JP2006208246A - Tire holding system - Google Patents

Tire holding system Download PDF

Info

Publication number
JP2006208246A
JP2006208246A JP2005022150A JP2005022150A JP2006208246A JP 2006208246 A JP2006208246 A JP 2006208246A JP 2005022150 A JP2005022150 A JP 2005022150A JP 2005022150 A JP2005022150 A JP 2005022150A JP 2006208246 A JP2006208246 A JP 2006208246A
Authority
JP
Japan
Prior art keywords
shaft
axial direction
tire
support shaft
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005022150A
Other languages
Japanese (ja)
Inventor
Toshio Tanaka
利夫 田中
Takamitsu Noda
孝充 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005022150A priority Critical patent/JP2006208246A/en
Publication of JP2006208246A publication Critical patent/JP2006208246A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)
  • Testing Of Balance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tire holding system adjusting the interval between rim members in axial directions without having to halt the rotation of a pivot, reliably holding the interval between the rim members, and reducing manufacturing costs. <P>SOLUTION: The position of an upper rim member 40 in the axial directions to an engaging hole 30e of an intermediate shaft 30 is changed by the movement of each contact member 70 in the axial directions to an upper rotary shaft 10 with the diameter of a holding mechanism 30c reduced, and by the movement of the intermediate shaft 30 in the axial directions to the upper rotary shaft 10. The interval between the upper rim member 40 and a lower rim member 50 in the axial directions, is thereby easily adjusted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、自動車用タイヤの製造工程において、タイヤのユニフォーミティや振れを測定するタイヤ試験機に備わるタイヤ保持装置に関するものである。   The present invention relates to a tire holding device provided in a tire testing machine that measures tire uniformity and runout, for example, in a manufacturing process of an automobile tire.

一般に、自動車用タイヤの周方向における重量バランスや厚みなどが偏っているとタイヤの走行性能を低下させる原因となるため、タイヤの製造工程において加硫成形後のタイヤの品質をタイヤ試験機によって検査している。例えば、タイヤ品質の一つであるユニフォーミティの測定は、上下一対のリム部材を有するタイヤ保持装置によりタイヤを保持するとともに、タイヤに内圧を付与しながら回転させ、その外周面に測定機を当接させて行う。   In general, if the weight balance or thickness of the tire in the circumferential direction of an automobile tire is biased, it will cause a decrease in tire running performance, so the tire quality is inspected by a tire testing machine in the tire manufacturing process. is doing. For example, measurement of uniformity, which is one of the tire qualities, is performed by holding a tire with a tire holding device having a pair of upper and lower rim members, rotating the tire while applying an internal pressure, and applying a measuring instrument to the outer circumferential surface. Make contact.

また、タイヤの内周部の幅寸法はタイヤの種類によって異なるため、各リム部材の軸方向の間隔をタイヤの種類によって変更する必要があるが、この変更を例えば各リム部材自体の交換により行うようにすると、多くの作業時間を費やし効率的ではない。   In addition, since the width dimension of the inner peripheral portion of the tire varies depending on the type of tire, it is necessary to change the axial interval of each rim member depending on the type of tire. This change is performed by, for example, replacing each rim member itself. If so, it takes a lot of work time and is not efficient.

そこで、タイヤ試験機に用いられるタイヤ保持装置としては、互いに軸方向に対向して配置された上下一対の支軸と、各支軸の対向端部にそれぞれ取付けられ、タイヤを幅方向両側から保持可能な一対のリム部材と、下側の支軸内にその支軸に対して軸方向に移動可能に設けられた中軸と、中軸を下側の支軸に対して軸方向に移動させる第1の油圧シリンダと、中軸の上端部に上側の支軸に向かって延びるように設けられた第1の係合部と、上側の支軸の下端部に設けられ、第1の係合部に各支軸の軸方向及び径方向に係合可能な第2の係合部と、下側の支軸を上方に移動させて各係合部を互いに軸方向に係合させる第2の油圧シリンダとを備え、第1の油圧シリンダによって中軸を下側の支軸に対して軸方向に移動させることにより、各リム部材の軸方向の間隔を容易且つ速やかに調整するようにしたものが知られている(例えば、特許文献1参照。)。   Therefore, as a tire holding device used in a tire testing machine, a pair of upper and lower support shafts arranged opposite to each other in the axial direction, and attached to opposite ends of each support shaft, respectively, hold the tire from both sides in the width direction. A pair of possible rim members, a middle shaft provided in the lower support shaft so as to be movable in the axial direction with respect to the support shaft, and a first moving the middle shaft in the axial direction with respect to the lower support shaft A hydraulic cylinder, a first engagement portion provided at the upper end portion of the middle shaft so as to extend toward the upper support shaft, and a lower end portion of the upper support shaft. A second engagement portion engageable in the axial direction and the radial direction of the support shaft; and a second hydraulic cylinder for moving the lower support shaft upward to engage the engagement portions in the axial direction. By moving the middle shaft in the axial direction relative to the lower support shaft by the first hydraulic cylinder. That to adjust the axial spacing of the members easily and rapidly has been known (e.g., see Patent Document 1.).

しかしながら、前記装置では、タイヤに付与する内圧によって各リム部材の軸方向の間隔が変わらないように、第2の油圧シリンダに出力の大きなものを用いる必要があるので、下側の支軸を上方に移動させて各係合部を互いに軸方向に係合させる際に、第1の係合部に軸方向の大きな衝撃力が加わる。この衝撃力によって中軸が下側の支軸に対して軸方向に移動すると各リム部材の軸方向の間隔が変わるため、各リム部材の間隔を確実に保持するために第1の油圧シリンダの出力も大きくする必要がある。即ち、出力の大きな油圧シリンダは高価な部品であり、装置の製造コストが高くつくという問題点があった。   However, in the above-mentioned device, it is necessary to use a high output power for the second hydraulic cylinder so that the axial distance between the rim members does not change due to the internal pressure applied to the tire. When the engaging portions are engaged with each other in the axial direction, a large axial impact force is applied to the first engaging portion. When the middle shaft moves in the axial direction with respect to the lower support shaft due to the impact force, the axial distance between the rim members changes. Therefore, the output of the first hydraulic cylinder is used to reliably maintain the distance between the rim members. Need to be larger. That is, the hydraulic cylinder with a large output is an expensive part, and there is a problem that the manufacturing cost of the apparatus is high.

一方、この問題点を解決する装置として、互いに軸方向に対向して配置された上下一対の支軸と、上側の支軸を回転させる回転機構と、各支軸の対向端部にそれぞれ取付けられた一対のリム部材と、上側の支軸内にその支軸に対して回転自在に設けられ、下端部側にネジ部を有する中軸と、中軸の回転を規制可能な回転規制機構と、中軸の下端部側に螺合するとともに上側の支軸とともに回転し、下端部に第1の係合部が設けられた係合部材と、下側の支軸の上端部に設けられ、第1の係合部に軸方向及び径方向に係合可能な第2の係合部とを備え、上側の支軸と中軸とを相対的に回転させて係合部材を上側の支軸に対して軸方向に移動することにより各リム部材の軸方向の間隔を調整し、螺合部によって係合部材を上側の支軸に軸方向に保持するようにしたものが知られている(例えば、特許文献2参照。)。
特許第3418512号公報 特開2004−205276号公報
On the other hand, as a device for solving this problem, a pair of upper and lower support shafts arranged to face each other in the axial direction, a rotation mechanism for rotating the upper support shaft, and an opposing end portion of each support shaft are attached. A pair of rim members, a center shaft provided in the upper support shaft so as to be rotatable with respect to the support shaft and having a screw portion on the lower end side, a rotation restricting mechanism capable of restricting rotation of the center shaft, An engagement member that is screwed to the lower end side and rotates with the upper support shaft, and has a first engagement portion provided at the lower end portion, and an upper end portion of the lower support shaft. A second engaging portion that is engageable in the axial direction and the radial direction at the joint portion, and the upper support shaft and the middle shaft are rotated relative to each other to rotate the engaging member axially with respect to the upper support shaft. The distance between the rim members in the axial direction is adjusted by moving the rim members to each other. Those way is known (e.g., see Patent Document 2.).
Japanese Patent No. 3418512 JP 2004-205276 A

しかしながら、後者の装置における各リム部材の間隔の調整は、先ず回転機構による上側の支軸の回転を停止させ、次に中軸の回転を規制し、その状態で回転機構によって上側の支軸を所定の角度だけ回転させ、続いて中軸の回転規制を解除するという手順で行われるので、調整の際にユニフォーミティ測定が中断されるという問題点があった。   However, in the latter apparatus, the adjustment of the interval between the rim members is performed by first stopping the rotation of the upper support shaft by the rotation mechanism, then restricting the rotation of the middle shaft, and in that state, the upper support shaft is set to the predetermined position by the rotation mechanism. Therefore, there is a problem that uniformity measurement is interrupted at the time of adjustment.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、各リム部材の軸方向の間隔を支軸の回転を停止せずに調整することができるとともに、各リム部材の間隔を確実に保持することができ、しかも製造コストの低減を図ることのできるタイヤ保持装置を提供することにある。   The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to adjust the axial interval of each rim member without stopping the rotation of the support shaft, and to each rim member. It is an object of the present invention to provide a tire holding device that can reliably hold the interval and reduce the manufacturing cost.

