JP2006062011A - Micro-structure and manufacturing method for it - Google Patents

Micro-structure and manufacturing method for it Download PDF

Info

Publication number
JP2006062011A
JP2006062011A JP2004245789A JP2004245789A JP2006062011A JP 2006062011 A JP2006062011 A JP 2006062011A JP 2004245789 A JP2004245789 A JP 2004245789A JP 2004245789 A JP2004245789 A JP 2004245789A JP 2006062011 A JP2006062011 A JP 2006062011A
Authority
JP
Japan
Prior art keywords
thin film
release layer
manufacturing
substrate
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004245789A
Other languages
Japanese (ja)
Other versions
JP4725705B2 (en
Inventor
Kazuaki Tabata
和章 田畑
Takayuki Yamada
高幸 山田
Mutsuya Takahashi
睦也 高橋
Yoshifumi Yamazaki
芳文 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004245789A priority Critical patent/JP4725705B2/en
Publication of JP2006062011A publication Critical patent/JP2006062011A/en
Application granted granted Critical
Publication of JP4725705B2 publication Critical patent/JP4725705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro-structure and a manufacturing method for it, simply forming a structure having a deformed part such as a bent part or a twist part, which has been considered to be difficult in the conventional lamination. <P>SOLUTION: A releasing layer 12 is formed on a substrate 11, and after a closely contacting force lowering region 12a for lowering the closely contacting force to a thin film pattern 14 is partially formed, a plurality of thin film patterns 14a, 14b, 14c are formed. The substrate 11 and a target substrate 22 are pressed to sequentially transfer the plurality of thin film patterns 14a, 14b to the target substrate 22 side. After the thin film pattern 14b of the second layer and the thin film pattern 14c of the third layer are joined to each other, when an upper stage 21 is raised, the thin film patter 14c of the third layer causes plastic deformation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マイクロリアクタ等の熱交換素子、微小ハニカム構造体等の弾性体、凹面鏡、凸面鏡等の光学素子等の微小構造体およびその製造方法に関し、特に、従来の積層造形法では難しいとされてきた曲がり部、捻れ部等の変形部を有する構造体を簡易に形成することができる微小構造体およびその製造方法に関する。   The present invention relates to a heat exchange element such as a microreactor, an elastic body such as a microhoneycomb structure, a microstructure such as an optical element such as a concave mirror and a convex mirror, and a method for manufacturing the same, and in particular, it has been considered difficult by conventional additive manufacturing methods. The present invention relates to a microstructure capable of easily forming a structure having a deformed portion such as a bent portion or a twisted portion, and a manufacturing method thereof.

積層造形方法は、コンピュータで設計された複雑な形状の3次元物体を短納期で形成する方法として近年急速に普及している。   The additive manufacturing method has been rapidly spreading in recent years as a method of forming a complicated-shaped three-dimensional object designed by a computer with a short delivery time.

積層造形方法で作製または作製が期待されるデバイスとして、近年注目されているマイクロリアクタやマイクロ放熱システムなどの流路素子では、冷媒などの作用する面積が広いほど効果が高い場合が多く、作用面の表面に凹凸をつけるなどで比表面積が大きくなるよう工夫がされている。   As a device that is expected to be manufactured or manufactured by the additive manufacturing method, in a flow element such as a microreactor or a micro heat dissipation system that has been attracting attention in recent years, the larger the area on which a refrigerant or the like operates, the higher the effect. It has been devised to increase the specific surface area by making the surface uneven.

図16(a),(b)は、その比表面積を大きくする従来の流路素子の製造方法を示す(例えば、特許文献1参照。)。   16 (a) and 16 (b) show a conventional method of manufacturing a flow channel element that increases its specific surface area (see, for example, Patent Document 1).

この流路素子は、異なる種類の流体を導入し、それらを混合して排出するものであり、図16(a)に示すように、小室51を有する混合エレメント50A,50Bをリソグラフィ法や光造形法等によって形成した後、第1および第2のチップ52A,52Bの溝52aの内面にそれぞれ配置し、混合エレメント50A,50Bが対向するように第1および第2のチップ52A,52Bを積層して形成される。小室51の形状は、図16(b)に示すように、ハニカム形状にしてもよい。   This flow path element introduces different types of fluids, mixes them, and discharges them. As shown in FIG. 16A, the mixing elements 50A and 50B having the small chambers 51 are formed by lithography or stereolithography. After being formed by the method or the like, the first and second chips 52A and 52B are stacked so as to be arranged on the inner surfaces of the grooves 52a of the first and second chips 52A and 52B, respectively, so that the mixing elements 50A and 50B face each other. Formed. The shape of the small chamber 51 may be a honeycomb shape as shown in FIG.

図16(a)に示すように作用壁面にアスペクト比率の高い突起物を形成したり、図16(b)に示すように、流路内にハニカム構造を形成することにより、流体の流れを乱流にすることができ、流体の混合を短時間で行うことができる。   As shown in FIG. 16 (a), a projection having a high aspect ratio is formed on the working wall surface, or as shown in FIG. 16 (b), a honeycomb structure is formed in the flow path, thereby disturbing the fluid flow. The fluid can be mixed in a short time.

このような積層造形法により微小な構造物を形成する従来の微小構造体の製造方法として、例えば、薄膜の接合、剥離、転写による造形法が提案されている(例えば、特許文献2参照。)。   As a conventional manufacturing method of a microstructure in which a minute structure is formed by such a layered modeling method, for example, a modeling method by bonding, peeling, and transfer of a thin film has been proposed (for example, see Patent Document 2). .

この微小構造体の製造方法は、まず、SiC,ガラス基板等からなる第1の基板上に熱酸化膜,フッ素樹脂等からなる離型層を形成し、その上に金属,セラミックス等からなる薄膜を例えば0.5μmの厚さで一様に形成した後、その薄膜をフォトリソグラフィー法,集束イオンビーム(FIB)法等を用いてパターニングして微小構造体の各断面に対応した複数の薄膜パターンを形成する。   In this microstructure manufacturing method, first, a release layer made of a thermal oxide film, a fluororesin, or the like is formed on a first substrate made of SiC, a glass substrate or the like, and a thin film made of metal, ceramics, or the like is formed thereon. Is uniformly formed with a thickness of 0.5 μm, for example, and then the thin film is patterned using a photolithographic method, a focused ion beam (FIB) method, or the like to form a plurality of thin film patterns corresponding to each cross section of the microstructure. Form.

次に、この薄膜パターンが形成された第1の基板の直上に第2の基板を配置し、第1の基板と第2の基板同士を常温下で所定の時間加圧して1枚目の薄膜パターンと第2の基板とを接合した後、第1および第2の基板を離すと、1枚目の薄膜パターンが離型層から剥がれて第2の基板側に転写される。   Next, a second substrate is disposed immediately above the first substrate on which the thin film pattern is formed, and the first thin film is pressed by pressing the first substrate and the second substrate for a predetermined time at room temperature. After joining the pattern and the second substrate, when the first and second substrates are separated, the first thin film pattern is peeled off from the release layer and transferred to the second substrate side.

次に、2枚目の薄膜パターン上に第2の基板を位置させ、同様に第1の基板と第2の基板を加圧して2枚目の薄膜パターンと第2の基板上に転写した1枚目の薄膜パターンとを接合した後、第1および第2の基板を離すと、2枚目の薄膜パターンが離型層から剥がれて第2の基板側に転写される。   Next, the second substrate is positioned on the second thin film pattern, and similarly, the first substrate and the second substrate are pressed and transferred onto the second thin film pattern and the second substrate. When the first and second substrates are separated after bonding the first thin film pattern, the second thin film pattern is peeled off from the release layer and transferred to the second substrate side.

