JP2006051791A - Tire holding apparatus - Google Patents

Tire holding apparatus Download PDF

Info

Publication number
JP2006051791A
JP2006051791A JP2004326696A JP2004326696A JP2006051791A JP 2006051791 A JP2006051791 A JP 2006051791A JP 2004326696 A JP2004326696 A JP 2004326696A JP 2004326696 A JP2004326696 A JP 2004326696A JP 2006051791 A JP2006051791 A JP 2006051791A
Authority
JP
Japan
Prior art keywords
contact
axial direction
rim member
tire
support shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004326696A
Other languages
Japanese (ja)
Other versions
JP4331091B2 (en
Inventor
Toshio Tanaka
利夫 田中
Takamitsu Noda
孝充 野田
Kakutaro Tada
拡太郎 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2004326696A priority Critical patent/JP4331091B2/en
Publication of JP2006051791A publication Critical patent/JP2006051791A/en
Application granted granted Critical
Publication of JP4331091B2 publication Critical patent/JP4331091B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Balance (AREA)
  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tire holding apparatus capable of adjusting a distance between individual rim members in the axial direction in response to a size in the width direction of the tire, and enhancing durability of the tire by a simple structure. <P>SOLUTION: This tire holding apparatus is configured as follows: a spacer ring 32 and a stopper ring 33 are disposed between a rim member 31 and a flange part 12 provided to a rotating shaft 10, where the ring 32 and the ring 33 abut to each other in the axial direction of the shaft 10; a plurality of projections extending in the axial direction of the shaft 10 are formed on the spacer ring 32 so that each projection is insertable into the stopper ring 33. By rotating the stopper ring 33 in the circumferential direction, a prescribed projection abuts to the stopper ring 33 while a part or all of the projections do not insert into the stopper ring 33, thereby the position of the rim member 31 in the axial direction to the rotating shaft 10 can be changed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、自動車用タイヤの製造工程において、タイヤのユニフォーミティや振れを測定するタイヤ試験機におけるタイヤ保持装置に関するものである。   The present invention relates to a tire holding device in a tire testing machine that measures tire uniformity and runout, for example, in a manufacturing process of an automobile tire.

一般に、自動車用タイヤの周方向における重量バランスや厚みなどが偏っていると、タイヤの走行性能を低下させる原因となるため、タイヤの製造工程において加硫成形後のタイヤの品質をタイヤ試験機によって検査している。例えば、タイヤ品質の一つであるユニフォーミティの測定は、上下一対の回転軸の対向端部にそれぞれ取付けた一対のリム部材によりタイヤを保持するとともに、タイヤに内圧を付与して回転させ、その外周面に測定機を当接させて行う。ここで、タイヤの内周部の幅寸法はタイヤの種類によって異なるため、各リム部材の軸方向の間隔をタイヤの種類によって変更する必要があるが、この変更を各リム部材自体の交換により行うようにすると、多くの作業時間を費やし効率的ではない。   In general, if the weight balance or thickness of the tire in the circumferential direction of the automobile tire is biased, it may cause a decrease in the running performance of the tire. Therefore, the quality of the tire after vulcanization molding is determined by a tire testing machine in the tire manufacturing process. I am inspecting. For example, the measurement of uniformity, which is one of the tire qualities, is performed by holding the tire with a pair of rim members attached to opposite ends of a pair of upper and lower rotating shafts, rotating the tire by applying an internal pressure, This is done by bringing a measuring machine into contact with the outer peripheral surface. Here, since the width dimension of the inner peripheral portion of the tire differs depending on the type of tire, the axial interval between the rim members needs to be changed depending on the type of tire. This change is performed by replacing each rim member itself. If so, it takes a lot of work time and is not efficient.

そこで、各リム部材を交換することなく各リム部材の軸方向の間隔を変更可能なタイヤ試験機として、軸方向に固定された上側の回転軸と、上側の回転軸の下端側に取付けられた上側のリム部材と、油圧シリンダによって上下方向に移動自在な下側の支持部材と、下側の支持部材の上側に油圧シリンダによって上下方向に移動自在に取付けられ、上側の回転軸と当接する下側の回転軸と、下側の支持部材の上端側に回転可能に取付けられた下側のリム部材とを備え、タイヤの内周部の幅寸法に合わせて油圧シリンダによって下側の回転軸を上下方向に移動させて、各リム部材の軸方向の間隔を調整するようにしたものが知られている(例えば、特許文献1参照。)。
特開平10−160643号公報
Therefore, as a tire testing machine capable of changing the axial interval of each rim member without replacing each rim member, it was attached to the upper rotating shaft fixed in the axial direction and the lower end side of the upper rotating shaft. An upper rim member, a lower support member that is movable in the vertical direction by a hydraulic cylinder, and a lower support member that is mounted on the upper side of the lower support member so as to be movable in the vertical direction by a hydraulic cylinder and that is in contact with the upper rotating shaft. And a lower rim member rotatably attached to the upper end side of the lower support member, and the lower rotary shaft is adjusted by a hydraulic cylinder in accordance with the width dimension of the inner peripheral portion of the tire. A device is known that is moved in the vertical direction to adjust the interval between the rim members in the axial direction (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 10-160643

ところで、各リム部材に装着したタイヤに内圧を付与すると、その内圧により各リム部材に回転軸の軸方向の大きな力が働くが、この力によって各リム部材の軸方向の間隔が大きくなると、タイヤの内周部が適正な幅寸法ではなくなり、タイヤ試験機の測定精度が低下する。よって、前記装置のように、油圧シリンダにより各リム部材の軸方向の間隔を調整する場合は、タイヤの内圧によって移動することのない出力の大きい油圧シリンダを用いるか、或いは各リム部材の回転軸の軸方向の移動を規制するための別の機構を設ける必要がある。このため装置が複雑になり、装置の故障や、装置の製作費用の増大を招来するという問題点があった。   By the way, when an internal pressure is applied to the tire mounted on each rim member, a large force in the axial direction of the rotating shaft acts on each rim member due to the internal pressure. When this force increases the axial interval between the rim members, the tire The inner peripheral portion of the tire is not in an appropriate width dimension, and the measurement accuracy of the tire testing machine is lowered. Therefore, when the axial distance between the rim members is adjusted by the hydraulic cylinder as in the above-described device, a hydraulic cylinder having a large output that does not move due to the internal pressure of the tire is used, or the rotation shaft of each rim member is used. It is necessary to provide another mechanism for restricting the movement in the axial direction. For this reason, the apparatus becomes complicated, and there has been a problem in that the apparatus breaks down and the manufacturing cost of the apparatus increases.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、タイヤの幅方向のサイズに応じて各リム部材の軸方向の間隔を調整することができるとともに、簡単な構造で耐久性を高めることのできるタイヤ保持装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to adjust the axial interval of each rim member according to the size in the width direction of the tire and to provide a simple structure. An object of the present invention is to provide a tire holding device capable of enhancing durability.

本発明は前記目的を達成するために、互いに軸方向に対向して配置された一対の支軸と、各支軸の対向端部にそれぞれ取付けられた一対のリム部材とを備え、各リム部材の軸方向の間隔を変えることにより、各リム部材によって幅方向任意のサイズのタイヤを保持するようにしたタイヤ保持装置において、前記各リム部材の一方を支軸に対して軸方向に移動自在に設けるとともに、リム部材側及び支軸側に互いにリム部材の周方向任意の位置で軸方向に当接する当接部をそれぞれ設け、各当接部を、互いに周方向に当接位置を変えることにより軸方向の異なった位置で当接するように形成している。   In order to achieve the above object, the present invention includes a pair of support shafts arranged to face each other in the axial direction, and a pair of rim members respectively attached to opposing ends of the support shafts. In the tire holding device in which the tire of any size in the width direction is held by each rim member by changing the axial interval of the rim member, one of the rim members can be moved in the axial direction with respect to the support shaft. In addition to providing the abutting portions that abut each other in the axial direction at an arbitrary position in the circumferential direction of the rim member on the rim member side and the support shaft side, and by changing the abutting positions of the respective abutting portions in the circumferential direction. It forms so that it may contact | abut in the position where an axial direction differs.

また、本発明は、互いに軸方向に対向して配置された一対の支軸と、各支軸の対向端部にそれぞれ取付けられた一対のリム部材とを備え、各リム部材の軸方向の間隔を変えることにより、各リム部材によって幅方向任意のサイズのタイヤを保持するようにしたタイヤ保持装置において、前記各リム部材を支軸に対して軸方向に移動自在に設けるとともに、各リム部材側及び各支軸側に互いにリム部材の周方向任意の位置で軸方向に当接する当接部をそれぞれ設け、リム部材側の当接部と支軸側の当接部とを、互いに周方向に当接位置を変えることにより軸方向の異なった位置で当接するように形成している。   Further, the present invention includes a pair of support shafts arranged to face each other in the axial direction, and a pair of rim members respectively attached to opposing ends of the respective support shafts. In the tire holding device in which the tire of any size in the width direction is held by each rim member, each rim member is provided so as to be movable in the axial direction with respect to the support shaft, and each rim member side In addition, a contact portion that contacts the rim member in the axial direction at an arbitrary position in the circumferential direction of the rim member is provided on each support shaft side, and the contact portion on the rim member side and the contact portion on the support shaft side are arranged in the circumferential direction. By changing the contact position, it is formed so as to contact at different positions in the axial direction.

これにより、前記各当接部を互いに周方向に当接位置を変えることにより、各リム部材の軸方向の間隔がタイヤの幅方向のサイズに応じて任意に調整される。その際、リム部材側の当接部が支軸側の当接部に支軸の軸方向に当接することから、各支持部材に支軸の軸方向の大きな力が働いても、各リム部材の軸方向の間隔が容易に変化することはない。   Thereby, the space | interval of the axial direction of each rim member is arbitrarily adjusted according to the size of the width direction of a tire by changing the contact position of each said contact part to the circumferential direction mutually. At that time, since the abutting portion on the rim member side abuts on the abutting portion on the support shaft side in the axial direction of the support shaft, each rim member can be applied even if a large force in the axial direction of the support shaft acts on each support member The axial spacing of these does not change easily.

本発明によれば、各当接部を互いに周方向に当接位置を変えることにより、各リム部材の軸方向の間隔をタイヤの幅方向のサイズに応じて調整するようにしたので、各リム部材の軸方向の間隔を容易且つ速やかに変更することができる。また、各支持部材に支軸の軸方向の大きな力が働いても、容易に各リム部材の軸方向の間隔が変化しないようにしたので、例えば、タイヤの内圧に抗するために各リム部材を軸方向に固定する専用の機構を設ける必要がなく、簡単な構造によって耐久性の高い装置を構成することができる。   According to the present invention, by changing the contact positions of the respective contact portions in the circumferential direction, the axial interval of each rim member is adjusted according to the size in the tire width direction. The interval in the axial direction of the members can be changed easily and quickly. Further, even if a large force in the axial direction of the support shaft is applied to each support member, the distance between the rim members in the axial direction is not easily changed. For example, in order to resist the tire internal pressure, each rim member It is not necessary to provide a dedicated mechanism for fixing the shaft in the axial direction, and a highly durable device can be configured with a simple structure.

図1乃至図8は本発明の第1の実施形態を示すもので、図1はタイヤ試験機の一部断面概略正面図、図2はタイヤ支持部の一部断面正面図、図3はタイヤ支持部の平面図、図4はタイヤ支持部の下面図、図5はタイヤ支持部の構造説明図、図6はタイヤ支持部の平面図及び一部断面正面図、図7は各リム部材の軸方向の間隔を変更した後のタイヤ支持部の平面図及び一部断面正面図、図8は各リム部材の軸方向の間隔をさらに変更した後のタイヤ支持部の平面図及び一部断面正面図である。   1 to 8 show a first embodiment of the present invention. FIG. 1 is a partially sectional schematic front view of a tire testing machine, FIG. 2 is a partially sectional front view of a tire support, and FIG. 3 is a tire. FIG. 4 is a bottom view of the tire support portion, FIG. 5 is an explanatory view of the structure of the tire support portion, FIG. 6 is a plan view and a partial cross-sectional front view of the tire support portion, and FIG. FIG. 8 is a plan view and a partial cross-sectional front view of the tire support portion after further changing the axial interval of each rim member. FIG.

以下、同図を参照し、自動車用のタイヤTAのユニフォーミティ検査を行うタイヤ試験機について説明する。   Hereinafter, a tire testing machine for performing a uniformity inspection of a tire TA for an automobile will be described with reference to FIG.

本実施形態のタイヤ試験機は、タイヤTAを保持するタイヤ保持装置を有するタイヤ試験機本体1と、タイヤ試験機本体1に回転可能に支持された上側の回転軸10及び下側の回転軸20と、上側の回転軸10の下端側に設けられた上側のタイヤ支持部30と、下側の回転軸20の上端側に設けられた下側のタイヤ支持部40とを備えている。   The tire testing machine of the present embodiment includes a tire testing machine body 1 having a tire holding device that holds a tire TA, an upper rotating shaft 10 and a lower rotating shaft 20 that are rotatably supported by the tire testing machine body 1. And an upper tire support portion 30 provided on the lower end side of the upper rotary shaft 10 and a lower tire support portion 40 provided on the upper end side of the lower rotary shaft 20.

タイヤ試験機本体1は、タイヤ試験機本体1を所定位置に設置するためのベース2と、ベース2に複数の支柱3を介して支持されているフレーム4と、各タイヤ支持部30,40に保持させたタイヤTAのユニフォーミティを測定する周知の測定手段5と、各タイヤ支持部30,40との間にタイヤTAを搬送するための搬送ローラ6とを備えている。測定手段5は水平方向に移動可能に設けられ、各タイヤ支持部材30,40に保持されたタイヤTAの外周面に当接するようになっている。搬送ローラ6は互いに間隔をおいて複数のローラを配列して形成され、図1の奥側から手前側にタイヤTAを搬送するようになっている。   The tire testing machine main body 1 includes a base 2 for installing the tire testing machine main body 1 at a predetermined position, a frame 4 supported on the base 2 via a plurality of support columns 3, and tire support portions 30 and 40. A well-known measuring means 5 for measuring the uniformity of the held tire TA and a transport roller 6 for transporting the tire TA between the tire support portions 30 and 40 are provided. The measuring means 5 is provided so as to be movable in the horizontal direction, and comes into contact with the outer peripheral surface of the tire TA held by the tire support members 30 and 40. The transport roller 6 is formed by arranging a plurality of rollers spaced from each other, and transports the tire TA from the back side to the front side in FIG.