本発明は前記目的を達成するために、互いに軸方向に対向して配置された一対の支軸と、各支軸の互いに対向する一端部側にそれぞれ取付けられた一対のリム部材と、各支軸の一端部側にそれぞれ設けられ、互いに軸方向及び径方向に係合可能な一対の係合部とを備え、各係合部を互いに係合させることにより各リム部材を軸方向に所定間隔をおいて配置してタイヤを保持するタイヤ保持装置において、前記各支軸のうち少なくとも一方の支軸内に軸方向に移動可能に設けられ、支軸における一端部側に前記係合部を有する中軸と、中軸における支軸の他端部側に軸方向に当接する当接部材と、中軸が設けられた支軸の他端部側に設けられ、当接部材に支軸の軸方向への移動を規制するように係合するとともに、当接部材を支軸の軸方向に中軸と一体に移動自在に支持する支持機構とを備えている。   In order to achieve the above-mentioned object, the present invention provides a pair of support shafts that are arranged opposite to each other in the axial direction, a pair of rim members that are respectively attached to opposite ends of each support shaft, and each support shaft. A pair of engaging portions that are provided on one end side of the shaft and engageable with each other in the axial direction and the radial direction, and by engaging each engaging portion with each other, each rim member is axially spaced by a predetermined distance In the tire holding device that holds and arranges the tire, the at least one of the support shafts is provided so as to be movable in the axial direction, and the engagement portion is provided on one end side of the support shaft. An intermediate shaft, an abutting member that abuts in the axial direction on the other end portion side of the support shaft in the intermediate shaft, and provided on the other end portion side of the support shaft provided with the intermediate shaft; Engage so as to restrict movement, and move the contact member in the axial direction of the support shaft. And a support mechanism for movably supporting integral with.

これにより、当接部材を支軸に対して軸方向に移動させることにより中軸が支軸に対して軸方向に移動し、中軸の係合部に対して支軸に取付けられたリム部材の軸方向位置が変わることから、各リム部材の軸方向の間隔を容易に調整することができる。この際、当接部材は支持機構によって軸方向に移動することから、支軸の回転中であっても中軸を支軸に対して軸方向に移動することができる。また、中軸が当接部材に支軸の軸方向に当接するとともに、当接部材が支持機構にに支軸の軸方向への移動を規制されるように係合することから、中軸が支軸に対して軸方向に容易に移動することがない。   Accordingly, the center shaft moves in the axial direction with respect to the support shaft by moving the contact member in the axial direction with respect to the support shaft, and the shaft of the rim member attached to the support shaft with respect to the engaging portion of the center shaft Since the direction position changes, the interval between the rim members in the axial direction can be easily adjusted. At this time, since the contact member moves in the axial direction by the support mechanism, the middle shaft can be moved in the axial direction with respect to the support shaft even while the support shaft is rotating. In addition, the middle shaft abuts the abutting member in the axial direction of the support shaft, and the abutting member engages the support mechanism so that movement of the support shaft in the axial direction is restricted. However, it does not move easily in the axial direction.

本発明によれば、支軸の回転中であっても中軸を支軸に対して軸方向に移動することができるので、各リム部材の間隔を支軸の回転を停止せずに調整することができる。即ち、例えばユニフォーミティ測定機において内周部の幅寸法が異なる複数種類のタイヤを順次測定する場合、各リム部材の間隔調整のために測定が中断されることがなく、測定時間の短縮を図ることができる。また、中軸が支軸に対して軸方向に容易に移動することがないので、例えば各係合部を互いに軸方向に係合させる際の衝撃力によって、中軸が支軸に対して軸方向に移動することがない。即ち、各リム部材の間隔を確実に保持することができ、測定精度の向上を図ることができる。さらに、各リム部材の間隔を保持するために出力の大きな油圧シリンダ等の高価な部品を用いる必要がないので、装置の製造コストの低減を図ることができる。   According to the present invention, since the middle shaft can be moved in the axial direction with respect to the support shaft even while the support shaft is rotating, the interval between the rim members can be adjusted without stopping the rotation of the support shaft. Can do. That is, for example, when measuring a plurality of types of tires having different inner peripheral width dimensions in a uniformity measuring machine, the measurement is not interrupted to adjust the interval between the rim members, and the measurement time is shortened. be able to. Further, since the middle shaft does not easily move in the axial direction with respect to the support shaft, the center shaft is moved in the axial direction with respect to the support shaft, for example, by an impact force when the engaging portions are engaged with each other in the axial direction. There is no movement. That is, the interval between the rim members can be reliably held, and the measurement accuracy can be improved. Furthermore, since it is not necessary to use expensive parts such as a hydraulic cylinder having a large output in order to maintain the distance between the rim members, the manufacturing cost of the apparatus can be reduced.

図1乃至図6は本発明の一実施形態を示すもので、図1はタイヤ試験機の一部断面正面図、図2はタイヤを保持する前の状態を示すタイヤ保持装置の要部断面図、図3はタイヤを保持した状態を示すタイヤ保持装置の要部断面図、図4は各リム部材の間隔を変更する際のタイヤ保持装置の動作説明図、図5はタイヤ保持装置のブロック図、図6は制御部の動作を示すフローチャートである。   1 to 6 show an embodiment of the present invention. FIG. 1 is a partial cross-sectional front view of a tire testing machine, and FIG. 2 is a main cross-sectional view of a tire holding device showing a state before holding the tire. 3 is a cross-sectional view of the main part of the tire holding device showing a state where the tire is held, FIG. 4 is an operation explanatory view of the tire holding device when changing the interval between the rim members, and FIG. 5 is a block diagram of the tire holding device. FIG. 6 is a flowchart showing the operation of the control unit.

本実施形態のタイヤ保持装置は、自動車用のタイヤTAのユニフォーミティ検査や振れ測定を行うタイヤ試験機に備わるものであり、タイヤ試験機本体1に回転可能に支持された支軸としての上側回転軸10及び下側回転軸20と、上側回転軸の内側に設けられた中軸30と、上側回転軸10の下端部側に取付けられた上側リム部材40と、下側回転軸20の上端部側に取付けられた下側リム部材50と、中軸30に軸方向に挿通するように設けられた緩衝機構60と、中軸30の上端部側に軸方向に当接する2つの当接部材70と、各当接部材70を上側回転軸10の軸方向に移動自在に支持する支持機構71とを備えている。   The tire holding device of the present embodiment is provided in a tire testing machine that performs uniformity inspection and run-out measurement of an automobile tire TA, and rotates upward as a support shaft that is rotatably supported by the tire testing machine body 1. The shaft 10 and the lower rotating shaft 20, the middle shaft 30 provided inside the upper rotating shaft, the upper rim member 40 attached to the lower end side of the upper rotating shaft 10, and the upper end side of the lower rotating shaft 20 A lower rim member 50 attached to the middle shaft 30, a buffer mechanism 60 provided so as to be inserted through the middle shaft 30 in the axial direction, two abutting members 70 that abut on the upper end side of the middle shaft 30 in the axial direction, And a support mechanism 71 that supports the contact member 70 movably in the axial direction of the upper rotary shaft 10.

タイヤ試験機本体1は、タイヤ試験機本体1を所定位置に設置するためのベース2と、ベース2に複数の支柱3を介して支持されたフレーム4と、各リム部材40,50に保持されたタイヤTAのユニフォーミティや振れを測定する周知の測定装置5と、上側リム部材40と下側リム部材50との間にタイヤTAを搬送するためのコンベア6とを備えている。   The tire testing machine main body 1 is held by a base 2 for installing the tire testing machine main body 1 at a predetermined position, a frame 4 supported by the base 2 via a plurality of support columns 3, and rim members 40, 50. Further, a known measuring device 5 for measuring the uniformity and run-out of the tire TA and a conveyor 6 for transporting the tire TA between the upper rim member 40 and the lower rim member 50 are provided.

フレーム4には上下方向に貫通する貫通孔4aが設けられ、貫通孔4aの下側開口縁は下方に延びるように形成されている。   The frame 4 is provided with a through hole 4a penetrating in the vertical direction, and the lower opening edge of the through hole 4a is formed to extend downward.

測定装置5は水平方向に移動自在に設けられ、各リム部材40,50に保持されたタイヤTAの外周面に当接するようになっている。   The measuring device 5 is provided so as to be movable in the horizontal direction and comes into contact with the outer peripheral surface of the tire TA held by the rim members 40 and 50.

コンベア6は互いに間隔をおいて前後方向に配列された複数のローラ6aと、各ローラ6aの両端部を回転自在に支持するフレーム6bとを備え、図1の奥側から手前側にタイヤTAを搬送するようになっている。   The conveyor 6 includes a plurality of rollers 6a arranged in the front-rear direction at intervals, and a frame 6b that rotatably supports both ends of each roller 6a. A tire TA is provided from the back side to the front side in FIG. It is designed to be transported.