以上の接合、剥離、転写を繰り返すことにより、複数の薄膜パターンが積層させて第2の基板上に微小構造体が形成される。   By repeating the above bonding, peeling, and transfer, a plurality of thin film patterns are stacked to form a microstructure on the second substrate.

また、平板部に変形を施す従来の製造方法として、特許文献3および特許文献4に記載されたものがある。   Further, as a conventional manufacturing method for deforming a flat plate portion, there are methods described in Patent Document 3 and Patent Document 4.

特許文献3に記載された製造方法は、平板状部材に磁気異方性材料を貼付けし、これを磁場中に配置することにより、磁気異方性材料と磁場との相互作用によって平板状部材を折曲するものである。   In the manufacturing method described in Patent Document 3, a plate-like member is bonded to a plate-like member by arranging the magnetic anisotropic material in a magnetic field, and the plate-like member is interacted with the magnetic anisotropic material. It is something to bend.

特許文献4に記載された製造方法は、金属板の裏面に凹部をエッチング加工によって形成し、金属板の凹部に対応する表面に圧子を押し付けて窪みを形成して光学素子成形用金型を製造するものである。
特開2004−016870号公報 特許第3161362号公報 特開2003−211398号公報 特開2003−340832号公報
In the manufacturing method described in Patent Document 4, a recess is formed on the back surface of a metal plate by etching, and an indenter is pressed on the surface corresponding to the recess of the metal plate to form a recess, thereby manufacturing an optical element molding die. To do.
JP 2004-016870 A Japanese Patent No. 3161362 Japanese Patent Laid-Open No. 2003-211398 JP-A-2003-340832

しかし、特許文献1の製造方法では、図16の構造を流路全域の広範囲にわたり光造形法で形成することは困難であり、精密な加工が難しく、生産性も劣る。また、積層造形法でもアスペクト比が積層方向に高いため、積層回数が非常に多く現実的ではない。   However, in the manufacturing method of Patent Document 1, it is difficult to form the structure of FIG. 16 over a wide range of the entire flow path by an optical modeling method, and it is difficult to perform precise processing, and productivity is inferior. In addition, since the aspect ratio is high in the stacking direction even in the layered manufacturing method, the number of stacking is very large and not realistic.

図17は、特許文献2の積層造形法で作製されたY字型突起物の模式図を示す。効率的に比表面積を増加させるには、図16(a)のような単純な凹凸より、図17に示すように複数の薄膜53を積層したY字型突起の方が良い。   FIG. 17 shows a schematic diagram of a Y-shaped protrusion produced by the additive manufacturing method of Patent Document 2. In order to increase the specific surface area efficiently, a Y-shaped protrusion in which a plurality of thin films 53 are laminated as shown in FIG. 17 is better than a simple unevenness as shown in FIG.

しかし、図17に示すようなY字状のような突起物は、積層回数が非常に多く、精度的にも困難が伴う。この例では10層の積層例であるが、積層造形法で複雑な突起構造物を形成する場合、積層回数が多くなり、工程の増加に対して比表面積の増加の効果が少なく、非現実的である。また実現できても図18(a)のような大きな広がりを有するオーバーハング部を備えた構造体や図18(b)のような螺旋形状を有する構造体は作製不可能である。   However, the Y-shaped projection as shown in FIG. 17 has a very large number of laminations, and is difficult in terms of accuracy. In this example, it is an example of 10 layers, but when forming a complex protruding structure by the layered manufacturing method, the number of times of lamination increases, and the effect of increasing the specific surface area is small with respect to the increase in the process, which is impractical. It is. Even if it can be realized, it is impossible to manufacture a structure having an overhang portion having a large spread as shown in FIG. 18A or a structure having a spiral shape as shown in FIG.

また、特許文献3に示す製造方法では、電場または磁場による作用を必要とするため、加工可能な材料が限られ、設計において従来のような機械的な曲げ加工のような自由度が失われる。   In addition, since the manufacturing method shown in Patent Document 3 requires an action by an electric field or a magnetic field, the materials that can be processed are limited, and the degree of freedom in mechanical design such as conventional mechanical bending is lost.

さらに、特許文献4に示す製造方法では、凹面を薄膜形成後に一つずつ加工せねばならない、などの問題がある。   Furthermore, the manufacturing method shown in Patent Document 4 has a problem that the concave surfaces must be processed one by one after forming the thin film.

従って、本発明の目的は、従来の積層造形法では難しいとされてきた曲がり部、捻れ部等の変形部を有する構造体を簡易に形成することができる微小構造体およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a microstructure capable of easily forming a structure having a deformed portion such as a bent portion or a twisted portion, which has been considered difficult by the conventional additive manufacturing method, and a method for manufacturing the same. There is.

本発明は、上記目的を達成するため、基板上に離型層を形成し、前記離型層上に複数の薄膜を形成し、前記基板とは異なる他の基板側と前記薄膜との接合・分離を繰り返すことにより、前記複数の薄膜を前記離型層から順次剥離して前記他の基板上に積層し、前記複数の薄膜からなる微小構造体を製造する方法において、前記複数の薄膜のうち所定の薄膜を前記離型層から剥離する際に、剥離速度を制御しながら剥離することにより前記所定の薄膜の形状を変更することを特徴とする微小構造体の製造方法を提供する。   In order to achieve the above object, the present invention forms a release layer on a substrate, forms a plurality of thin films on the release layer, and joins the thin film to another substrate side different from the substrate. In the method of manufacturing the microstructure comprising the plurality of thin films by sequentially separating the plurality of thin films from the release layer and laminating them on the other substrate, among the plurality of thin films Provided is a method for manufacturing a microstructure, wherein when a predetermined thin film is peeled from the release layer, the shape of the predetermined thin film is changed by peeling while controlling a peeling speed.

所定の薄膜の形状の変更には、所定の薄膜に曲げ部、捻り部等を生じさせることの他、せん断によって複数の部分に分離されることも含まれる。   The change of the shape of the predetermined thin film includes not only generating a bent portion, a twisted portion, etc. in the predetermined thin film, but also separating into a plurality of portions by shearing.

離型層の表面に密着力変化領域を形成し、所定の薄膜に剥離速度の差を生じさせて所定の薄膜の形状を変更することができる。また、密着力変化領域を形成しなくても、所定の薄膜の剥離開始位置および剥離速度を制御することで、所定の薄膜に剥離速度の差を生じさせて所定の薄膜の形状を変更することができる。   An adhesive force change region can be formed on the surface of the release layer, and a difference in the peeling speed can be caused in the predetermined thin film to change the shape of the predetermined thin film. Even without forming an adhesive force change region, by controlling the peeling start position and peeling speed of a predetermined thin film, the shape of the predetermined thin film can be changed by causing a difference in peeling speed in the predetermined thin film. Can do.

本発明は、上記目的を達成するため、所定の面上に形成された複数の薄膜を順次剥離し、積層して形成された構造体において、前記複数の薄膜のうち少なくとも1枚の薄膜は、前記所定の面から剥離する際に曲げ、せん断あるいは捻り等の機械的加工が加えられて変形されたことを特徴とする微小構造体を提供する。   In order to achieve the above object, in the structure formed by sequentially peeling and laminating a plurality of thin films formed on a predetermined surface, at least one thin film of the plurality of thin films includes: Provided is a microstructure which is deformed by being subjected to mechanical processing such as bending, shearing or twisting when peeling from the predetermined surface.