上側の回転軸10はフレーム4にベアリング11を介して回転自在に支持され、駆動手段7によって回転するようになっている。上側の回転軸10の下端側にはフランジ部12が形成され、フランジ部12より下端側の軸部には、油圧によって拡縮自在なコレットチャック13が設けられている。また、上側の回転軸10の下端面には上側に向かって内径が徐々に小さくなる係合穴14が設けられ、係合穴14の中央部には図示しないコンプレッサに連通する吐出孔15が設けられている。   The upper rotating shaft 10 is rotatably supported by the frame 4 via a bearing 11 and is rotated by a driving means 7. A flange portion 12 is formed on the lower end side of the upper rotating shaft 10, and a collet chuck 13 that can be expanded and contracted by hydraulic pressure is provided on the shaft portion on the lower end side of the flange portion 12. Further, an engagement hole 14 whose inner diameter gradually decreases toward the upper side is provided at the lower end surface of the upper rotary shaft 10, and a discharge hole 15 communicating with a compressor (not shown) is provided at the center of the engagement hole 14. It has been.

下側の回転軸20は、上側の回転軸10と同一軸線上に配置されるとともに、ベース1に固定された油圧シリンダ21の上端部にベアリング21aを介して回転自在に支持され、油圧シリンダ21によって上下に移動するようになっている。下側の回転軸20の上端側にはフランジ部22が形成され、フランジ部22より上端側の軸部には、油圧によって拡縮自在なコレットチャック23が設けられている。また、下側の回転軸20の上端面には、上側に向かって外径が徐々に小さくなる係合突起24が設けられ、係合突起24と係合穴14とが係合されると、上側の回転軸10と下側の回転軸20とが同一軸線上に位置決めされるようになっている。係合突起24にはその上端部から側面部に連通する連通孔25が設けられ、係合突起24と係合穴14とが係合された後、図示しないコンプレッサからの圧縮空気が吐出穴15及び連通孔25を経て、係合突起24の側面部から吐出するようになっている。   The lower rotary shaft 20 is disposed on the same axis as the upper rotary shaft 10 and is rotatably supported on the upper end portion of the hydraulic cylinder 21 fixed to the base 1 via a bearing 21a. It is designed to move up and down. A flange portion 22 is formed on the upper end side of the lower rotary shaft 20, and a collet chuck 23 that can be expanded and contracted by hydraulic pressure is provided on the shaft portion on the upper end side of the flange portion 22. Further, the upper end surface of the lower rotating shaft 20 is provided with an engaging protrusion 24 whose outer diameter gradually decreases toward the upper side, and when the engaging protrusion 24 and the engaging hole 14 are engaged, The upper rotary shaft 10 and the lower rotary shaft 20 are positioned on the same axis. The engagement protrusion 24 is provided with a communication hole 25 communicating from the upper end portion to the side surface portion. After the engagement protrusion 24 and the engagement hole 14 are engaged, compressed air from a compressor (not shown) is discharged from the discharge hole 15. And it discharges from the side part of the engagement protrusion 24 through the communicating hole 25.

各タイヤ支持部30,40は、タイヤTAを保持するためのリム部材31,41と、各リム部材31,41と各回転軸10,20のフランジ部12,22との間に配置された一方の当接リングとしてのスペーサリング32,42と、スペーサリング32,42と各回転軸10,20との間に配置された他方の当接リングとしてのストッパリング33,43と、各ストッパリング33,43を各回転軸10,20に対して周方向に回動させるためのシリンダ34,44とを備えている。また、各タイヤ支持部30,40は同様の構造となっており、互いに各リム部材31,41側を対向させるように、各回転軸10,20に取付けられている。尚、各リム部材31,41、各スペーサリング32,42、各ストッパリング33,43は、各回転軸10,20に着脱自在に取付けられている。   The tire support portions 30 and 40 are respectively disposed between the rim members 31 and 41 for holding the tire TA, and the rim members 31 and 41 and the flange portions 12 and 22 of the rotary shafts 10 and 20. Spacer rings 32 and 42 as contact rings, stopper rings 33 and 43 as other contact rings arranged between the spacer rings 32 and 42 and the rotary shafts 10 and 20, and stopper rings 33 , 43 are provided with cylinders 34, 44 for rotating the rotary shafts 10, 20 in the circumferential direction. The tire support portions 30 and 40 have the same structure, and are attached to the rotary shafts 10 and 20 so that the rim members 31 and 41 are opposed to each other. The rim members 31 and 41, the spacer rings 32 and 42, and the stopper rings 33 and 43 are detachably attached to the rotary shafts 10 and 20, respectively.

各リム部材31,41は各回転軸10,20のコレットチャック13,23の外周側に配置され、コレットチャック13,23が拡径し、各リム部材31,41の内周面を支持するようになっている。各リム部材31,41の軸方向一端側にはタイヤTAの内周部の内径より大きな外径を有するリム部が形成され、その他の部分はタイヤTAの内周部の内径より小さく形成され、リム部によってタイヤTAを保持するようになっている。   The rim members 31 and 41 are disposed on the outer peripheral side of the collet chucks 13 and 23 of the rotary shafts 10 and 20 so that the collet chucks 13 and 23 have an increased diameter and support the inner peripheral surfaces of the rim members 31 and 41. It has become. A rim portion having an outer diameter larger than the inner diameter of the inner peripheral portion of the tire TA is formed on one end side in the axial direction of each rim member 31, 41, and the other portion is formed smaller than the inner diameter of the inner peripheral portion of the tire TA. The tire TA is held by the rim portion.

各スペーサリング32,42には、その一端面に周方向に間隔をおいて複数箇所の第1突部32a,42a及び第2突部32b,42bが形成されている。各突部32a,32b,42a,42bは各回転軸10,20の軸方向に延びるように同一外径の円柱状に形成されている。また、各第2突部32b,42bは各第1突部32a,42aより軸方向に長く形成され、各第1突部32a,42aは共に軸方向に同一の長さであり、各第2突部32b,42bは共に軸方向に同一の長さである。さらに、各第1突部32a,42aと各第2突部32b,42bとは各スペーサリング32,42の周方向に並ぶように配置されている。   Each spacer ring 32, 42 is formed with a plurality of first protrusions 32a, 42a and second protrusions 32b, 42b at one end face at intervals in the circumferential direction. Each protrusion 32a, 32b, 42a, 42b is formed in a cylindrical shape having the same outer diameter so as to extend in the axial direction of each rotary shaft 10,20. Each of the second protrusions 32b and 42b is longer in the axial direction than each of the first protrusions 32a and 42a, and each of the first protrusions 32a and 42a has the same length in the axial direction. Both the protrusions 32b and 42b have the same length in the axial direction. Furthermore, each 1st protrusion 32a, 42a and each 2nd protrusion 32b, 42b are arrange | positioned so that it may rank with the circumferential direction of each spacer ring 32,42.

各ストッパリング33,43には、各スペーサリング32,42の第1突部32a,42aが挿通可能な複数の挿通孔33a,43aと、第2突部32b,42bが挿通可能な複数の挿通孔33b,43bとが形成されている。各スペーサリングの外周側には軸方向に延びるように設けられた突状部33c,43cが形成され、各突状部33c,43cには周方向に間隔をおいて複数のローラ33d,43dが取付けられている。各ストッパリング33,43は各ローラ33d,43dによって各回転軸10,20のフランジ部12,22に周方向に移動可能に取付けられるとともに、各回転軸10,20に対する軸方向の移動を規制されている。さらに、フランジ部12,22には、各スペーサリング32,42の第1突部32a,42aが挿通可能な複数の挿通孔12a,22aと、第2突部32b,42bが挿通可能な複数の挿通孔12b,22bが形成されている。   Each stopper ring 33, 43 has a plurality of insertion holes 33a, 43a through which the first protrusions 32a, 42a of the spacer rings 32, 42 can be inserted, and a plurality of insertions through which the second protrusions 32b, 42b can be inserted. Holes 33b and 43b are formed. Protrusions 33c and 43c provided so as to extend in the axial direction are formed on the outer peripheral side of each spacer ring, and a plurality of rollers 33d and 43d are provided in the protrusions 33c and 43c at intervals in the circumferential direction. Installed. The stopper rings 33 and 43 are attached to the flange portions 12 and 22 of the rotary shafts 10 and 20 by the rollers 33d and 43d so as to be movable in the circumferential direction, and are restricted from moving in the axial direction with respect to the rotary shafts 10 and 20. ing. Further, the flange portions 12 and 22 have a plurality of insertion holes 12a and 22a through which the first protrusions 32a and 42a of the spacer rings 32 and 42 can be inserted, and a plurality of holes through which the second protrusions 32b and 42b can be inserted. Insertion holes 12b and 22b are formed.

各シリンダ34,44は、2本のエアシリンダをそれぞれのロッドが両端側に配置されるように軸方向に連結してなり、一方のロッドの先端は各回転軸10,20のフランジ部12,22に連結され、他方のロッドの先端は各ストッパリング33,43の突状部33c,43cに連結されている。即ち、各シリンダ34,44により、各回転軸10,20に対して各ストッパリング33,43が周方向に回動するようになっている。詳しくは、各シリンダ34,44の2本のエアシリンダのうち両方のロッドを伸長させた状態、片方のロッドを伸長させた状態及び両方のロッドを伸長させない状態の3段階の所定の位置に、各ストッパリング33,43を回動するようになっている。   Each cylinder 34, 44 is formed by connecting two air cylinders in the axial direction so that the respective rods are arranged on both ends, and the tip of one rod is the flange portion 12 of each rotary shaft 10, 20. 22 and the tip of the other rod is connected to the protrusions 33c and 43c of the stopper rings 33 and 43, respectively. That is, the stopper rings 33 and 43 are rotated in the circumferential direction with respect to the rotary shafts 10 and 20 by the cylinders 34 and 44, respectively. Specifically, in a predetermined position in three stages of a state where both rods of the two air cylinders of each cylinder 34, 44 are extended, a state where one rod is extended, and a state where both rods are not extended, The stopper rings 33 and 43 are rotated.

以上のように構成されたタイヤ試験機においては、先ず、油圧シリンダ21によって下側のタイヤ支持部40を搬送ローラ6よりも下側に配置し、搬送ローラ6によって加硫成型後のタイヤTAをタイヤ支持部30,40と略同一軸線上に配置する。この状態で油圧シリンダ21によって下側のタイヤ支持部40を上昇させ、リム部材41によってタイヤTAの内周部を支持するとともに、下側の回転軸20の係合突起24と上側の回転軸10の係合穴14とを係合させる。これにより、図2乃至図4に示すように上側のタイヤ支持部30のリム部材31と下側のタイヤ支持部40のリム部材41とによってタイヤTAを保持する。次に、図示しないコンプレッサから吐出孔15及び連通孔25を経て圧縮空気をタイヤTA内に吐出してタイヤTAに内圧を付与するとともに、上側の回転軸10を駆動手段7によって回転させることによってタイヤTAを回転させ、タイヤTAの外周面に測定手段5を当接させることにより、タイヤTAのユニフォーミティを測定する。この時、タイヤTAに内圧を付与する圧縮空気によって各リム部材31,41に各回転軸10,20の軸方向に大きな力が働くが、各リム部材31,41、各スペーサリング32,42、各ストッパリング33,43及び各フランジ部12,22が各回転軸10,20の軸方向に当接しているため、リム部材31とリム部材41との軸方向の間隔が変化することはない。   In the tire testing machine configured as described above, first, the lower tire support portion 40 is disposed below the transport roller 6 by the hydraulic cylinder 21, and the tire TA after vulcanization molding is transported by the transport roller 6. The tire support portions 30 and 40 are arranged on substantially the same axis. In this state, the lower tire support portion 40 is raised by the hydraulic cylinder 21, the inner peripheral portion of the tire TA is supported by the rim member 41, and the engagement protrusion 24 of the lower rotary shaft 20 and the upper rotary shaft 10 are supported. The engagement hole 14 is engaged. Accordingly, as shown in FIGS. 2 to 4, the tire TA is held by the rim member 31 of the upper tire support portion 30 and the rim member 41 of the lower tire support portion 40. Next, compressed air is discharged from the compressor (not shown) through the discharge hole 15 and the communication hole 25 into the tire TA to apply an internal pressure to the tire TA, and the upper rotating shaft 10 is rotated by the driving means 7 to thereby rotate the tire. The uniformity of the tire TA is measured by rotating the TA and bringing the measuring means 5 into contact with the outer peripheral surface of the tire TA. At this time, a large force is exerted on the rim members 31 and 41 in the axial direction of the rotary shafts 10 and 20 by the compressed air that applies the internal pressure to the tire TA, but the rim members 31 and 41, the spacer rings 32 and 42, Since each stopper ring 33 and 43 and each flange part 12 and 22 are contact | abutting to the axial direction of each rotating shaft 10 and 20, the space | interval of the axial direction of the rim member 31 and the rim member 41 does not change.

ここで、例えば内周部の幅寸法の小さいタイヤTAのユニフォーミティを測定するために、リム部材31とリム部材41との間隔を調整する場合について、図6及び図7を参照しながら説明する。図6に示す状態では、各スペーサリング32、42の各突部32a,32b,42a,42bが、各ストッパリング33,43の各挿通孔33a,33b,43a,43b及び各フランジ部12,22の各挿通孔12a,12b,22a,22bを挿通し、各リム部材31,41と各フランジ部12,22とが最も近接した状態となっている。図7に示す状態にするためには、先ず、各コレットチャック13,23を縮径させるとともに、各リム部材31,41を把持して軸方向に移動可能な移動手段としての把持手段CAによって各リム部材31,41を各フランジ部12,22から離れる方向に移動させる。また、各スペーサリング32,42も各リム部材31,41と共に移動させ、各突部32a,32b,42a,42bを各挿通孔33a,33b,43a,43b及び各挿通孔12a,12b,22a,22bから抜き出す。   Here, for example, a case where the distance between the rim member 31 and the rim member 41 is adjusted in order to measure the uniformity of the tire TA having a small inner peripheral width will be described with reference to FIGS. . In the state shown in FIG. 6, the protrusions 32a, 32b, 42a, 42b of the spacer rings 32, 42 are inserted into the insertion holes 33a, 33b, 43a, 43b of the stopper rings 33, 43 and the flanges 12, 22, respectively. The rim members 31 and 41 and the flange portions 12 and 22 are closest to each other through the insertion holes 12a, 12b, 22a and 22b. In order to obtain the state shown in FIG. 7, first, each collet chuck 13, 23 is reduced in diameter, and each rim member 31, 41 is gripped by a gripping means CA as a moving means that can move in the axial direction. The rim members 31 and 41 are moved away from the flange portions 12 and 22. The spacer rings 32 and 42 are also moved together with the rim members 31 and 41, and the protrusions 32a, 32b, 42a and 42b are moved through the insertion holes 33a, 33b, 43a and 43b and the insertion holes 12a, 12b, 22a, Extract from 22b.

