検出部41Bは、実施の形態1の有効電力差検出部41Aと異なり、受電点の有効電力検出値Pと受電点有効電力基準PSREFとから有効電力差分ΔPを求める。そして、有効電力調整部42は、実施の形態1と同様に、有効電力差分ΔPを例えば(比例+積分)演算し、有効電流基準IdREFを算出する。
一方、無効電力差検出部60は、受電点の無効電力検出値Qと受電点無効電力基準QSREFとから無効電力差分ΔQを求める。そして、無効電力調整部61は、無効電力差分ΔQを例えば(比例+積分)演算し、無効電流基準IqREFを算出する。
これ以降の動作は、実施の形態1と同様であり、この算出した有効電流基準IdREFと無効電流基準IqREFを用いてゲートパルス信号を交直変換装置20に出力し、受電点2における無効電力が所望の値になるように接続点4に向かって流す電力を制御する。
このように系統側の無効電力検出値を取り込んでその値が所望の値になるように分散型電源装置から無効電力を供給するので、フィルタコンデンサと分散型電源装置との無効電力供給能力が充分に使えてより大きな力率割引を受けることができる。
実施の形態3.
図6は、この発明の実施の形態3に係わる分散型電源装置の制御装置のブロック線図である。
実施の形態3に係わる分散型電源装置の制御装置のPWM制御部27Cは、実施の形態2に係わる分散型電源装置1Bの電力制御部30Bに無効電力を制限するリミッタ63が追加されていることが異なり、その他は同様であるので同じ部分に同じ符号を付記して説明を省略する。
実施の形態3に係わる制御装置21Cは、図6に示すように、無効電力調整部61の後続にリミッタ63が挿入されている。リミッタ63は、分散型電源装置から有効電力を優先して出力できるように無効電力の上限値QULを定め、無効電流基準IqREFにより求まる無効電力がこの上限値QULを超えるとき無効電力の上限値QULに対応する値を無効電流基準IqREFとして出力する。逆に、無効電流基準IqREFにより求まる無効電力がこの上限値QUL以下のとき、そのまま無効電流基準IqREFを出力する。そして、リミッタ63は、ナトリウム−硫黄電池6の定格出力S(kVA)と有効電力基準PREF(kW)とから式(7)を用いて無効電力の上限値QUL(kvar)を算出する。なお、ナトリウム−硫黄電池6の定格出力と有効電力基準PREFとから無効電力の上限値QULを求めるとしたが、これはナトリウム−硫黄電池6の定格出力が交直変換装置20の定格出力より小さいからである。逆に、交直変換装置20の定格出力がナトリウム−硫黄電池6の定格出力より小さいとき、交直変換装置20の定格出力と有効電力基準とから無効電力の上限値を算出する。
Figure 2006067760
このような分散型電源装置は、ナトリウム−硫黄電池の設備容量から所望の有効電力を差し引いた電力の範囲で無効電力の出力を制御するので、分散型電源装置から無効電力を供給するあまり有効電力が少なくなることがない。
実施の形態4.
図7は、この発明の実施の形態4に係わる分散型電源装置が配備された電力系統図である。図8は、この発明の実施の形態4に係わる分散型電源装置の制御装置のブロック線図である。
実施の形態4に係わる電力系統では、図7に示すように、受電点2における力率を一定に維持するために自動力率調整器28が備えられている。自動力率調整器28は、所定の系統の力率を算出し、設定された閾値を下回ったとき、進相コンデンサ7を系統に接続するように進相コンデンサ用開閉器19に投入信号を送出し、該閾値を上回ったとき、進相コンデンサ用開閉器19に開放信号を送出する。自動力率調整器28には、その投入信号/開放信号を出力する出力端子29が備えられている。そして、この出力端子29の2つが制御装置21Dに接続されている。
また、実施の形態4に係わる分散型電源装置1Dの制御装置21Dの電力制御部30Dは、実施の形態1に係わる制御装置21Aの電力制御部30Aと無効電流基準IqREFを算出する動作が異なっており、その他は同様であるので、同様な部分に同じ番号を付記して説明を省略する。
無効電力調整部67は、フィルタコンデンサ9の補償分Qを選択するスイッチ部68と力率改善分QPFを選択するスイッチ部69が設けられている。通常、フィルタコンデンサ9の補償分Qが交直変換装置20に流れ込むように出力としては−Qとして選択されている。そこで受電点2の力率が悪化したことを検出した自動力率調整器28からスイッチ部68をオープンする信号が入力される。すると、フィルタコンデンサ9の無効電力は負荷5に供給されるので、補償分Qだけ力率が改善される。
さらに力率が悪化したことを検出した自動力率調整器28からスイッチ部68をオープンし、かつスイッチ部69をクローズする信号が入力される。すると、フィルタコンデンサ9の補償分Qと交直変換装置20からの力率改善分QPFとが負荷5に供給されるので、さらに力率が改善される。
このような分散型電源装置は、自動力率調整器が備えられている系統に接続することにより、分散型電源装置を1つの力率改善コンデンサと同様に扱えるので、需要家全体の力率改善に貢献させることができる。
この発明の実施の形態1に係わる分散型電源装置が連系された電力系統図である。 実施の形態1に係わる制御装置の制御に係わるブロック線図である。 受電点における電力ベクトルの様子を説明するための図である。 この発明の実施の形態2に係わる分散型電源装置が連系された電力系統図である。 実施の形態2に係わる制御装置の制御に係わるブロック線図である。 実施の形態3に係わる制御装置の制御に係わるブロック線図である。 この発明の実施の形態4に係わる分散型電源装置が連系された電力系統図である。 実施の形態4に係わる制御装置の制御に係わるブロック線図である。
符号の説明
1A、1B、1D 分散型電源装置、2 受電点、3 商用電力系統、4 接続点、5 負荷、6 ナトリウム−硫黄電池、7 進相コンデンサ、8 電源側計器用変流器、9 フィルタコンデンサ、10 受電点遮断器、11 受電点計器用変圧器、12 負荷用遮断器、13 受電点計器用変流器、14 電源側計器用変圧器、15 連系用遮断器、16 連系変圧器、17 直列リアクトル、18A、18B 受電点電力検出器、19 進相コンデンサ用開閉器、20 交直変換装置、21A、21B、21D 制御装置、22 交直変換装置用変流器、23 直流開閉器、26 位相検出部、27 PWM制御部、28 自動力率調整器、29 出力端子、30A〜30D 電力制御部、31 電流制御部、33 電源側3相/αβ変換部、34 電源側αβ/dq変換部、41A、41B 有効電力差検出部、42 有効電力調整部、43、61、67 無効電力調整部、44 交直変換装置3相/αβ変換部、45 交直変換装置αβ/dq変換部、46 有効電流差検出部、47 無効電流差検出部、48 有効電流調整部、49 無効電流調整部、50 有効電圧指令部、51 無効電圧指令部、52 dq/αβ変換部、53 αβ/3相変換部、54 ゲートパルス発生部、60 無効電力差検出部、63 リミッタ、68、69 スイッチ部。