本発明によれば、所定の薄膜を離型層から剥離する際に所定の薄膜の形状が変更するので、曲がり部、捻れ部等の変形部を有する構造体を簡易に形成することができる。   According to the present invention, since the shape of the predetermined thin film is changed when the predetermined thin film is peeled from the release layer, a structure having a deformed portion such as a bent portion or a twisted portion can be easily formed.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る微小構造体の製造方法を示す。この製造方法は、「曲げ加工」によりL字型の微小構造体を得るものである。まず、図1(a)に示すように、SiC,ガラス基板等からなる基板11上にポリイミド,Si02熱酸化膜等からなる離型層12をスピンコーティングにより形成する。
[First embodiment]
FIG. 1 shows a method for manufacturing a microstructure according to a first embodiment of the present invention. In this manufacturing method, an L-shaped microstructure is obtained by “bending”. First, as shown in FIG. 1A, a release layer 12 made of polyimide, SiO 2 thermal oxide film or the like is formed on a substrate 11 made of SiC, glass substrate or the like by spin coating.

次に、図1(b)に示すように、離型層12のうち後に形成される薄膜パターン14との密着力を低下させる密着力低下領域12aを部分的に形成する。密着力低下領域12aは、離型層12の表面をCF4ガスやCHF3ガスなどでフッ化処理を行うことで形成される。 Next, as shown in FIG.1 (b), the adhesive force fall area | region 12a which reduces the adhesive force with the thin film pattern 14 formed later among the mold release layers 12 is partially formed. The adhesion reduction region 12a is formed by subjecting the surface of the release layer 12 to fluorination treatment with CF 4 gas, CHF 3 gas, or the like.

次に、図1(c)に示すように、離型層12の上に金属,セラミックス等からなる薄膜13をスパッタリング法により厚さ0.5〜20μmに着膜する。   Next, as shown in FIG. 1C, a thin film 13 made of metal, ceramics, or the like is deposited on the release layer 12 to a thickness of 0.5 to 20 μm by sputtering.

次に、図1(d)に示すように、薄膜13をフォトリソグラフィー法,集束イオンビーム(FIB)法等を用いてパターニングして微小構造体の各断面に対応した複数の薄膜パターン14(14a,14b,14c)を形成する。以下、薄膜パターン14が形成された基板11をドナー基板10という。   Next, as shown in FIG. 1D, the thin film 13 is patterned by using a photolithography method, a focused ion beam (FIB) method, or the like, and a plurality of thin film patterns 14 (14a) corresponding to the respective cross sections of the microstructure. , 14b, 14c). Hereinafter, the substrate 11 on which the thin film pattern 14 is formed is referred to as a donor substrate 10.

次に、図2(a)に示すように、ドナー基板10を図示しない真空槽内に配置した後、真空槽内を10-6Pまで排気する。真空槽内には、相対的に移動可能な下部ステージ20および上部ステージ21が配置されている。すなわち、下部ステージ20は、水平方向のx軸およびy軸方向に移動でき、垂直方向のz軸の回りのθ方向に回転可能に構成されている。上部ステージ21は、z軸方向に移動可能に構成されている。ドナー基板10は、下部ステージ20上に配置する。 Next, as shown in FIG. 2A, after the donor substrate 10 is arranged in a vacuum chamber (not shown), the inside of the vacuum chamber is exhausted to 10 −6 P. A relatively movable lower stage 20 and upper stage 21 are disposed in the vacuum chamber. That is, the lower stage 20 is configured to be movable in the horizontal x-axis and y-axis directions and rotatable in the θ direction around the vertical z-axis. The upper stage 21 is configured to be movable in the z-axis direction. The donor substrate 10 is disposed on the lower stage 20.

次に、下部ステージ20および上部ステージ21を相対的に移動してターゲット基板22を1枚目の薄膜パターン14a上に位置させる。ターゲット基板22の表面、および1枚目の薄膜パターン14aの表面にアルゴン原子ビームを照射して清浄化する。   Next, the lower stage 20 and the upper stage 21 are relatively moved so that the target substrate 22 is positioned on the first thin film pattern 14a. The surface of the target substrate 22 and the surface of the first thin film pattern 14a are cleaned by irradiation with an argon atom beam.

次に、図2(b)に示すように、上部ステージ21を下降させ、所定の荷重力(例えば、5kgf/cm2)でドナー基板10とターゲット基板22とを押圧し、ターゲット基板22と1枚目の薄膜パターン14aとを接合する。 Next, as shown in FIG. 2B, the upper stage 21 is lowered, the donor substrate 10 and the target substrate 22 are pressed with a predetermined load force (for example, 5 kgf / cm 2 ), and the target substrates 22 and 1 The thin film pattern 14a of the sheet is joined.

次に、図2(c)に示すように、上部ステージ21を上昇させると、1枚目の薄膜パターン14aが離型層12から剥離し、ターゲット基板22側に転写される。これは、薄膜パターン14aと離型層12との密着力よりも薄膜パターン14aとターゲット基板22との密着力の方が大きいからである。   Next, as shown in FIG. 2C, when the upper stage 21 is raised, the first thin film pattern 14a is peeled from the release layer 12 and transferred to the target substrate 22 side. This is because the adhesion between the thin film pattern 14 a and the target substrate 22 is greater than the adhesion between the thin film pattern 14 a and the release layer 12.

次に、下部ステージ20を移動させて、2枚目の薄膜パターン14b上にターゲット基板22を位置させる。上部ステージ21側に転写された1枚目の薄膜パターン14aの表面および2枚目の薄膜パターン14bの表面を前述したように清浄化する。   Next, the lower stage 20 is moved to position the target substrate 22 on the second thin film pattern 14b. The surface of the first thin film pattern 14a and the surface of the second thin film pattern 14b transferred to the upper stage 21 side are cleaned as described above.

次に、図2(d)に示すように、上部ステージ21を下降させ、1枚目の薄膜パターン14aと2枚目の薄膜パターン14bとを接合させ、図2(e)に示すように、上部ステージ21を上昇させると、2枚目の薄膜パターン14bが離型層12から剥離し、ターゲット基板22側に転写される。   Next, as shown in FIG. 2 (d), the upper stage 21 is lowered to join the first thin film pattern 14a and the second thin film pattern 14b, and as shown in FIG. 2 (e), When the upper stage 21 is raised, the second thin film pattern 14b is peeled off from the release layer 12 and transferred to the target substrate 22 side.

次に、下部ステージ20を移動させて、3枚目の薄膜パターン14c上にターゲット基板22を位置させる。上部ステージ21側に転写された2枚目の薄膜パターン14bの表面および3枚目の薄膜パターン14cの表面を前述したように清浄化する。   Next, the lower stage 20 is moved to position the target substrate 22 on the third thin film pattern 14c. The surface of the second thin film pattern 14b and the surface of the third thin film pattern 14c transferred to the upper stage 21 are cleaned as described above.

次に、図3(a)に示すように、上部ステージ21を下降させ、2枚目の薄膜パターン14bと3枚目の薄膜パターン14cとを接合させる。   Next, as shown in FIG. 3A, the upper stage 21 is lowered to join the second thin film pattern 14b and the third thin film pattern 14c.

次に、図3(b)に示すように、上部ステージ21を上昇させると、3枚目の薄膜パターン14cの一方の端部15a側は離型層12から剥離するが、他方の端部15bは離型層12にまだ密着したままとなっている。薄膜パターン14cの一方の端部15a側の直下は密着力低下領域12aであるため、剥離しやすく、一方の端部15aから剥離を開始する。一方、フッ化処理の行われていない薄膜パターン14cの他方の端部15bの直下は比較的剥離しにくいため、基板11側に残った状態で剥離が進むと、薄膜パターン14cは、図3(b)に示すように塑性変形を起こす。   Next, as shown in FIG. 3B, when the upper stage 21 is raised, one end 15a side of the third thin film pattern 14c is peeled off from the release layer 12, but the other end 15b. Still remains in close contact with the release layer 12. Directly below the one end 15a side of the thin film pattern 14c is the adhesion decreasing region 12a, and therefore it is easy to peel off, and peeling starts from the one end 15a. On the other hand, since the portion immediately below the other end 15b of the thin film pattern 14c that has not been subjected to the fluorination treatment is relatively difficult to peel off, when peeling proceeds while remaining on the substrate 11 side, the thin film pattern 14c becomes as shown in FIG. As shown in b), plastic deformation occurs.