次に、各シリンダ34,44を片方のロッドのみ伸長した状態にして各ストッパリング33,43を周方向に回動させ、各挿通孔33a,43aと各挿通孔12b,22bとが連通するようにするとともに、各挿通孔12a,22aが各スペーサリング33,43によって閉鎖されるようにする。続いて、把持手段CAによって各リム部材31,41及び各スペーサリング32,42を移動し、各スペーサリング32,42の第1突部32a,42aと各ストッパリング33,43とを当接させ、この状態で各コレットチャック13,23を拡径させ、各リム部材31,41を位置決めする。   Next, with each cylinder 34, 44 extending only one rod, the stopper rings 33, 43 are rotated in the circumferential direction so that the insertion holes 33a, 43a communicate with the insertion holes 12b, 22b. In addition, the insertion holes 12a and 22a are closed by the spacer rings 33 and 43, respectively. Subsequently, the rim members 31, 41 and the spacer rings 32, 42 are moved by the gripping means CA, and the first protrusions 32a, 42a of the spacer rings 32, 42 and the stopper rings 33, 43 are brought into contact with each other. In this state, the diameters of the collet chucks 13 and 23 are expanded, and the rim members 31 and 41 are positioned.

さらに内周部の幅寸法の小さいタイヤTAを測定する場合は、図8に示すように、前記において各ストッパリング33,43を周方向に回動させる際に、各シリンダ34,44の両方のロッドを伸長させない状態にして、各挿通孔12a,12b,22a,22bが各ストッパリング33,43によって閉鎖されるようにし、各スペーサリング32,42の第2突部32b,42bと各ストッパリング33,43とを当接させる。   Further, when measuring the tire TA having a smaller width at the inner peripheral portion, as shown in FIG. 8, when rotating the stopper rings 33 and 43 in the circumferential direction, both of the cylinders 34 and 44 are measured. The rods are not extended, and the insertion holes 12a, 12b, 22a, 22b are closed by the stopper rings 33, 43. The second protrusions 32b, 42b of the spacer rings 32, 42 and the stopper rings 33 and 43 are brought into contact with each other.

図7及び図8に示すように、リム部材31とリム部材41との軸方向の間隔を調整した後においても、各リム部材31,41、各スペーサリング32,42、各ストッパリング33,43及び各フランジ部12,22は軸方向に当接することとなるので、タイヤTAにかける内圧によって、リム部材31とリム部材41との軸方向の間隔が変化することはない。   As shown in FIGS. 7 and 8, even after adjusting the axial distance between the rim member 31 and the rim member 41, the rim members 31, 41, the spacer rings 32, 42, and the stopper rings 33, 43 are adjusted. And since each flange part 12 and 22 will contact | abut in an axial direction, the space | interval of the axial direction of the rim member 31 and the rim member 41 does not change with the internal pressure applied to the tire TA.

このように、本実施形態のタイヤ保持装置を有するタイヤ試験機によれば、同一軸線上に上下に配置された各回転軸10,20の対向端部にそれぞれタイヤ支持部30,40を設け、各タイヤ支持部30,40にタイヤTAを保持するためのリム部材31,41を取付けるとともに、各リム部材31,41と各回転軸10,20に設けたフランジ部12,22との間にそれぞれスペーサリング32,42及びストッパリング33,43を設けてそれぞれ各回転軸10,20の軸方向に当接させ、また、各スペーサリング32,42に各回転軸10,20の軸方向に延びる複数の突部32a,32b,42a,42bを形成するとともに、各ストッパリング33,43を各突部32a,32b,42a,42bを挿通可能に形成し、各ストッパリング33,43を周方向に回転させることにより、各ストッパリング33,43を各突部32a,32b,42a,42bの一部または全部が挿通せずに、所定の突部と各ストッパリング33,43とが当接して、各回転軸10,20に対する各リム部材31,41の軸方向位置を変化させるようにしたので、タイヤの内周部の幅寸法に応じてリム部材31とリム部材41との間隔を調整することができ、また、各リム部材31,41をタイヤの内圧に抗して各回転軸10,20の軸方向に支持することができる。よって、リム部材31とリム部材41との間隔を調整するための油圧シリンダや、タイヤTAにかける内圧によってリム部材31とリム部材41との間隔を変化させないための別の機構を設ける必要がないため、タイヤ保持装置を簡単な構造の装置とすることができ、装置の耐久性の向上を図ることができる。   Thus, according to the tire testing machine having the tire holding device of the present embodiment, the tire support portions 30 and 40 are provided at the opposed end portions of the rotary shafts 10 and 20 arranged vertically on the same axis, The rim members 31 and 41 for holding the tire TA are attached to the tire support portions 30 and 40, respectively, and between the rim members 31 and 41 and the flange portions 12 and 22 provided on the rotary shafts 10 and 20, respectively. A plurality of spacer rings 32 and 42 and stopper rings 33 and 43 are provided to abut on the axial directions of the rotary shafts 10 and 20, respectively, and a plurality of spacer rings 32 and 42 extend in the axial direction of the rotary shafts 10 and 20. The protrusions 32a, 32b, 42a, 42b are formed, and the stopper rings 33, 43 are formed so that the protrusions 32a, 32b, 42a, 42b can be inserted therethrough. By rotating the ring members 33 and 43 in the circumferential direction, a part of the protrusions 32a, 32b, 42a and 42b are not inserted through the stopper rings 33 and 43, and the predetermined protrusions and the stopper rings 33 are inserted. , 43 are in contact with each other, and the axial positions of the rim members 31, 41 with respect to the rotary shafts 10, 20 are changed, so that the rim member 31 and the rim member according to the width dimension of the inner peripheral portion of the tire. The distance between the rotary shafts 10 and 20 can be adjusted, and the rim members 31 and 41 can be supported in the axial direction of the rotary shafts 10 and 20 against the internal pressure of the tire. Therefore, there is no need to provide a hydraulic cylinder for adjusting the distance between the rim member 31 and the rim member 41 or another mechanism for preventing the distance between the rim member 31 and the rim member 41 from being changed by the internal pressure applied to the tire TA. Therefore, the tire holding device can be a device having a simple structure, and the durability of the device can be improved.

また、各スペーサリング32,42及び各ストッパリング33,43を各回転軸10,20に着脱自在に取付けたので、各スペーサリング32,42及び各ストッパリング33,43を取替えることにより、リム部材31とリム部材41との間隔を任意に設定することが可能である。   Further, since the spacer rings 32 and 42 and the stopper rings 33 and 43 are detachably attached to the rotary shafts 10 and 20, the rim member can be obtained by replacing the spacer rings 32 and 42 and the stopper rings 33 and 43. It is possible to arbitrarily set the distance between 31 and the rim member 41.

さらに、各スペーサリング32,42の第1突部32a,42aを軸方向に同一の長さに形成するとともに、第2突部32b,42bを軸方向に同一の長さに形成したので、各リム部材31,41を互いに各回転軸10,20の軸方向に等しい距離ずつ移動させ、各回転軸10,20の軸方向におけるリム部材31とリム部材41との中央位置が移動しないように、リム部材31とリム部材41との間隔を調整することができる。これにより、リム部材31とリム部材41との間隔を調整しても、測定手段5の高さ位置を調節する必要がなく、タイヤ試験機の構造の簡素化を図ることができる。   Further, the first protrusions 32a and 42a of the spacer rings 32 and 42 are formed to have the same length in the axial direction, and the second protrusions 32b and 42b are formed to have the same length in the axial direction. The rim members 31 and 41 are moved by an equal distance in the axial direction of the rotary shafts 10 and 20 so that the central positions of the rim members 31 and rim members 41 in the axial direction of the rotary shafts 10 and 20 do not move. The distance between the rim member 31 and the rim member 41 can be adjusted. Thereby, even if the space | interval of the rim member 31 and the rim member 41 is adjusted, it is not necessary to adjust the height position of the measurement means 5, and the structure of a tire testing machine can be simplified.

また、各シリンダ34,44を2本のエアシリンダをそれぞれのロッドが両端側に配置されるように軸方向に連結して形成し、一方のロッドの先端を各回転軸10,20に連結するとともに、他方のロッドの先端は各ストッパリング33,43の突状部33c,43cに連結し、各シリンダ34,44の両方のロッドを伸長させた状態、片方のロッドを伸長させた状態及び両方のロッドを伸長させない状態の3段階の所定の位置に、各ストッパリング33,43を回動するようにしたので、各ストッパリング33,43の回動角度を検知するなどの複雑な制御を用いることなく、各ストッパリング33,43を確実に所定の回動位置に回動させることができる。   Further, each cylinder 34, 44 is formed by connecting two air cylinders in the axial direction so that the respective rods are arranged on both ends, and the tip of one rod is connected to each rotary shaft 10, 20. At the same time, the tip of the other rod is connected to the protrusions 33c and 43c of the stopper rings 33 and 43, both rods of the cylinders 34 and 44 are extended, one rod is extended and both Since the stopper rings 33 and 43 are rotated to predetermined positions in three stages in a state where the rods are not extended, complicated control such as detecting the rotation angle of the stopper rings 33 and 43 is used. Therefore, the stopper rings 33 and 43 can be reliably rotated to a predetermined rotation position.

尚、本実施形態では各スペーサリング32,42に第1突部32a,42a及び第2突部32b,42bの2種類の高さの突部を設けたが、突部の高さは1種類とすることも可能であり、また、3種類以上とすることも可能である。   In the present embodiment, each spacer ring 32, 42 is provided with two kinds of heights of the first protrusions 32a, 42a and the second protrusions 32b, 42b, but the height of the protrusions is one kind. It is also possible to have three or more types.

さらに、本実施形態では各スペーサリング32,42に突部を設けたが、突部を各フランジ部12,22に設け、突部と各リム部材31,41とを直接当接させることも可能である。または、突部を各リム部材31,41に設け、突部と各フランジ部12,22とを直接当接させることも可能である。これらの場合、各フランジ部31,41及び各リム部材31,41のうち少なくとも一方を回動させることにより、リム部材31とリム部材41との間隔を調整することができる。   Further, in the present embodiment, the protrusions are provided on the spacer rings 32 and 42. However, the protrusions may be provided on the flange portions 12 and 22 so that the protrusions and the rim members 31 and 41 are in direct contact with each other. It is. Alternatively, it is possible to provide a protrusion on each rim member 31, 41 so that the protrusion and the flanges 12, 22 are in direct contact with each other. In these cases, the distance between the rim member 31 and the rim member 41 can be adjusted by rotating at least one of the flange portions 31 and 41 and the rim members 31 and 41.

尚、本実施形態では、円柱状の突部32a,32b,42a,42bを有する各スペーサリング32と、各突部32a,32b,42a,42bを挿通可能な各ストッパリング33,43により、リム部材31とリム部材41との間隔を調整するように構成したが、図9に示すように、各リム部材31,41と各フランジ部12,22との間にそれぞれ一方の当接リングとしてのスペーサリング50と他方の当接リングとしてのストッパリング51とを設けることも可能である。   In this embodiment, each spacer ring 32 having cylindrical protrusions 32a, 32b, 42a, 42b and stopper rings 33, 43 through which the protrusions 32a, 32b, 42a, 42b can be inserted, The gap between the member 31 and the rim member 41 is adjusted. However, as shown in FIG. 9, one abutment ring is provided between each rim member 31, 41 and each flange portion 12, 22. It is also possible to provide a spacer ring 50 and a stopper ring 51 as the other contact ring.

詳しくは、スペーサリング50には、その一端面に周方向に間隔をおいて複数箇所に第1突部50a及び第2突部50bが形成されている。各突部50a,50bは各回転軸10,20の軸方向に延びるように同一外径の円柱状に形成されるとともに、第2突部50bは第1突部50aより軸方向に長く形成されている。また、ストッパリング51には、スペーサリング50の各突部50a,50bと各回転軸10,20の軸方向にそれぞれ当接するように突部51a,51bが形成されている。各突部51a,51bは各回転軸10,20の軸方向に延びるように同一外径の円柱状に形成され、突部51aと突部50bとが当接する際に、突部51bと突部50aとが当接するように形成されている。   Specifically, the spacer ring 50 is formed with a first protrusion 50a and a second protrusion 50b at a plurality of locations on one end face thereof at intervals in the circumferential direction. Each protrusion 50a, 50b is formed in a cylindrical shape having the same outer diameter so as to extend in the axial direction of each rotary shaft 10, 20, and the second protrusion 50b is formed longer in the axial direction than the first protrusion 50a. ing. Further, the stopper ring 51 is formed with protrusions 51a and 51b so as to contact the protrusions 50a and 50b of the spacer ring 50 in the axial direction of the rotary shafts 10 and 20, respectively. Each protrusion 51a, 51b is formed in a columnar shape having the same outer diameter so as to extend in the axial direction of each rotary shaft 10, 20, and when the protrusion 51a and the protrusion 50b abut, the protrusion 51b and the protrusion 50a is formed so as to abut.

この場合、リム部材31とリム部材41との間隔の調整は、各シリンダ34,44によってストッパリング51を回動させ、例えば、図10に示すように、突部50aと突部51aとが当接するようにする。よって、ストッパリング51を回動させることにより、リム部材31とリム部材41との間隔を調整することができるとともに、タイヤの内圧に抗して各リム部材31,41を支持することができる。   In this case, the distance between the rim member 31 and the rim member 41 is adjusted by rotating the stopper ring 51 by the cylinders 34 and 44, for example, as shown in FIG. Make contact. Therefore, by rotating the stopper ring 51, the distance between the rim member 31 and the rim member 41 can be adjusted, and the rim members 31, 41 can be supported against the internal pressure of the tire.

さらに、図11に示すように、スペーサリング50及びストッパリング51の代わりにスペーサリング60及びストッパリング61を設けることも可能である。詳しくは、スペーサリング60には、その一端面に周方向に間隔をおいて複数箇所に突部60aが形成され、突部60aは各回転軸10,20の軸方向と所定の傾斜角度αをなす傾斜面が形成されている。また、ストッパリング61には、スペーサリング60の各突部60aの傾斜面に沿うように各回転軸10,20と所定の角度αをなす傾斜面を有する突部61aが形成され、各突部60a,61aの傾斜面同士が各回転軸10,20の軸方向に当接している。   Further, as shown in FIG. 11, a spacer ring 60 and a stopper ring 61 can be provided instead of the spacer ring 50 and the stopper ring 51. Specifically, the spacer ring 60 is formed with protrusions 60a at a plurality of locations on one end face thereof at intervals in the circumferential direction, and the protrusions 60a have a predetermined inclination angle α with the axial direction of the rotary shafts 10 and 20. An inclined surface is formed. Further, the stopper ring 61 is formed with a protrusion 61a having an inclined surface that forms a predetermined angle α with the rotary shafts 10 and 20 along the inclined surface of each protrusion 60a of the spacer ring 60. The inclined surfaces 60a and 61a are in contact with each other in the axial direction of the rotary shafts 10 and 20.