Claims (6)

  1. 受電点において商用電力系統に接続する負荷と並列に接続され、分散型電源、上記商用電力系統から受電した電力を直流に変換して上記分散型電源に充電し、上記分散型電源に貯蔵された電力を交流に変換して出力する交直変換装置および所定の有効電力基準および無効電力基準に従って上記交直変換装置からの出力を制御する制御装置を備える分散型電源装置において、
    上記制御装置は、上記受電点の力率が所望の値になるように上記出力の無効電力を制御することを特徴とする分散型電源装置。
  2. 上記制御装置は、上記受電点における無効電力が所定の値になるように上記出力の無効電力を制御することを特徴とする請求項1に記載する分散型電源装置。
  3. 上記制御装置は、上記出力の無効電力が上記出力の有効電力に比例するように制御することを特徴とする請求項1または2に記載する分散型電源装置。
  4. 上記制御装置は、上記出力の無効電力が上記分散型電源および上記交直変換装置の定格出力の小さい方と上記出力の有効電力との差分以内になるように制御することを特徴とする請求項1または2に記載する分散型電源装置。
  5. 上記負荷に並列に接続される進相コンデンサ、上記進相コンデンサの接続・離脱を上記負荷の力率を計測して行う自動力率調整器が備えられ、
    上記制御装置は、上記自動力率調整器から入力される投入/開放信号に基づいて上記出力の無効電力基準信号をON/OFF制御することを特徴とする請求項1または2に記載する分散型電源装置。
  6. 上記分散型電源は、ナトリウム−硫黄電池、レドックスフロー電池、超電導コイル電力貯蔵装置またはフライホイール電力貯蔵装置のいずれか1つからなることを特徴とする請求項1に記載する分散型電源装置。
JP2004250332A 2004-08-30 2004-08-30 分散型電源装置 Pending JP2006067760A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004250332A JP2006067760A (ja) 2004-08-30 2004-08-30 分散型電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250332A JP2006067760A (ja) 2004-08-30 2004-08-30 分散型電源装置

Publications (1)

Publication Number Publication Date
JP2006067760A true JP2006067760A (ja) 2006-03-09

Family

ID=36113727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250332A Pending JP2006067760A (ja) 2004-08-30 2004-08-30 分散型電源装置

Country Status (1)

Country Link
JP (1) JP2006067760A (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288954A (ja) * 2006-04-19 2007-11-01 Toyo Electric Mfg Co Ltd 分散電源用発電装置の直流出力回路
JP2009171652A (ja) * 2008-01-11 2009-07-30 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2012513187A (ja) * 2008-12-19 2012-06-07 キャタピラー インコーポレイテッド 電力インバータのグリッド接続遷移制御
JP2012125143A (ja) * 2010-12-03 2012-06-28 Sk Innovation Co Ltd 自動車用バッテリを用いた無効電力供給システム及び方法
JP2013240145A (ja) * 2012-05-11 2013-11-28 Mitsubishi Electric Corp 自立運転装置
JP2015177734A (ja) * 2014-03-17 2015-10-05 株式会社トーエネック 自動力率制御装置
JP2015223041A (ja) * 2014-05-23 2015-12-10 三菱電機株式会社 電力貯蔵装置用充放電システム
JP2016127727A (ja) * 2015-01-06 2016-07-11 田淵電機株式会社 パワーコンディショナの力率可変制御装置及び制御方法
CN105914754A (zh) * 2016-02-04 2016-08-31 天津商业大学 使用车辆上的车载充电机提高电能质量的系统和方法
KR101713437B1 (ko) * 2015-09-10 2017-03-07 한국전력공사 역률 제어 장치 및 방법
JP6142064B1 (ja) * 2016-11-16 2017-06-07 田淵電機株式会社 系統連系用電力変換装置
JP2017521034A (ja) * 2014-07-04 2017-07-27 エクスレント エナジー テクノロジーズ リミテッド ライアビリティ カンパニー 送電網ネットワークのゲートウェイアグリゲーション
JPWO2017037925A1 (ja) * 2015-09-03 2018-06-14 株式会社東芝 電圧変動抑制装置及び方法
JP2018097410A (ja) * 2016-12-08 2018-06-21 東芝三菱電機産業システム株式会社 無効電力補償装置及びその制御方法
JP6433627B1 (ja) * 2017-10-16 2018-12-05 三菱電機株式会社 電力変換装置
WO2019077764A1 (ja) * 2017-10-16 2019-04-25 三菱電機株式会社 電力変換装置
US11063431B2 (en) 2014-07-04 2021-07-13 Apparent Labs Llc Hierarchical and distributed power grid control
JP2023002993A (ja) * 2021-06-23 2023-01-11 愛知電機株式会社 自励式無効電力補償装置を用いた力率制御方法
JP2023002994A (ja) * 2021-06-23 2023-01-11 愛知電機株式会社 自励式無効電力補償装置を用いた力率制御方法
JP7475954B2 (ja) 2020-05-11 2024-04-30 株式会社日立製作所 蓄電池併設太陽光発電システムおよびその制御方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288954A (ja) * 2006-04-19 2007-11-01 Toyo Electric Mfg Co Ltd 分散電源用発電装置の直流出力回路
JP2009171652A (ja) * 2008-01-11 2009-07-30 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2012513187A (ja) * 2008-12-19 2012-06-07 キャタピラー インコーポレイテッド 電力インバータのグリッド接続遷移制御
JP2012125143A (ja) * 2010-12-03 2012-06-28 Sk Innovation Co Ltd 自動車用バッテリを用いた無効電力供給システム及び方法
CN102545236A (zh) * 2010-12-03 2012-07-04 Sk新技术 利用汽车电池的无功功率供给系统及方法
US8866438B2 (en) 2010-12-03 2014-10-21 Sk Innovation Co., Ltd. System and method for providing reactive power using electric car battery
JP2013240145A (ja) * 2012-05-11 2013-11-28 Mitsubishi Electric Corp 自立運転装置
JP2015177734A (ja) * 2014-03-17 2015-10-05 株式会社トーエネック 自動力率制御装置
JP2015223041A (ja) * 2014-05-23 2015-12-10 三菱電機株式会社 電力貯蔵装置用充放電システム
JP7292004B2 (ja) 2014-07-04 2023-06-16 エクスレント エナジー テクノロジーズ リミテッド ライアビリティ カンパニー 送電網ネットワークのゲートウェイアグリゲーション
JP2017521034A (ja) * 2014-07-04 2017-07-27 エクスレント エナジー テクノロジーズ リミテッド ライアビリティ カンパニー 送電網ネットワークのゲートウェイアグリゲーション
US11462908B2 (en) 2014-07-04 2022-10-04 Apparent Labs, LLC Distributed grid node with intelligent battery backup
US11063431B2 (en) 2014-07-04 2021-07-13 Apparent Labs Llc Hierarchical and distributed power grid control
JP2016127727A (ja) * 2015-01-06 2016-07-11 田淵電機株式会社 パワーコンディショナの力率可変制御装置及び制御方法
US10581246B2 (en) 2015-09-03 2020-03-03 Kabushiki Kaisha Toshiba Voltage-fluctuation suppression device and method
JPWO2017037925A1 (ja) * 2015-09-03 2018-06-14 株式会社東芝 電圧変動抑制装置及び方法
KR20180066031A (ko) 2015-09-03 2018-06-18 가부시끼가이샤 도시바 전압 변동 억제 장치 및 방법
KR101713437B1 (ko) * 2015-09-10 2017-03-07 한국전력공사 역률 제어 장치 및 방법
CN105914754A (zh) * 2016-02-04 2016-08-31 天津商业大学 使用车辆上的车载充电机提高电能质量的系统和方法
JP2018082570A (ja) * 2016-11-16 2018-05-24 田淵電機株式会社 系統連系用電力変換装置
JP6142064B1 (ja) * 2016-11-16 2017-06-07 田淵電機株式会社 系統連系用電力変換装置
JP2018097410A (ja) * 2016-12-08 2018-06-21 東芝三菱電機産業システム株式会社 無効電力補償装置及びその制御方法
WO2019077764A1 (ja) * 2017-10-16 2019-04-25 三菱電機株式会社 電力変換装置
US10924035B2 (en) 2017-10-16 2021-02-16 Mitsubishi Electric Corporation Power conversion device
JP6433627B1 (ja) * 2017-10-16 2018-12-05 三菱電機株式会社 電力変換装置
JP7475954B2 (ja) 2020-05-11 2024-04-30 株式会社日立製作所 蓄電池併設太陽光発電システムおよびその制御方法
JP2023002993A (ja) * 2021-06-23 2023-01-11 愛知電機株式会社 自励式無効電力補償装置を用いた力率制御方法
JP2023002994A (ja) * 2021-06-23 2023-01-11 愛知電機株式会社 自励式無効電力補償装置を用いた力率制御方法

Similar Documents

Publication Publication Date Title
KR101550755B1 (ko) 복합 발전 시스템용 전력 변환 장치
US10770905B2 (en) Combined power generation system
JP2006067760A (ja) 分散型電源装置
US7485980B2 (en) Power converter for doubly-fed power generator system
JP3352662B2 (ja) 二次電池システムを用いた電力系統安定化装置および電力系統安定化方法
CN108092577B (zh) 风力发电系统及其适用的控制方法
US9923413B2 (en) Line balancing UPS
US20210257839A1 (en) Grid system, control device, control method for grid system, and power conversion device
US20120265356A1 (en) Power output leveling method and apparatus for wind turbine generating facility
KR101426826B1 (ko) 독립형(stand-alone) 마이크로그리드를 위한 가변 저항 방식의 드룹 제어 장치 및 방법
JP2009225599A (ja) 電力変換装置
KR20140098431A (ko) 독립형 dc 마이크로그리드를 위한 협조적 드룹 제어 장치 및 방법
JP6455661B2 (ja) 自立運転システム
JP4951403B2 (ja) 風力発電制御システム及びその制御方法
JP4098182B2 (ja) モータ駆動システム及びエレベータ駆動システム
KR101092219B1 (ko) 풍력 발전 설비 출력 안정화 방법 및 시스템
JP2020068650A (ja) 系統システム、制御装置及び系統システムの制御方法
JP2005269843A (ja) 系統連系装置
JP2008125218A (ja) 分散型電源制御システム
KR101753667B1 (ko) 마이크로그리드 제어를 위한 배터리에 기반한 플라이휠 에너지 저장 시스템
US20210288504A1 (en) Power conversion system, method for controlling converter circuit, and program
JP2006254635A (ja) 負荷平準化装置
EP3487034B1 (en) Power conversion system, power supply system, and power conversion apparatus
JP2006101634A (ja) 分散型電源装置
RU95434U1 (ru) Многофункциональный энергетический комплекс (мэк)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113