図3(a)の状態で、離型層12に対する薄膜パターン14cの一方の端部15aと他方の端部15bとで密着力差が少ない場合は、、図3(b)のように薄膜パターン14cに塑性変形が起こる前に剥離が終了し、図3(c)に示す状態になってしまう。   In the state of FIG. 3A, when there is little difference in adhesion between one end 15a and the other end 15b of the thin film pattern 14c with respect to the release layer 12, the thin film pattern is as shown in FIG. Peeling ends before plastic deformation occurs in 14c, resulting in the state shown in FIG.

離型層12の密着力差が適度であれば、図3(d)に示すように、薄膜パターン14cの他方の端部15b側は剥離の工程で塑性変形をしながら完全に剥離し、薄膜パターン14の転写と同時に曲げ加工が終了する。   If the adhesive force difference of the release layer 12 is moderate, as shown in FIG. 3 (d), the other end 15b side of the thin film pattern 14c is completely peeled while being plastically deformed in the peeling process, and the thin film The bending process is completed simultaneously with the transfer of the pattern 14.

図3(b)の状態で、薄膜パターン14cの他方の端部15bと離型層12の密着力が十分に強いとき、即ち他方の端部15bと離型層12の密着力が、薄膜パターン14cがせん断するのに必要な破壊応力を上回る場合、図3(e)に示すように、薄膜パターン14cは他方の端部15bとの境界で破断した微小構造体が得られる。   In the state of FIG. 3B, when the adhesion between the other end 15b of the thin film pattern 14c and the release layer 12 is sufficiently strong, that is, the adhesion between the other end 15b and the release layer 12 is reduced. When 14c exceeds the breaking stress required for shearing, as shown in FIG. 3E, the thin film pattern 14c is obtained as a microstructure that is broken at the boundary with the other end 15b.

この第1の実施の形態によれば、離型層12に密着力低下領域12aを形成することにより、従来の積層造形法では難しいとされてきたアスペクト比が非常にV字型、L字型といった複雑なオーバーハング状の微小構造体を得ることができる。   According to the first embodiment, by forming the adhesion reducing region 12a in the release layer 12, the aspect ratio, which has been considered difficult in the conventional additive manufacturing method, is very V-shaped and L-shaped. Thus, a complicated overhang-like microstructure can be obtained.

[第2の実施の形態]
本発明の第2の実施の形態について説明する。この第2の実施の形態では、離型層12に密着力低下領域12aを形成せずに、薄膜パターン14に曲げ加工を施すものである。
[Second Embodiment]
A second embodiment of the present invention will be described. In the second embodiment, the thin film pattern 14 is bent without forming the adhesion reducing region 12 a in the release layer 12.

すなわち、薄膜パターン14の曲げ角度θは、離型層12の密着力、薄膜パターン14の形状および剥離する速度により制御することができる。例えば、離型層12のポリイミド上に薄膜として、AlCu(2%)合金薄膜(膜厚8.5μm、図3(a)において前工程にて積層した薄膜パターン14aの長さa=200μm、薄膜パターン14cの長さb=900μm)を積層する場合、剥離速度(ターゲット基板22のz軸方向の移動速度):1.5cm/secで剥離した場合、θ=40°という結果を得た。なお、この実験では離型層12中に密着力低下領域12aは形成していない。すなわち、次に積層する薄膜パターン14の一部で接合し、剥離速度を適度に制御すれば、密着力低下領域12aを形成していなくても、薄膜パターンを曲げることができることを意味している。   That is, the bending angle θ of the thin film pattern 14 can be controlled by the adhesive force of the release layer 12, the shape of the thin film pattern 14, and the peeling speed. For example, an AlCu (2%) alloy thin film (film thickness 8.5 μm, the length a of the thin film pattern 14 a laminated in the previous step in FIG. 3A = 200 μm, as a thin film on the polyimide of the release layer 12, a thin film In the case of laminating the pattern 14c (length b = 900 μm), a peeling speed (moving speed in the z-axis direction of the target substrate 22): when peeling at 1.5 cm / sec, a result of θ = 40 ° was obtained. In this experiment, the adhesion reduction region 12 a is not formed in the release layer 12. That is, if the thin film pattern 14 to be laminated next is joined at a part and the peeling speed is appropriately controlled, it is possible to bend the thin film pattern even if the adhesion reducing region 12a is not formed. .

この第2の実施の形態によれば、密着力低下領域を形成しなくても薄膜パターンに曲げ加工等の機械加工を施すことができるので、製造工程を簡素化することができる。また、薄膜の積層造形法においてエッチングなどが困難でパターニングが難しいチタン酸バリウムストロンチウム等の強誘電体材料、Au(金),Pt(白金),Ru(ルテチウム),Ir(イリジウム)等の特殊電極材料からなる薄膜を薄膜自体にパターニングを施さずに積層パターンを形成することができる。   According to the second embodiment, since it is possible to perform machining such as bending on the thin film pattern without forming the adhesion reduction region, the manufacturing process can be simplified. In addition, ferroelectric materials such as barium strontium titanate, which are difficult to etch and patterning in the thin film additive manufacturing method, special electrodes such as Au (gold), Pt (platinum), Ru (lutetium), and Ir (iridium) A laminated pattern can be formed without patterning a thin film made of a material on the thin film itself.

[第3の実施の形態]
図4は、本発明の第3の実施の形態に係る微小構造体の製造工程の一部を示す。まず、図4(a)に示すように、基板11上に、密着力低下領域12aが形成された離型層12を着膜し、その上に薄膜13を形成し、これを下部ステージ20上に配置する。次に、図4(b)に示すように、上部ステージ21を下降させ、薄膜13とターゲット基板22とを接合させ、図4(c)に示すように、上部ステージ21を上昇させると、薄膜13の中央部と両端の端部との境界で薄膜13は切断され、薄膜13の中央部のみがターゲット基板22側に転写される。
[Third embodiment]
FIG. 4 shows a part of the manufacturing process of the microstructure according to the third embodiment of the present invention. First, as shown in FIG. 4A, a release layer 12 in which an adhesion reducing region 12a is formed is deposited on a substrate 11, and a thin film 13 is formed thereon. To place. Next, as shown in FIG. 4B, when the upper stage 21 is lowered, the thin film 13 and the target substrate 22 are joined, and as shown in FIG. 4C, the upper stage 21 is raised, the thin film The thin film 13 is cut at the boundary between the central portion of 13 and the end portions at both ends, and only the central portion of the thin film 13 is transferred to the target substrate 22 side.

この第3の実施の形態によれば、薄膜をエッチングなどでパターニングしなくても、離型層12に密着力分布を設けることで、任意の薄膜パターンを転写することができる。   According to the third embodiment, an arbitrary thin film pattern can be transferred by providing an adhesive force distribution in the release layer 12 without patterning the thin film by etching or the like.

なお、上記実施の形態においおける薄膜剥離工程において、剥離中にドナー基板10とターゲット基板22の相対位置を変化させることにより、図3に示した様な「曲げ加工」以外にも「曲面加工」や「ねじり加工」といった複雑な加工も可能となる。また、ドナー基板10およびターゲット基板22を相対的に回転させることで、薄膜にねじり変形を施すことができる。   In the thin film peeling step in the above embodiment, by changing the relative position of the donor substrate 10 and the target substrate 22 during the peeling, in addition to the “bending” as shown in FIG. And complicated processing such as “twisting”. Further, the thin film can be twisted by rotating the donor substrate 10 and the target substrate 22 relatively.