この場合、リム部材31とリム部材41との間隔の調整は、各シリンダ34,44によってストッパリング61を回動させ、例えば図12に示すように、回動に応じて各突部60aと各突部61aとの周方向の当接位置が変化し、リム部材31とリム部材41との間隔を調整することができるとともに、タイヤの内圧に抗して各リム部材31,41を支持することができる。   In this case, the distance between the rim member 31 and the rim member 41 is adjusted by rotating the stopper ring 61 by the cylinders 34, 44. For example, as shown in FIG. The circumferential contact position with the protrusion 61a changes, the distance between the rim member 31 and the rim member 41 can be adjusted, and the rim members 31, 41 are supported against the internal pressure of the tire. Can do.

また、本実施形態では、各リム部材31,41を回転軸10,20に対して回転軸の軸方向に移動させる手段として把持手段CAを用いたが、図13に示すように、各フランジ部12,22にそれぞれ複数のシリンダASを固定するとともに、そのロッド部の先端によって各リム部材31,41を支持するようにし、各シリンダASによって各リム部材31,41を回転軸10,20に対して軸方向に移動させるようにしてもよい。これにより、各リム部材31,41を各コレットチャック13,23によって支持する必要がなくなり、タイヤ保持装置の構造をより簡単にすることが可能である。尚、各ストッパ部材33,43の回動を許容するため、各ストッパ部材33,43にシリンダASのロッド部が挿通するとともに、周方向に延びる長孔33e,43eを設ける必要がある。   In the present embodiment, the gripping means CA is used as means for moving the rim members 31 and 41 in the axial direction of the rotary shafts 10 and 20, but as shown in FIG. A plurality of cylinders AS are fixed to the cylinders 12 and 22, and the rim members 31 and 41 are supported by the tips of the rod portions. The cylinders AS support the rim members 31 and 41 with respect to the rotary shafts 10 and 20. Then, it may be moved in the axial direction. Thereby, it is not necessary to support the rim members 31 and 41 by the collet chucks 13 and 23, and the structure of the tire holding device can be simplified. In order to allow the stopper members 33 and 43 to rotate, it is necessary to insert the rod portions of the cylinder AS into the stopper members 33 and 43 and to provide long holes 33e and 43e extending in the circumferential direction.

さらに、本実施形態では、各シリンダ34,44によって各スペーサ部材33,43を各回転軸10,20の周方向に回転させるようにしたが、図14に示すように、各スペーサ部材33,43の外周面に従動側歯車としてのウォームギヤ33f,43fを形成し、また、モータ71によって駆動される駆動側歯車としてのウォームシャフト72を有するとともに、レール73によってウォームシャフト72がウォームギヤ33f,43fと歯合可能に構成された駆動装置70を設け、ウォームシャフト72の回転によって各スペーサ部材33,43を各回転軸10,20の周方向に回転させることも可能である。   Furthermore, in this embodiment, the spacer members 33 and 43 are rotated in the circumferential direction of the rotary shafts 10 and 20 by the cylinders 34 and 44. However, as shown in FIG. Worm gears 33f and 43f as driven side gears are formed, and a worm shaft 72 as a drive side gear driven by a motor 71 is provided, and the worm shaft 72 is connected to the worm gears 33f and 43f by a rail 73. It is also possible to provide a driving device 70 configured to be compatible, and to rotate the spacer members 33 and 43 in the circumferential direction of the rotary shafts 10 and 20 by the rotation of the worm shaft 72.

図15乃至図23は本発明の第2の実施形態を示すもので、図15はタイヤ試験機の一部断面正面図、図16は図15におけるA方向矢視図、図17は図15におけるB方向矢視図、図18は図15におけるC−C線断面図、図19は図15におけるD−D線断面図、図20はタイヤ保持装置の要部斜視図、図21はタイヤ支持部の平面図及び一部断面正面図、図22は各リム部材を各回転軸に対して軸方向に移動した状態を示すタイヤ支持部の正面図、図23は各リム部材の軸方向の間隔を調整した後の状態を示すタイヤ支持部の平面図及び一部断面正面図である。尚、第1の実施形態と同等の構成部分には同一の符号を付して示す。   15 to 23 show a second embodiment of the present invention. FIG. 15 is a partially sectional front view of a tire testing machine, FIG. 16 is a view in the direction of arrow A in FIG. 15, and FIG. 18 is a sectional view taken along the line CC in FIG. 15, FIG. 19 is a sectional view taken along the line DD in FIG. 15, FIG. 20 is a perspective view of the main part of the tire holding device, and FIG. FIG. 22 is a front view of a tire support portion showing a state in which each rim member is moved in the axial direction with respect to each rotational axis, and FIG. 23 is a diagram showing the axial interval between the rim members. It is the top view and partial cross section front view of a tire support part which show the state after adjusting. In addition, the same code | symbol is attached | subjected and shown to the component equivalent to 1st Embodiment.

本実施形態のタイヤ保持装置は、自動車用のタイヤTAのユニフォーミティ検査を行うタイヤ試験機に備わるものであり、タイヤ試験機本体100に回転可能に支持された支軸としての上側の回転軸110及び下側の回転軸120と、上側の回転軸110の下端側に設けられた上側のタイヤ支持部130と、下側の回転軸120の上端側に設けられた下側のタイヤ支持部140とを備えている。   The tire holding device of the present embodiment is provided in a tire testing machine that performs a uniformity inspection of a tire TA for an automobile, and an upper rotating shaft 110 as a support shaft that is rotatably supported by the tire testing machine main body 100. And the lower rotating shaft 120, the upper tire supporting portion 130 provided on the lower end side of the upper rotating shaft 110, and the lower tire supporting portion 140 provided on the upper end side of the lower rotating shaft 120, It has.

タイヤ試験機本体100は、タイヤ試験機本体100を所定位置に設置するためのベース101と、ベース101に複数の支柱102を介して支持されているフレーム103と、各タイヤ支持部130,140に保持されたタイヤTAのユニフォーミティを測定する周知の測定手段104と、各タイヤ支持部130,140との間にタイヤTAを搬送するための搬送ローラ105とを備えている。測定手段104は水平方向に移動可能に設けられ、各タイヤ支持部130,140に保持されたタイヤTAの外周面に当接するようになっている。搬送ローラ105は互いに間隔をおいて配列された複数のローラから形成され、図15の奧側から手前側にタイヤTAを搬送するようになっている。   The tire testing machine main body 100 includes a base 101 for installing the tire testing machine main body 100 at a predetermined position, a frame 103 supported by the base 101 via a plurality of support columns 102, and tire support portions 130 and 140. A well-known measuring means 104 for measuring the uniformity of the held tire TA and a transport roller 105 for transporting the tire TA between the tire support portions 130 and 140 are provided. The measuring means 104 is provided so as to be movable in the horizontal direction, and comes into contact with the outer peripheral surface of the tire TA held by the tire support portions 130 and 140. The transport roller 105 is formed from a plurality of rollers arranged at intervals, and transports the tire TA from the heel side to the near side in FIG.

上側の回転軸110はフレーム103にベアリング111を介して回転自在に支持され、フレーム103に固定された周知のサーボモータからなる回転機構としてのモータ106によって回転するようになっている。上側の回転軸110の下側にはフランジ部112が形成され、フランジ部112より下端側の軸部には油圧によって拡縮自在なコレットチャック113が設けられている。また、上側の回転軸110の下端面には上側に向かって徐々に内径が小さくなる係合穴114が設けられ、係合穴114の中央部には図示しないコンプレッサに連通する吐出孔115が設けられている。さらに、上側の回転軸110の上端側の外周面には周方向に1箇所だけ切欠部110aが設けられている。切欠部110aの外周面側には切欠部110aを検知可能な周知の近接センサ110bが設けられ、近接センサ110bはフレーム103に固定されている。   The upper rotating shaft 110 is rotatably supported by a frame 103 via a bearing 111 and is rotated by a motor 106 as a rotating mechanism including a known servo motor fixed to the frame 103. A flange portion 112 is formed on the lower side of the upper rotary shaft 110, and a collet chuck 113 that can be expanded and contracted by hydraulic pressure is provided on the shaft portion on the lower end side of the flange portion 112. Further, an engagement hole 114 whose inner diameter gradually decreases toward the upper side is provided on the lower end surface of the upper rotating shaft 110, and a discharge hole 115 communicating with a compressor (not shown) is provided at the center of the engagement hole 114. It has been. Further, the outer peripheral surface on the upper end side of the upper rotating shaft 110 is provided with a notch 110a in one place in the circumferential direction. A known proximity sensor 110 b capable of detecting the notch 110 a is provided on the outer peripheral surface side of the notch 110 a, and the proximity sensor 110 b is fixed to the frame 103.

下側の回転軸120は、上側の回転軸110と同一軸線上に配置されるとともに、ベース101に固定された油圧シリンダ121の上端部に設けられたハウジング121aにベアリング121bを介して回転自在に支持され、油圧シリンダ121によって上下方向に移動するようになっている。下側の回転軸120の上端側にはフランジ部122が形成され、フランジ部122より上端側の軸部には油圧によって拡縮自在なコレットチャック123が設けられている。   The lower rotating shaft 120 is disposed on the same axis as the upper rotating shaft 110, and can be freely rotated via a bearing 121b on a housing 121a provided at the upper end of a hydraulic cylinder 121 fixed to the base 101. It is supported and moved up and down by a hydraulic cylinder 121. A flange portion 122 is formed on the upper end side of the lower rotating shaft 120, and a collet chuck 123 that can be expanded and contracted by hydraulic pressure is provided on the shaft portion on the upper end side of the flange portion 122.

また、下側の回転軸120の上端面には上側に向かって除々に外径が小さくなる係合突起124が設けられ、係合突起124と係合穴114とが係合されると、上側の回転軸110と下側の回転軸120とが同一軸線上に位置決めされるようになっている。係合突起124にはその上端部から側面部に連通する連通孔125が設けられ、係合突起124と係合穴114とが係合された際、図示しないコンプレッサからの圧縮空気が吐出孔115及び連通孔125を経て、係合突起124の側面部から吐出するようになっている。   Further, the upper end surface of the lower rotating shaft 120 is provided with an engaging protrusion 124 whose outer diameter gradually decreases toward the upper side. When the engaging protrusion 124 and the engaging hole 114 are engaged, The rotary shaft 110 and the lower rotary shaft 120 are positioned on the same axis. The engagement protrusion 124 is provided with a communication hole 125 communicating from the upper end portion to the side surface portion. When the engagement protrusion 124 and the engagement hole 114 are engaged, compressed air from a compressor (not shown) is discharged from the discharge hole 115. In addition, the liquid is discharged from the side surface portion of the engagement protrusion 124 through the communication hole 125.

また、油圧シリンダ121のハウジング121aの外周面には周知のサーボモータからなる回転機構としてのモータ121cが固定され、ベルトを介して下側の回転軸120が回転するようになっている。さらに、下側の回転軸120の下端側の外周面には、周方向に1箇所だけ切欠部120aが設けられている。切欠部120aの外周面側には切欠部120aを検知可能な周知の近接センサ120bが設けられ、近接センサ120bはハウジング121aに固定されている。   Further, a motor 121c as a rotation mechanism made of a known servo motor is fixed to the outer peripheral surface of the housing 121a of the hydraulic cylinder 121, and the lower rotary shaft 120 is rotated via a belt. Further, the outer peripheral surface on the lower end side of the lower rotating shaft 120 is provided with a notch 120a at one location in the circumferential direction. A known proximity sensor 120b capable of detecting the notch 120a is provided on the outer peripheral surface side of the notch 120a, and the proximity sensor 120b is fixed to the housing 121a.

上側のタイヤ支持部130はタイヤTAを保持するためのリム部材131を備えており、リム部材131は上側の回転軸110に着脱自在に取付けられている。即ち、リム部材131は上側の回転軸110のコレットチャック113の外周面側に配置され、コレットチャック113を拡径すると、リム部材131が上側の回転軸110に支持されるようになっている。リム部材131の軸方向一端側にはタイヤTAの内周部の内径より大きく形成されたリム部131aが設けられるとともに、その他の部分はタイヤTAの内周部の内径より小さく形成され、リム部131aによってタイヤTAを保持するようになっている。   The upper tire support portion 130 includes a rim member 131 for holding the tire TA, and the rim member 131 is detachably attached to the upper rotating shaft 110. That is, the rim member 131 is disposed on the outer peripheral surface side of the collet chuck 113 of the upper rotary shaft 110, and the rim member 131 is supported by the upper rotary shaft 110 when the diameter of the collet chuck 113 is increased. A rim portion 131a formed larger than the inner diameter of the inner peripheral portion of the tire TA is provided on one end side in the axial direction of the rim member 131, and the other portion is formed smaller than the inner diameter of the inner peripheral portion of the tire TA. The tire TA is held by 131a.

また、リム部材131の一端面には周方向に間隔をおいて複数箇所の第1突部131b及び第2突部131cが設けられている。各突部131b、131cは上側の回転軸110の軸方向に延びるように同一外径の円柱状に形成されるとともに、第2突部131cは第1突部131bより軸方向に長く形成されている。一方、上側の回転軸110のフランジ部112には、第1突部131bをそれぞれ挿通可能な挿通孔112aと、第2突部131cをそれぞれ挿通可能な挿通孔112bとが設けられ、各突部131b,131cが各挿通孔112a,112bに挿通すると、リム部材131の一端面がフランジ部112に軸方向に当接するようになっている。   A plurality of first protrusions 131b and second protrusions 131c are provided on one end surface of the rim member 131 at intervals in the circumferential direction. Each protrusion 131b, 131c is formed in a cylindrical shape having the same outer diameter so as to extend in the axial direction of the upper rotating shaft 110, and the second protrusion 131c is formed longer in the axial direction than the first protrusion 131b. Yes. On the other hand, the flange portion 112 of the upper rotating shaft 110 is provided with an insertion hole 112a through which the first protrusion 131b can be inserted, and an insertion hole 112b through which the second protrusion 131c can be inserted. When 131b and 131c are inserted into the respective insertion holes 112a and 112b, one end surface of the rim member 131 comes into contact with the flange portion 112 in the axial direction.

また、リム部材131の外周面側には、リム部材131を上側の回転軸110の軸方向に移動可能な移動機構132が設けられ、移動機構132は、リム131の外周面側に互いに周方向に間隔をおいて複数箇所に配置されたシリンダ133と、各シリンダ133を上下方向に移動自在にそれぞれ支持する支持機構134とから構成されている。   In addition, a moving mechanism 132 that can move the rim member 131 in the axial direction of the upper rotating shaft 110 is provided on the outer peripheral surface side of the rim member 131. The cylinders 133 are arranged at a plurality of positions at intervals, and the support mechanisms 134 that support the cylinders 133 so as to be movable in the vertical direction.

各シリンダ133は周知のエアシリンダからなり、ロッドの先端をリム131側に向けて配置されている。また、ロッドの先端には把持部133aが取付けられ、ロッドを伸長させると把持部133aがリム131の外周面に当接するようになっている。   Each cylinder 133 is composed of a well-known air cylinder, and is arranged with the tip of the rod facing the rim 131 side. A gripping portion 133a is attached to the tip of the rod, and when the rod is extended, the gripping portion 133a comes into contact with the outer peripheral surface of the rim 131.

各支持機構134は、フレーム103から下方に向かって延びる支持機構本体135と、支持機構本体135に沿って設けられたレール136及びボールネジ137とから構成されている。   Each support mechanism 134 includes a support mechanism main body 135 that extends downward from the frame 103, and a rail 136 and a ball screw 137 that are provided along the support mechanism main body 135.

支持機構本体135は下端面が上側の回転軸110の下端面よりも下方に位置するように形成されるとともに、側面に上下方向に延びる凹状部135aが形成されている。   The support mechanism main body 135 is formed such that the lower end surface is positioned below the lower end surface of the upper rotating shaft 110, and a concave portion 135a extending in the vertical direction is formed on the side surface.

レール136は支持機構本体135の凹状部135aが形成された側面に上下方向に延びるように設けられ、シリンダ133が取付けられた可動ベース133bをレール136に沿って移動可能に支持するようになっている。   The rail 136 is provided so as to extend vertically on the side surface of the support mechanism main body 135 where the concave portion 135a is formed, and supports the movable base 133b to which the cylinder 133 is attached so as to be movable along the rail 136. Yes.

ボールネジ137は支持機構本体135の凹状部135a内に上下方向に延びるように設けられ、可動ベース133bと螺合するとともに、図示しないモータによって回転するようになっている。即ち、ボールネジ137を回転させることにより、シリンダ133が上下方向に移動するようになっている。   The ball screw 137 is provided in the concave portion 135a of the support mechanism main body 135 so as to extend in the vertical direction, is screwed with the movable base 133b, and is rotated by a motor (not shown). That is, by rotating the ball screw 137, the cylinder 133 moves in the vertical direction.

下側のタイヤ支持部140はタイヤTAを保持するためのリム部材141を備えており、リム部材141は下側の回転軸120に着脱自在に取付けられている。即ち、リム部材141は下側の回転軸120のコレットチャック123の外周面側に配置され、コレットチャック123が拡径すると、リム部材141が下側の回転軸120に支持されるようになっている。リム部材141の軸方向一端側にはタイヤTAの内周部の内径より大きく形成されたリム部141aが設けられるとともに、その他の部分はタイヤTAの内周部の内径より小さく形成され、リム部141aによってタイヤTAを保持するようになっている。   The lower tire support portion 140 includes a rim member 141 for holding the tire TA, and the rim member 141 is detachably attached to the lower rotating shaft 120. That is, the rim member 141 is disposed on the outer peripheral surface side of the collet chuck 123 of the lower rotating shaft 120, and when the diameter of the collet chuck 123 is increased, the rim member 141 is supported by the lower rotating shaft 120. Yes. A rim portion 141a formed larger than the inner diameter of the inner peripheral portion of the tire TA is provided on one end side in the axial direction of the rim member 141, and the other portion is formed smaller than the inner diameter of the inner peripheral portion of the tire TA. The tire TA is held by 141a.

また、リム部材141の一端面には周方向に間隔をおいて複数箇所の第1突部141b及び第2突部141cが設けられている。各突部141b、141cは下側の回転軸120の軸方向に延びるように同一外径の円柱状に形成されるとともに、第2突部141cは第1突部141bより軸方向に長く形成されている。ここで、第1突部141bはリム部材131の第1突部131bと等しい軸方向長さに形成されるとともに、第2突部141cは第2突部131cと等しい軸方向長さに形成されている。一方、下側の回転軸120のフランジ部122には、第1突部141bをそれぞれ挿通可能な挿通孔122aと、第2突部141cをそれぞれ挿通可能な挿通孔122bとが設けられ、各突部141b,141cが各挿通孔122a,122bに挿通すると、リム部材141の一端面がフランジ部122に軸方向に当接するようになっている。   A plurality of first protrusions 141b and second protrusions 141c are provided on one end surface of the rim member 141 at intervals in the circumferential direction. Each of the protrusions 141b and 141c is formed in a columnar shape having the same outer diameter so as to extend in the axial direction of the lower rotating shaft 120, and the second protrusion 141c is formed longer in the axial direction than the first protrusion 141b. ing. Here, the first protrusion 141b is formed to have the same axial length as the first protrusion 131b of the rim member 131, and the second protrusion 141c is formed to have the same axial length as the second protrusion 131c. ing. On the other hand, the flange portion 122 of the lower rotating shaft 120 is provided with an insertion hole 122a through which the first protrusion 141b can be inserted, and an insertion hole 122b through which the second protrusion 141c can be inserted. When the portions 141b and 141c are inserted into the insertion holes 122a and 122b, one end surface of the rim member 141 is brought into contact with the flange portion 122 in the axial direction.

また、リム部材141の外周面側には、リム部材141を下側の回転軸120の軸方向に移動可能な移動機構142が設けられ、移動機構142は、リム部材141の外周面側に互いに周方向に間隔をおいて複数箇所に配置されたシリンダ143と、各シリンダ143を上下方向に移動自在にそれぞれ支持する支持機構144とから構成されている。   Further, a moving mechanism 142 that can move the rim member 141 in the axial direction of the lower rotating shaft 120 is provided on the outer peripheral surface side of the rim member 141, and the moving mechanism 142 is arranged on the outer peripheral surface side of the rim member 141. It is comprised from the cylinder 143 arrange | positioned in the several places at intervals in the circumferential direction, and the support mechanism 144 which supports each cylinder 143 so that a movement to an up-down direction is possible respectively.

各シリンダ143は周知のエアシリンダからなり、ロッドの先端をリム141側に向けて配置されている。また、ロッドの先端には把持部143aが取付けられ、ロッドを伸長させると把持部143aがリム141の外周面に当接するようになっている。   Each cylinder 143 is a well-known air cylinder, and is arranged with the tip of the rod facing the rim 141 side. A gripping part 143a is attached to the tip of the rod. When the rod is extended, the gripping part 143a comes into contact with the outer peripheral surface of the rim 141.

各支持機構144は、ベース101から上方に向かって延びる支持機構本体145と、支持機構本体145に沿って設けられたレール146及びボールネジ147とから構成されている。   Each support mechanism 144 includes a support mechanism main body 145 extending upward from the base 101, and a rail 146 and a ball screw 147 provided along the support mechanism main body 145.

支持機構本体145は上端面が下側の回転軸120の上端面よりも上方に位置するように形成されるとともに、側面に上下方向に延びる凹状部145aが形成されている。   The support mechanism main body 145 is formed so that the upper end surface is located above the upper end surface of the lower rotating shaft 120, and a concave portion 145a extending in the vertical direction is formed on the side surface.

レール146は支持機構本体145の凹状部145aが形成された側面に上下方向に延びるように設けられ、シリンダ143が取付けられた可動ベース143bをレール146に沿って移動可能に支持するようになっている。   The rail 146 is provided to extend in the vertical direction on the side surface of the support mechanism main body 145 where the concave portion 145a is formed, and supports the movable base 143b to which the cylinder 143 is attached so as to be movable along the rail 146. Yes.

ボールネジ147は支持機構本体145の凹状部145a内に上下方向に延びるように設けられ、可動ベース143bと螺合するとともに、図示しないモータによって回転するようになっている。即ち、ボールネジ147を回転させることにより、シリンダ143が上下方向に移動するようになっている。   The ball screw 147 is provided in the concave portion 145a of the support mechanism main body 145 so as to extend in the vertical direction, is screwed with the movable base 143b, and is rotated by a motor (not shown). That is, by rotating the ball screw 147, the cylinder 143 moves up and down.

以上のように構成されたタイヤ保持装置においては、先ず、油圧シリンダ121によって下側の回転軸120を搬送ローラ105より下側に配置し、搬送ローラ105によって加硫成型後のタイヤTAを各タイヤ支持部130,140と同一軸線上に配置する。この状態で油圧シリンダ121によって下側の回転軸120を上昇させ、リム部材141によってタイヤTAの内周部を支持するとともに、下側の回転軸120の係合突起124と上側の回転軸110の係合穴114とを係合させる。これにより、各リム部材131,141によってタイヤTAが保持される。   In the tire holding device configured as described above, first, the lower rotating shaft 120 is disposed below the conveying roller 105 by the hydraulic cylinder 121, and the tire TA after vulcanization molding is transferred to each tire by the conveying roller 105. It arrange | positions on the same axis line as the support parts 130 and 140. FIG. In this state, the lower rotating shaft 120 is raised by the hydraulic cylinder 121 and the inner peripheral portion of the tire TA is supported by the rim member 141, and the engagement protrusion 124 of the lower rotating shaft 120 and the upper rotating shaft 110 are supported. The engagement hole 114 is engaged. Accordingly, the tire TA is held by the rim members 131 and 141.

次に、図示しないコンプレッサから吐出孔115及び連通孔125を経て圧縮空気をタイヤTA内に吐出し、タイヤTAに内圧を付与する。また、上側の回転軸110をモータ106によって回転させるとともに、タイヤTAの外周面に測定手段104を当接させ、タイヤTAのユニフォーミティを測定する。この時、タイヤTAに内圧を付与することによって各リム部材131,141に互いに離れる方向の大きな力が働くが、各リム部材131,141の一端面と各フランジ部112,122とが軸方向に当接しているため、各リム部材131,141間の間隔が変化することはない。   Next, compressed air is discharged from the compressor (not shown) through the discharge hole 115 and the communication hole 125 into the tire TA, and an internal pressure is applied to the tire TA. Further, the upper rotating shaft 110 is rotated by the motor 106, and the measuring means 104 is brought into contact with the outer peripheral surface of the tire TA to measure the uniformity of the tire TA. At this time, by applying an internal pressure to the tire TA, a large force is exerted on each rim member 131, 141 in a direction away from each other, but one end face of each rim member 131, 141 and each flange portion 112, 122 are axially moved. Since they are in contact, the distance between the rim members 131 and 141 does not change.

ここで、例えば内周部の幅寸法の小さいタイヤTAのユニフォーミティを測定するために、各リム部材131,141間の間隔を調整する場合について、図21乃至図23を参照しながら説明する。   Here, for example, a case where the distance between the rim members 131 and 141 is adjusted in order to measure the uniformity of the tire TA having a small width at the inner peripheral portion will be described with reference to FIGS.

図21に示す状態では、各リム部材131,141の各突部131b、131c、141b、141cが各フランジ部112,122の各挿通孔112a,112b,122a,122bを挿通し、各リム部材131,141の一端面と各フランジ部112,122とが軸方向に当接している。   In the state shown in FIG. 21, the protrusions 131 b, 131 c, 141 b, 141 c of the rim members 131, 141 are inserted through the insertion holes 112 a, 112 b, 122 a, 122 b of the flange portions 112, 122, respectively. , 141 and the flanges 112, 122 are in axial contact with each other.

図23に示す状態にするためには、先ず、各切欠部110a,120aが各近接センサ110b,120bによって検出される位置に各回転軸110,120を回転させるとともに、各シリンダ133,143を各リム部材131,141の外周面側に配置し、各シリンダ133,143のロッドを伸長させて各把持部133a,143aを各リム部材131,141の外周面に当接させる。次に、図22に示すように、コレットチャック113を縮径するとともに各シリンダ133を下方に移動することにより、各突部131b,131cと各挿通孔112a,112bとが上側の回転軸110の周方向に係合しない位置までリム部材131を軸方向に移動させる。また、コレットチャック123を縮径するとともに各シリンダ143を上方に移動することにより、各突部141b,141cと各挿通孔122a,122bとが下側の回転軸120の周方向に係合しない位置までリム部材141を軸方向に移動させる。   In order to obtain the state shown in FIG. 23, first, the rotating shafts 110 and 120 are rotated to positions where the notches 110a and 120a are detected by the proximity sensors 110b and 120b, and the cylinders 133 and 143 are moved to the respective positions. It arrange | positions at the outer peripheral surface side of the rim members 131 and 141, the rod of each cylinder 133,143 is extended, and each holding part 133a, 143a is contact | abutted to the outer peripheral surface of each rim member 131,141. Next, as shown in FIG. 22, by reducing the diameter of the collet chuck 113 and moving the cylinders 133 downward, the protrusions 131b and 131c and the insertion holes 112a and 112b are connected to the upper rotating shaft 110. The rim member 131 is moved in the axial direction to a position where it is not engaged in the circumferential direction. Further, by reducing the diameter of the collet chuck 123 and moving the cylinders 143 upward, the protrusions 141b and 141c and the insertion holes 122a and 122b are not engaged with each other in the circumferential direction of the lower rotary shaft 120. The rim member 141 is moved in the axial direction.

この状態で、挿通孔112aに第2突部131cが挿通可能となるように上側の回転軸110をモータ106によって所定の角度だけ回転させるとともに、挿通孔122aに突部141cが挿通可能となるように下側の回転軸120をモータ121cによって所定の角度だけ回転させる。   In this state, the upper rotating shaft 110 is rotated by a predetermined angle by the motor 106 so that the second protrusion 131c can be inserted into the insertion hole 112a, and the protrusion 141c can be inserted into the insertion hole 122a. The lower rotating shaft 120 is rotated by a predetermined angle by the motor 121c.

続いて、各シリンダ133を上方に移動することにより、第2突部131cを挿通孔112aに挿通するとともに第1突部131bをフランジ部112に軸方向に当接させ、コレットチャック113を拡径することにより、上側の回転軸110にリム部材131を支持する。また、各シリンダ143を下方に移動することにより、第2突部141cを挿通孔122aに挿通するとともに第1突部141bをフランジ部122に軸方向に当接させ、コレットチャック123を拡径することにより下側の回転軸120にリム部材141を支持する。   Subsequently, by moving each cylinder 133 upward, the second protrusion 131c is inserted into the insertion hole 112a and the first protrusion 131b is brought into axial contact with the flange portion 112, thereby expanding the collet chuck 113. As a result, the rim member 131 is supported on the upper rotating shaft 110. Further, by moving each cylinder 143 downward, the second protrusion 141c is inserted into the insertion hole 122a, and the first protrusion 141b is brought into axial contact with the flange part 122 to expand the diameter of the collet chuck 123. Thus, the rim member 141 is supported on the lower rotating shaft 120.

各シリンダ133は各把持部133aとリム部材131との当接を解除するとともにフレーム103側に移動し、各シリンダ143は各把持部143aとリム部材141との当接を解除するとともにベース101側に移動する。   Each cylinder 133 releases the contact between each gripping portion 133a and the rim member 131 and moves to the frame 103 side, and each cylinder 143 releases the contact between each gripping portion 143a and the rim member 141 and the base 101 side. Move to.

各リム部材131,141は、各リム部材131,141間の間隔を調整した後においても第1突部131b,141bと各フランジ部112,122とが軸方向に当接するので、タイヤTAに付与する内圧によって各リム部材131,141間の間隔が変化することはない。   The rim members 131 and 141 are applied to the tire TA because the first protrusions 131b and 141b and the flange portions 112 and 122 abut against each other even after the distance between the rim members 131 and 141 is adjusted. The interval between the rim members 131 and 141 does not change due to the internal pressure.

尚、前述のように各リム部材131,141間の間隔を調整する際、各突部131b,131c,141b,141cが各挿通孔112a,112b,122a,122bに挿通しない位置まで各回転軸110,120を回転させることにより、各リム部材131,141間の間隔をさらに接近させることができる。   As described above, when adjusting the distance between the rim members 131 and 141, the rotary shafts 110 are moved to positions where the protrusions 131b, 131c, 141b, and 141c are not inserted into the insertion holes 112a, 112b, 122a, and 122b. , 120 can be rotated to further approximate the distance between the rim members 131, 141.

このように、本実施形態のタイヤ保持装置によれば、各回転軸110,120に各リム部材131,141を着脱自在に取付け、各リム部材131,141の一端面に軸方向に延びる複数の第1突部131b,141bと、第1突部131b,141bよりも軸方向に長い複数の第2突部131c,141cとを設け、また、各支軸110,120のフランジ部112,122に各突部131b,131c,141b,141cをそれぞれ挿通可能な挿通孔112a,112b,122a,122bを設けるとともに、各フランジ部112,122と各リム部材131,141とを周方向に位置を変えて軸方向に当接可能に形成したので、各突部が挿通孔に挿入される場合、第2突部のみが挿通孔に挿入される場合、各突部が挿通孔に挿入されない場合で各リム部材131,141間の間隔を変えることができる。   As described above, according to the tire holding device of the present embodiment, the rim members 131 and 141 are detachably attached to the rotary shafts 110 and 120, and a plurality of axially extending end surfaces of the rim members 131 and 141 are extended. The first protrusions 131b and 141b and a plurality of second protrusions 131c and 141c that are longer in the axial direction than the first protrusions 131b and 141b are provided, and the flanges 112 and 122 of the support shafts 110 and 120 are provided. Insertion holes 112a, 112b, 122a, and 122b through which the protrusions 131b, 131c, 141b, and 141c can be inserted are provided, and the positions of the flanges 112 and 122 and the rim members 131 and 141 are changed in the circumferential direction. Since each protrusion is inserted into the insertion hole when only the second protrusion is inserted into the insertion hole, each protrusion is inserted into the insertion hole. It is possible to change the spacing between each of the rim members 131 and 141 in the absence.

また、各リム部材131,141と各フランジ部112,122とが軸方向に当接するので、タイヤTAに付与する内圧によって各リム部材131,141間の間隔が変化することがなく、タイヤTAのユニフォーミティ測定の精度向上を図ることができる。   Moreover, since each rim member 131,141 and each flange part 112,122 contact | abut to an axial direction, the space | interval between each rim member 131,141 does not change with the internal pressure given to tire TA, and tire TA The accuracy of uniformity measurement can be improved.

さらに、各リム部材131,141間の間隔を調整するための油圧シリンダを用いた複雑な機構や、タイヤの内圧に抗して各リム部材131,141間を所定の間隔に保持するための複雑な機構を設ける必要がないため、タイヤ保持装置の構造の簡易化及び耐久性の向上を図ることができる。   Furthermore, a complicated mechanism using a hydraulic cylinder for adjusting the distance between the rim members 131 and 141, or a complicated mechanism for holding the rim members 131 and 141 at a predetermined distance against the internal pressure of the tire. Since it is not necessary to provide a special mechanism, the structure of the tire holding device can be simplified and the durability can be improved.

また、各リム部材131,141間の間隔を調整する際、各リム部材131,141を各移動機構132,142によって軸方向に移動し、各突部131b,131c,141b,141cと各挿通孔112a,112b,122a,122bとが各回転軸110,120の周方向に係合しない状態にするとともに、各モータ106,121cによって各回転軸110,120を所定の角度だけ回転させることにより、各フランジ部112,122と各リム部材131,141とを周方向に位置を変えて当接させるようにしたので、各リム部材131,141間の間隔の調整を人力によらずに容易に行うことができる。   Further, when adjusting the distance between the rim members 131 and 141, the rim members 131 and 141 are moved in the axial direction by the moving mechanisms 132 and 142, and the protrusions 131b, 131c, 141b, 141c and the insertion holes are moved. 112a, 112b, 122a, 122b are not engaged with each other in the circumferential direction of each rotating shaft 110, 120, and each rotating shaft 110, 120 is rotated by a predetermined angle by each motor 106, 121c. Since the flange portions 112 and 122 and the rim members 131 and 141 are brought into contact with each other by changing their positions in the circumferential direction, the interval between the rim members 131 and 141 can be easily adjusted regardless of human power. Can do.

さらに、各リム部材131,141を各回転軸110,120に着脱自在に取付けたので、タイヤTAの径方向及び幅方向のサイズに応じて、各リム部材131,141を他のサイズのリム部材131,141に変更することが可能である。   Further, since the rim members 131 and 141 are detachably attached to the rotary shafts 110 and 120, the rim members 131 and 141 are rim members of other sizes according to the sizes in the radial direction and the width direction of the tire TA. It is possible to change to 131,141.

また、第1突部141bを第1突部131bと等しい軸方向長さに形成するとともに、第2突部141cを第2突部131cと等しい軸方向長さに形成したので、各リム部材131,141間の中央位置が軸方向に変化しないように、各リム部材131,141間の間隔を調整することができる。これにより、各リム部材131,141に保持されたタイヤTAの軸方向中央部が常に同じ高さに位置するので、測定手段104の高さを調整する機構を設ける必要がなく、タイヤ試験機の構造の簡素化を図ることができる。   In addition, the first protrusion 141b is formed to have the same axial length as the first protrusion 131b, and the second protrusion 141c is formed to have the same axial length as the second protrusion 131c. The distance between the rim members 131 and 141 can be adjusted so that the central position between the rim members 141 and 141 does not change in the axial direction. As a result, since the axially central portion of the tire TA held by the rim members 131 and 141 is always located at the same height, there is no need to provide a mechanism for adjusting the height of the measuring means 104, and the tire testing machine The structure can be simplified.

尚、本実施形態では、各リム部材131,141に第1突部131b,141b及び第2突部131c,141cの2種類の軸方向長さの突部を設けたものを示したが、突部の軸方向長さを1種類とすることも可能であり、また、3種類以上とすることも可能である。   In the present embodiment, each rim member 131, 141 is provided with two types of axial length projections of the first projection 131b, 141b and the second projection 131c, 141c. The length of the portion in the axial direction can be one type, and can be three or more types.

また、本実施形態では、各リム部材131,141を各回転軸110,120に対してそれぞれ軸方向に移動することにより、各リム部材131,141間の間隔を調整するようにしたものを示したが、各リム部材131,141のうち一方、例えばリム部材131のみを回転軸110に対して軸方向に移動することにより、各リム部材131,141間の間隔を調整することも可能である。この場合、移動させないリム部材141は回転軸120に固定することも可能である。   In this embodiment, the distance between the rim members 131 and 141 is adjusted by moving the rim members 131 and 141 in the axial direction with respect to the rotary shafts 110 and 120, respectively. However, it is also possible to adjust the distance between the rim members 131 and 141 by moving one of the rim members 131 and 141, for example, only the rim member 131 in the axial direction with respect to the rotating shaft 110. . In this case, the rim member 141 that is not moved can be fixed to the rotating shaft 120.

尚、本実施形態では、各リム部材131,141と各回転軸110,120とを相対的に回転させるため、各リム部材131,141を各回転軸110,120に対して軸方向に移動するとともに、各回転軸110,120を回転させるようにしたものを示したが、各リム部材131,141を各回転軸110,120に対して軸方向に移動するとともに、各リム部材131,141を回転させるようにすることもできる。また、各回転軸110,120を各リム部材131,141に対して軸方向に移動するとともに、各回転軸110,120を回転させるようにすることもできる。さらに、各回転軸110,120を各リム部材131,141に対して軸方向に移動するとともに、各リム部材131,141を回転させるようにすることもできる。   In the present embodiment, the rim members 131 and 141 are moved in the axial direction with respect to the rotary shafts 110 and 120 in order to relatively rotate the rim members 131 and 141 and the rotary shafts 110 and 120. In addition, although the rotation shafts 110 and 120 are rotated, the rim members 131 and 141 are moved in the axial direction with respect to the rotation shafts 110 and 120 and the rim members 131 and 141 are moved. It can also be rotated. In addition, the rotary shafts 110 and 120 can be moved in the axial direction with respect to the rim members 131 and 141, and the rotary shafts 110 and 120 can be rotated. Furthermore, the respective rotation shafts 110 and 120 can be moved in the axial direction with respect to the respective rim members 131 and 141, and the respective rim members 131 and 141 can be rotated.

尚、本実施形態では、各リム部材131,141の一端面に円柱状の突部131b,131c,141b,141cを設けるとともに、各フランジ部112,122に挿通孔112a,112b,122a,122bを設け、各リム部材131,141間の間隔を調整するようにしたものを示したが、図24に示すように、各リム部材131,141の一端面及び各フランジ部112,122に突部を設けることも可能である。   In this embodiment, columnar protrusions 131b, 131c, 141b, 141c are provided on one end face of each rim member 131, 141, and insertion holes 112a, 112b, 122a, 122b are provided in the flange portions 112, 122, respectively. In FIG. 24, the distance between the rim members 131 and 141 is adjusted. However, as shown in FIG. 24, one end face of each rim member 131 and 141 and each flange portion 112 and 122 have protrusions. It is also possible to provide it.

即ち、リム部材131の一端面に周方向に間隔をおいて複数の第1突部131dび第2突部131eを設け、各突部131d,131eを上側の回転軸110の軸方向に延びる同一外径の円柱状に形成するとともに、第2突部131eを第1突部131dより軸方向に長く形成する。また、フランジ部112には挿通孔112a,112bを設けずに第1突部112c及び第2突部112dを形成し、各突部112c,112dを軸方向に延びる同一外径の円柱状に形成するとともに、第1突部112cと第2突部131eとが軸方向に当接する際に、第2突部112dと第1突部131dとが軸方向に当接するように形成する。   That is, a plurality of first protrusions 131d and second protrusions 131e are provided on one end surface of the rim member 131 at intervals in the circumferential direction, and the protrusions 131d and 131e extend in the axial direction of the upper rotary shaft 110. While forming in the column shape of an outer diameter, the 2nd protrusion 131e is formed in the axial direction longer than the 1st protrusion 131d. In addition, the first protrusion 112c and the second protrusion 112d are formed in the flange portion 112 without providing the insertion holes 112a and 112b, and the protrusions 112c and 112d are formed in a columnar shape with the same outer diameter extending in the axial direction. In addition, when the first protrusion 112c and the second protrusion 131e are in contact with each other in the axial direction, the second protrusion 112d and the first protrusion 131d are in contact with each other in the axial direction.

また、リム部材141の一端面に周方向に間隔をおいて複数の第1突部141dび第2突部141eを設け、各突部141d,141eを回転軸120の軸方向に延びる同一外径の円柱状に形成するとともに、第2突部141eを第1突部141dより軸方向に長く形成する。また、フランジ部122には挿通孔122a,122bを設けずに第1突部122c及び第2突部122dを形成し、各突部122c,122dを軸方向に延びる同一外径の円柱状に形成するとともに、第1突部122cと第2突部141eとが軸方向に当接する際に、第2突部122dと第1突部141dとが軸方向に当接するように形成する。   A plurality of first protrusions 141d and second protrusions 141e are provided on one end surface of the rim member 141 at intervals in the circumferential direction, and the protrusions 141d and 141e have the same outer diameter extending in the axial direction of the rotating shaft 120. And the second protrusion 141e is formed longer in the axial direction than the first protrusion 141d. Further, the flange portion 122 is formed with the first protrusion 122c and the second protrusion 122d without providing the insertion holes 122a and 122b, and the protrusions 122c and 122d are formed in a columnar shape with the same outer diameter extending in the axial direction. In addition, when the first protrusion 122c and the second protrusion 141e are in contact with each other in the axial direction, the second protrusion 122d and the first protrusion 141d are in contact with each other in the axial direction.

以上の構成においては、各リム部材131,141間の間隔の調整は、例えば図25に示すように、各リム部材131,141と各フランジ部112,122とを互いに周方向に当接位置を変えることにより、第1突部131d,141dと第1突部112c,122cとが軸方向に当接するようにする。これにより、各リム部材131,141間の間隔を調整することができ、また、タイヤの内圧によって各リム部材131,141間の間隔が変化することがない。   In the above-described configuration, for example, as shown in FIG. 25, the distance between the rim members 131 and 141 is adjusted such that the rim members 131 and 141 and the flange portions 112 and 122 are in contact with each other in the circumferential direction. By changing, the first protrusions 131d and 141d and the first protrusions 112c and 122c are brought into contact with each other in the axial direction. Thereby, the space | interval between each rim member 131,141 can be adjusted, and the space | interval between each rim member 131,141 does not change with the internal pressure of a tire.

尚、図26に示すように、各リム部材131,141に円柱状の突部131d,131e,141d,141eではなく、各回転軸110,120の軸方向に対して所定の角度βをなす傾斜面を有する突部131f,141fを設けるとともに、各フランジ部112,122にも円柱状の突部112c,112d,122c,122dではなく、各回転軸110,120の軸方向に対して所定の角度βをなす傾斜面を有する突部112e,122eを設けることも可能である。   As shown in FIG. 26, the rim members 131 and 141 are inclined not at the cylindrical protrusions 131d, 131e, 141d, and 141e but at a predetermined angle β with respect to the axial directions of the rotary shafts 110 and 120. Protrusions 131f and 141f having surfaces are provided, and the flanges 112 and 122 are not provided with the cylindrical protrusions 112c, 112d, 122c, and 122d, but have a predetermined angle with respect to the axial direction of the rotary shafts 110 and 120. It is also possible to provide protrusions 112e and 122e having inclined surfaces that form β.

この場合、各リム部材131,141間の間隔の調整は、例えば図27に示すように、各リム部材131,141と各フランジ部112,122とを互いに周方向に当接位置を変えることにより、各突部131f,141fと各突部112e,122eとの軸方向の当接位置を変える。これにより、各リム部材131,141間の間隔を調整することができ、また、タイヤの内圧によって各リム部材131,141間の間隔が変化することがない。   In this case, for example, as shown in FIG. 27, the distance between the rim members 131 and 141 is adjusted by changing the contact positions of the rim members 131 and 141 and the flange portions 112 and 122 in the circumferential direction. The axial contact positions of the protrusions 131f and 141f and the protrusions 112e and 122e are changed. Thereby, the space | interval between each rim member 131,141 can be adjusted, and the space | interval between each rim member 131,141 does not change with the internal pressure of a tire.

本発明における第1の実施形態を示すタイヤ試験機の一部断面概略正面図1 is a partial cross-sectional schematic front view of a tire testing machine showing a first embodiment of the present invention. タイヤ支持部の一部断面正面図Partial cross-sectional front view of tire support タイヤ支持部の平面図Top view of tire support タイヤ支持部の下面図Bottom view of tire support タイヤ支持部の構造説明図Structural illustration of tire support タイヤ支持部の平面図及び一部断面正面図Top view and partial cross-sectional front view of tire support 各リム部材の軸方向の間隔を変更した後のタイヤ支持部の平面図及び一部断面正面図A plan view and a partial cross-sectional front view of the tire support after changing the axial interval of each rim member 各リム部材の軸方向の間隔をさらに変更した後のタイヤ支持部の平面図及び一部断面正面図Plan view and partial cross-sectional front view of the tire support after further changing the axial interval of each rim member スペーサリング及びストッパリングの変形例を示すタイヤ支持部の平面図及び一部断面正面図Plan view and partial cross-sectional front view of a tire support portion showing a modification of the spacer ring and the stopper ring スペーサリング及びストッパリングの変形例において各リム部材の軸方向の間隔を変更した後のタイヤ支持部の平面図及び一部断面正面図Plan view and partial cross-sectional front view of the tire support after the axial spacing of each rim member is changed in the modified spacer ring and stopper ring スペーサリング及びストッパリングのその他の変形例を示すタイヤ支持部の平面図及び一部断面正面図A plan view and a partial cross-sectional front view of a tire support showing another modification of the spacer ring and the stopper ring スペーサリング及びストッパリングのその他の変形例において各リム部材の軸方向の間隔を変更した後のタイヤ支持部の平面図及び一部断面正面図A plan view and a partial cross-sectional front view of the tire support after changing the axial interval of each rim member in other modified examples of the spacer ring and the stopper ring リム部材の移動手段の変形例を示すタイヤ支持部の平面図及び一部断面正面図A plan view and a partial cross-sectional front view of a tire support portion showing a modification of the moving means of the rim member ストッパリングの回動手段の変形例を示すタイヤ支持部の平面図及び一部断面正面図The top view and partial cross section front view of a tire support part which show the modification of the rotation means of a stopper ring 本発明における第2の実施形態を示すタイヤ試験機の一部断面正面図The partial cross section front view of the tire testing machine which shows 2nd Embodiment in this invention 図15におけるA方向矢視図A direction arrow view in FIG. 図15におけるB方向矢視図B direction arrow view in FIG. 図15におけるC−C線断面図CC sectional view in FIG. 図15におけるD−D線断面図DD sectional view in FIG. タイヤ保持装置の要部斜視図Perspective view of main part of tire holding device タイヤ支持部の平面図及び一部断面正面図Top view and partial cross-sectional front view of tire support 各リム部材を各回転軸に対して軸方向に移動した状態を示すタイヤ支持部の正面図Front view of a tire support portion showing a state in which each rim member is moved in the axial direction with respect to each rotation axis 各リム部材の軸方向の間隔を調整した後の状態を示すタイヤ支持部の平面図及び一部断面正面図A plan view and a partial cross-sectional front view of a tire support portion showing a state after adjusting an axial interval of each rim member フランジ部及びリム部材の変形例を示すタイヤ支持部の平面図及び一部断面正面図Plan view and partial cross-sectional front view of a tire support portion showing a modification of the flange portion and the rim member フランジ部及びリム部材の変形例において各リム部材間の軸方向の間隔を変更した後の状態を示すタイヤ支持部の平面図及び一部断面正面図A plan view and a partial cross-sectional front view of the tire support portion showing a state after changing the axial interval between the rim members in the modification of the flange portion and the rim member. フランジ部及びリム部材のその他の変形例を示すタイヤ支持部の平面図及び一部断面正面図A plan view and a partial cross-sectional front view of a tire support portion showing other modifications of the flange portion and the rim member フランジ部及びリム部材のその他の変形例において各リム部材間の軸方向の間隔を変更した後の状態を示すタイヤ支持部の平面図及び一部断面正面図A plan view and a partial cross-sectional front view of the tire support portion showing a state after changing the axial interval between the rim members in the other modifications of the flange portion and the rim member.

符号の説明Explanation of symbols

1…タイヤ試験機本体、2…ベース、3…支柱、4…フレーム、5…測定手段、6…搬送ローラ、10…上側の回転軸、11…ベアリング、12…フランジ部、12a…挿通孔、12b…挿通孔、13…コレットチャック、14…係合穴、15…吐出孔、20…下側の回転軸、21…油圧シリンダ、21a…ベアリング、22…フランジ部、22a…挿通孔、22b…挿通孔、23…コレットチャック、24…係合突起、25…連通孔、30…上側のタイヤ支持部、31…リム部材、32…スペーサリング、32a…第1突部、32b…第2突部、33…ストッパリング、33a…挿通孔、33b…挿通孔、33e…長孔、33f…ウォームギヤ、34…シリンダ、40…下側のタイヤ支持部、41…リム部材、42…スペーサリング、42a…第1突部、42b…第2突部、43…ストッパリング、43a…挿通孔、43b…挿通孔、43e…長孔、43f…ウォームギヤ、50…スペーサリング、50a…第1突部、50b…第2突部、51…ストッパリング、51a…第1突部、51b…第2突部、60…スペーサリング、60a…突部、61…ストッパリング、61a…突部、70…駆動装置、71…ウォームシャフト、72…レール、100…タイヤ試験機本体、106…モータ、110…上側の回転軸、112…フランジ部、112a…挿通孔、112b…挿通孔、112c…第1突部、112d…第2突部、112e…突部、113…コレットチャック、114…係合穴、120…下側の回転軸、121c…モータ、122…フランジ部、122a…挿通孔、122b…挿通孔、122c…第1突部、122d…第2突部、122e…突部、130…上側のタイヤ支持部、131…リム部材、131b…第1突部、131c…第2突部、131d…第1突部、131e…第2突部、131f…突部、132…移動機構、133…シリンダ、134…支持機構、136…レール、137…ボールネジ、140…下側のタイヤ支持部、141…リム部材、141b…第1突部、141c…第2突部、141d…第1突部、141e…第2突部、141f…突部、142…移動機構、143…シリンダ、144…支持機構、146…レール、147…ボールネジ、TA…タイヤ。
DESCRIPTION OF SYMBOLS 1 ... Tire testing machine main body, 2 ... Base, 3 ... Support | pillar, 4 ... Frame, 5 ... Measuring means, 6 ... Conveyance roller, 10 ... Upper rotating shaft, 11 ... Bearing, 12 ... Flange part, 12a ... Insertion hole, 12b ... insertion hole, 13 ... collet chuck, 14 ... engagement hole, 15 ... discharge hole, 20 ... lower rotating shaft, 21 ... hydraulic cylinder, 21a ... bearing, 22 ... flange, 22a ... insertion hole, 22b ... Insertion hole, 23 ... collet chuck, 24 ... engagement protrusion, 25 ... communication hole, 30 ... upper tire support, 31 ... rim member, 32 ... spacer ring, 32a ... first projection, 32b ... second projection 33 ... Stopper ring, 33a ... Insertion hole, 33b ... Insertion hole, 33e ... Long hole, 33f ... Worm gear, 34 ... Cylinder, 40 ... Lower tire support, 41 ... Rim member, 42 ... Spacer ring, 42 ... 1st protrusion, 42b ... 2nd protrusion, 43 ... Stopper ring, 43a ... Insertion hole, 43b ... Insertion hole, 43e ... Long hole, 43f ... Worm gear, 50 ... Spacer ring, 50a ... 1st protrusion, 50b ... 2nd protrusion, 51 ... Stopper ring, 51a ... 1st protrusion, 51b ... 2nd protrusion, 60 ... Spacer ring, 60a ... Projection, 61 ... Stopper ring, 61a ... Projection, 70 ... Drive device, 71 ... Worm shaft, 72 ... Rail, 100 ... Tire testing machine body, 106 ... Motor, 110 ... Upper rotating shaft, 112 ... Flange, 112a ... Insertion hole, 112b ... Insertion hole, 112c ... First projection, 112d ... second protrusion, 112e ... protrusion, 113 ... collet chuck, 114 ... engagement hole, 120 ... lower rotating shaft, 121c ... motor, 122 ... flange, 122a ... insertion hole, 122 ... insertion hole, 122c ... first protrusion, 122d ... second protrusion, 122e ... protrusion, 130 ... upper tire support, 131 ... rim member, 131b ... first protrusion, 131c ... second protrusion, 131d ... 1st protrusion, 131e ... 2nd protrusion, 131f ... protrusion, 132 ... movement mechanism, 133 ... cylinder, 134 ... support mechanism, 136 ... rail, 137 ... ball screw, 140 ... lower tire support part, 141 ... Rim member, 141b ... first projection, 141c ... second projection, 141d ... first projection, 141e ... second projection, 141f ... projection, 142 ... moving mechanism, 143 ... cylinder, 144 ... support Mechanism, 146 ... rail, 147 ... ball screw, TA ... tire.

Claims (19)

