JP2006054966A - 磁石ユニット、リニアモータ、ステージ装置、及び露光装置、並びに磁石ユニットの製造方法 - Google Patents

磁石ユニット、リニアモータ、ステージ装置、及び露光装置、並びに磁石ユニットの製造方法 Download PDF

Info

Publication number
JP2006054966A
JP2006054966A JP2004235157A JP2004235157A JP2006054966A JP 2006054966 A JP2006054966 A JP 2006054966A JP 2004235157 A JP2004235157 A JP 2004235157A JP 2004235157 A JP2004235157 A JP 2004235157A JP 2006054966 A JP2006054966 A JP 2006054966A
Authority
JP
Japan
Prior art keywords
magnet unit
magnet
base material
linear motor
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004235157A
Other languages
English (en)
Inventor
Masahiro Totsu
政浩 戸津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004235157A priority Critical patent/JP2006054966A/ja
Publication of JP2006054966A publication Critical patent/JP2006054966A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Linear Motors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】 生産性を向上することができ、しかも推力変動を抑えられた磁石ユニットを備えたリニアモータを提供する。
【解決手段】 リニアモータは、磁石ユニットからなる固定子11を備えている。固定子11は、第1、第2磁石部材13、15を有している。第1、第2磁石部材13、15を構成する母材13B、15Bは、Y軸方向に延在する第1、第2面17、19を有しており、その第1、第2面17、19には、N極又はS極に磁化された着磁領域が、Y軸方向に関して複数並んで設けられている。
【選択図】 図3

Description

本発明は、磁石ユニット、リニアモータ、ステージ装置、及び露光装置、並びに磁石ユニットの製造方法に関するものである。
半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の基板上に転写する、所謂フォトリソグラフィの手法により製造される。このフォトリソグラフィ工程で使用される露光装置は、マスクを支持するマスクステージと基板を支持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながらマスクのパターンを投影光学系を介して基板に転写するものである。マスクステージや基板ステージの駆動源としてはリニアモータが用いられることが多い。リニアモータは、構造が簡易で部品点数が少なく、また、駆動における摩擦抵抗が少ないために動作精度が高い等の利点を有している。下記特許文献にはリニアモータに関する技術の一例が開示されている。
特開2003−299340号公報
ところで、従来においては、リニアモータの磁石ユニットを製造する際には、例えばネオジウム・鉄・コバルト等の磁性材料からなる母材を1つずつ着磁装置で磁化(着磁)して磁石とし、形成した複数の磁石を1つずつヨーク上に配列していた。しかしながらこのような方法では、ヨーク上に磁石を配列する作業が必要であるため、工数の増加を招き、リニアモータの生産性向上の障害となっていた。
また、リニアモータにおいては磁石の配列方向に推力が発生するが、磁石を1つずつヨーク上に配列して磁石列を形成する構成では、配列誤差によって推力が一定とならない不都合が生じる可能性もあった。
本発明はこのような事情に鑑みてなされたものであって、生産性を向上することができ、しかも推力変動を抑えられた磁石ユニット、リニアモータ、ステージ装置、及び露光装置、並びに磁石ユニットの製造方法を提供することを目的とする。
上記の課題を解決するため、本発明は実施の形態に示す図1〜図14に対応付けした以下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定するものではない。
本発明の第1の態様に従えば、磁石部材(13、15)を有する磁石ユニット(11)であって、磁石部材(13、15)を構成する母材(13B、15B)は第1の方向(Y)に延在する所定面(17、19)を有し、母材(13B、15B)の所定面(17、19)には、正極又は負極に磁化された第1領域(AR1)が、第1の方向(Y)に関して複数並んで設けられている磁石ユニットが提供される。
本発明の第1の態様によれば、1つの母材の所定面に、磁化された第1領域を複数並べて設けたので、複数の磁石をヨーク上に配列して磁石列を形成することなく、複数の磁極を第1の方向に関して並べることができる。したがって、磁石ユニットを効率良く製造できる。また、複数の磁石をヨーク上に配列する作業を行わなくても、複数の磁極を第1の方向に関して並べることができるので、この磁石ユニットをリニアモータに適用した場合、磁石の配列誤差に伴うリニアモータの推力変動を抑えることができる。
本発明の第2の態様に従えば、磁石ユニットを備えたリニアモータ(10)であって、磁石ユニットに上記態様の磁石ユニット(11)が用いられているリニアモータが提供される。
本発明の第2の態様によれば、磁石ユニットを効率良く製造でき、コスト低減を図ることができる。また、複数の磁石をヨーク上に配列する作業を行わなくても、複数の磁極を第1の方向に関して並べることができるので、磁石の配列誤差に伴うリニアモータの推力変動を抑えることができる。
本発明の第3の態様に従えば、駆動装置を有するステージ装置(MST、PST)であって、駆動装置(80、90)に上記態様のリニアモータ(10)が用いられているステージ装置が提供される。
本発明の第3の態様によれば、生産性良く製造されたリニアモータを用いることで、ステージ装置のコスト低減を図ることができる。また、推力変動が抑えられたリニアモータを用いることで、動作精度の良好なステージ装置を得ることができる。
本発明の第4の態様に従えば、基板(P)を保持する基板ステージ(PST)とマスク(M)を保持するマスクステージ(MST)とを有し、基板ステージ(PST)とマスクステージ(MST)とにより基板(P)とマスク(M)とを位置決めして基板(P)の露光を行う露光装置(EX)において、基板ステージ(PST)とマスクステージ(MST)との少なくとも一方に上記態様のステージ装置が用いられている露光装置が提供される。
本発明の第4の態様によれば、コスト低減を図られたステージ装置を用いることで、露光装置全体のコスト低減を図ることができる。また、良好に動作するステージ装置を使って基板の露光を行うことができるので、基板を精度良く露光できる。
本発明の第5の態様に従えば、母材(13B、15B)を磁化して磁石部材(13、15)を形成する工程を有する磁石ユニットの製造方法であって、母材(13B、15B)は第1の方向(Y)に延在する所定面(17、19)を有し、母材(13B、15B)の所定面(17、19)のうち第1の方向(Y)に並んだ複数の第1領域(AR1)のそれぞれを正極又は負極に磁化することを含む磁石ユニットの製造方法が提供される。
本発明の第5の態様によれば、1つの母材の所定面のうち第1の方向に並んだ複数の第1領域のそれぞれを互いに異なる磁極で磁化するようにしたので、複数の磁石をヨーク上に配列して磁石列を形成することなく、第1の方向に関して並んだ複数の磁極を効率良く形成することができる。そして、この磁石ユニットをリニアモータに適用した場合、磁石の配列誤差に伴うリニアモータの推力変動を抑えることができる。
本発明によれば、磁石ユニットを生産性良く製造できるので、製造コストの低減を図ることができる。また、良好に動作する磁石ユニットを備えた装置を提供できる。
<磁石ユニット及びリニアモータ>
〔第1の実施形態〕
以下、磁石ユニット及びリニアモータの第1の実施形態について図面を参照しながら説明する。図1は第1の実施形態に係るリニアモータを示す外観構成を示す斜視図である。なお、以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。
図1において、リニアモータ10は、Y軸方向を長手方向とし、その位置が固定された固定子11と、Y軸方向に移動可能な可動子12とを備えている。本実施形態のリニアモータ10は、所謂ムービングコイル型のリニアモータであり、固定子11は、第1磁石部材13及び第2磁石部材15を有する磁石ユニットによって構成されている。第1磁石部材13は、Y軸方向を長手方向とした略直方体形状の板状部材からなる1つの部材(母材)13Bによって構成されている。同様に、第2磁石部材15も、Y軸方向を長手方向とした略直方体形状の板状部材からなる1つの部材(母材)15Bによって構成されている。
第1磁石部材13及び第2磁石部材15のそれぞれは、平板状の第1ヨーク14及び第2ヨーク16に保持されている。第1ヨーク14及び第2ヨーク16は、X軸方向における一端部においてスペーサSPで支持されており、第1ヨーク14に支持された第1磁石部材13と第2ヨーク16に支持された第2磁石部材15とは対向している。
第1、第2磁石部材13、15(母材13B、15B)は磁性材料を含んで形成されている。第1、第2磁石部材13、15(母材13B、15B)を形成する磁性材料としては、例えば、ネオジム・鉄・ボロン、サマリウム・コバルト等が挙げられる。また、第1、第2ヨーク14、16のそれぞれも、Y軸方向を長手方向とした平板状の部材によって構成されており、例えばSS400相当の低炭素鋼により形成されている。
一方、可動子12はコイルユニットによって構成されており、その可動子12の一部が、固定子11を構成する第1磁石部材13と第2磁石部材15との間の空隙部に配置されている。
図2は可動子12の分解斜視図である。図2において、可動子12は、複数のコイルからなるコイル列23を有している。コイル列23を構成する複数のコイルは樹脂等で固められており、コイル列23はコイル保持体24で保持されている。コイル列23を保持したコイル保持体24は、ジャケット22に内包されるように保持される。ジャケット22は、枠体25と、枠体25の上下両側にそれぞれ接合してコイル列23及びコイル保持体24を収納する閉空間を形成する薄板状の蓋体26、27とを備えている。枠体25には、コイル保持体24をネジで取り付ける際に用いられる複数の取付用孔28、不図示の冷媒導入口、冷媒排出口、及び電線用コネクタ取付部等が設けられており、コイル列23を保持したコイル保持体24はネジ止めで枠体25に固定される。また、枠体25を蓋体26,27で閉塞したとき、コイル列23と各蓋体26,27との間には、コイル列23の温度調整を行うための冷媒が流れる隙間(流路)が形成される。
図3は固定子11を+X側から見た側面図、図4は第1磁石部材13の平面図である。上述したように、第1磁石部材13は、1つの部材(母材)13Bによって構成されている。第1磁石部材13のうち、第2磁石部材15と対向する第1面17は、Y軸方向に延在する長方形状に形成されている。そして、第1磁石部材13(母材13B)の第1面17には、N極及びS極に磁化された着磁領域(第1領域)AR1が、Y軸方向に関して複数並んで設けられている。具体的には、第1磁石部材13の第1面17には、隣接する磁極の極性が互いに異なるように、Y軸方向に沿って、N極とS極とが交互に並んでいる。本実施形態においては、着磁領域AR1のそれぞれは、互いにほぼ同じ大きさで設けられている。第2磁石部材15も、第1磁石部材13とほぼ同様の構成を有している。すなわち、第2磁石部材15のうち、第1磁石部材13と対向する第2面19には、隣接する磁極の極性が互いに異なるように、Y軸方向に沿って、N極とS極とが交互に並んでいる。第2磁石部材15の着磁領域AR1のそれぞれも、互いにほぼ同じ大きさで設けられている。また、第1磁石部材13の着磁領域AR1と、その第1磁石部材13の着磁領域AR1に対向する第2磁石部材15の着磁領域AR1とのY軸方向における位置は、互いに一致している。更に、第1磁石部材13の着磁領域AR1の磁極と、その第1磁石部材13の着磁領域AR1に対向する第2磁石部材15の着磁領域AR1の磁極とは、互いに異なる磁極となっている。このように配置された第1、第2磁石部材13、15は、第1磁石部材13と第2磁石部材15とによって挟まれた空間内においてY軸方向に沿って周期的に変化する磁界を形成する。
次に、図3及び図4に示した第1磁石部材13を製造する方法について説明する。第1磁石部材13を形成するに際し、まず、上述したようなネオジム・鉄・ボロン等といった磁性材料からなる粉末体を型枠に入れて圧縮成型し、その後焼結処理を行って、前記磁性材料からなる母材13Bを形成する。これにより、略直方体形状を有する板状部材からなる母材13Bが形成される。そして図5に示すように、母材13Bは、着磁装置1によって磁化(着磁)される。着磁装置1は、母材13Bを磁化(着磁)し、第1磁石部材13を形成するものであって、母材13Bの第1面17の延在方向に沿って複数並んだ着磁用コイル等からなる着磁部材2を有している。着磁部材2のそれぞれは、母材13Bの第1面17に対向する位置に設けられている。着磁装置1は、着磁部材2に電圧を印加して磁界を発生させることで、母材13Bを磁化する。着磁装置1は、複数の着磁部材2を使って、母材13Bの第1面17の延在方向に沿ってN極とS極とが交互に並ぶようにこの母材13Bを着磁する。これにより、母材13Bの第1面17のうち、この第1面17の延在方向に並んだ複数の領域AR1のそれぞれがN極及びS極に磁化される。なお、図5においては、互いに隣り合う着磁部材2の間に磁気シールド3がそれぞれ配置されている。磁気シールド3を配置することにより、母材13Bの第1面17に、N極とS極とを交互に良好に設けることができる。磁気シールド3は、例えば珪素磁性薄板、ニッケル磁性薄板(例えばパーマロイ(商品名))等の高透磁率材料によって構成されている。
なおここでは、第1磁石部材13を製造する場合を例にして説明したが、第2磁石部材15も同様の手順で製造することができる。
以上説明したように、1つの母材13B、15Bの第1面17、19に、磁化された着磁領域AR1を複数並べて設けたので、第1、第2磁石部材13、15を含んで構成される固定子(磁石ユニット)11を効率良く製造できる。また、複数の磁石をヨーク上に配列して磁石列を形成するといった作業を行わなくても、複数の磁極(N極、S極)をY軸方向に関して並べることができるので、磁石の配列誤差に伴うリニアモータ10の推力変動を抑えることができる。
〔第2の実施形態〕
次に、第2の実施形態について説明する。以下の説明において、上述した第1の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略もしくは省略する。
図6はリニアモータの第2の実施形態を示す側面図である。図6において、第1ヨーク14には、複数の母材13Ba、13Bb、13Bcが保持されている。図6においては、第1ヨーク14は3つの母材13Ba、13Bb、13Bcを保持している。そして、母材13Baの第1面17aには、複数のN極とS極とがY軸方向に沿って交互に並んで設けられている。同様に、13Bb、13Bcの第1面17b、17cのそれぞれにも、複数のN極とS極とがY軸方向に沿って交互に並んで設けられている。そして、複数の母材13Ba、13Bb、13Bcは、互いに密接しながら、Y軸方向に関して並んで第1ヨーク14に保持されている。同様に、第2ヨーク16には、複数(3つ)の母材15Ba、15Bb、15Bcが保持されており、母材15Ba、15Bb、15Bcの第2面19a、19b、19cのそれぞれには、複数のN極とS極とがY軸方向に沿って交互に並んで設けられている。このように、第1ヨーク14(第2ヨーク16)は、N極又はS極に磁化された着磁領域AR1を複数有する母材を複数保持するようにしてもよい。また、複数の母材をヨークに取り付けるとき、互いに密接させながら取り付けることで、母材の位置決めを精度良く行うことができる。
図7は複数の母材13Ba、13Bb、13Bcを着磁装置1で着磁している状態を示す模式図である。母材13Ba、13Bb、13Bcのそれぞれは、上述した第1の実施形態同様、ネオジム・鉄・ボロン等といった磁性材料からなる粉末体を圧縮成型し、その後焼結処理を行うことによって形成される。そして、これら複数の母材13Ba、13Bb、13Bcを互いに密接させながら並べて配置し、着磁部材2によって磁界を発生することで、母材13Ba、13Bb、13Bcのそれぞれを着磁することができる。
〔第3の実施形態〕
次に、第3の実施形態について図8及び図9を参照しながら説明する。図8はリニアモータの固定子(磁石ユニット)11の第3の実施形態を示す側面図、図9は第1磁石部材13の平面図である。
図8及び図9において、母材13Bには、ブロック状の非磁性体18が挿入されている。非磁性体18は、例えばセラミックスやステンレス鋼等によって構成されている。非磁性体18はY軸方向に関して所定間隔で複数並んで設けられている。そして、第1磁石部材13の第1面17のうち、非磁性体18が挿入されている位置に対応する領域は磁化されていない(磁極が形成されていない)。以下の説明においては、第1磁石部材13の第1面17のうち、非磁性体18が挿入されている位置に対応する領域であって、磁化されていない領域を、「非着磁領域AR2」と称する。そして図9に示すように、非着磁領域(第2領域)AR2は、互いに隣り合う着磁領域AR1どうしの間に設けられている。なお、非磁性体18の表面が第1面17に露出し、非着磁領域AR2が非磁性体18で形成されていてもよいし、非磁性体18のうち非着磁領域AR2に対応する領域の表面が磁性材料で被覆されていてもよい。
そして、非着磁領域AR2を形成するための非磁性体18は所定間隔で設けられているため、着磁領域AR1のそれぞれはY軸方向に関して所定間隔あけて設けられた構成となっている。また本実施形態においては、非磁性体18の大きさ、ひいては非着磁領域AR2の大きさのそれぞれは、互いにほぼ同じであり、非磁性体18(非着磁領域AR2)はY軸方向に関してほぼ等間隔で配置されているので、着磁領域AR1のそれぞれもほぼ等間隔で配置されている。
また、第2磁石部材15も、第1磁石部材13とほぼ同様の構成を有しており、Y軸方向に関して所定間隔(等間隔)で非磁性体18が挿入されており、第2面19には、第2領域AR2が、互いに隣り合う第1領域AR1どうしの間に設けられている。
互いに隣り合う着磁領域AR1どうしの間に非着磁領域AR2を設けたことにより、複数の着磁領域AR1によって形成される磁束密度の分布を、所望の分布に容易に形成することができる。例えば、第1磁石部材13により正弦波状の交番磁界を形成する場合に、互いに隣り合う着磁領域AR1どうしの間に適当な範囲の非着磁領域AR2を設けることにより、理想的な正弦波状の交番磁界を容易に形成することができる。また、非着磁領域AR2と対応する位置に非磁性体18を挿入した場合には、非磁性体18以外の部分を効率的に磁化することができる。
なお、非着磁領域AR2は非磁性体18を挿入したことによって形成され、磁束密度を有していないが、僅かに磁束密度を有していてもよい。すなわち、着磁領域AR1によって形成される磁束密度の分布を所望の分布に容易に形成することができる。
図10は、図8及び図9に示した第1磁石部材13を着磁装置1で着磁している様子を示す図である。第1磁石部材13を形成する際には、第1、第2の実施形態同様、ネオジム・鉄・ボロン等といった磁性材料からなる粉末体を型枠に入れて圧縮成型するが、その際、型枠内に、上記ブロック状の非磁性体18を所定間隔(等間隔)で予め配置しておく。非磁性体18は型枠内で位置決めされた状態で固定される。そして、非磁性体18が配置された型枠内に上記磁性材料からなる粉末体を入れ、その後圧縮成型する。その後焼結処理を行って、前記磁性材料からなる母材13Bを形成する。これにより、非磁性体18が挿入された母材13Bが形成される。その後、図10に示すように、母材13Bは、着磁装置1によって磁化(着磁)される。図10に示す実施形態においても、着磁装置1は磁気シールド3を有しているが、更に、本実施形態においては、母材13B中に非磁性体18が挿入されているため、母材13Bの第1面17に、N極とS極とを交互により良好に設けることができる。
〔第4の実施形態〕
図11は第4の実施形態を示す図である。図11に示すリニアモータ10’は、Y軸方向を長手方向とし、その位置が固定された固定子11’と、Y軸方向に移動可能な可動子12’とを備えている。本実施形態のリニアモータ10’は、所謂ムービングマグネット型のリニアモータであり、固定子11’は、Y軸方向に複数並んだコイルからなるコイル列23を有するコイルユニットによって構成されている。一方、可動子12’は、第1磁石部材13及び第2磁石部材15を有する磁石ユニットによって構成されている。このように、第1磁石部材13及び第2磁石部材15を有する磁石ユニットをムービングマグネット型のリニアモータに適用することも可能である。
一方、第1〜第3の実施形態に示したようなムービングコイル型のリニアモータ10は、長尺な固定子(磁石ユニット)11、すなわち後述するようなステージのストロークに応じた長い距離を有する固定子(磁石ユニット)11を必要とする。第1、第2磁石部材13、15は、Y軸方向に複数並んだ着磁領域AR1を有した構成であって、第1、第2ヨーク14、16に対して取り付けるときの工数を抑えることができるとともに、取り付け誤差(配列誤差)を低減することができるという作用を有する。したがって、第1〜第3の実施形態のように、第1、第2磁石部材13、15を長尺な固定子11に適用することで、比較的短尺な可動子12’に適用する場合に比べて、上記作用を有効利用できる。
<ステージ装置及び露光装置>
次に、上述した磁石ユニットを備えたリニアモータを露光装置に適用した場合の一例について説明する。図12は露光装置EXの一実施形態を示す概略構成図である。本実施形態の露光装置EXは、マスクMと基板Pとを同期移動しつつマスクMに設けられているパターンを投影光学系PLを介して基板P上に転写する所謂スキャニングステッパである。以下の説明において、投影光学系PLの光軸AXと一致する方向をZ軸方向、Z軸方向に垂直な平面内における前記同期移動方向(走査方向)をX軸方向、Z軸方向及びX軸方向と垂直な方向(非走査方向)をY軸方向とする。更に、X軸まわり、Y軸まわり、及びZ軸まわりの回転(傾斜)方向をそれぞれθX方向、θY方向、及びθZ方向とする。また、ここでいう「基板」は半導体ウエハ上にレジストが塗布されたものを含み、「マスク」は感光基板上に縮小投影されるデバイスパターンが形成されたレチクルを含む。
図12において、露光装置EXは、マスクMを保持するマスクテーブルMTを有し、マスクテーブルMTにマスクMを保持して移動可能なマスクステージMSTと、基板Pを保持する基板テーブルPTを有し、基板テーブルPTに基板Pを保持して移動可能な基板ステージPSTと、光源を有し、マスクステージMSTに支持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターン像を基板ステージPSTに支持されている基板Pに投影する投影光学系PLと、露光装置EXの動作を統括制御する制御装置(不図示)とを備えている。基板Pを露光する際には、制御装置は、基板ステージPSTとマスクステージMSTとにより基板PとマスクMとを位置決めし、照明光学系ILを使って、マスクMを露光光ELで照明する。マスクMを照明した露光光ELは、マスクMを通過した後、投影光学系PLを介して基板P上に照射され、この基板Pを露光する。
露光装置EXは、マスクステージMST及び投影光学系PLを支持するメインコラム51を備えている。メインコラム51は床面に水平に載置されたベースプレート50上に設置されている。このメインコラム51の上部側及び下部側には、内側に向けて突出する上側段部51A及び下側段部51Bがそれぞれ形成されている。
照明光学系ILはメインコラム51の上面に固定された支持コラム52により支持される。照明光学系ILより射出される露光光ELとしては、例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びFレーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。
マスクステージMSTは、マスクMを保持するマスクテーブルMTと、マスクテーブルMTを移動するためのリニアモータを含む駆動装置とを備えている。マスクテーブルMTは、マスク定盤53の上面上でXY方向に移動可能に支持されている。マスク定盤53の上面はマスクテーブルMTの移動を案内するガイド面となっている。マスクテーブルMTは、マスク定盤53の上面に対して、エアベアリング55により非接触支持されている。マスク定盤53は、メインコラム51の上側段部51Aに防振ユニット54を介してほぼ水平に支持されている。また、マスクテーブルMT上には、レーザ干渉計63用のミラー62が設けられており、マスクテーブルMTの位置はレーザ干渉計63でモニタされている。なお、マスクテーブルMTの中央部やマスク定盤53の中央部には、マスクMのパターン像が通過する開口(不図示)が形成されている。
投影光学系PLは複数の光学素子により構成され、これら光学素子は鏡筒で支持されている。投影光学系PLは、例えば1/4又は1/5の投影倍率を有する縮小系である。なお、投影光学系PLとしては等倍系あるいは拡大系のいずれでもよい。投影光学系PLの鏡筒PKの外周にはこの鏡筒PKに一体化されたフランジ部56が設けられている。また、メインコラム51の下側段部51Bには、防振ユニット58を介してほぼ水平に鏡筒定盤57が支持されている。鏡筒定盤57は投影光学系PLのフランジ部56を支持している。
基板ステージPSTは、基板Pを保持する基板テーブルPTと、基板テーブルPTを移動するためのリニアモータ80、90を含む駆動装置とを備えている。基板テーブルPTは、基板定盤59の上面上でXY方向に移動可能に支持されている。基板定盤59の上面は基板テーブルPTの移動を案内するガイド面となっている。基板テーブルPTは、基板定盤59の上面に対して、エアベアリング61により非接触支持されている。基板定盤59は、ベースプレート50に防振ユニット60を介してほぼ水平に支持されている。また、基板テーブルPT上には、レーザ干渉計65用のミラー64が設けられており、基板テーブルPTの位置はレーザ干渉計65でモニタされている。
図13は基板ステージPSTの概略斜視図である。基板ステージPSTは、基板テーブルPTをX軸方向に案内しつつ移動自在に支持するXガイドステージ65と、Xガイドステージ65に設けられ、基板テーブルPTをX軸方向に移動可能なXリニアモータ80と、Xガイドステージ65をY軸方向に移動可能な一対のYリニアモータ90、90とを有している。基板テーブルPTは基板Pを真空吸着保持する基板ホルダ(不図示)を有しており、基板Pは基板ホルダを介して基板テーブルPTに支持される。
Xガイドステージ65はX軸方向に沿った長尺形状を有しており、Xリニアモータ80は、Xガイドステージ65で案内しつつ基板テーブルPTをX軸方向に所定ストロークで移動可能である。Yリニアモータ90、90は、Xガイドステージ65の長手方向両端に設けられ、このXガイドステージ65を基板テーブルPTとともにY軸方向に移動可能である。
Xリニアモータ80は、Xガイドステージ65にX軸方向に延びるように設けられた固定子81と、この固定子81に対応して設けられ基板テーブルPTに固定された可動子82とを備えている。そして、可動子82が固定子81に対して駆動することで基板テーブルPTがX軸方向に移動する。ここで、基板テーブルPTはXガイドステージ65に対してZ軸方向に所定量のギャップを維持する磁石及びアクチュエータからなる磁気ガイドにより非接触で支持されている。基板テーブルPTはXガイドステージ65に非接触支持された状態でXリニアモータ80によりX軸方向に移動する。
Yリニアモータ90のそれぞれは、Xガイドステージ65の長手方向両端に設けられた可動子92と、この可動子92に対応して設けられた固定子91とを備えている。そして、可動子92が固定子91に対して駆動することでXガイドステージ65が基板テーブルPTとともにY軸方向に移動する。また、Yリニアモータ90、90のそれぞれの駆動を調整することでXガイドステージ65はθZ方向にも回転移動可能となっている。
基板定盤59のX軸方向両側のそれぞれには、基板定盤59とは別の第2定盤66が設けられている。第2定盤66も、基板定盤59同様、ベースプレート50上に支持されている。第2定盤66の側面視形状は略L字状である。第2定盤66の平面部67上に、エアベアリング68を介してYリニアモータ90の固定子91が支持されている。固定子91は、エアベアリング68により第2定盤66の平面部67に対して非接触支持される。また、第2定盤66の上部はガイド部69となっており、ガイド部69はXガイドステージ65の両端下面に設けられた凹部70Aを有する被ガイド部材70と係合する。凹部70Aとガイド部69との間には気体軸受が介在している。ガイド部69は被ガイド部材70と係合しつつY軸方向に移動するXガイドステージ65を案内する。
上述したように、固定子91は、エアベアリング68により第2定盤66の平面部67に対して非接触支持される。このため、運動量保存の法則によりXガイドステージ65及び基板テーブルPTの+Y方向(−Y方向)の移動に応じて固定子91が−Y方向(+Y方向)に移動する。この固定子91の移動によりXガイドステージ65及び基板テーブルPTの移動に伴う反力が相殺されるとともに重心位置の変化を防ぐことができる。すなわち、固定子91はいわゆるカウンタマスとしての機能を有している。
そして、上記Xリニアモータ80及びYリニアモータ90が、第1〜第3の実施形態で説明したリニアモータ10によって構成されている。すなわち、Xリニアモータ80の固定子81は、X軸方向を延在方向とする磁石部材(13、15)を有しており、その磁石部材には、N極又はS極に磁化された着磁領域AR1がX軸方向に並んで設けられている。また、Yリニアモータ90の固定子91は、Y軸方向を延在方向とする磁石部材(13、15)を有しており、その磁石部材には、N極又はS極に磁化された着磁領域AR1がY軸方向に並んで設けられている。このように、リニアモータ80、90の推力を発生させる方向に沿って、複数の着磁領域AR1が並んで設けられている。
また、上述したように、固定子91は、基板テーブルPTの移動に伴う反力を受けるカウンタマスとしての機能を有しているため、磁石部材13、15(母材13B、15B)は、そのカウンタマスの一部を構成している。固定子91をカウンタマスとして機能させる場合、固定子91は所定の重量(例えば基板テーブルPT及びXガイドステージ65を含む総重量の5倍程度)を必要とする。そのため、比較的小片な磁石を所定方向に隙間をあけつつ配列して磁石列を形成する構成では、固定子91の総重量をかせぐことができず、別の錘部材を取り付けるなどの処置が必要となる。本実施形態においては、固定子91として、第1、第3の実施形態で説明したような、1つの長尺な母材13B、15Bで構成された磁石部材13、15を用いることによって、別の錘部材を取り付けるなどの処置を施すことなく、固定子91の重量をかせぐことができる。あるいは、第2の実施形態で説明したような、複数の母材13B、15Bを互いに密接させることによっても、固定子91の重量をかせぐことができる。
なおここでは、第1〜第3の実施形態で示したリニアモータを、基板ステージPSTに適用した場合を例にして説明したが、マスクステージMST(マスクテーブルMT)を駆動するためのリニアモータに、第1〜第3の実施形態で示したリニアモータを適用することももちろん可能である。更には、マスクステージMSTに設けられたリニアモータ(固定子)を、マスクテーブルMTの移動に伴う反力を受けるカウンタマスとして使ってもよい。
なお上述した実施形態の露光装置EXとして、マスクMと基板Pとを同期移動してマスクMのパターンを露光する走査型の露光装置の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート型の露光装置にも適用することができる。更には、上述の実施形態の露光装置EXとして、投影光学系PLを用いることなくマスクMと基板Pとを密接させてマスクMのパターンを露光するプロキシミティ露光装置にも適用することができる。
露光装置EXの用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを露光する液晶用の露光装置や、薄膜磁気ヘッドを製造するための露光装置にも広く適当できる。
投影光学系PLとしては、エキシマレーザなどの遠紫外線を用いる場合は硝材として石英や蛍石などの遠紫外線を透過する材料を用い、FレーザやX線を用いる場合は反射屈折系または屈折系の光学系にすればよい。
上述した実施形態においては、基板ステージPSTやマスクステージMSTにリニアモータが用られているが、その場合、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもいい。また、ステージは、ガイドに沿って移動するタイプでもいいし、ガイドを設けないガイドレスタイプでもよい。
基板ステージPSTの移動により発生する反力は、特開平8−166475号公報に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。
マスクステージMSTの移動により発生する反力は、特開平8−330224号公報に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。
上述の実施形態の露光装置EXは、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
半導体デバイス等のマイクロデバイスは、図14に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置EXによりマスクのパターンを基板に露光する露光処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。
本発明の第1の実施形態を示す図であって、磁石ユニットを備えたリニアモータを示す外観斜視図である。 図1のコイルユニットを示す分解斜視図である。 図1の磁石ユニットを示す側面図である。 図1の磁石部材を示す平面図である。 磁石ユニットの製造方法を説明するための模式図である。 本発明の第2の実施形態を示す図であって、磁石ユニットを示す側面図である。 磁石ユニットの製造方法を説明するための模式図である。 本発明の第3の実施形態を示す図であって、磁石ユニットを示す側面図である。 図1の磁石部材を示す平面図である。 磁石ユニットの製造方法を説明するための模式図である。 本発明の第4の実施形態を示す図であって、リニアモータを示す外観斜視図である。 本発明に係るリニアモータを備えたステージ装置を有する露光装置の概略構成図である。 基板ステージを示す外観斜視図である。 半導体デバイスの製造工程の一例を示すフローチャート図である。
符号の説明
10…リニアモータ、11…固定子(磁石ユニット)、12…可動子(コイルユニット)、13…第1磁石部材、14…第1ヨーク、13B…母材、15…第2磁石部材、15B…母材、16…第2ヨーク、17…第1面(所定面)、18…非磁性体、19…第2面(所定面)、80…リニアモータ、90…リニアモータ、91…固定子(カウンタマス)、AR1…着磁領域(第1領域)、AR2…非着磁領域(第2領域)、EX…露光装置、MST…マスクステージ、MT…マスクテーブル、PST…基板ステージ、PT…基板テーブル

Claims (15)

  1. 磁石部材を有する磁石ユニットであって、
    前記磁石部材を構成する母材は第1の方向に延在する所定面を有し、
    前記母材の所定面には、正極又は負極に磁化された第1領域が、前記第1の方向に関して複数並んで設けられている磁石ユニット。
  2. 前記所定面において前記正極と前記負極とが交互に並んでいる請求項1記載の磁石ユニット。
  3. 前記複数の第1領域のそれぞれは所定間隔あけて設けられている請求項1又は2記載の磁石ユニット。
  4. 前記母材は板状部材である請求項1〜3のいずれか一項記載の磁石ユニット。
  5. 前記母材の少なくとも一部に、前記第1領域よりも低い磁束密度を有する第2領域が設けられている請求項1〜4のいずれか一項記載の磁石ユニット。
  6. 前記第2領域は、互いに隣り合う前記第1領域どうしの間に設けられている請求項5記載の磁石ユニット。
  7. 前記第2領域は、前記母材に挿入された非磁性体によって形成される請求項5又は6記載の磁石ユニット。
  8. 前記母材を保持するヨークを備え、
    前記母材は、互いに密接しながら前記第1の方向に関して複数並んで前記ヨークに保持されている請求項1〜7のいずれか一項記載の磁石ユニット。
  9. 磁石ユニットを備えたリニアモータであって、
    前記磁石ユニットに請求項1〜請求項8のいずれか一項記載の磁石ユニットが用いられているリニアモータ。
  10. 固定子と可動子とを有し、前記磁石ユニットは固定子を構成している請求項9記載のリニアモータ。
  11. 駆動装置を有するステージ装置であって、
    前記駆動装置に請求項9又は請求項10記載のリニアモータが用いられているステージ装置。
  12. 前記リニアモータにより移動するテーブルを有し、
    前記母材は、前記テーブルの移動に伴う反力を受けるカウンタマスの少なくとも一部を構成する請求項11記載のステージ装置。
  13. 基板を保持する基板ステージとマスクを保持するマスクステージとを有し、前記基板ステージと前記マスクステージとにより前記基板と前記マスクとを位置決めして前記基板の露光を行う露光装置において、
    前記基板ステージと前記マスクステージとの少なくとも一方に請求項11又は請求項12記載のステージ装置が用いられている露光装置。
  14. 母材を磁化して磁石部材を形成する工程を有する磁石ユニットの製造方法であって、
    前記母材は第1の方向に延在する所定面を有し、
    前記母材の所定面のうち前記第1の方向に並んだ複数の第1領域のそれぞれを正極又は負極に磁化することを含む磁石ユニットの製造方法。
  15. 前記母材は、前記第1領域どうしの間に非磁性体からなる第2領域を有する請求項14記載の磁石ユニットの製造方法。
JP2004235157A 2004-08-12 2004-08-12 磁石ユニット、リニアモータ、ステージ装置、及び露光装置、並びに磁石ユニットの製造方法 Withdrawn JP2006054966A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235157A JP2006054966A (ja) 2004-08-12 2004-08-12 磁石ユニット、リニアモータ、ステージ装置、及び露光装置、並びに磁石ユニットの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235157A JP2006054966A (ja) 2004-08-12 2004-08-12 磁石ユニット、リニアモータ、ステージ装置、及び露光装置、並びに磁石ユニットの製造方法

Publications (1)

Publication Number Publication Date
JP2006054966A true JP2006054966A (ja) 2006-02-23

Family

ID=36032049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235157A Withdrawn JP2006054966A (ja) 2004-08-12 2004-08-12 磁石ユニット、リニアモータ、ステージ装置、及び露光装置、並びに磁石ユニットの製造方法

Country Status (1)

Country Link
JP (1) JP2006054966A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141591A1 (ja) * 2014-03-19 2015-09-24 日立金属株式会社 リニアモータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141591A1 (ja) * 2014-03-19 2015-09-24 日立金属株式会社 リニアモータ
JPWO2015141591A1 (ja) * 2014-03-19 2017-04-06 日立金属株式会社 リニアモータ

Similar Documents

Publication Publication Date Title
US7368838B2 (en) High efficiency voice coil motor
TWI457978B (zh) A stage device, an exposure device, and a device manufacturing method
US8053937B2 (en) Linear motor, stage apparatus and exposure apparatus
US6650079B2 (en) System and method to control planar motors
JP4586367B2 (ja) ステージ装置及び露光装置
WO2008130560A1 (en) Three degree of movement mover and method for controlling the same
KR20140045989A (ko) 복수의 스테이지가 가까이 근접하여 동작할 수 있게 해주는 방법 및 장치
US20080285005A1 (en) System and method for measuring and mapping a sideforce for a mover
US20080169708A1 (en) Stage device, exposure apparatus and device manufacturing method
JP2008010643A (ja) ステージ装置
US7161657B2 (en) Lithographic apparatus and device manufacturing method
US20060049697A1 (en) Split coil linear motor for z force
US20040245861A1 (en) Linear motor, stage device having this linear motor, exposure device, and device manufacturing method
JP4528260B2 (ja) リソグラフィ装置およびアクチュエータ
JP2004228473A (ja) 移動ステージ装置
US20060061218A1 (en) Dual force wafer table
JPWO2006035835A1 (ja) 磁界発生装置、電磁アクチュエータ、ステージ装置、露光装置、及びデバイスの製造方法
JP2007258356A (ja) ステージ装置
JP2001190088A (ja) モータ装置、ステージ装置、露光装置、デバイス、モータの駆動方法、ステージ装置の駆動方法、露光方法、および、デバイスの製造方法
JP5807841B2 (ja) 移動体装置、露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
US7738114B2 (en) Exposure apparatus configured to minimize effects of mechanism for measuring stage position on peripheral mechanism and device-manufacturing method
JP2008199876A (ja) ステージ装置および露光装置
JP2001145328A (ja) リニアモータ並びにこれを用いたステージ装置及び露光装置
JP2006340433A (ja) コイルモジュール、コイルユニット、リニアモータ、ステージ装置及び露光装置
JP2006054966A (ja) 磁石ユニット、リニアモータ、ステージ装置、及び露光装置、並びに磁石ユニットの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090812