[他の実施の形態]
なお、本発明は、上記実施の形態に限定されず、その要旨の範囲内で種々変形実施が可能である。例えば、密着力変化領域は、上記実施の形態では、フッ素原子を有するガス中に離型層を部分的に晒して形成したが、基板あるいは離型層にフッ素を含む薄膜を蒸着して形成してもよい。また、基板を部分的にフッ素原子を有するガス中に晒して形成してもよい。
[Other embodiments]
In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible within the range of the summary. For example, in the above embodiment, the adhesive force change region is formed by partially exposing the release layer to a gas having fluorine atoms, but is formed by depositing a thin film containing fluorine on the substrate or the release layer. May be. Alternatively, the substrate may be formed by being partially exposed to a gas having fluorine atoms.

また、密着力変化領域の形成は、離型層の弾性率を変化させる処理を伴うことで、接合時の接合応力の不均一性を緩和または助長し、所定の薄膜が剥離開始を始める場所を制御してもよい。   In addition, the formation of the adhesive force changing region is accompanied by a process of changing the elastic modulus of the release layer, thereby mitigating or promoting non-uniformity of the bonding stress at the time of bonding, and a place where a predetermined thin film starts to start peeling. You may control.

図5は、本発明の実施例1に係る微小構造体を示す。この実施例1は、Y字構造体であり、5枚目の薄膜パターン14eの両端部に密着していた離型層12の部分に密着力低下領域を形成しておき、4枚の薄膜パターン14a〜14dを積層した後、5枚目の薄膜パターン14eを転写する際に薄膜パターン14eの両端部を折曲したものである。これにより、従来、図6に示すように、金属板16を折曲して形成されたY字構造体と同等の機能を有する構造体を、薄膜の積層より製造することができる。   FIG. 5 shows a microstructure according to Example 1 of the present invention. This Example 1 is a Y-shaped structure, in which an adhesion reduction region is formed in the part of the release layer 12 that is in close contact with both ends of the fifth thin film pattern 14e, and four thin film patterns are formed. After laminating 14a to 14d, both ends of the thin film pattern 14e are bent when the fifth thin film pattern 14e is transferred. Thus, as shown in FIG. 6, a structure having a function equivalent to that of a Y-shaped structure formed by bending a metal plate 16 can be manufactured by stacking thin films.

図7は、本発明の実施例2に係る微小構造体を示す。この実施例2は、曲面を有する構造体であり、5枚目の薄膜パターン14eの中央部に密着していた離型層12の部分に密着力が徐々に変化する密着力低下領域を形成しておき、4枚の薄膜パターン14a〜14dを積層した後、5枚目の薄膜パターン14eを転写する際に薄膜パターン14eを半径rで湾曲させたものである。なお、密着力が一定の密着力低下領域を形成した場合、あるいは密着力低下領域を形成していない場合であっても、下部ステージと上部ステージを薄膜パターンの曲率方向に平行移動させることで、湾曲形状を作製することも可能である。   FIG. 7 shows a microstructure according to Embodiment 2 of the present invention. This Example 2 is a structure having a curved surface, and an adhesion strength decreasing region in which the adhesion force gradually changes is formed in the part of the release layer 12 that has adhered to the center part of the fifth thin film pattern 14e. The thin film pattern 14e is curved with a radius r when the fifth thin film pattern 14e is transferred after the four thin film patterns 14a to 14d are stacked. In addition, even when the adhesion force reduction region with a constant adhesion force is formed, or even when the adhesion force reduction region is not formed, by moving the lower stage and the upper stage in parallel in the curvature direction of the thin film pattern, It is also possible to produce a curved shape.

図8は、本発明の実施例3に係る微小構造体を示す。この実施例3は、例えば、Cu,A1等の熱伝導率の高い部材からなるY字状のヒートシンクである。離型層に密着力低下領域を形成し、長手方向に複数の凹部17が形成された薄膜パターン14bをY字状に折曲することにより、同図に示すような微小なヒートシンクを形成することが可能である。また、この構造物を流路内に複数配置することで、流路内面の反応面積を効率的に増加させることができる。   FIG. 8 shows a microstructure according to Embodiment 3 of the present invention. The third embodiment is a Y-shaped heat sink made of a member having high thermal conductivity such as Cu or A1. Forming a minute heat sink as shown in the figure by forming an adhesion reduction region in the release layer and bending the thin film pattern 14b having a plurality of recesses 17 in the longitudinal direction into a Y shape. Is possible. Moreover, the reaction area of the inner surface of the channel can be efficiently increased by arranging a plurality of the structures in the channel.

図9は、本発明の実施例4に係る微小構造体を示す。この実施例4は、例えば、Cu,A1等の熱伝導率の高い部材からなるL字状のヒートシンクである。この実施例4は、離型層の片側に密着力低下領域を形成することにより、薄膜パターン14bを同図に示すように略L字状に折曲形成することができる。   FIG. 9 shows a microstructure according to Embodiment 4 of the present invention. The fourth embodiment is an L-shaped heat sink made of a member having high thermal conductivity such as Cu or A1. In Example 4, the thin film pattern 14b can be bent in a substantially L shape as shown in the figure by forming an adhesion decreasing region on one side of the release layer.

図10は、本発明の実施例5に係る微小構造体を示す。この実施例5は、V字状に折曲された薄膜パターン14bを有するV字構造物である。このV字構造物のV字部分を流路として活用することで、従来のような特殊なエッチング工程を必要とせず、同図のような直線的な流路を形成することができる。   FIG. 10 shows a microstructure according to Example 5 of the present invention. Example 5 is a V-shaped structure having a thin film pattern 14b bent in a V-shape. By utilizing the V-shaped portion of the V-shaped structure as a flow path, a linear flow path as shown in the figure can be formed without requiring a special etching step as in the prior art.

図11は、本発明の実施例6に係る微小構造体を示す。この実施例6は、延性に富む材料、例えば、アルミニウムからなるマイクロ凸面鏡18Aである。この実施例6は、上部の薄膜パターン14cの両端を下部の薄膜パターン14a,14bに接合し、上部の薄膜パターン14cの中央部を凸状に湾曲させたものである。   FIG. 11 shows a microstructure according to Example 6 of the present invention. The sixth embodiment is a micro convex mirror 18A made of a material having high ductility, for example, aluminum. In Example 6, both ends of the upper thin film pattern 14c are joined to the lower thin film patterns 14a and 14b, and the central portion of the upper thin film pattern 14c is curved in a convex shape.

図12は、本発明の実施例7に係る微小構造体を示す。この実施例7は、延性に富む材料、例えば、アルミニウムからなるマイクロ凹面鏡18Bである。この実施例7は、上部の薄膜パターン14bの中央部を下部の薄膜パターン14aに接合し、上部の薄膜パターン14bの両端部を高い位置にして中央部を凹状に湾曲させたものである。   FIG. 12 shows a microstructure according to Example 7 of the present invention. The seventh embodiment is a micro concave mirror 18B made of a material having high ductility, for example, aluminum. In the seventh embodiment, the central portion of the upper thin film pattern 14b is joined to the lower thin film pattern 14a, and both ends of the upper thin film pattern 14b are placed at a high position and the central portion is curved in a concave shape.

図13は、本発明の実施例8に係る微小構造体を示す。この実施例8は、図13(b)に示すように、薄膜パターン14a〜14fにより積層して形成されたパンタグラフ状ばね18Cである。   FIG. 13 shows a microstructure according to Example 8 of the present invention. Example 8 is a pantograph spring 18C formed by laminating thin film patterns 14a to 14f as shown in FIG. 13 (b).

このようなパンタグラフ状ばね18Cを製造するには、まず、下部柱となく薄膜パターン14fが密着する離型層12の部分に下部柱14fとの密着力が他の部分よりも高くなるように密着力増加領域12bを形成しておく。次に、離型層12上に上部柱、上部ばね部、連結部および下部ばね部に対応する薄膜パターン14a〜14fを形成する。次に、1枚目から5枚目までの薄膜パターン14a〜14eをターゲット基板22側に積層して上部柱、上部ばね部、連結部および下部ばね部を転写する。図13(a)に示すように、5枚目の薄膜パターン14eと6枚目の薄膜パターン14fとを接合し、図13(b)に示すように、上部ステージ21を上昇させると、下部ばね部(14b)および上部ばね部(14e)が塑性変形して湾曲する。このように形成されたパンタグラフ状ばね18Cをターゲット基板22から剥がすことにより、パンタグラフ状ばね18Cを製造することができる。   In order to manufacture such a pantograph spring 18C, first, the lower pillar 14f is closely attached to the part of the release layer 12 where the thin film pattern 14f is closely attached, so that the adhesive force with the lower pillar 14f is higher than the other parts. A force increasing region 12b is formed. Next, thin film patterns 14 a to 14 f corresponding to the upper column, the upper spring portion, the connecting portion, and the lower spring portion are formed on the release layer 12. Next, the first to fifth thin film patterns 14a to 14e are stacked on the target substrate 22 side, and the upper pillar, the upper spring portion, the connecting portion, and the lower spring portion are transferred. When the fifth thin film pattern 14e and the sixth thin film pattern 14f are joined as shown in FIG. 13A and the upper stage 21 is raised as shown in FIG. The part (14b) and the upper spring part (14e) are plastically deformed and curved. The pantograph spring 18C can be manufactured by peeling the pantograph spring 18C formed in this way from the target substrate 22.

この実施例8によれば、板ばねの一種であるパンタグラフ状ばね18Cのように特殊ばねを製造することができる。また、通常の板バネも本実施例の方法で形成することによりマイクロ素子等に対応することができる。   According to the eighth embodiment, a special spring can be manufactured like a pantograph spring 18C which is a kind of leaf spring. In addition, a normal leaf spring can be formed by the method of this embodiment to cope with a microelement or the like.

図14は、本発明の実施例9に係る微小構造体を示す。この実施例9は、図13に示したパンタグラフ状ばね18Cを上下左右に複数並べて形成したハニカム構造のパンタグラフ状ばねである。従来のMEMS(Micro Electro Mechanical System)技術でこのような形状を形成するには、ハニカム状の空洞部をすべてエッチングにより除去せねばならず、本実施例では、通常サイズのハニカム構造作成とほぼ変わらない少ない工程数で、ハニカム構造を形成することができる。   FIG. 14 shows a microstructure according to Example 9 of the present invention. Example 9 is a pantograph spring having a honeycomb structure in which a plurality of pantograph springs 18C shown in FIG. In order to form such a shape with the conventional MEMS (Micro Electro Mechanical System) technology, it is necessary to remove all the cavities in the honeycomb shape by etching, and in this embodiment, it is almost the same as the creation of a normal size honeycomb structure. A honeycomb structure can be formed with a small number of steps.

図15は、本発明の実施例10に係る微小構造体を示す。この実施例10は、スプリングワッシャー18Dであり、一部が切れているリングパターンを転写させながら、ねじり変形を加えることで、同図に示すようなスプリング形状を得ることができる。これにより、従来では犠牲層が必要であったスプリングワッシャーを犠牲層を必要とせずに簡便に形成できる。   FIG. 15 shows a microstructure according to Example 10 of the present invention. The tenth embodiment is a spring washer 18D, and a spring shape as shown in the figure can be obtained by applying torsional deformation while transferring a ring pattern that is partially cut. As a result, the spring washer, which conventionally required a sacrificial layer, can be easily formed without the need for a sacrificial layer.

なお、本発明は、上記実施例の構造体の他に、機械的加工によって形成された突起部を作用面に配置したマイクロリアクタ,流路デバイス,放熱器等の熱交換素子、板バネ等の弾性体、回折格子,レンズ等の光学素子等の各種の微小構造体に適用することができる。   In addition to the structures of the above-described embodiments, the present invention includes a microreactor in which protrusions formed by mechanical processing are arranged on the working surface, a heat exchange element such as a flow channel device and a radiator, and an elastic property such as a leaf spring. The present invention can be applied to various microstructures such as optical elements such as a body, a diffraction grating, and a lens.

(a)〜(d)は、本発明の第1の実施の形態に係る微小構造体の製造工程を示す断面図である。(A)-(d) is sectional drawing which shows the manufacturing process of the microstructure based on the 1st Embodiment of this invention. (a)〜(e)は、本発明の第1の実施の形態に係る微小構造体の製造工程を示す断面図である。(A)-(e) is sectional drawing which shows the manufacturing process of the microstructure based on the 1st Embodiment of this invention. (a)〜(e)は、本発明の第1の実施の形態に係る微小構造体の製造工程を示す断面図である。(A)-(e) is sectional drawing which shows the manufacturing process of the microstructure based on the 1st Embodiment of this invention. (a)〜(c)は、本発明の第3の実施の形態に係る微小構造体の製造工程を示す断面図である。(A)-(c) is sectional drawing which shows the manufacturing process of the microstructure based on the 3rd Embodiment of this invention. 本発明の実施例1の微小構造体を示す正面図である。It is a front view which shows the microstructure of Example 1 of this invention. 本発明の実施例1の微小構造体に対応する従来の微小構造体を示す正面図である。It is a front view which shows the conventional microstructure corresponding to the microstructure of Example 1 of this invention. 本発明の実施例2の微小構造体を示す正面図である。It is a front view which shows the microstructure of Example 2 of this invention. 本発明の実施例3の微小構造体を示す斜視図である。It is a perspective view which shows the microstructure of Example 3 of this invention. 本発明の実施例4の微小構造体を示す斜視図である。It is a perspective view which shows the microstructure of Example 4 of this invention. 本発明の実施例5の微小構造体を示す斜視図である。It is a perspective view which shows the microstructure of Example 5 of this invention. 本発明の実施例6の微小構造体を示す正面図である。It is a front view which shows the microstructure of Example 6 of this invention. 本発明の実施例7の微小構造体を示す正面図である。It is a front view which shows the microstructure of Example 7 of this invention. (a)、(b)は、本発明の実施例8の微小構造体の製造工程を示す断面図である。(A), (b) is sectional drawing which shows the manufacturing process of the microstructure of Example 8 of this invention. 本発明の実施例9の微小構造体を示す正面図である。It is a front view which shows the microstructure of Example 9 of this invention. 本発明の実施例10の微小構造体を示す斜視図である。It is a perspective view which shows the microstructure of Example 10 of this invention. 特許文献2の方法により製造された微小構造体の模式図である。10 is a schematic diagram of a microstructure manufactured by the method of Patent Document 2. FIG. (a)は、大きな広がりを有するオーバーハング部を有する構造体の模式図、(b)は、螺旋形状を有する構造体の斜視図である。(A) is a schematic diagram of the structure which has the overhang part which has a big breadth, (b) is a perspective view of the structure which has a spiral shape.

符号の説明Explanation of symbols

10 ドナー基板
11 基板
12a 密着力低下領域
12b 密着力増加領域
12 離型層
13 薄膜
14,14a〜14e 薄膜パターン
15a 一方の端部
15b 他方の端部
16 金属板
17 凹部
18A マイクロ凸面鏡
18B マイクロ凹面鏡
18C パンタグラフ状ばね
18D スプリングワッシャー
20 下部ステージ
21 上部ステージ
22 ターゲット基板
50A,50B 混合エレメント
51 小室
52A,52B チップ
52a 溝
53 薄膜
DESCRIPTION OF SYMBOLS 10 Donor board | substrate 11 Substrate 12a Adhesion power fall area | region 12b Adhesion power increase area | region 12 Release layer 13 Thin film 14, 14a-14e Thin film pattern 15a One edge part 15b The other edge part 16 Metal plate 17 Recessed part 18A Micro convex mirror 18B Micro concave mirror 18C Pantograph spring 18D Spring washer 20 Lower stage 21 Upper stage 22 Target substrate 50A, 50B Mixing element 51 Small chamber 52A, 52B Chip 52a Groove 53 Thin film

Claims (19)

基板上に離型層を形成し、
前記離型層上に複数の薄膜を形成し、
前記基板とは異なる他の基板側と前記薄膜との接合・分離を繰り返すことにより、前記複数の薄膜を前記離型層から順次剥離して前記他の基板上に積層し、前記複数の薄膜からなる微小構造体を製造する方法において、
前記複数の薄膜のうち所定の薄膜を前記離型層から剥離する際に、剥離速度を制御しながら剥離することにより前記所定の薄膜の形状を変更することを特徴とする微小構造体の製造方法。
Forming a release layer on the substrate,
Forming a plurality of thin films on the release layer;
By repeatedly joining / separating the thin film with another substrate side different from the substrate, the plurality of thin films are sequentially peeled from the release layer and stacked on the other substrate, In a method for manufacturing a microstructure,
A method for manufacturing a microstructure, wherein when a predetermined thin film is peeled from the release layer among the plurality of thin films, the shape of the predetermined thin film is changed by peeling while controlling a peeling speed. .
前記所定の薄膜の形状の変更は、前記所定の薄膜に曲げ、せん断、捻り等の機械的加工を加えることにより行う請求項1に記載の微小構造体の製造方法。   2. The method of manufacturing a microstructure according to claim 1, wherein the change of the shape of the predetermined thin film is performed by applying mechanical processing such as bending, shearing, and twisting to the predetermined thin film. 前記所定の薄膜の形状の変更は、前記基板および前記他の基板を相対的に移動させることにより行う請求項1に記載の微小構造体の制御する製造方法。   The manufacturing method for controlling a microstructure according to claim 1, wherein the change of the shape of the predetermined thin film is performed by relatively moving the substrate and the other substrate. 前記所定の薄膜の形状の変更は、前記所定の薄膜の剥離開始位置および前記剥離速度を制御することにより行う請求項1に記載の微小構造体の製造方法。   2. The method of manufacturing a microstructure according to claim 1, wherein the change of the shape of the predetermined thin film is performed by controlling a peeling start position and the peeling speed of the predetermined thin film. 前記剥離速度の制御により、前記所定の薄膜の曲げ角度を制御する請求項4に記載の微小構造体の製造方法。   The method for manufacturing a microstructure according to claim 4, wherein a bending angle of the predetermined thin film is controlled by controlling the peeling speed. 前記接合・分離は、所定の雰囲気で行うか、前記基板を加熱することにより、前記所定の薄膜の形状の変更を容易にする請求項1に記載の微小構造体の製造方法。   The method for manufacturing a microstructure according to claim 1, wherein the joining / separation is performed in a predetermined atmosphere or the substrate is heated to easily change the shape of the predetermined thin film. 前記離型層の形成は、前記離型層の表面に前記所定の薄膜との密着力が変化した密着力変化領域の形成を伴い、
前記所定の薄膜の形状の変更は、前記所定の薄膜を前記離型層から剥離する際に、前記密着力変化領域による密着力差を利用して前記所定の薄膜を変形させる請求項1に記載の微小構造体の製造方法。
The formation of the release layer involves the formation of an adhesive force change region in which the adhesive force with the predetermined thin film has changed on the surface of the release layer,
The change in the shape of the predetermined thin film deforms the predetermined thin film using an adhesion force difference caused by the adhesion force changing region when the predetermined thin film is peeled from the release layer. Manufacturing method of the micro structure.
前記密着力変化領域の形成は、前記所定の薄膜との密着力を前記離型層の他の表面よりも強化あるいは減少させることにより行う請求項7に記載の微小構造体の製造方法。   8. The method for manufacturing a microstructure according to claim 7, wherein the formation of the adhesive force changing region is performed by strengthening or reducing the adhesive force with the predetermined thin film as compared with the other surface of the release layer. 前記密着力変化領域は、前記所定の薄膜の一部に接触する前記離型層の部分に形成する請求項7に記載の微小構造体の製造方法。   The method for manufacturing a microstructure according to claim 7, wherein the adhesion changing region is formed in a part of the release layer that contacts a part of the predetermined thin film. 前記密着力変化領域の形成は、前記基板あるいは前記離型層にフッ素を含む薄膜を蒸着することにより、あるいはフッ素原子を有するガス中に前記基板あるいは前記離型層を部分的に晒してフッ素化することにより行う請求項7に記載の微小構造体の製造方法。   The formation of the adhesive force change region is accomplished by depositing a thin film containing fluorine on the substrate or the release layer, or by partially exposing the substrate or the release layer to a gas containing fluorine atoms. The manufacturing method of the microstructure of Claim 7 performed by doing. 前記密着力変化領域の形成は、前記所定の薄膜との密着力を徐々に変化させることにより行う請求項7に記載の微小構造体の製造方法。   The method of manufacturing a microstructure according to claim 7, wherein the formation of the adhesive force changing region is performed by gradually changing the adhesive force with the predetermined thin film. 前記所定の薄膜の形状の変更は、密着力の弱い前記離型層上に形成された前記所定の薄膜の部分と密着力の強い前記離型層上の前記所定の薄膜の部分との間で機械的に破断することにより行う請求項7に記載の微小構造体の製造方法。   The change of the shape of the predetermined thin film is performed between the predetermined thin film portion formed on the release layer having a low adhesive force and the predetermined thin film portion on the release layer having a high adhesive force. The method for manufacturing a microstructure according to claim 7, wherein the method is performed by mechanical fracture. 前記密着力変化領域の形成は、前記離型層の弾性率を変化させる処理を伴うことで、接合時の接合応力の不均一性を緩和または助長し、前記所定の薄膜の剥離開始位置を制御する請求項7に記載の微小構造体の製造方法。   The formation of the adhesive force changing region is accompanied by a process of changing the elastic modulus of the release layer, thereby reducing or promoting non-uniformity of bonding stress during bonding and controlling the peeling start position of the predetermined thin film. The manufacturing method of the microstructure according to claim 7. 所定の面上に形成された複数の薄膜を順次剥離し、積層して形成された構造体において、
前記複数の薄膜のうち少なくとも1枚の薄膜は、前記所定の面から剥離する際に曲げ、せん断あるいは捻り等の機械的加工が加えられて変形されたことを特徴とする微小構造体。
In a structure formed by sequentially peeling and laminating a plurality of thin films formed on a predetermined surface,
At least one thin film among the plurality of thin films is deformed by being subjected to mechanical processing such as bending, shearing or twisting when being peeled from the predetermined surface.
前記複数の薄膜は、常温接合によって接合された請求項14に記載の微小構造体。   The microstructure according to claim 14, wherein the plurality of thin films are bonded by room temperature bonding. 前記構造体は、前記少なくとも1枚の薄膜の前記機械加工によってオーバーハング部あるいは中空構造部が形成されたことを特徴とする請求項14に記載の微小構造体。   The microstructure according to claim 14, wherein an overhang portion or a hollow structure portion is formed by the machining of the at least one thin film. 前記構造体は、前記機械的加工によって形成された突起部を作用面に配置したマイクロリアクタ、ヒートパイプ、流路デバイス、放熱器等の熱交換素子である請求項14に記載の微小構造体。   The microstructure according to claim 14, wherein the structure is a heat exchange element such as a microreactor, a heat pipe, a flow channel device, and a radiator having a protrusion formed by the mechanical processing on an action surface. 前記構造体は、微小ハニカム構造体、パンタグラフ構造体、板バネあるいはスプリングワッシャー等の弾性体である請求項14に記載の微小構造体。   15. The microstructure according to claim 14, wherein the structure is an elastic body such as a micro honeycomb structure, a pantograph structure, a leaf spring, or a spring washer. 前記構造体は、凹面鏡、凸面鏡、回折格子、レンズ等の光学素子である請求項14に記載の微小構造体。
The microstructure according to claim 14, wherein the structure is an optical element such as a concave mirror, a convex mirror, a diffraction grating, or a lens.
JP2004245789A 2004-08-25 2004-08-25 Manufacturing method of microstructure Expired - Fee Related JP4725705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245789A JP4725705B2 (en) 2004-08-25 2004-08-25 Manufacturing method of microstructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245789A JP4725705B2 (en) 2004-08-25 2004-08-25 Manufacturing method of microstructure

Publications (2)

Publication Number Publication Date
JP2006062011A true JP2006062011A (en) 2006-03-09
JP4725705B2 JP4725705B2 (en) 2011-07-13

Family

ID=36108915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245789A Expired - Fee Related JP4725705B2 (en) 2004-08-25 2004-08-25 Manufacturing method of microstructure

Country Status (1)

Country Link
JP (1) JP4725705B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210094A (en) * 2006-02-09 2007-08-23 F Hoffmann La Roche Ag 3d structure based on 2d substrate
JP2008091681A (en) * 2006-10-03 2008-04-17 Fuji Xerox Co Ltd Thin-film support substrate and its manufacturing method
WO2008088068A1 (en) * 2007-01-19 2008-07-24 The University Of Tokyo Fine structure body manufacturing method, fine structure body and micro device
JP2008254110A (en) * 2007-04-04 2008-10-23 Canon Inc Manufacturing method of structure having structure portion with antiplane angle
KR20190016500A (en) * 2016-06-09 2019-02-18 꽁빠니 제네날 드 에따블리세망 미쉘린 A part of the thickness of the plate is provided with a stiffener in the form of a hollow panel,

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08230047A (en) * 1995-12-18 1996-09-10 Matsushita Electric Works Ltd Formation of three-dimensional shape
JPH09234799A (en) * 1996-03-01 1997-09-09 Tamura Seisakusho Co Ltd Method and apparatus for forming three-dimensional image, and heat-transferring body for forming three-dimensional image
JPH11151754A (en) * 1997-11-20 1999-06-08 Fuji Xerox Co Ltd Method and apparatus for producing minute structure
JP2002043584A (en) * 2000-07-27 2002-02-08 Fuji Xerox Co Ltd Diaphragm structure, micro-transducer and their manufacturing method
WO2003010825A1 (en) * 2001-07-24 2003-02-06 Seiko Epson Corporation Transfer method, method of manufacturing thin film element, method of manufacturing integrated circuit, circuit substrate and method of manufacturing the circuit substrate, electro-optic device and method of manufacturing the electro-optic device, and ic card and electronic equipmen
JP2003340832A (en) * 2002-05-31 2003-12-02 Nikon Corp Method for manufacturing mold for molding optical element
JP2004223637A (en) * 2003-01-21 2004-08-12 Fuji Xerox Co Ltd Method for manufacturing laminated structure and laminated structure
JP2005516770A (en) * 2002-02-14 2005-06-09 バッテル メモリアル インスティテュート Method of stacking sheets to make a device and procedure for performing unit operations using such a device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08230047A (en) * 1995-12-18 1996-09-10 Matsushita Electric Works Ltd Formation of three-dimensional shape
JPH09234799A (en) * 1996-03-01 1997-09-09 Tamura Seisakusho Co Ltd Method and apparatus for forming three-dimensional image, and heat-transferring body for forming three-dimensional image
JPH11151754A (en) * 1997-11-20 1999-06-08 Fuji Xerox Co Ltd Method and apparatus for producing minute structure
JP2002043584A (en) * 2000-07-27 2002-02-08 Fuji Xerox Co Ltd Diaphragm structure, micro-transducer and their manufacturing method
WO2003010825A1 (en) * 2001-07-24 2003-02-06 Seiko Epson Corporation Transfer method, method of manufacturing thin film element, method of manufacturing integrated circuit, circuit substrate and method of manufacturing the circuit substrate, electro-optic device and method of manufacturing the electro-optic device, and ic card and electronic equipmen
JP2005516770A (en) * 2002-02-14 2005-06-09 バッテル メモリアル インスティテュート Method of stacking sheets to make a device and procedure for performing unit operations using such a device
JP2003340832A (en) * 2002-05-31 2003-12-02 Nikon Corp Method for manufacturing mold for molding optical element
JP2004223637A (en) * 2003-01-21 2004-08-12 Fuji Xerox Co Ltd Method for manufacturing laminated structure and laminated structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210094A (en) * 2006-02-09 2007-08-23 F Hoffmann La Roche Ag 3d structure based on 2d substrate
JP4648341B2 (en) * 2006-02-09 2011-03-09 エフ.ホフマン−ラ ロシュ アーゲー 3D structure based on 2D substrate
JP2008091681A (en) * 2006-10-03 2008-04-17 Fuji Xerox Co Ltd Thin-film support substrate and its manufacturing method
WO2008088068A1 (en) * 2007-01-19 2008-07-24 The University Of Tokyo Fine structure body manufacturing method, fine structure body and micro device
JPWO2008088068A1 (en) * 2007-01-19 2010-05-13 国立大学法人 東京大学 Microstructure manufacturing method, microstructure and microdevice
JP2008254110A (en) * 2007-04-04 2008-10-23 Canon Inc Manufacturing method of structure having structure portion with antiplane angle
KR20190016500A (en) * 2016-06-09 2019-02-18 꽁빠니 제네날 드 에따블리세망 미쉘린 A part of the thickness of the plate is provided with a stiffener in the form of a hollow panel,
KR102269308B1 (en) 2016-06-09 2021-06-25 꽁빠니 제네날 드 에따블리세망 미쉘린 Additive manufacturing plate provided with reinforcement in the form of a panel hollowed out in part of the thickness of the plate

Also Published As

Publication number Publication date
JP4725705B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
CN102792419B (en) The technique that high temperature selective fusion engages and structure
JP5121344B2 (en) Manufacturing method of structure
US8008737B2 (en) Semiconductor device
KR101313123B1 (en) Microstructure and manufacturing method of the same
US7696102B2 (en) Methods for fabrication of three-dimensional structures
JP4480939B2 (en) Method for structuring a flat substrate made of a glass-based material
JP2007533921A (en) Selective bonding for microvalve formation
JP4725705B2 (en) Manufacturing method of microstructure
US6544863B1 (en) Method of fabricating semiconductor wafers having multiple height subsurface layers
JP7279263B2 (en) Laser assisted material phase change and ejection microfabrication process
JP2002018798A (en) Microscopic structure and method of manufacturing it
CN113023663A (en) MEMS micro-channel radiator with all-silicon structure and processing method thereof
JP2007007845A (en) Micro-structure and its fabricating method
JP2005053198A (en) Method for molding minute uneven shape
TW200404340A (en) Use of sacrificial layers in the manufactures of high performance systems on tailored substrates
KR20190068641A (en) Delayed via formation in electronic devices
KR100513966B1 (en) An enhanced boiling surface using a mems technology and method for fabricating thereof
JP2010005711A (en) Method of fabricating structure
JP2004130458A (en) Semiconductor device and its manufacturing method
KR100434544B1 (en) A processing method for thick film planarization
JP4608890B2 (en) Method and apparatus for manufacturing microstructure
JP2005040900A (en) Method for manufacturing minute structural body
Evstafev et al. FABRICATION OF A REFLECTING MEMS-ELEMENT BASED ON A THERMAL MICROMECHANICAL ACTUATOR
JP2004361635A (en) Method of forming fine structure of curved surface
JP2006075919A (en) Method of manufacturing suction preventive structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees