JP2005053198A - Method for molding minute uneven shape - Google Patents

Method for molding minute uneven shape Download PDF

Info

Publication number
JP2005053198A
JP2005053198A JP2003307675A JP2003307675A JP2005053198A JP 2005053198 A JP2005053198 A JP 2005053198A JP 2003307675 A JP2003307675 A JP 2003307675A JP 2003307675 A JP2003307675 A JP 2003307675A JP 2005053198 A JP2005053198 A JP 2005053198A
Authority
JP
Japan
Prior art keywords
resin
transfer mold
transfer
silicon substrate
uneven shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003307675A
Other languages
Japanese (ja)
Inventor
Kenji Iida
健二 飯田
Takashi Shioda
剛史 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003307675A priority Critical patent/JP2005053198A/en
Publication of JP2005053198A publication Critical patent/JP2005053198A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize easy resin demolding without needing galvanization, electrocasting, etc., in order to transfer a minute uneven shape of a high aspect ratio or a smooth surface and the transfer molding of the minute uneven shape. <P>SOLUTION: The surface of a silicon substrate having the minute uneven shape of the high aspect ratio is made hydrophilic and used as a transfer mold. After a resin is applied on the surface of the transfer mold and hardened, a resin part is peeled off from the transfer mold, for example, by immersing the resin part in a hot water, so that the resin of the minute uneven shape of the high aspect ratio or the smooth processing surface can be transfer-molded. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、センサーや電気回路、光学部品などに用いられる微細加工部品の、量産性向上と低コスト化を実現するための作製技術に関する。 The present invention relates to a manufacturing technique for realizing mass productivity improvement and cost reduction of microfabricated parts used for sensors, electric circuits, optical parts and the like.

近年、センサーの小型化や電気回路の線幅縮小化、光学部品の多機能化などに伴い、各種デバイスの微小化、及び高機能化が求められている。このような要求から、各種部品をマイクロメートルオーダーで微細加工する技術の開発が進められている。例えばMEMS(Micro Electro Mechanical System)技術を用いた小型センサーの開発、大容量高速光通信を可能としたD-WDM(Dense Wavelength Division Multiplexing)システムに用いられているAWG(Arrayed Wave-Guide)などは、まさにマイクロメートルオーダーの微細加工技術が使われている。   In recent years, with the miniaturization of sensors, the reduction in line width of electric circuits, and the multi-functionalization of optical components, various devices are required to be miniaturized and highly functional. Due to such demands, development of technology for microfabrication of various parts on the micrometer order is underway. For example, development of small sensors using MEMS (Micro Electro Mechanical System) technology, AWG (Arrayed Wave-Guide) used in D-WDM (Dense Wavelength Division Multiplexing) systems that enable high-capacity high-speed optical communication The microfabrication technology of micrometer order is used.

これら高機能で微細なデバイスを民生用に広げるために、量産化技術の開発による低コスト化が進められている。例えば液晶ディスプレイに用いられるマイクロレンズアレーなどは、特開平05-134103に示されるようにスタンパを用いて数十〜数百マイクロメートルオーダーの構造物を樹脂に転写成形することで、量産化と低コスト化を実現している。近年、このようにマイクロメートルオーダー、もしくはそれ以下の微細な構造を転写成形することで、各種デバイスや部品の量産化と低コスト化を実現することが注目され始めている。   In order to expand these high-performance and fine devices for consumer use, cost reduction is being promoted by developing mass production technology. For example, a microlens array used for a liquid crystal display can be mass-produced and reduced by transferring a structure on the order of several tens to several hundreds of micrometers to a resin using a stamper as disclosed in JP-A-05-134103. Cost reduction is realized. In recent years, it has begun to attract attention to realize mass production and cost reduction of various devices and parts by transfer molding such a micro structure on the order of micrometers or less.

スタンパなどの金型を用いた樹脂の転写成形技術には、一般的に射出成形法、ホットエンボス法などが挙げられる。射出成形法の代表的事例は、特許文献1(特開平05-342642)や特許文献2(特開平07-210901)にあるようにCDやDVDなどの光ディスク基板の転写成形で、サブミクロンオーダーの微細な構造の転写が実現されている。ホットエンボス法でも特許文献3(特開2001-146017)にあるように、微細構造を有したインクジェットヘッドなどの転写成形が可能である。   Examples of the resin transfer molding technique using a mold such as a stamper generally include an injection molding method and a hot embossing method. A typical example of the injection molding method is transfer molding of an optical disk substrate such as a CD or DVD as described in Patent Document 1 (Japanese Patent Laid-Open No. 05-342642) and Patent Document 2 (Japanese Patent Laid-Open No. 07-210901). Transfer of fine structure is realized. Even in the hot embossing method, as described in Patent Document 3 (Japanese Patent Laid-Open No. 2001-146017), transfer molding of an inkjet head or the like having a fine structure is possible.

しかしながら射出成形法でサブミクロンオーダーの微細な構造を転写する場合、樹脂が金型の微細部に入り込みにくいだけでなく、転写型からの剥離が困難なことからアスペクト比は2程度が限界であり、それ以上高いアスペクト比を持った構造物の転写成形はできないといった問題がある。またホットエンボス法で高アスペクト比なサブミクロンオーダーの構造物を転写成形する場合、高圧力を被成形物にかける必要性があり、そのため装置が大型になってしまうといった問題がある。さらに射出成形法、ホットエンボス法とも、基本的には熱可塑性樹脂の成形が主であり、熱硬化性樹脂や紫外線硬化樹脂などの成形には適していない。
さらに射出成形法やホットエンボス法においてスタンパを作製する際、一般的に転写型のメッキや電鋳といった作業が必要なためスタンパ表面の粗さが大きくなり、平滑な面を成形することが困難になるといった問題がある。またシリコン基板を転写型として用いる場合、一般的にシリコン表面と樹脂との接着性が良好なため、樹脂からの離型がうまくいかないといった問題がある。
特開平05-342642号公報 特開平07-210901号公報 特開2001-146017号公報
However, when transferring a submicron-order fine structure by injection molding, the aspect ratio is limited to about 2 because the resin is not only difficult to enter the fine part of the mold but also difficult to peel off from the transfer mold. However, there is a problem that transfer molding of a structure having a higher aspect ratio cannot be performed. In addition, when a high-aspect-ratio submicron-order structure is transferred and molded by the hot embossing method, it is necessary to apply a high pressure to the workpiece, which causes a problem that the apparatus becomes large. Further, both the injection molding method and the hot embossing method are basically formed of a thermoplastic resin, and are not suitable for forming a thermosetting resin or an ultraviolet curable resin.
Furthermore, when producing stampers by injection molding or hot embossing, it is generally necessary to perform operations such as transfer plating and electroforming, which increases the roughness of the stamper surface, making it difficult to form a smooth surface. There is a problem of becoming. In addition, when a silicon substrate is used as a transfer mold, there is a problem that release from the resin does not work because the adhesion between the silicon surface and the resin is generally good.
Japanese Patent Laid-Open No. 05-342642 JP 07-210901 A JP 2001-146017

本発明の目的は、高アスペクト比な微細凹凸形状や平滑な面を転写するために、メッキや電鋳といった作業を必要とせず且つ容易な樹脂の離型と高アスペクト比な微細凹凸形状の転写成形を実現することである。さらにこれによって、従来技術では無し得なかった様々な樹脂に対する高アスペクト比を有す微細凹凸形状の転写成形や平滑な面の転写成形を、簡便なプロセスで実現することを目的とする。   The object of the present invention is to transfer a fine uneven shape with a high aspect ratio without requiring a work such as plating or electroforming to transfer a fine uneven shape with a high aspect ratio or a smooth surface. It is to realize molding. Further, the object is to realize transfer molding of a fine concavo-convex shape having a high aspect ratio with respect to various resins and transfer molding of a smooth surface, which cannot be achieved by the conventional technology, by a simple process.

本発明は、微細凹凸形状を有しかつ表面が親水化処理されたシリコン基板を転写型とし、前記転写型表面に樹脂を塗布し固めた後、樹脂部を前記転写型から剥離することで微細凹凸形状の転写をすることを特徴とする成形方法である。   In the present invention, a silicon substrate having a fine concavo-convex shape and having a hydrophilic surface is used as a transfer mold, a resin is applied to the surface of the transfer mold and solidified, and then the resin portion is peeled off from the transfer mold. It is a forming method characterized by transferring an uneven shape.

本発明に従えば、被成形樹脂からの容易な離型が可能である。被成形樹脂に対して疎水性であるシリコン表面が直接接しない代わりに、親水性である酸化シリコン層が接しているため、疎水性である被成形樹脂との結合力を弱めることができるからと考えられる。また、シリコン加工技術が活用できるので、高アスペクト比を有す微細凹凸形状を有した転写型を容易に作製することが可能である。また、前記転写型表面に塗布する液状樹脂の粘度(濃度)を調整すれば、高アスペクト比を有す微細凹凸形状の転写も容易にできる。また、本手法では成形する樹脂が液状になりさえすればどのような樹脂でも成形が可能であるため、射出成形法やホットエンボス法では比較的困難であった熱硬化性樹脂や紫外線硬化性樹脂の成形も容易にできる。さらに、本手法では転写型を作製するのにメッキや電鋳といった作業を必要としないため、転写型自体の平滑な面を保つことが可能となり、それによって被成形物に対しても平滑な面を形成することができる。   According to the present invention, easy release from the molding resin is possible. Because the silicon surface that is hydrophobic is not in direct contact with the molding resin, but because the hydrophilic silicon oxide layer is in contact with the molding resin, the bonding force with the hydrophobic molding resin can be weakened. Conceivable. Moreover, since silicon processing technology can be utilized, it is possible to easily produce a transfer mold having a fine uneven shape having a high aspect ratio. Further, by adjusting the viscosity (concentration) of the liquid resin applied to the surface of the transfer mold, it is possible to easily transfer a fine uneven shape having a high aspect ratio. In addition, since any resin can be molded as long as the resin to be molded becomes liquid in this method, thermosetting resins and ultraviolet curable resins, which were relatively difficult by the injection molding method and hot embossing method, can be used. Can be easily formed. In addition, since this method does not require work such as plating or electroforming to produce the transfer mold, it is possible to maintain a smooth surface of the transfer mold itself, thereby smoothing the surface of the workpiece. Can be formed.

さらに本発明において、前記表面の親水化処理が、シリコン基板表面に酸化シリコン層を形成することでなされることが好ましい。   Furthermore, in the present invention, the surface hydrophilization treatment is preferably performed by forming a silicon oxide layer on the silicon substrate surface.

このように酸化シリコン層を形成することで、再度転写型を使用する際に表面を親水化する必要がなくなり、利便性良く転写型として何度でも使用することが可能となる。この際、酸化シリコン層を形成するための焼成処理は酸素雰囲気中で行なわれることが好ましい。さらに好ましくは前記焼成処理をO3(オゾン)雰囲気中で行なうことで、焼成時間の短縮が可能となる。 By forming the silicon oxide layer in this manner, it is not necessary to make the surface hydrophilic when the transfer mold is used again, and it is possible to use the transfer mold as many times as is convenient. At this time, the baking treatment for forming the silicon oxide layer is preferably performed in an oxygen atmosphere. More preferably, the firing time can be shortened by performing the firing treatment in an O 3 (ozone) atmosphere.

さらに本発明において、前記表面の親水化処理が、シリコン基板を過酸化水素水中に浸漬することでなされることが好ましい。   Furthermore, in the present invention, the surface hydrophilization treatment is preferably performed by immersing a silicon substrate in hydrogen peroxide water.

このように過酸化水素水中への浸漬によって親水化することで、シリコン基板表面に形成した微細凸凹形状を変形することがなくなり、転写型設計通りの寸法や形状の成形が可能となる。   Thus, by making it hydrophilic by immersion in hydrogen peroxide water, the fine uneven shape formed on the surface of the silicon substrate is not deformed, and it becomes possible to mold the size and shape as designed on the transfer mold.

さらに本発明において、樹脂部から前記転写型を離型するため、転写型ごと温水に浸漬することで前記樹脂部を剥離することが好ましい。   Furthermore, in the present invention, in order to release the transfer mold from the resin portion, it is preferable to peel the resin portion by immersing the transfer mold together with warm water.

このように離型するのに温水を用いることで、樹脂剥離によってシリコン転写型表面に形成された微細凹凸形状を破壊することなく、転写型として何度でも使用することが可能となる。さらに本転写方法では、樹脂の塗布と温水による剥離といった単純な過程で樹脂を成形することが可能なので、射出成形法やホットエンボス法のように大型装置を用いて成形する必要性は無く、小型装置による簡便なプロセスでの成形を実現できる。   By using warm water for releasing the mold in this way, it becomes possible to use the transfer mold as many times as possible without destroying the fine irregularities formed on the surface of the silicon transfer mold by resin peeling. Furthermore, with this transfer method, it is possible to mold the resin through a simple process such as application of resin and peeling with hot water, so there is no need to mold using a large apparatus like the injection molding method or hot embossing method. It is possible to realize molding by a simple process using an apparatus.

さらに本発明において、樹脂部から前記転写型を離型するため、転写型ごと超音波振動下の液中に浸漬することで前記樹脂部を剥離することが好ましい。   Further, in the present invention, in order to release the transfer mold from the resin portion, it is preferable to peel the resin portion by immersing the transfer mold in a liquid under ultrasonic vibration.

このように離型するのに超音波振動を用いることで、樹脂を剥離する時間を短縮することができる。   By using ultrasonic vibration to release the mold as described above, it is possible to shorten the time for removing the resin.

さらに本発明において、樹脂部から前記転写型を離型するため、転写型ごと湿度の高い温風にさらすことで樹脂部を剥離することが好ましい。   Furthermore, in the present invention, in order to release the transfer mold from the resin portion, it is preferable to peel the resin portion by exposing the transfer mold to warm air with high humidity.

このように離型するのに温風を用いることで、液中への浸漬により劣化しやすい樹脂でも転写することが可能となり、樹脂材料の選択の自由度が高まる。   By using warm air to release the mold in this way, it becomes possible to transfer even a resin that is easily deteriorated by immersion in the liquid, and the degree of freedom in selecting a resin material is increased.

ここで微細凹凸形状とは深さが0.1μmから100μmの範囲で凹部の表面での最小幅の下限が0.01μmで上限が100μmの範囲が好ましい。さらに最小幅の上限は50μmがより好ましい。
また深さ/最小幅として求めるアスペクト比は1以上が好ましく、2以上がより好ましい。またシリコン基板上に形成される酸化シリコン膜の厚さは0.1μm〜1μmが好ましい。本発明で得られる樹脂成形体はセンサーや電気回路、光学部品などに用いられる。
Here, the fine uneven shape preferably has a depth in the range of 0.1 μm to 100 μm, a lower limit of the minimum width on the surface of the recess of 0.01 μm, and an upper limit of 100 μm. Further, the upper limit of the minimum width is more preferably 50 μm.
The aspect ratio calculated as depth / minimum width is preferably 1 or more, more preferably 2 or more. The thickness of the silicon oxide film formed on the silicon substrate is preferably 0.1 μm to 1 μm. The resin molded product obtained by the present invention is used for sensors, electric circuits, optical parts, and the like.

以上のように、本発明の転写成形法を用いれば、シリコン基板をそのまま転写型として使用できるので、シリコン転写型表面に形成された高アスペクト比な微細凹凸形状を容易に樹脂に転写することができ、且つシリコン転写型表面の平滑な面をそのまま樹脂に転写することもできる。また、樹脂の塗布と温水などによる剥離といった手法で転写成形できるので、大型装置を用いない簡便なプロセスでの転写成形が可能となる。   As described above, if the transfer molding method of the present invention is used, the silicon substrate can be used as it is as a transfer mold, so that the high-aspect-ratio fine irregularities formed on the silicon transfer mold surface can be easily transferred to the resin. The smooth surface of the silicon transfer mold surface can be transferred to the resin as it is. Further, since transfer molding can be performed by a technique such as resin application and peeling with warm water, transfer molding can be performed by a simple process without using a large apparatus.

本発明者らは、シリコン基板の表面を親水化したものを転写型とし、前記転写型表面に樹脂を塗布し固めた後、転写型ごと温水や超音波振動下の液体などに浸漬することで、樹脂部が転写型から容易に剥離されて成形できることを見出した。
さらに本転写成形法では高アスペクト比な微細凹凸形状の転写や平滑な面の転写も可能であることを見出した。すなわちシリコン基板の表面にレジストを塗布し、通常のリソグラフィにより微細凹凸の凸部となる個所にレジストがエッチングマスクとなって残るように、レジストを露光と現像を行う。そしてシリコン基板の表面をエッチング雰囲気にさらす。エッチングはウエットエッチングでもドライエッチングでもよい。その後エッチングマスクを除去することによってシリコン基板の表面に微細な凹凸が形成される。エッチングマスクはレジストの他にSiO2膜やSiN膜をパターニングして用いてもよい。この際にパターニングされたエッチングマスクの間隔を狭くし、エッチング時間を長くして深くエッチングすることにより高アスペクトな凹凸形状が得られる。
The inventors of the present invention have made the surface of a silicon substrate hydrophilized as a transfer mold, and after applying and hardening a resin on the transfer mold surface, the transfer mold is immersed in warm water or a liquid under ultrasonic vibration. The present inventors have found that the resin part can be easily peeled off from the transfer mold and molded.
Furthermore, it has been found that the transfer molding method can transfer a fine uneven shape with a high aspect ratio and a smooth surface. That is, a resist is applied to the surface of the silicon substrate, and the resist is exposed and developed so that the resist remains as an etching mask at a portion where the projections and depressions are fine by ordinary lithography. Then, the surface of the silicon substrate is exposed to an etching atmosphere. Etching may be wet etching or dry etching. Thereafter, by removing the etching mask, fine irregularities are formed on the surface of the silicon substrate. The etching mask may be used by patterning a SiO 2 film or a SiN film in addition to the resist. At this time, by reducing the interval between the patterned etching masks and increasing the etching time for deep etching, a high-aspect uneven shape can be obtained.

シリコン基板表面の親水処理方法の1つとして、微細凹凸形状が形成されたシリコン基板の表面に酸化シリコン層を形成すればよい。酸化シリコン層はシリコン基板を酸素の存在下500℃以上で熱処理して得られる熱酸化シリコン膜でもよい。
このようにして得られた微細凹凸形状を有したシリコン基板の表面を親水化処理したものを転写型とする。そしてこの転写型表面に樹脂を塗布して固めた後、樹脂を転写型ごと温水や超音波振動下の液体に浸漬する、あるいは加湿した温風に樹脂が付着している転写型ごとさらすことによって転写型から剥離する。このような簡便なプロセスで高アスペクト比な微細凹凸形状を転写成形が実現できる。なお微細凹凸形状のアスペクト比に応じて塗布する液状フッ素化ポリイミドの粘度(濃度)を調整すればよい。
成形材料の樹脂としては熱硬化性樹脂が好ましく、中でもフッ素化ポリイミド樹脂が微細な凹凸形状の転写性に優れ好ましい。
親水処理として酸化シリコン薄膜層形成方法は、高温焼成処理の他に、酸素イオンを微細凹凸形状表面に打ち込むことで形成することもできる。また、酸化シリコン薄膜層を形成する以外に、過酸化水素水中にシリコン基板を浸漬することで親水化することもできる。
As one of hydrophilic treatment methods for the silicon substrate surface, a silicon oxide layer may be formed on the surface of the silicon substrate on which fine irregularities are formed. The silicon oxide layer may be a thermally oxidized silicon film obtained by heat-treating a silicon substrate at 500 ° C. or higher in the presence of oxygen.
The transfer substrate is obtained by hydrophilizing the surface of the silicon substrate having the fine irregularities thus obtained. After the resin is applied to the surface of the transfer mold and hardened, the resin is immersed together with the transfer mold in warm water or a liquid under ultrasonic vibration, or exposed to the transfer mold on which the resin adheres to humidified warm air. Peel from the transfer mold. By such a simple process, it is possible to realize transfer molding of a fine concavo-convex shape having a high aspect ratio. In addition, what is necessary is just to adjust the viscosity (concentration) of the liquid fluorinated polyimide apply | coated according to the aspect-ratio of fine uneven | corrugated shape.
As the resin of the molding material, a thermosetting resin is preferable, and among them, a fluorinated polyimide resin is preferable because of excellent transferability of a fine uneven shape.
As the hydrophilic treatment, the silicon oxide thin film layer forming method can be formed by implanting oxygen ions into the surface of the fine irregular shape in addition to the high-temperature baking treatment. In addition to forming a silicon oxide thin film layer, it can be hydrophilized by immersing a silicon substrate in hydrogen peroxide water.

成形物をシリコン転写型から剥離するために温水の温度は50℃以上であることが好ましい。さらに好ましくは、超音波振動下に浸漬することで剥離時間の短縮が可能となる。また、温水を用いる代わりに、湿度の高い温風中にさらすことで樹脂部を剥離することもできる。ここで温風の湿度は50%RH〜90%RHが好ましい。
このような簡便なプロセスで、高アスペクト比な微細凹凸形状6をフッ素化ポリイミド樹脂に転写成形することができる。
In order to peel the molded product from the silicon transfer mold, the temperature of the hot water is preferably 50 ° C. or higher. More preferably, the peeling time can be shortened by immersion under ultrasonic vibration. Further, instead of using warm water, the resin portion can be peeled by exposure to hot air with high humidity. Here, the humidity of the hot air is preferably 50% RH to 90% RH.
By such a simple process, the fine uneven shape 6 having a high aspect ratio can be transferred to a fluorinated polyimide resin.

以下に、実施形態例を挙げ、添付図面を参照して、本発明の実施の形態を具体的且つ詳細に説明する。   Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings.

本発明の一実施例を図1〜図5を用いて説明する。本実施例のプロセスは、はじめにシリコン基板1表面にアスペクト比(b/a)=2以上の微細凹凸形状2を形成する(図1)。ここでシリコン基板表面の凹部の幅aは0.3μm、凹部の深さbは0.6μmとした。ここでアスペクト比は図1でのb/aとする。このシリコン基板表面加工はパターニングされたSiO2膜をマスクとしてKOH溶液によるエッチングを行った。シリコン基板を<100>面を主面とすることにより断面が三角形の凹部が得られた。次に、表面が微細凹凸形状に加工されたシリコン基板1を酸素雰囲気1000℃の高温で10時間焼成処理することで、微細凹凸形状表面に酸化シリコン薄膜層3を形成し親水化した(図2)。
上記過程によって得られたシリコン転写型表面に、原料のポリアミド酸溶液をスピンコート法によって塗布し、さらに380℃で乾燥することで樹脂4を固めた(図3)。これにより化式(1)で示されるフッ素化ポリイミド樹脂共重合体が得られた。
An embodiment of the present invention will be described with reference to FIGS. In the process of this embodiment, first, a fine uneven shape 2 having an aspect ratio (b / a) = 2 or more is formed on the surface of the silicon substrate 1 (FIG. 1). Here, the width a of the recess on the surface of the silicon substrate was 0.3 μm, and the depth b of the recess was 0.6 μm. Here, the aspect ratio is b / a in FIG. This silicon substrate surface processing was performed by etching with a KOH solution using the patterned SiO 2 film as a mask. A concave portion having a triangular cross section was obtained by using the <100> plane as the main surface of the silicon substrate. Next, the silicon substrate 1 whose surface was processed into a fine concavo-convex shape was baked at a high temperature of 1000 ° C. for 10 hours to form a silicon oxide thin film layer 3 on the surface of the fine concavo-convex shape to make it hydrophilic (FIG. 2). ).
The raw material polyamic acid solution was applied to the surface of the silicon transfer mold obtained by the above process by spin coating, and further dried at 380 ° C. to solidify the resin 4 (FIG. 3). As a result, a fluorinated polyimide resin copolymer represented by the chemical formula (1) was obtained.

Figure 2005053198
Figure 2005053198

この際、微細凹凸形状のアスペクト比に応じて塗布する溶液の粘度(濃度)を調整した。最後にシリコン転写型ごと70℃の温水5中に浸漬することで、30分ほどでフッ素化ポリイミド部を転写型から剥離して(図4)表面に微細凹凸を有するポリイミド膜が得られた(図5)。 At this time, the viscosity (concentration) of the solution to be applied was adjusted according to the aspect ratio of the fine uneven shape. Finally, the silicon transfer mold was immersed in warm water 5 at 70 ° C. to peel the fluorinated polyimide portion from the transfer mold in about 30 minutes (FIG. 4), and a polyimide film having fine irregularities on the surface was obtained ( FIG. 5).

本発明の第2実施例を図6〜図10を用いて説明する。本実施例のプロセスは、はじめにシリコン基板7の表面にアスペクト比(b/a)=2以上の微細な矩形形状8を形成した(図6)。実施例1と異なるのはシリコン基板の<111>面を主面としてこれを異方性エッチングすることで、垂直エッチング面を形成している点である。ここでaは1μm、bは2μmとした。シリコン基板表面に矩形形状を形成する加工はパターニングされたSiO2をマスクとしてウェットエッチングで行った。次に、表面が微細矩形形状に加工されたシリコン基板7を1000℃の高温で10時間焼成処理することで、微細矩形形状表面に酸化シリコン薄膜層9を形成し親水化した(図7)。 A second embodiment of the present invention will be described with reference to FIGS. In the process of this example, a fine rectangular shape 8 having an aspect ratio (b / a) = 2 or more was first formed on the surface of the silicon substrate 7 (FIG. 6). The difference from Example 1 is that a vertical etching surface is formed by anisotropically etching the <111> surface of the silicon substrate as a main surface. Here, a is 1 μm and b is 2 μm. The process of forming a rectangular shape on the surface of the silicon substrate was performed by wet etching using the patterned SiO 2 as a mask. Next, the silicon substrate 7 whose surface was processed into a fine rectangular shape was baked at a high temperature of 1000 ° C. for 10 hours, thereby forming a silicon oxide thin film layer 9 on the surface of the fine rectangular shape to make it hydrophilic (FIG. 7).

上記過程によって得られたシリコン転写型表面に、実施例1と同様の液を塗布し、さらに380℃で乾燥することで樹脂10を固めた(図8)。この際、微細矩形形状のアスペクト比に応じて塗布する溶液の粘度(濃度)を調整した。最後にシリコン転写型ごと70℃の温水11中に浸漬することで、30分ほどでフッ素化ポリイミド部を転写型から剥離することができた(図9)。これにより表面に高アスペクト比な微細矩形状12の凹凸を有するポリイミド膜が得られた(図10)。
以上の実施例では成形材料としてフッ素化ポリイミドを用いたが、フッ素化ポリイミド以外の樹脂を用いることはもちろん可能である。
The same liquid as in Example 1 was applied to the surface of the silicon transfer mold obtained by the above process, and the resin 10 was hardened by drying at 380 ° C. (FIG. 8). At this time, the viscosity (concentration) of the solution to be applied was adjusted according to the aspect ratio of the fine rectangular shape. Finally, the silicon transfer mold was immersed in warm water 11 at 70 ° C., and the fluorinated polyimide portion could be peeled from the transfer mold in about 30 minutes (FIG. 9). As a result, a polyimide film having fine rectangular 12 irregularities with a high aspect ratio on the surface was obtained (FIG. 10).
In the above embodiment, fluorinated polyimide is used as a molding material, but it is of course possible to use a resin other than fluorinated polyimide.

この微細凹凸形状の成形方法は、光導波路などの光学部品なので製造に利用できる。 This method of forming a fine uneven shape can be used for manufacturing because it is an optical component such as an optical waveguide.

実施例1の微細凹凸形状を有したシリコン基板を説明する図である。It is a figure explaining the silicon substrate which has the fine uneven | corrugated shape of Example 1. FIG. 実施例1のシリコン転写型を説明する図である。FIG. 3 is a diagram illustrating a silicon transfer mold of Example 1. 実施例1の転写型に樹脂を塗布・乾燥するプロセスを説明する図である。It is a figure explaining the process of apply | coating and drying resin to the transfer mold of Example 1. FIG. 実施例1の被成形樹脂を温水で剥離するプロセスを説明する図である。It is a figure explaining the process which peels the to-be-molded resin of Example 1 with warm water. 実施例1の高アスペクト比な微細凹凸形状を転写成形された樹脂を説明する図である。It is a figure explaining the resin by which the fine uneven | corrugated shape of the high aspect ratio of Example 1 was transfer-molded. 実施例2の微細矩形形状を有したシリコン基板を説明する図である。It is a figure explaining the silicon substrate which has the fine rectangular shape of Example 2. FIG. 実施例2のシリコン転写型を説明する図である。It is a figure explaining the silicon | silicone transfer mold of Example 2. FIG. 実施例2の転写型に樹脂を塗布・乾燥するプロセスを説明する図である。It is a figure explaining the process of apply | coating and drying resin to the transfer mold of Example 2. FIG. 実施例2の被成形樹脂を温水で剥離するプロセスを説明する図である。It is a figure explaining the process which peels the to-be-molded resin of Example 2 with warm water. 実施例2の高アスペクト比な微細矩形形状を転写成形された樹脂を説明する図である。It is a figure explaining resin by which the fine rectangular shape of the high aspect ratio of Example 2 was transfer-molded.

符号の説明Explanation of symbols

1: シリコン基板、 2: 微細凹凸形状
3: 酸化シリコン薄膜層、 4: 樹脂
5: 温水、 6: 微細凹凸形状
7: シリコン基板、 8: 微細な矩形形状
9: 酸化シリコン薄膜層、 10: 樹脂
11: 温水、 12: 微細矩形形状
1: Silicon substrate, 2: Fine uneven shape 3: Silicon oxide thin film layer, 4: Resin 5: Hot water, 6: Fine uneven shape, 7: Silicon substrate, 8: Fine rectangular shape, 9: Silicon oxide thin film layer, 10: Resin 11: Hot water, 12: Fine rectangular shape

Claims (6)

微細凹凸形状を有しかつ表面が親水化処理されたシリコン基板を転写型とし、前記転写型表面に樹脂を塗布し固めた後、樹脂を前記転写型から剥離することで微細凹凸形状の転写をすることを特徴とする成形方法。   A silicon substrate having a fine concavo-convex shape and a hydrophilized surface is used as a transfer mold, a resin is applied to the surface of the transfer mold and solidified, and then the resin is peeled from the transfer mold to transfer the fine concavo-convex shape. A forming method characterized by: 前記表面の親水化処理が、シリコン基板表面に酸化シリコン層を形成することでなされる請求項1に記載の成形方法。   The molding method according to claim 1, wherein the hydrophilization treatment of the surface is performed by forming a silicon oxide layer on a silicon substrate surface. 前記表面の親水化処理が、シリコン基板を過酸化水素水中に浸漬することでなされる請求項1に記載の成形方法。   The molding method according to claim 1, wherein the surface hydrophilization treatment is performed by immersing a silicon substrate in hydrogen peroxide water. 前記樹脂が付着している転写型ごと温水に浸漬することで、前記樹脂を転写型から剥離する請求項1から請求項3のいずれか1項に記載の成形方法。   The molding method according to any one of claims 1 to 3, wherein the resin is peeled from the transfer mold by immersing the transfer mold to which the resin is attached in warm water. 前記樹脂が付着している転写型ごと超音波振動下の液中に浸漬することで、前記樹脂を転写型から剥離する請求項1から請求項3のいずれか1項に記載の成形方法。   The molding method according to any one of claims 1 to 3, wherein the resin is peeled from the transfer mold by immersing the transfer mold to which the resin is attached in a liquid under ultrasonic vibration. 前記樹脂が付着している転写型ごと加湿した温風にさらすことで、前記樹脂を転写型から剥離する請求項1から請求項3のいずれか1項に記載の成形方法。   The molding method according to any one of claims 1 to 3, wherein the resin is peeled from the transfer mold by exposing the transfer mold to which the resin is adhered to humid air.
JP2003307675A 2003-03-07 2003-08-29 Method for molding minute uneven shape Pending JP2005053198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003307675A JP2005053198A (en) 2003-03-07 2003-08-29 Method for molding minute uneven shape

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003062045 2003-03-07
JP2003200882 2003-07-24
JP2003307675A JP2005053198A (en) 2003-03-07 2003-08-29 Method for molding minute uneven shape

Publications (1)

Publication Number Publication Date
JP2005053198A true JP2005053198A (en) 2005-03-03

Family

ID=34381717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003307675A Pending JP2005053198A (en) 2003-03-07 2003-08-29 Method for molding minute uneven shape

Country Status (1)

Country Link
JP (1) JP2005053198A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035998A (en) * 2005-07-28 2007-02-08 Toppan Printing Co Ltd Mold for imprint
JP2009082207A (en) * 2007-09-27 2009-04-23 Fujifilm Corp Method and apparatus for producing functional membrane
CN102484260A (en) * 2010-02-04 2012-05-30 松下电器产业株式会社 A method for fabricating a polymer electrolyte membrane for a fuel cell
US8582605B2 (en) 2008-02-01 2013-11-12 Zte Corporation Method and device for mapping the initial location of downlink pilot
JP2014065270A (en) * 2012-09-27 2014-04-17 Tokai Kogaku Kk Mold releasing method of plastic lens

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035998A (en) * 2005-07-28 2007-02-08 Toppan Printing Co Ltd Mold for imprint
JP2009082207A (en) * 2007-09-27 2009-04-23 Fujifilm Corp Method and apparatus for producing functional membrane
US8582605B2 (en) 2008-02-01 2013-11-12 Zte Corporation Method and device for mapping the initial location of downlink pilot
CN102484260A (en) * 2010-02-04 2012-05-30 松下电器产业株式会社 A method for fabricating a polymer electrolyte membrane for a fuel cell
US8337732B2 (en) 2010-02-04 2012-12-25 Panasonic Corporation Method for fabricating a polymer electrolyte membrane for a fuel cell
JP2014065270A (en) * 2012-09-27 2014-04-17 Tokai Kogaku Kk Mold releasing method of plastic lens

Similar Documents

Publication Publication Date Title
KR101025696B1 (en) Fine ciliary structure for vacuum adhesion, method of using the same and method of manufacturing the same
US20080000871A1 (en) Method for forming nanostructure having high aspect ratio and method for forming nanopattern using the same
US7955545B2 (en) Nano-imprinting process
JP2005537141A (en) Transfer fine processing
JP2007506281A (en) Imprint lithography template with alignment marks
JP5638463B2 (en) Pattern transfer method
JP2004066447A (en) Method of manufacturing structure, functional structure, and magnetic recording medium
US20090311629A1 (en) Method for manufacturing roller mold
JP2005053198A (en) Method for molding minute uneven shape
JP5531463B2 (en) Master plate used for manufacturing micro contact print stamps and manufacturing method thereof, micro contact printing stamp and manufacturing method thereof, and pattern forming method using micro contact printing stamp
JP2009012319A (en) Method of manufacturing pattern forming body
KR101385070B1 (en) A method for preparing pattern in large scale using laser interference lithography, a method for transferring the pattern onto non-uniform surface and an article transferred pattern using the same
TW201026513A (en) Imprinting process of polyimide
JP4588493B2 (en) Adhesive sheet and method for manufacturing semiconductor device using the adhesive sheet
JP3749950B2 (en) Micropattern formation method, micropattern, micropattern transfer mold production method, and micropattern transfer mold
JP2010120283A (en) Microlens mold manufacturing method, and microlens mold original plate
US20140178598A1 (en) Method for forming graphene pattern
KR20160080438A (en) Superhydrophobic sheet and method of manufacturing the same
JP2007214232A (en) Method for forming pattern
KR101418976B1 (en) Base plate with micro indentation patterns for pad printing and method of fabricating the same
JP7516150B2 (en) Thin film manufacturing method and substrate manufacturing method
JP2007207969A (en) Pattern forming method
KR101043947B1 (en) Method for transfer of nanowire
KR102230702B1 (en) Method of manufacturing nano imprinting pattern
JP2009155167A (en) Method for processing object to be processed, method for molding glass or resin, mold, and molded article of glass or resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A02 Decision of refusal

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A02