タイヤ保持装置の上側回転軸10は円筒状に形成され、フレーム4の貫通孔4aに上下方向に挿通するとともに、貫通孔4aにベアリング10aを介して回転可能に支持されている。また、上側回転軸10の下端部側には全周に亘って径方向外側に延びるように形成されたフランジ部10bが設けられ、フランジ部10bよりも下方に位置する上側回転軸10の外周面には、油圧によって拡縮自在な周知の油圧チャックからなるリム保持機構10cが設けられている。リム保持機構10cは貫通孔4aの下側開口縁の外側に取付けられた複数の油圧シリンダ11と連通管11a及び周知のロータリーシール12を介して連通し、各油圧シリンダ11によってリム保持機構10cが拡縮するようになっている。   The upper rotating shaft 10 of the tire holding device is formed in a cylindrical shape, and is vertically inserted into the through hole 4a of the frame 4 and is rotatably supported by the through hole 4a via the bearing 10a. Further, a flange portion 10b formed so as to extend radially outward over the entire circumference is provided on the lower end portion side of the upper rotary shaft 10, and the outer peripheral surface of the upper rotary shaft 10 positioned below the flange portion 10b. Is provided with a rim holding mechanism 10c made of a well-known hydraulic chuck that can be expanded and contracted by hydraulic pressure. The rim holding mechanism 10 c communicates with a plurality of hydraulic cylinders 11 attached to the outside of the lower opening edge of the through-hole 4 a via a communication pipe 11 a and a known rotary seal 12. It is designed to scale.

また、上側回転軸10の上端部側の外周面にはプーリ10dが取付けられ、フレーム4に取付けられた周知のサーボモータからなるモータ7の駆動力がプーリ10dに伝達されるようになっている。   A pulley 10d is attached to the outer peripheral surface on the upper end portion side of the upper rotary shaft 10, and the driving force of the motor 7, which is a known servo motor attached to the frame 4, is transmitted to the pulley 10d. .

下側回転軸20は円柱状に形成され、ベース2に備えられた周知の油圧シリンダ2aのロッド先端のハウジング2bにベアリング20aを介して回転可能に支持されている。また、下側回転軸20の上端部側には径方向外側に延びるように形成されたフランジ部20bが設けられ、フランジ部20bよりも上端部側に位置する下側回転軸20の外周面には油圧によって拡縮自在な周知の油圧チャックからなるリム保持機構20cが設けられている。リム保持機構20cはハウジング2bに取付けられた複数の油圧シリンダ21と連通管21a及び周知のロータリーシール22を介して連通し、各油圧シリンダ21によってリム保持機構20cが拡縮するようになっている。さらに、下側回転軸20の上端面の中央部には係合部としての係合突起20dが設けられ、係合突起20dの外周面は上側に向かって徐々に内側に傾斜するように形成されている。また、係合突起20dにはその上端面から下端部側の外周面に連通する連通孔20eが設けられている。   The lower rotary shaft 20 is formed in a columnar shape, and is rotatably supported by a housing 2b at a rod end of a known hydraulic cylinder 2a provided in the base 2 via a bearing 20a. Further, a flange portion 20b formed so as to extend radially outward is provided on the upper end portion side of the lower rotary shaft 20, and is provided on the outer peripheral surface of the lower rotary shaft 20 positioned on the upper end portion side of the flange portion 20b. Is provided with a rim holding mechanism 20c comprising a well-known hydraulic chuck that can be expanded and contracted by hydraulic pressure. The rim holding mechanism 20c communicates with a plurality of hydraulic cylinders 21 attached to the housing 2b via a communication pipe 21a and a known rotary seal 22, and the rim holding mechanism 20c is expanded and contracted by each hydraulic cylinder 21. Further, an engaging protrusion 20d as an engaging portion is provided at the center of the upper end surface of the lower rotary shaft 20, and the outer peripheral surface of the engaging protrusion 20d is formed so as to be gradually inclined inward toward the upper side. ing. The engaging protrusion 20d is provided with a communication hole 20e that communicates from the upper end surface to the outer peripheral surface on the lower end side.

中軸30は円筒状に形成され、上側回転軸10内をその軸方向に挿通している。また、中軸30の上端部側の外周面には全周に亘って径方向外側に延びるように形成されたフランジ部材30aが設けられ、フランジ部材30aには上側回転軸30の軸方向に貫通する貫通孔30bが周方向に間隔をおいて2箇所に設けられるとともに、貫通孔30bの下側の内径は上側の内径よりも大きく形成されている。   The middle shaft 30 is formed in a cylindrical shape, and passes through the upper rotary shaft 10 in the axial direction. In addition, a flange member 30 a formed so as to extend radially outward over the entire circumference is provided on the outer peripheral surface on the upper end side of the middle shaft 30, and the flange member 30 a penetrates in the axial direction of the upper rotary shaft 30. The through holes 30b are provided at two positions in the circumferential direction, and the lower inner diameter of the through hole 30b is larger than the upper inner diameter.

中軸30の下端部はその上端部側よりも大きな外径寸法に形成され、その外周面には油圧によって拡縮自在な周知の油圧チャックからなる保持機構30cが設けられている。また、保持機構30cはフランジ部材30aよりも少し下方の中軸30に取付けられた複数の油圧シリンダ31と連通管31aを介して連通し、各油圧シリンダ31によって保持機構30cが拡縮するようになっている。即ち、保持機構30cが拡径することにより、保持機構30cの外周面が上側回転軸10の内周面に径方向に当接し、中軸30が上側回転軸10に対して径方向に保持されるようになっている。   The lower end portion of the middle shaft 30 is formed to have a larger outer diameter than the upper end portion side, and a holding mechanism 30c including a well-known hydraulic chuck that can be expanded and contracted by hydraulic pressure is provided on the outer peripheral surface thereof. The holding mechanism 30c communicates with a plurality of hydraulic cylinders 31 attached to the middle shaft 30 slightly below the flange member 30a via the communication pipe 31a, and the holding mechanism 30c expands and contracts by each hydraulic cylinder 31. Yes. That is, when the diameter of the holding mechanism 30c is increased, the outer peripheral surface of the holding mechanism 30c is in radial contact with the inner peripheral surface of the upper rotary shaft 10, and the middle shaft 30 is held in the radial direction with respect to the upper rotary shaft 10. It is like that.

中軸30の上端部側の外周面には中軸30の内側に連通する連通孔30dが設けられ、連通孔30dの中軸30における内周面側の開口部は中軸30の軸方向に延びるように形成されている。また、連通孔30dの中軸30における外周面側の開口部は周知のロータリーシール32に連通し、ロータリーシール32には圧縮空気を供給可能な図示しないコンプレッサが接続されている。   A communication hole 30 d communicating with the inside of the middle shaft 30 is provided on the outer peripheral surface on the upper end side of the middle shaft 30, and an opening on the inner circumferential surface side of the middle shaft 30 of the communication hole 30 d is formed to extend in the axial direction of the middle shaft 30. Has been. The opening on the outer peripheral surface side of the central shaft 30 of the communication hole 30d communicates with a known rotary seal 32, and a compressor (not shown) capable of supplying compressed air is connected to the rotary seal 32.

また、中軸30の下端面の中央部には係合部としての係合穴30eが設けられ、係合穴30eの内周面は上側に向かって徐々に内側に傾斜するように形成されている。   Further, an engagement hole 30e as an engagement portion is provided at the center of the lower end surface of the middle shaft 30, and the inner peripheral surface of the engagement hole 30e is formed so as to be gradually inclined inward toward the upper side. .

上側リム部材40は円筒状に形成され、上側回転軸10のリム保持機構10cの外周面側に配置されるとともに、リム保持機構10cによって内周面を保持されている。上側リム部材40の上端部側の外周面は全周に亘って径方向外側に延びるように形成され、タイヤTAの内周部にタイヤTAの幅方向に係合するようになっている。また、上側リム部材40の下端部側の外周面はタイヤTAの内周部よりもわずかに小さい外径寸法に形成され、タイヤTAの内周部にタイヤTAの径方向に係合するようになっている。   The upper rim member 40 is formed in a cylindrical shape, is disposed on the outer peripheral surface side of the rim holding mechanism 10c of the upper rotary shaft 10, and the inner peripheral surface is held by the rim holding mechanism 10c. The outer peripheral surface on the upper end portion side of the upper rim member 40 is formed so as to extend radially outward over the entire circumference, and is engaged with the inner peripheral portion of the tire TA in the width direction of the tire TA. Further, the outer peripheral surface on the lower end side of the upper rim member 40 is formed to have an outer diameter dimension slightly smaller than the inner peripheral portion of the tire TA, and is engaged with the inner peripheral portion of the tire TA in the radial direction of the tire TA. It has become.

下側リム部材50は円筒状に形成され、下側回転軸20のリム保持機構20cの外周面側に配置されるとともに、リム保持機構20cによって内周面を保持されている。下側リム部材50の下端部側の外周面は全周に亘って径方向外側に延びるように形成され、タイヤTAの内周部にタイヤTAの幅方向に係合するようになっている。また、下側リム部材50の上端部側の外周面はタイヤTAの内周面よりもわずかに小さい外径寸法に形成され、タイヤTAの内周部にタイヤTAの径方向に係合するようになっている。   The lower rim member 50 is formed in a cylindrical shape, is disposed on the outer peripheral surface side of the rim holding mechanism 20c of the lower rotary shaft 20, and the inner peripheral surface is held by the rim holding mechanism 20c. The outer peripheral surface on the lower end side of the lower rim member 50 is formed so as to extend radially outward over the entire circumference, and is engaged with the inner peripheral portion of the tire TA in the width direction of the tire TA. Further, the outer peripheral surface on the upper end side of the lower rim member 50 is formed to have an outer diameter slightly smaller than the inner peripheral surface of the tire TA, and is engaged with the inner peripheral portion of the tire TA in the radial direction of the tire TA. It has become.

緩衝機構60は、中軸30内に軸方向に延びるように設けられた当接部材61と、当接部材61の上端部に取付けられた緩衝部材としての周知のオイルダンパー62とから構成されている。   The buffer mechanism 60 includes a contact member 61 provided in the middle shaft 30 so as to extend in the axial direction, and a known oil damper 62 as a buffer member attached to the upper end portion of the contact member 61. .

当接部材61は円柱状に形成され、中軸30に対して軸方向に移動可能に設けられるとともに、下端部は係合穴30e内に突出している。当接部材61内には上下方向に延びるように連通孔61aが形成され、連通孔61aの下端部は当接部材61の下端面に連通するとともに、連通孔61aの上端部は当接部材の61の上端部側の外周面に連通し、中軸30の連通孔30dと連通している。   The abutting member 61 is formed in a cylindrical shape, is provided so as to be movable in the axial direction with respect to the middle shaft 30, and the lower end portion projects into the engagement hole 30e. A communication hole 61a is formed in the contact member 61 so as to extend in the vertical direction. The lower end portion of the communication hole 61a communicates with the lower end surface of the contact member 61, and the upper end portion of the communication hole 61a is the contact member 61a. 61 communicates with the outer peripheral surface on the upper end side, and communicates with the communication hole 30 d of the central shaft 30.

オイルダンパー62は図示しないスプリングによってロッドが所定の長さだけ突出するように付勢され、内部に設けられた図示しないオリフィス及び内部に充填された図示しないオイルにより、ロッドの突出部を移動する際に抵抗力が発生するようになっている。また、オイルダンパー62は中軸30の上端面に固定されている。即ち、当接部材61はその下端部が係合穴30e内に突出するようにオイルダンパー62に支持され、当接部材61に上方に向かう力が加わると、オイルダンパー62のスプリング及びオイルによる抵抗力に抗して当接部材61が中軸30に対して上方に移動するようになっている。   The oil damper 62 is urged by a spring (not shown) so that the rod protrudes by a predetermined length. When the rod is moved by an orifice (not shown) provided inside and an oil (not shown) filled therein, the oil damper 62 is moved. Resistance is generated. The oil damper 62 is fixed to the upper end surface of the middle shaft 30. That is, the contact member 61 is supported by the oil damper 62 so that the lower end of the contact member 61 protrudes into the engagement hole 30e. When an upward force is applied to the contact member 61, the resistance of the oil damper 62 by the spring and oil The abutting member 61 moves upward relative to the middle shaft 30 against the force.

各当接部材70は円柱状に形成され、各当接部材70の外周面にはネジ部70aが形成されるとともに、各当接部材70の下端面が中軸30のフランジ部材30aの上面に軸方向に当接している。また、フランジ部材30aの各貫通孔30bにはそれぞれ下方からボルト70bが挿通するとともに、各ボルト70bが各当接部材30の下端部に螺合している。即ち、各当接部材70がフランジ部材30aの上面に常に軸方向に当接し、各当接部材70が中軸30とともに上側回転軸10の軸方向に移動するようになっている。   Each contact member 70 is formed in a columnar shape, and a threaded portion 70 a is formed on the outer peripheral surface of each contact member 70, and the lower end surface of each contact member 70 is pivoted on the upper surface of the flange member 30 a of the center shaft 30. Abutting in the direction. In addition, bolts 70 b are inserted into the through holes 30 b of the flange member 30 a from below, and the bolts 70 b are screwed into the lower ends of the contact members 30. That is, each contact member 70 always contacts the upper surface of the flange member 30 a in the axial direction, and each contact member 70 moves in the axial direction of the upper rotary shaft 10 together with the middle shaft 30.

支持機構71は、上側回転軸10の上端部の外周面に上側回転軸10に対して軸方向に移動しないように設けられたフレーム72と、フレーム72に固定された周知のサーボモータからなるモータ73とを有している。   The support mechanism 71 includes a frame 72 provided on the outer peripheral surface of the upper end portion of the upper rotary shaft 10 so as not to move in the axial direction with respect to the upper rotary shaft 10, and a motor including a known servo motor fixed to the frame 72. 73.

フレーム72は、上側回転軸10の上端部側の外周面に径方向に延びるように形成された下側フレーム72aと、下側フレーム72aの両端部からそれぞれ上方に延びるように形成された一対のサイドフレーム72bと、各サイドフレーム72bの上端部を連結するように形成された上側フレーム72cと、上側フレーム72cに図示しないベアリングによって回転可能に支持された2つの螺合部材としてのプーリ72dとから構成され、各プーリ72dにはモータ73の駆動力が伝達されるようになっている。また、各プーリ72dには各当接部材70が上側回転軸10の軸方向に移動自在に螺合し、プーリ72dが回転することにより当接部材70が上側回転軸10の軸方向に移動するようになっている。さらに、各フレーム72a,72b,72cの内側に中軸30の上端部側が配置されるとともに、上側フレーム72cの中央部に設けられた貫通孔72eにロータリーシール72と図示しないコンプレッサとを接続する図示しない接続部材が挿通している。   The frame 72 has a pair of lower frames 72a formed to extend in the radial direction on the outer peripheral surface on the upper end portion side of the upper rotary shaft 10 and a pair formed to extend upward from both ends of the lower frame 72a. A side frame 72b, an upper frame 72c formed so as to connect the upper ends of the side frames 72b, and a pulley 72d as two screwing members rotatably supported by a bearing (not shown) on the upper frame 72c. The driving force of the motor 73 is transmitted to each pulley 72d. Each contact member 70 is screwed to each pulley 72d so as to be movable in the axial direction of the upper rotary shaft 10, and the pulley 72d rotates to move the contact member 70 in the axial direction of the upper rotary shaft 10. It is like that. Further, the upper end side of the middle shaft 30 is disposed inside each of the frames 72a, 72b, 72c, and the rotary seal 72 and a compressor (not shown) are connected to a through hole 72e provided in the center of the upper frame 72c (not shown). The connecting member is inserted.

また、図5に示すように、油圧シリンダ2a、保持機構30c及びモータ73は周知のマイクロコンピュータからなる制御部80に接続され、制御部80にはゲージ81と、入力装置82が接続された演算部83とが接続されている。また、ゲージ81は演算部83にも接続されている。   Further, as shown in FIG. 5, the hydraulic cylinder 2a, the holding mechanism 30c, and the motor 73 are connected to a control unit 80 made of a well-known microcomputer, and the control unit 80 is connected to a gauge 81 and an input device 82. The part 83 is connected. The gauge 81 is also connected to the calculation unit 83.

ゲージ81は測定端子81aの移動量を検出する周知の機器からなり、上側回転軸10の上端部の外周面に取付けられ、上側回転軸10に対する中軸30の軸方向位置を検出可能になっている。   The gauge 81 is a well-known device that detects the amount of movement of the measurement terminal 81a, is attached to the outer peripheral surface of the upper end portion of the upper rotary shaft 10, and can detect the axial position of the middle shaft 30 with respect to the upper rotary shaft 10. .

入力装置82は作業者によってタイヤ品番を入力可能な周知のキーボードからなる。   The input device 82 includes a well-known keyboard capable of inputting a tire product number by an operator.

演算部83は各タイヤ品番に対応したタイヤ幅方向のサイズデータが格納されており、入力装置82にタイヤ品番が入力されると、その品番に対応したタイヤ幅方向のサイズデータと上側回転軸10に対する中軸30の軸方向位置とを比較し、これらが対応していない場合に、入力されたタイヤ品番のタイヤ幅方向のサイズデータを制御部80に送信するようになっている。   The calculation unit 83 stores size data in the tire width direction corresponding to each tire product number. When the tire product number is input to the input device 82, the size data in the tire width direction corresponding to the product number and the upper rotating shaft 10 are stored. Compared with the position in the axial direction of the middle shaft 30 with respect to, size data in the tire width direction of the input tire product number is transmitted to the control unit 80 when these do not correspond.

以上のように構成されたタイヤ保持装置を有するタイヤ試験機においてタイヤTAのユニフォーミティを測定する場合は、先ず、油圧シリンダ2aによって下側リム部材50をコンベア6よりも下側に配置し、コンベア6によって加硫成型後のタイヤTAを各リム部材40,50と略同軸上に配置する。この状態で油圧シリンダ2aによって下側回転軸20を上方に移動させ、下側リム部材50によってタイヤTAの内周部を支持するとともに、中軸30の係合穴30eと下側回転軸20の係合突起20dとを軸方向及び径方向に係合させる。これにより、各リム部材40,50が同軸上に配置されるとともに、各リム部材40,50によってタイヤTAの内周部が保持される。   When measuring the uniformity of the tire TA in the tire testing machine having the tire holding device configured as described above, first, the lower rim member 50 is disposed below the conveyor 6 by the hydraulic cylinder 2a. 6, the tire TA after vulcanization molding is arranged substantially coaxially with the rim members 40, 50. In this state, the lower rotary shaft 20 is moved upward by the hydraulic cylinder 2a, the inner peripheral portion of the tire TA is supported by the lower rim member 50, and the engagement hole 30e of the middle shaft 30 and the lower rotary shaft 20 are engaged. The mating protrusion 20d is engaged in the axial direction and the radial direction. Thus, the rim members 40 and 50 are coaxially arranged, and the inner peripheral portion of the tire TA is held by the rim members 40 and 50.

この際、係合穴30e内に当接部材61が突出しているため、係合穴30eと係合突起20dとが軸方向に係合する前に、係合突起20dの上端面に当接部材61の下端面が軸方向に当接する。この状態で下側回転軸20を上方に移動させると、オイルダンパー62によって下側回転軸20に移動に対する抵抗力が付与される。このため、下側回転軸20を上方に移動させる力が減衰され、係合穴30eと係合突起20dとが軸方向に係合する際の衝撃力が緩和される。また、下側回転軸20を下方に移動させると下側回転軸20と当接部材61との当接が解除され、当接部材61が再び係合穴30e内に突出する。   At this time, since the contact member 61 protrudes into the engagement hole 30e, the contact member is placed on the upper end surface of the engagement protrusion 20d before the engagement hole 30e and the engagement protrusion 20d are engaged in the axial direction. The lower end surface of 61 abuts in the axial direction. When the lower rotary shaft 20 is moved upward in this state, the oil damper 62 imparts resistance against movement to the lower rotary shaft 20. For this reason, the force to move the lower rotary shaft 20 upward is attenuated, and the impact force when the engagement hole 30e and the engagement protrusion 20d engage in the axial direction is reduced. Further, when the lower rotary shaft 20 is moved downward, the contact between the lower rotary shaft 20 and the contact member 61 is released, and the contact member 61 protrudes into the engagement hole 30e again.

また、係合穴30eが設けられた中軸30は各当接部材70に軸方向に当接するとともに、各当接部材70のネジ部70aが上側回転軸10に設けられたフレーム72の各プーリ72dに軸方向への移動を規制されるように係合しているため、中軸30が上側回転軸10に対して軸方向に容易に移動することがない。   Further, the middle shaft 30 provided with the engagement hole 30e is in contact with each contact member 70 in the axial direction, and the threaded portion 70a of each contact member 70 is provided with each pulley 72d of the frame 72 provided on the upper rotary shaft 10. Therefore, the middle shaft 30 is not easily moved in the axial direction with respect to the upper rotary shaft 10.

次に、図示しないコンプレッサからロータリーシール32及び各連通孔30d,61a,20eを経てタイヤTA内に圧縮空気を供給することによりタイヤTAに内圧を付与し、各回転軸10,20をモータ7によって回転させるとともに、タイヤTAの外周面に測定装置5を当接させることにより、タイヤTAのユニフォーミティを測定する。   Next, an internal pressure is applied to the tire TA by supplying compressed air from the compressor (not shown) to the tire TA through the rotary seal 32 and the communication holes 30d, 61a, and 20e, and the rotary shafts 10 and 20 are moved by the motor 7. The uniformity of the tire TA is measured by rotating and bringing the measuring device 5 into contact with the outer peripheral surface of the tire TA.

この時、中軸30に設けられた係合穴30eと下側回転軸20に設けられた係合突起20dとが軸方向及び径方向に係合することにより、中軸30と下側回転軸20とが互いに径方向に移動しないように確実に移動規制される。さらに、中軸30は保持機構30cによって上側回転軸10に対して径方向に保持されているため、上側回転軸10と下側回転軸20とが互いに径方向に移動しないように確実に移動規制される。   At this time, the engagement hole 30e provided in the intermediate shaft 30 and the engagement protrusion 20d provided in the lower rotation shaft 20 are engaged in the axial direction and the radial direction, whereby the intermediate shaft 30 and the lower rotation shaft 20 are The movement is surely restricted so that they do not move in the radial direction. Furthermore, since the middle shaft 30 is held in the radial direction with respect to the upper rotary shaft 10 by the holding mechanism 30c, the movement is reliably restricted so that the upper rotary shaft 10 and the lower rotary shaft 20 do not move in the radial direction. The

また、タイヤTAに付与する内圧によって各リム部材40,50に互いに軸方向に離れる方向の大きな力が加わるが、下側リム部材50は下側回転軸20のフランジ部20bに軸方向に当接するとともに、下側回転軸20は油圧シリンダ2aによって軸方向に支持されているため、下側リム部材50が軸方向に移動することはない。一方、上側リム部材40は上側回転軸10のフランジ部10bに軸方向に当接するとともに、上側回転軸10はベアリング10aを介してフレーム4に支持されているので、上側リム部材40が軸方向に移動することはない。即ち、タイヤTAに付与する内圧によって上側リム部材40と下側リム部材50との軸方向の間隔が変化することはない。   Further, the inner pressure applied to the tire TA applies a large force in the direction away from each other to the rim members 40, 50, but the lower rim member 50 abuts against the flange portion 20b of the lower rotary shaft 20 in the axial direction. At the same time, since the lower rotary shaft 20 is supported in the axial direction by the hydraulic cylinder 2a, the lower rim member 50 does not move in the axial direction. On the other hand, the upper rim member 40 is in axial contact with the flange portion 10b of the upper rotary shaft 10, and the upper rotary shaft 10 is supported by the frame 4 via the bearing 10a. Never move. That is, the axial distance between the upper rim member 40 and the lower rim member 50 does not change due to the internal pressure applied to the tire TA.

ここで、例えば内周部の幅寸法の大きいタイヤTAのユニフォーミティを測定するために、上側リム部材40と下側リム部材50との間隔を調整する場合について、制御部80の動作を示すフローチャート(図6)を参照しながら説明する。   Here, for example, a flow chart showing the operation of the control unit 80 in the case of adjusting the distance between the upper rim member 40 and the lower rim member 50 in order to measure the uniformity of the tire TA having a large inner peripheral width. This will be described with reference to FIG.

先ず、作業者が入力装置82に次に測定しようとするタイヤ品番を入力すると、入力されたタイヤ品番に対応したタイヤ幅方向のサイズデータとゲージ81の検出結果とを演算部83において比較し、これらが異なる場合にはそのタイヤ幅方向のサイズデータを演算部83から制御部80に送信する。   First, when the operator inputs the tire part number to be measured next to the input device 82, the size data in the tire width direction corresponding to the input tire part number and the detection result of the gauge 81 are compared in the calculation unit 83, If they are different, the size data in the tire width direction is transmitted from the calculation unit 83 to the control unit 80.

制御部80がサイズデータを受信すると(S1)、油圧シリンダ2aによって下側リム部材50を下方に移動させる(S2)。次に、保持機構30cを縮径させることにより上側回転軸10に対する中軸30の径方向の保持を解除するとともに(S3)、中軸30が上側回転軸10に対して下方に移動するように、サイズデータに基づきゲージ81で移動量を検出しながらモータ73によって各プーリ72dを所定の角度だけ回転させ、各当接部材70を上側回転軸10に対して下方に移動させる(S4)。続いて、保持機構30cを拡径させることにより上側回転軸10に中軸30を径方向に保持する(S5)。   When the control unit 80 receives the size data (S1), the lower rim member 50 is moved downward by the hydraulic cylinder 2a (S2). Next, by reducing the diameter of the holding mechanism 30c, the radial holding of the middle shaft 30 with respect to the upper rotating shaft 10 is released (S3), and the size is set so that the middle shaft 30 moves downward with respect to the upper rotating shaft 10. Each pulley 72d is rotated by a predetermined angle by the motor 73 while detecting the amount of movement by the gauge 81 based on the data, and each contact member 70 is moved downward with respect to the upper rotating shaft 10 (S4). Subsequently, the central shaft 30 is held in the radial direction on the upper rotary shaft 10 by expanding the diameter of the holding mechanism 30c (S5).

これにより、中軸30の係合穴30eに対して上側リム部材40の軸方向位置が上方に移動し、上側リム部材40と下側リム部材50との軸方向の間隔が大きくなる。また、この状態においても、中軸30は各当接部材70に軸方向に当接するとともに、各当接部材70のネジ部70aが上側回転軸10に設けられたフレーム72の各プーリ72dに軸方向に係合しているため、中軸30が上側回転軸10に対して軸方向に容易に移動することはない。   As a result, the axial position of the upper rim member 40 moves upward with respect to the engagement hole 30e of the middle shaft 30, and the axial distance between the upper rim member 40 and the lower rim member 50 increases. Also in this state, the middle shaft 30 is in axial contact with the respective contact members 70, and the threaded portions 70 a of the respective contact members 70 are axially applied to the pulleys 72 d of the frame 72 provided on the upper rotary shaft 10. Therefore, the middle shaft 30 does not easily move in the axial direction with respect to the upper rotary shaft 10.

ここで、中軸30の上側回転軸10に対する移動はモータ73による各プーリ72dの回転によって行われ、モータ7を用いることがないので、モータ7によって上側回転軸10を回転している際にも、中軸30を上側回転軸10に対して軸方向に移動することができる。   Here, the movement of the middle shaft 30 with respect to the upper rotary shaft 10 is performed by the rotation of each pulley 72d by the motor 73, and the motor 7 is not used. Therefore, even when the upper rotary shaft 10 is rotated by the motor 7, The middle shaft 30 can be moved in the axial direction with respect to the upper rotary shaft 10.

このように、本実施形態によれば、保持機構30cを縮径した状態で各当接部材70を上側回転軸10に対して軸方向に移動させることにより、上側回転軸10に対して中軸30が軸方向に移動し、中軸30の係合穴30eに対する上側リム部材40の軸方向位置が変わるようにしたので、上側リム部材40と下側リム部材50との軸方向の間隔を容易に調整することができる。この際、中軸30を上側回転軸10に対して軸方向に移動するためにモータ7を用いることがないので、モータ7によって上側回転軸10を回転している際にも、中軸30を上側回転軸10に対して軸方向に移動することができる。即ち、各リム部材40,50の軸方向の間隔を上側回転軸10の回転を停止せずに調整することができ、例えば、ユニフォーミティ測定機において内周部の幅寸法の異なる複数種類のタイヤTAを順次測定する場合、各リム部材40,50の間隔調整のために測定が中断されることがなく、測定時間の短縮を図ることができる。   As described above, according to the present embodiment, each of the contact members 70 is moved in the axial direction with respect to the upper rotating shaft 10 in a state where the diameter of the holding mechanism 30c is reduced, so that the middle shaft 30 is moved with respect to the upper rotating shaft 10. Is moved in the axial direction, and the axial position of the upper rim member 40 with respect to the engagement hole 30e of the middle shaft 30 is changed. Therefore, the axial distance between the upper rim member 40 and the lower rim member 50 can be easily adjusted. can do. At this time, since the motor 7 is not used to move the middle shaft 30 in the axial direction with respect to the upper rotating shaft 10, the middle shaft 30 is rotated upward even when the upper rotating shaft 10 is rotated by the motor 7. It can move in the axial direction with respect to the shaft 10. That is, the axial interval between the rim members 40 and 50 can be adjusted without stopping the rotation of the upper rotary shaft 10, and for example, a plurality of types of tires having different inner peripheral width dimensions in a uniformity measuring machine. When measuring TA sequentially, the measurement is not interrupted to adjust the distance between the rim members 40, 50, and the measurement time can be shortened.

また、中軸30が各当接部材70に上側回転軸10の軸方向に当接するとともに、各当接部材70のネジ部70aが上側回転軸10に設けられたフレーム72の各プーリ72dに上側回転軸10の軸方向への移動を規制されるように係合し、中軸30が上側回転軸10に対して軸方向に容易に移動することがないので、例えば、係合穴30eと係合突起20dとが軸方向に当接する際の衝撃力によって、中軸30が上側回転軸10に対して軸方向に移動することがない。即ち、各リム部材40,50の軸方向の間隔を確実に保持することができ、測定精度の向上を図ることができる。さらに、各リム部材40,50の軸方向の間隔を保持するために、出力の大きな油圧シリンダ等の高価な部品を用いる必要がないので、装置の製造コストの低減を図ることができる。   Further, the middle shaft 30 contacts each contact member 70 in the axial direction of the upper rotary shaft 10, and the screw portion 70 a of each contact member 70 rotates upward on each pulley 72 d of the frame 72 provided on the upper rotary shaft 10. Since the shaft 10 is engaged so as to be restricted from moving in the axial direction, and the middle shaft 30 does not easily move in the axial direction with respect to the upper rotary shaft 10, for example, the engagement hole 30e and the engagement protrusion The middle shaft 30 does not move in the axial direction with respect to the upper rotary shaft 10 due to the impact force generated when 20d comes into contact with the axial direction. That is, the axial interval between the rim members 40 and 50 can be reliably held, and the measurement accuracy can be improved. Further, since it is not necessary to use expensive parts such as a hydraulic cylinder with a large output in order to maintain the axial distance between the rim members 40 and 50, the manufacturing cost of the apparatus can be reduced.

また、支持機構71を、上側回転軸10の上端部側に設けられ、各当接部材70が上側回転軸10の軸方向に移動自在に螺合するフレーム72と、各プーリ72dを所定の角度だけ回転させることにより各当接部材70を軸方向に移動可能なモータ73とから構成したので、簡単な構成によって各当接部材70を上側回転軸10の軸方向に移動させることができるとともに、中軸30を上側回転軸10に対して軸方向に容易に移動しないように保持することができる。また、各プーリ72dを回転する角度によって中軸30の軸方向の移動量を調整することができるので、各リム部材40,50の軸方向の間隔を任意の間隔に設定することができる。   Further, a support mechanism 71 is provided on the upper end side of the upper rotary shaft 10, and a frame 72 in which each contact member 70 is movably screwed in the axial direction of the upper rotary shaft 10 and each pulley 72 d are set at a predetermined angle. Since each abutting member 70 is configured by a motor 73 that can move in the axial direction by rotating only the abutting member 70, each abutting member 70 can be moved in the axial direction of the upper rotary shaft 10 with a simple configuration. The middle shaft 30 can be held so as not to move easily in the axial direction with respect to the upper rotary shaft 10. Further, since the amount of movement of the middle shaft 30 in the axial direction can be adjusted by the angle at which each pulley 72d is rotated, the interval between the rim members 40, 50 in the axial direction can be set to an arbitrary interval.

さらに、作業員によって入力装置72にタイヤ品番が入力され、演算部73から制御部70にタイヤ幅方向のサイズデータが送信されると、制御部70によってモータ73を所定の角度だけ回転させることにより、各リム部材40,50の軸方向の間隔を調整するようにしたので、測定作業を極めて効率的に行うことができる。   Further, when the tire part number is input to the input device 72 by the worker and the size data in the tire width direction is transmitted from the calculation unit 73 to the control unit 70, the control unit 70 rotates the motor 73 by a predetermined angle. Since the axial distance between the rim members 40 and 50 is adjusted, the measurement operation can be performed very efficiently.

また、各リム部材40,50によってタイヤTAを保持しながらユニフォーミティの測定を行う際に、中軸30の係合穴30eと下側回転軸20の係合突起20dとが軸方向及び径方向に係合することにより、中軸30と下側回転軸20とが互いに径方向に移動しないように確実に移動規制され、また、保持機構30cによって中軸30を上側回転軸10に対して径方向に保持するとともに、各リム部材40,50を各回転軸10,20に各リム保持機構10c,20cによって径方向に保持するようにしたので、各リム部材40,50を互いに径方向に位置ずれが生じないように確実に同軸上に保持することができる。即ち、タイヤTAを常に適正な位置に保持することができ、ユニフォーミティの測定を正確に行うことができる。   Further, when the uniformity is measured while holding the tire TA by the rim members 40 and 50, the engagement hole 30e of the middle shaft 30 and the engagement protrusion 20d of the lower rotary shaft 20 are in the axial direction and the radial direction. By engaging, the middle shaft 30 and the lower rotary shaft 20 are reliably restricted in movement so as not to move in the radial direction, and the holding shaft 30 holds the middle shaft 30 in the radial direction with respect to the upper rotary shaft 10. In addition, since the rim members 40 and 50 are held in the radial direction by the rim holding mechanisms 10c and 20c on the rotary shafts 10 and 20, the rim members 40 and 50 are displaced from each other in the radial direction. So that it can be securely held on the same axis. That is, the tire TA can always be held at an appropriate position, and uniformity can be measured accurately.

さらに、係合穴30eと係合突起20dとが軸方向に係合する前に、当接部材61の下端面が係合突起20dの上端面に軸方向に当接し、下側回転軸20に上方への移動に対する抵抗力が付与された状態で係合穴30eと係合突起20dとが軸方向に係合するようにしたので、係合穴30eと係合突起20dとが軸方向に係合する際の衝撃力が緩和される。これにより、上側回転軸10及び下側回転軸20を支持しているベアリング10a,20a等の構成部品に軸方向の大きな力が加わることを防止し、構成部品の長寿命化を図ることができる。また、係合穴30eと係合突起20dとが係合する際の装置の振動及び騒音を低減することができる。   Furthermore, before the engagement hole 30e and the engagement protrusion 20d are engaged in the axial direction, the lower end surface of the contact member 61 contacts the upper end surface of the engagement protrusion 20d in the axial direction, and the lower rotation shaft 20 Since the engagement hole 30e and the engagement protrusion 20d are engaged in the axial direction in a state in which a resistance force to the upward movement is applied, the engagement hole 30e and the engagement protrusion 20d are engaged in the axial direction. The impact force when mating is reduced. Thereby, it is possible to prevent a large axial force from being applied to the component parts such as the bearings 10a and 20a supporting the upper rotary shaft 10 and the lower rotary shaft 20, and to extend the life of the component parts. . Further, the vibration and noise of the device when the engagement hole 30e and the engagement protrusion 20d are engaged can be reduced.

また、緩衝機構60を、中軸30内に軸方向に延びるように設けられるとともに下端部が係合穴30e内に突出するように形成され、中軸30に対して軸方向に移動可能な当接部材61と、中軸30に対して上方に移動する当接部材61にその移動に対する抵抗力を付与するオイルダンパー62とから構成し、係合穴30eと係合突起20dとが軸方向に係合する前に当接部材61が係合突起20dに軸方向に当接し、上方に移動する下側回転軸20に移動に対する抵抗力を付与するようにしたので、簡単な構造によって係合穴30eと係合突起20dとが軸方向に係合する際の衝撃力を確実に緩和することができる。さらに、緩衝機構60が設けられていない既存の設備にも簡単に追加できる構造であるため、装置の大幅な設計変更を行う必要がなく、装置の製造コストまたは改造コストを低減することができる。   Further, the buffer mechanism 60 is provided in the middle shaft 30 so as to extend in the axial direction, and the lower end portion is formed so as to protrude into the engagement hole 30e, so that the contact member is movable in the axial direction with respect to the middle shaft 30. 61 and an oil damper 62 that applies resistance to the movement of the contact member 61 that moves upward with respect to the middle shaft 30, and the engagement hole 30 e and the engagement protrusion 20 d engage in the axial direction. Since the abutting member 61 abuts the engaging protrusion 20d in the axial direction before and imparts resistance to the movement to the lower rotating shaft 20 that moves upward, the engaging member 30 is engaged with the engaging hole 30e with a simple structure. The impact force generated when the mating protrusion 20d is engaged in the axial direction can be reliably reduced. Furthermore, since the structure can be easily added to existing equipment not provided with the buffer mechanism 60, it is not necessary to make a significant design change of the apparatus, and the manufacturing cost or modification cost of the apparatus can be reduced.

尚、本実施形態では、保持機構30cを中軸30の外周面に設けたものを示したが、上側回転軸10の内周面に油圧によって拡縮自在な周知の油圧チャックからなる保持機構を設け、保持機構を縮径して中軸30の外周面に径方向に当接させることにより、上側回転軸10に中軸30を径方向に保持することも可能である。   In this embodiment, the holding mechanism 30c is provided on the outer peripheral surface of the middle shaft 30, but a holding mechanism including a well-known hydraulic chuck that can be expanded and contracted by hydraulic pressure is provided on the inner peripheral surface of the upper rotary shaft 10, It is also possible to hold the middle shaft 30 in the radial direction on the upper rotary shaft 10 by reducing the diameter of the holding mechanism and bringing it into contact with the outer peripheral surface of the middle shaft 30 in the radial direction.

また、本実施形態では、各プーリ72dを回転させることにより、各当接部材70を軸方向に移動するようにしたものを示したが、各プーリ72dをフレーム72に固定するとともに、各当接部材70を回転させることにより、各当接部材70を軸方向に移動させることも可能である。   In the present embodiment, the abutting members 70 are moved in the axial direction by rotating the pulleys 72d. However, the pulleys 72d are fixed to the frame 72 and the abutting members 70d are rotated. It is also possible to move each contact member 70 in the axial direction by rotating the member 70.

尚、本実施形態では、中軸30の係合穴30eを上側回転軸10に対して軸方向に移動することにより、各リム部材40,50の軸方向の間隔を調整するようにしたものを示したが、上側リム部材40側と同様の構成のものを下側リム部材50側に設け、係合突起20dを下側回転軸20に対して軸方向に移動することにより、各リム部材40,50の間隔を軸方向に調整することも可能である。また、係合穴30e及び係合突起20dを各回転軸10,20に対してそれぞれ軸方向に移動することも可能である。   In the present embodiment, the axial distance between the rim members 40 and 50 is adjusted by moving the engagement hole 30e of the middle shaft 30 in the axial direction with respect to the upper rotary shaft 10. However, the same configuration as that on the upper rim member 40 side is provided on the lower rim member 50 side, and the engagement protrusion 20d is moved in the axial direction with respect to the lower rotation shaft 20, whereby each rim member 40, It is also possible to adjust 50 intervals in the axial direction. It is also possible to move the engagement hole 30e and the engagement protrusion 20d in the axial direction with respect to the rotary shafts 10 and 20, respectively.

また、本実施形態では、下側回転軸20に抵抗力を付与するためにオイルダンパー62を設けたものを示したが、オイルダンパー62の代わりに周知のコイルスプリングやエアシリンダを用いることも可能である。   Further, in the present embodiment, the oil damper 62 is provided in order to give a resistance force to the lower rotary shaft 20, but a known coil spring or air cylinder can be used instead of the oil damper 62. It is.

尚、本実施形態では、当接部材70を2つ設けたものを示したが、当接部材70を1つとすることも可能であり、3つ以上設けることも可能である。   In the present embodiment, two contact members 70 are provided, but one contact member 70 may be provided, and three or more contact members 70 may be provided.

また、本実施形態では、当接部材70にネジ部70aを設け、当接部材70がフレーム72のプーリ72dに螺合するようにしたものを示したが、当接部材70の外周面に互いに当接部材70の軸方向に間隔をおいて複数の凹部を設けるとともに、フレーム72に当接部材70の凹部に軸方向に着脱自在に係合する凸部を有するの係合機構を設け、当接部材70がフレーム72に対して軸方向に移動自在であるとともに、フレーム72に軸方向に係合するように構成することも可能である。また、当接部材70が上側回転軸10に対して軸方向に移動可能であるとともに、上側回転軸10側に軸方向に係合するものであれば、本実施形態と同様の作用効果を奏する。   Further, in this embodiment, the abutting member 70 is provided with the screw portion 70a, and the abutting member 70 is screwed into the pulley 72d of the frame 72. A plurality of recesses are provided at intervals in the axial direction of the contact member 70, and an engagement mechanism is provided on the frame 72 having a protrusion that is detachably engaged with the recess of the contact member 70 in the axial direction. The contact member 70 can move in the axial direction with respect to the frame 72 and can also be configured to engage with the frame 72 in the axial direction. In addition, as long as the contact member 70 is movable in the axial direction with respect to the upper rotary shaft 10 and engages with the upper rotary shaft 10 in the axial direction, the same effects as the present embodiment can be obtained. .

本発明における一実施形態を示すタイヤ試験機の一部断面正面図1 is a partial sectional front view of a tire testing machine showing an embodiment of the present invention. タイヤを保持する前の状態を示すタイヤ保持装置の要部断面図Main part sectional drawing of the tire holding device which shows the state before holding a tire タイヤを保持した状態を示すタイヤ保持装置の要部断面図Cross-sectional view of the main part of the tire holding device showing the state of holding the tire 各リム部材の間隔を変更する際のタイヤ保持装置の動作説明図Operation explanatory diagram of the tire holding device when changing the interval of each rim member タイヤ保持装置のブロック図Block diagram of tire holding device 制御部の動作を示すフローチャートFlow chart showing operation of control unit

符号の説明Explanation of symbols

1…タイヤ試験機本体、2…ベース、3…支柱、4…フレーム、5…測定装置
、6…コンベア、7…モータ、10…上側回転軸、10a…ベアリング、10b…フランジ部、10c…リム保持機構、10d…プーリ、11…油圧シリンダ、12…ロータリーシール、20…下側回転軸、20a…ベアリング、20b…フランジ部、20c…リム保持機構、20d…係合突起、20e…連通孔、21…油圧シリンダ、22…ロータリーシール、30…中軸、30a…フランジ部材、30b…貫通孔、30c…保持機構、30d…連通孔、30e…係合穴、31…油圧シリンダ、32…ロータリーシール、40…上側リム部材、50…下側リム部材、60…緩衝機構、61…当接部材、62…オイルダンパー、70…当接部材、70a…ネジ部、71…支持機構、72…フレーム、72a…下側フレーム、72b…サイドフレーム、72c…上側フレーム、72d…プーリ、73…モータ、80…制御部、81…ゲージ、TA…タイヤ。
DESCRIPTION OF SYMBOLS 1 ... Tire testing machine main body, 2 ... Base, 3 ... Column, 4 ... Frame, 5 ... Measuring device, 6 ... Conveyor, 7 ... Motor, 10 ... Upper rotating shaft, 10a ... Bearing, 10b ... Flange part, 10c ... Rim Holding mechanism, 10d ... pulley, 11 ... hydraulic cylinder, 12 ... rotary seal, 20 ... lower rotary shaft, 20a ... bearing, 20b ... flange, 20c ... rim holding mechanism, 20d ... engagement protrusion, 20e ... communication hole, DESCRIPTION OF SYMBOLS 21 ... Hydraulic cylinder, 22 ... Rotary seal, 30 ... Medium shaft, 30a ... Flange member, 30b ... Through-hole, 30c ... Holding mechanism, 30d ... Communication hole, 30e ... Engagement hole, 31 ... Hydraulic cylinder, 32 ... Rotary seal, 40 ... Upper rim member, 50 ... Lower rim member, 60 ... Buffer mechanism, 61 ... Abutting member, 62 ... Oil damper, 70 ... Abutting member, 70a ... Screw part, 1 ... supporting mechanism, 72 ... frame, 72a ... lower frame, 72b ... side frame, 72c ... upper frame, 72d ... pulley, 73 ... motor, 80 ... controller, 81 ... gauge, TA ... tires.

Claims (7)

互いに軸方向に対向して配置された一対の支軸と、各支軸の互いに対向する一端部側にそれぞれ取付けられた一対のリム部材と、各支軸の一端部側にそれぞれ設けられ、互いに軸方向及び径方向に係合可能な一対の係合部とを備え、各係合部を互いに係合させることにより各リム部材を軸方向に所定間隔をおいて配置してタイヤを保持するタイヤ保持装置において、
前記各支軸のうち少なくとも一方の支軸内に軸方向に移動可能に設けられ、支軸における一端部側に前記係合部を有する中軸と、
中軸における支軸の他端部側に軸方向に当接する当接部材と、
中軸が設けられた支軸の他端部側に設けられ、当接部材に支軸の軸方向への移動を規制するように係合するとともに、当接部材を支軸の軸方向に中軸と一体に移動自在に支持する支持機構とを備えた
ことを特徴とするタイヤ保持装置。
A pair of support shafts arranged opposite to each other in the axial direction, a pair of rim members attached to the opposite end portions of each support shaft, and one end portion side of each support shaft, respectively, A tire having a pair of engaging portions engageable in the axial direction and the radial direction, and holding the tire by disposing the respective rim members at predetermined intervals in the axial direction by engaging the engaging portions with each other. In the holding device,
A middle shaft that is provided so as to be movable in at least one of the support shafts in the axial direction, and that has the engagement portion on one end side of the support shaft;
An abutting member that abuts in the axial direction on the other end side of the support shaft in the middle shaft;
Provided on the other end side of the support shaft provided with the intermediate shaft, engages the contact member so as to restrict the movement of the support shaft in the axial direction, and moves the contact member in the axial direction of the support shaft. A tire holding device comprising: a support mechanism that supports the movable body integrally.
前記支持機構を、中軸が設けられた支軸の他端部側に設けられ、当接部材が支軸の軸方向に移動自在に螺合する螺合部材と、当接部材と螺合部材とを所定の角度だけ相対的に回転可能な回転機構とから構成した
ことを特徴とする請求項1記載のタイヤ保持装置。
The support mechanism is provided on the other end side of the support shaft provided with the middle shaft, and a contact member is screwed so as to be movable in the axial direction of the support shaft, and the contact member and the screw member. The tire holding device according to claim 1, wherein the tire holding device is configured by a rotation mechanism that is relatively rotatable by a predetermined angle.
前記各リム部材によって保持するタイヤの幅方向のサイズデータに基づき、支軸に対する中軸の軸方向位置がサイズデータに対応する位置になるように回転機構を制御する制御部を備えた
ことを特徴とする請求項2記載のタイヤ保持装置。
A control unit is provided that controls the rotation mechanism so that the axial position of the central shaft relative to the support shaft becomes a position corresponding to the size data based on size data in the width direction of the tire held by each rim member. The tire holding device according to claim 2.
前記中軸の外周面に拡縮自在に設けられ、拡径することにより支軸の内周面に径方向に当接して中軸を支軸に対して径方向に保持する保持機構を備えた
ことを特徴とする請求項1、2または3記載のタイヤ保持装置。
A holding mechanism is provided on the outer peripheral surface of the middle shaft so as to be freely expandable and contractable, and is held in the radial direction against the inner peripheral surface of the support shaft by expanding the diameter to hold the intermediate shaft in the radial direction with respect to the support shaft. The tire holding device according to claim 1, 2 or 3.
前記中軸が設けられた支軸の内周面に拡縮自在に設けられ、縮径することにより中軸の外周面に径方向に当接して中軸を支軸に対して径方向に保持する保持機構を備えた
ことを特徴とする請求項1、2または3記載のタイヤ保持装置。
A holding mechanism that is provided on the inner peripheral surface of the support shaft provided with the intermediate shaft so as to be freely expandable and contractable, and that radially contacts the outer peripheral surface of the intermediate shaft by reducing the diameter to hold the intermediate shaft in the radial direction with respect to the support shaft. The tire holding device according to claim 1, wherein the tire holding device is provided.
前記各支軸のうち何れか一方の支軸側に設けられ、各係合部が互いに軸方向に係合する前に他方の支軸側に軸方向に当接し、他方の支軸に一方の支軸側への移動に対する抵抗力を付与する緩衝機構を備えた
ことを特徴とする請求項1、2、3、4または5記載のタイヤ保持装置。
Provided on either one of the support shafts, each engaging portion abuts the other support shaft in the axial direction before engaging each other in the axial direction. The tire holding device according to claim 1, 2, 3, 4, or 5, further comprising a buffer mechanism that provides resistance to movement toward the support shaft.
前記緩衝機構を、中軸内に軸方向に延びるように設けられるとともに、一端部が支軸の一端部側に突出するように形成され、中軸に対して軸方向に移動可能な当接部材と、中軸に対して支軸の他端部側に移動する当接部材にその移動に対する抵抗力を付与する緩衝部材とから構成した
ことを特徴とする請求項6記載のタイヤ保持装置。

The buffer mechanism is provided so as to extend in the axial direction in the middle shaft, and an abutting member that is formed so that one end portion projects toward one end portion of the support shaft and is movable in the axial direction with respect to the middle shaft; The tire holding device according to claim 6, further comprising: a buffer member that imparts resistance to the movement of the contact member that moves toward the other end side of the support shaft with respect to the middle shaft.

JP2005022150A 2005-01-28 2005-01-28 Tire holding system Pending JP2006208246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022150A JP2006208246A (en) 2005-01-28 2005-01-28 Tire holding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022150A JP2006208246A (en) 2005-01-28 2005-01-28 Tire holding system

Publications (1)

Publication Number Publication Date
JP2006208246A true JP2006208246A (en) 2006-08-10

Family

ID=36965268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022150A Pending JP2006208246A (en) 2005-01-28 2005-01-28 Tire holding system

Country Status (1)

Country Link
JP (1) JP2006208246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002724A (en) * 2010-06-18 2012-01-05 Ihi Corp Balancer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002724A (en) * 2010-06-18 2012-01-05 Ihi Corp Balancer

Similar Documents

Publication Publication Date Title
KR101912027B1 (en) Method for predicting rolling resistance of tire and device for predicting rolling resistance of tire
US9746396B2 (en) Tire transport method, tire transport and fastening apparatus, and tire inspection system
AU766962B2 (en) Snug fitting apparatus for tire assembly
KR101447573B1 (en) Torque Measuring Device for Tapered Roller Bearings
KR101667846B1 (en) Tire testing method and tire testing machine
CN1297810C (en) Driver for tyre homogeneity testing instrument
JP2007327827A (en) Dynamic characteristic inspection device
KR20170004770A (en) Vertical torque measurement apparatus for bearing
JP4213675B2 (en) Tire holding device
JP2006208245A (en) Tire holding system
US20150027215A1 (en) Tire testing machine
JP4251570B2 (en) Tire holding device
JP4767808B2 (en) Tire inspection machine accuracy inspection method
JP2006208246A (en) Tire holding system
CN111336978B (en) Circumferential clearance measuring device and circumferential clearance measuring method
JP4331091B2 (en) Tire holding device
JP2001341507A (en) Running-in machining device for tire assembly, and method of manufacturing tire assembly with running-in machining process
WO2018154646A1 (en) Rotating body load measurement device
CN110612438B (en) Load measuring device for rotating body
JP2011107163A (en) Vibration correction system for tire testing system
JP4598482B2 (en) Tire holding device
JP4456126B2 (en) Tire uniformity testing equipment
JP4749878B2 (en) Dynamic balance testing machine
JP5205854B2 (en) Tire holding device
KR102670183B1 (en) Supporting jig device for precise measurement of spindle