互いに軸方向に対向して配置された一対の支軸と、各支軸の対向端部にそれぞれ取付けられた一対のリム部材とを備え、各リム部材の軸方向の間隔を変えることにより、各リム部材によって幅方向任意のサイズのタイヤを保持するようにしたタイヤ保持装置において、
前記各リム部材の一方を支軸に対して軸方向に移動自在に設けるとともに、リム部材側及び支軸側に互いにリム部材の周方向任意の位置で軸方向に当接する当接部をそれぞれ設け、
各当接部を、互いに周方向に当接位置を変えることにより軸方向の異なった位置で当接するように形成した
ことを特徴とするタイヤ保持装置。
A pair of support shafts arranged opposite to each other in the axial direction, and a pair of rim members attached to opposite ends of each support shaft, respectively, by changing the axial distance of each rim member, In a tire holding device configured to hold a tire of any size in the width direction by a rim member,
One of the rim members is provided so as to be movable in the axial direction with respect to the support shaft, and contact portions are provided on the rim member side and the support shaft side to contact each other in the axial direction at any position in the circumferential direction of the rim member. ,
The tire holding device, wherein the contact portions are formed to contact each other at different positions in the axial direction by changing the contact positions in the circumferential direction.
互いに軸方向に対向して配置された一対の支軸と、各支軸の対向端部にそれぞれ取付けられた一対のリム部材とを備え、各リム部材の軸方向の間隔を変えることにより、各リム部材によって幅方向任意のサイズのタイヤを保持するようにしたタイヤ保持装置において、
前記各リム部材を支軸に対して軸方向に移動自在に設けるとともに、各リム部材側及び各支軸側に互いにリム部材の周方向任意の位置で軸方向に当接する当接部をそれぞれ設け、
リム部材側の当接部と支軸側の当接部とを、互いに周方向に当接位置を変えることにより軸方向の異なった位置で当接するように形成した
ことを特徴とするタイヤ保持装置。
A pair of support shafts arranged opposite to each other in the axial direction, and a pair of rim members attached to opposite ends of each support shaft, respectively, by changing the axial distance of each rim member, In a tire holding device configured to hold a tire of any size in the width direction by a rim member,
The rim members are provided so as to be movable in the axial direction with respect to the support shaft, and contact portions are provided on the rim member side and the support shaft side to contact each other in the axial direction at arbitrary positions in the circumferential direction of the rim member. ,
A tire holding device characterized in that the abutting portion on the rim member side and the abutting portion on the support shaft side are formed so as to abut at different positions in the axial direction by changing the abutting position in the circumferential direction. .
前記一方のリム部材側の各当接部及び他方のリム部材側の各当接部を、各リム部材が互いにその軸方向反対方向に等しい距離ずつ移動するように形成した
ことを特徴とする請求項2記載のタイヤ保持装置。
The contact portions on the one rim member side and the contact portions on the other rim member side are formed so that the rim members move by an equal distance in the opposite axial direction. Item 2. The tire holding device according to Item 2.
前記リム部材側及び支軸側の当接部の少なくとも一方を、リム部材の軸方向に高さの異なる複数の当接部によって形成した
ことを特徴とする請求項1、2または3記載のタイヤ保持装置。
The tire according to claim 1, 2 or 3, wherein at least one of the abutting portions on the rim member side and the support shaft side is formed by a plurality of abutting portions having different heights in the axial direction of the rim member. Holding device.
前記リム部材側及び支軸側の当接部を互いに軸方向に対向する一対の当接リングによって形成し、
一方の当接リングの当接部を軸方向に高さの異なる複数の当接部によって形成するとともに、少なくとも一部の当接部を軸方向に突出する突部によって形成し、他方の当接リングには一方の当接リングの突部からなる当接部を軸方向に挿通可能な少なくとも一つの挿通孔を設け、
各当接リングを、一方の当接リングの任意の当接部が他方の当接リングに軸方向に当接すると、その当接部よりも高い突部からなる当接部が他方の当接リングの挿通孔に挿入されるように構成した
ことを特徴とする請求項1、2または3記載のタイヤ保持装置。
The abutting portions on the rim member side and the support shaft side are formed by a pair of abutting rings facing each other in the axial direction,
The contact part of one contact ring is formed by a plurality of contact parts having different heights in the axial direction, and at least a part of the contact part is formed by a protruding part protruding in the axial direction, and the other contact part The ring is provided with at least one insertion hole through which an abutting portion formed by a protrusion of one abutting ring can be inserted in the axial direction,
When each abutment ring is brought into contact with an arbitrary abutment portion of one abutment ring in the axial direction, the abutment portion composed of a protrusion higher than the abutment portion is brought into contact with the other abutment ring. The tire holding device according to claim 1, 2 or 3, wherein the tire holding device is inserted into the insertion hole of the ring.
前記リム部材側及び支軸側の当接部を互いに軸方向に対向する一対の当接リングによって形成するとともに、各当接リングに軸方向に高さの異なる複数の当接部を設け、
各当接リングを、一方の当接リングの任意の当接部が他方の当接リングの任意の当接部に軸方向に当接するように構成した
ことを特徴とする請求項1、2または3記載のタイヤ保持装置。
The abutting portions on the rim member side and the support shaft side are formed by a pair of abutting rings facing each other in the axial direction, and each abutting ring is provided with a plurality of abutting portions having different heights in the axial direction,
Each contact ring is configured such that an arbitrary contact portion of one contact ring contacts an arbitrary contact portion of the other contact ring in the axial direction. 3. The tire holding device according to 3.
前記リム部材側及び支軸側の当接部の少なくとも一方を、リム部材の軸方向に対して傾斜面をなす当接部によって形成した
ことを特徴とする請求項1、2または3記載のタイヤ保持装置。
The tire according to claim 1, 2 or 3, wherein at least one of the abutting portions on the rim member side and the support shaft side is formed by an abutting portion that forms an inclined surface with respect to the axial direction of the rim member. Holding device.
前記リム部材側及び支軸側の当接部を互いに軸方向に対向する一対の当接リングによって形成するとともに、各当接リングに支軸の軸方向に対して傾斜面をなす当接部を設け、
各当接リングを、一方の当接リングの周方向任意の位置の当接部が他方の当接リングの周方向任意の位置の当接部に軸方向に当接するように構成した
ことを特徴とする請求項1、2または3記載のタイヤ保持装置。
The abutment portions on the rim member side and the support shaft side are formed by a pair of contact rings facing each other in the axial direction, and contact portions that form an inclined surface with respect to the axial direction of the support shaft on each contact ring. Provided,
Each abutment ring is configured such that the abutment portion at an arbitrary position in the circumferential direction of one abutment ring is in axial contact with the abutment portion at an arbitrary position in the circumferential direction of the other abutment ring. The tire holding device according to claim 1, 2 or 3.
前記各当接リングを支軸に着脱自在に取付けた
ことを特徴とする請求項5、6または8記載のタイヤ保持装置。
The tire holding device according to claim 5, 6 or 8, wherein each of the contact rings is detachably attached to a support shaft.
前記各当接リングの少なくとも一方を他方の当接リングとの当接位置が変わるように周方向に回動させる回動手段を備えた
ことを特徴とする請求項5、6、8または9記載のタイヤ保持装置。
The rotation means which rotates at least one of each said contact ring to the circumferential direction so that the contact position with the other contact ring may change was provided. The claim | item 5, 6, 8, or 9 characterized by the above-mentioned. Tire holding device.
前記回動手段を、それぞれのロッドが両端側に位置するように連結された一対のシリンダから形成するとともに、各シリンダのロッドを当接リング及び支軸側にそれぞれ連結し、各シリンダのうち一方のロッドを伸長させた状態、両方のロッドを伸長させた状態及び両方のロッドを伸長させない状態の3つの所定の周方向位置に当接リングが回動するように構成した
ことを特徴とする請求項10記載のタイヤ保持装置。
The rotating means is formed from a pair of cylinders connected so that the rods are located on both ends, and the rods of the cylinders are connected to the abutment ring and the support shaft side, respectively. The contact ring is configured to rotate at three predetermined circumferential positions in a state in which the rod is extended, a state in which both rods are extended, and a state in which both rods are not extended. Item 15. The tire holding device according to Item 10.
前記回動手段を、当接リングの外周面に設けられた従動側歯車と、従動側歯車に歯合する駆動側歯車と、駆動側歯車を回動させるモータとから構成した
ことを特徴とする請求項10記載のタイヤ保持装置。
The rotating means is composed of a driven gear provided on the outer peripheral surface of the contact ring, a driving gear that meshes with the driven gear, and a motor that rotates the driving gear. The tire holding device according to claim 10.
前記リム部材を支軸に対してタイヤの軸方向に移動させる移動手段を備えた
ことを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11または12記載のタイヤ保持装置。
The moving means which moves the said rim member to the axial direction of a tire with respect to a spindle is provided. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12. The tire holding device according to 12.
前記移動手段を、支軸に対してリム部材を軸方向に移動自在に支持するシリンダによって形成した
ことを特徴とする請求項13記載のタイヤ保持装置。
The tire holding device according to claim 13, wherein the moving means is formed by a cylinder that supports the rim member so as to be movable in the axial direction with respect to the support shaft.
前記リム部材側及び支軸側の当接部をリム部材及び支軸にそれぞれ一体に設け、
リム部材及び支軸の一方の当接部を軸方向に高さの異なる複数の当接部によって形成するとともに、少なくとも一部の当接部を軸方向に突出する突部によって形成し、リム部材及び支軸の他方の当接部には一方の突部からなる当接部を軸方向に挿通可能な少なくとも一つの挿通孔を設け、
各当接部を、リム部材及び支軸の一方の任意の当接部が他方の当接部に軸方向に当接すると、その当接部よりも高い突部からなる当接部が他方の挿通孔に挿入されるように構成した
ことを特徴とする請求項1、2または3記載のタイヤ保持装置。
The abutment portions on the rim member side and the support shaft side are integrally provided on the rim member and the support shaft, respectively.
One abutting portion of the rim member and the support shaft is formed by a plurality of abutting portions having different heights in the axial direction, and at least a part of the abutting portion is formed by a projecting portion protruding in the axial direction. And the other abutting portion of the support shaft is provided with at least one insertion hole through which the abutting portion consisting of one protrusion can be inserted in the axial direction,
When each one of the contact portions of the rim member and the support shaft is in contact with the other contact portion in the axial direction, the contact portion formed by a protrusion higher than the contact portion is the other contact portion. The tire holding device according to claim 1, 2 or 3, wherein the tire holding device is inserted into the insertion hole.
前記リム部材側及び支軸側の当接部をリム部材及び支軸にそれぞれ一体に設けるとともに、リム部材及び支軸の当接部を軸方向に高さの異なる複数の当接部によって形成し、
各当接部を、リム部材及び支軸の一方の任意の当接部が他方の任意の当接部に軸方向に当接するように構成した
ことを特徴とする請求項1、2または3記載のタイヤ保持装置。
The abutment portions on the rim member side and the support shaft side are integrally provided on the rim member and the support shaft, respectively, and the contact portions of the rim member and the support shaft are formed by a plurality of contact portions having different heights in the axial direction. ,
Each contact part is comprised so that one arbitrary contact part of a rim | limb member and a spindle may be contact | abutted to the other arbitrary contact part in the axial direction. Tire holding device.
前記リム部材側及び支軸側の当接部をリム部材及び支軸にそれぞれ一体に設けるとともに、リム部材及び支軸の当接部を支軸の軸方向に対して傾斜面をなす当接部によって形成し、
各当接部を、リム部材及び支軸の一方の周方向任意の位置の当接部が他方の周方向任意の位置の当接部に軸方向に当接するように構成した
ことを特徴とする請求項1、2または3記載のタイヤ保持装置。
The rim member side and the support shaft side contact portions are provided integrally with the rim member and the support shaft, respectively, and the contact portions of the rim member and the support shaft are inclined with respect to the axial direction of the support shaft. Formed by and
Each contact portion is configured such that a contact portion at one arbitrary position in the circumferential direction of the rim member and the support shaft is axially contacted with a contact portion at any other position in the circumferential direction. The tire holding device according to claim 1, 2 or 3.
前記リム部材と支軸とを互いに周方向に当接位置が変わるように相対的に回転可能な回転手段を備えた
ことを特徴とする請求項15、16または17記載のタイヤ保持装置。
18. The tire holding device according to claim 15, further comprising a rotation unit that can relatively rotate the rim member and the support shaft so as to change a contact position in a circumferential direction.
前記回転手段を、リム部材を支軸に対して軸方向に移動可能な移動機構と、支軸を任意の角度だけ回転可能な回転機構とから構成した
ことを特徴とする請求項18記載のタイヤ保持装置。

19. The tire according to claim 18, wherein the rotating means includes a moving mechanism capable of moving the rim member in an axial direction with respect to the support shaft, and a rotating mechanism capable of rotating the support shaft by an arbitrary angle. Holding device.

JP2004326696A 2004-07-16 2004-11-10 Tire holding device Expired - Fee Related JP4331091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326696A JP4331091B2 (en) 2004-07-16 2004-11-10 Tire holding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004209960 2004-07-16
JP2004326696A JP4331091B2 (en) 2004-07-16 2004-11-10 Tire holding device

Publications (2)

Publication Number Publication Date
JP2006051791A true JP2006051791A (en) 2006-02-23
JP4331091B2 JP4331091B2 (en) 2009-09-16

Family

ID=36029556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326696A Expired - Fee Related JP4331091B2 (en) 2004-07-16 2004-11-10 Tire holding device

Country Status (1)

Country Link
JP (1) JP4331091B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054466A1 (en) * 2011-10-11 2013-04-18 大和製衡株式会社 Tire inspection device
WO2013105436A1 (en) * 2012-01-12 2013-07-18 三菱重工マシナリーテクノロジー株式会社 Rim assembly and tire testing machine
WO2013121675A1 (en) * 2012-02-17 2013-08-22 三菱重工マシナリーテクノロジー株式会社 Tire testing device
CN103900830A (en) * 2012-12-28 2014-07-02 财团法人金属工业研究发展中心 Adjustment tool for building datum axis and datum plane
TWI461676B (en) * 2012-12-28 2014-11-21 Metal Ind Res & Dev Ct Establish the adjustment of the reference axis and the datum
US9046445B2 (en) 2011-11-11 2015-06-02 Mitsubishi Heavy Industies Machinery Technology Corporation Rim assembly, tire testing machine, and rim assembly replacement method
JP2019168282A (en) * 2018-03-22 2019-10-03 株式会社長浜製作所 Tire holding device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188348A (en) * 1989-12-18 1991-08-16 Kobe Steel Ltd Adjusting apparatus for automatic rim-width of tire uniformity machine
JPH07190898A (en) * 1993-12-27 1995-07-28 Kobe Steel Ltd Rim clamp device of tire testing machine
JPH1073518A (en) * 1996-09-02 1998-03-17 Mitsubishi Heavy Ind Ltd Tire uniformity machine
JPH10160643A (en) * 1996-10-02 1998-06-19 Kobe Steel Ltd Tire-testing machine
JPH11183298A (en) * 1997-12-16 1999-07-09 Kokusai Keisokki Kk Uniformity and dynamic-balance composite testing apparatus for tire
JP2001512566A (en) * 1997-01-24 2001-08-21 イリノイ トゥール ワークス,インコーポレイティド Automatic width adjustment type chuck device for tire testing equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188348A (en) * 1989-12-18 1991-08-16 Kobe Steel Ltd Adjusting apparatus for automatic rim-width of tire uniformity machine
JPH07190898A (en) * 1993-12-27 1995-07-28 Kobe Steel Ltd Rim clamp device of tire testing machine
JPH1073518A (en) * 1996-09-02 1998-03-17 Mitsubishi Heavy Ind Ltd Tire uniformity machine
JPH10160643A (en) * 1996-10-02 1998-06-19 Kobe Steel Ltd Tire-testing machine
JP2001512566A (en) * 1997-01-24 2001-08-21 イリノイ トゥール ワークス,インコーポレイティド Automatic width adjustment type chuck device for tire testing equipment
JPH11183298A (en) * 1997-12-16 1999-07-09 Kokusai Keisokki Kk Uniformity and dynamic-balance composite testing apparatus for tire

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054466A1 (en) * 2011-10-11 2013-04-18 大和製衡株式会社 Tire inspection device
US9046445B2 (en) 2011-11-11 2015-06-02 Mitsubishi Heavy Industies Machinery Technology Corporation Rim assembly, tire testing machine, and rim assembly replacement method
DE112012004720B4 (en) 2011-11-11 2018-10-04 Mitsubishi Heavy Industries Machinery Systems, Ltd. Rim assembly, tire tester and rim assembly replacement method
WO2013105436A1 (en) * 2012-01-12 2013-07-18 三菱重工マシナリーテクノロジー株式会社 Rim assembly and tire testing machine
JP2013142682A (en) * 2012-01-12 2013-07-22 Mitsubishi Heavy Industries Machinery Technology Corp Rim assembly and tire testing apparatus
US9194768B2 (en) 2012-01-12 2015-11-24 Mitsubishi Heavy Industries Machinery Technology Corporation Rim assembly and tire testing machine
US9322734B2 (en) 2012-02-17 2016-04-26 Mitsubishi Heavy Industries Machinery Technology Corporation Tire testing apparatus
JP2013170824A (en) * 2012-02-17 2013-09-02 Mitsubishi Heavy Industries Machinery Technology Corp Tire testing device
WO2013121675A1 (en) * 2012-02-17 2013-08-22 三菱重工マシナリーテクノロジー株式会社 Tire testing device
TWI461676B (en) * 2012-12-28 2014-11-21 Metal Ind Res & Dev Ct Establish the adjustment of the reference axis and the datum
CN103900830A (en) * 2012-12-28 2014-07-02 财团法人金属工业研究发展中心 Adjustment tool for building datum axis and datum plane
JP2019168282A (en) * 2018-03-22 2019-10-03 株式会社長浜製作所 Tire holding device
JP7029800B2 (en) 2018-03-22 2022-03-04 株式会社長浜製作所 Tire holding device

Also Published As

Publication number Publication date
JP4331091B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP4331091B2 (en) Tire holding device
KR101329857B1 (en) Apparatus for measuring brake disk of vehicle
KR20020072211A (en) Apparatus and method for measuring uniformity and/or dynamic balance of tire
US3698233A (en) Apparatus for processing cured tires
US4380927A (en) Rim mechanism for tire inspection arrangement
US9463537B2 (en) Workpiece positioning apparatus
TWI699518B (en) Tire testing machine
JP4213675B2 (en) Tire holding device
KR101309168B1 (en) Apparatus for examining the straight of the rod
US20150027215A1 (en) Tire testing machine
JP5042610B2 (en) Handrail drive device for passenger conveyor
KR20200134300A (en) Tire tester and tire marking method
JP4251570B2 (en) Tire holding device
US20170343453A1 (en) Apparatus for holding a tire in a tire balancing machine
EP1018630A2 (en) Spacer gauging device for a roller bearing arrangement
JP4598482B2 (en) Tire holding device
KR200396972Y1 (en) Side slip apparatus of rear wheel in wheel alignment lift
JP6901135B2 (en) Thrust Needle Bearing Assembly Equipment
JP2006208246A (en) Tire holding system
JP2007038564A (en) Cutter of strip-like member
CN217483435U (en) Polyurethane roller coaxiality detection device
JP5222066B2 (en) Inner diameter measuring device
US8074526B2 (en) Crankshaft machine tool test device
JP5205854B2 (en) Tire holding device
JP5222065B2 (en) Roundness measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees