WO2013054466A1 - Tire inspection device - Google Patents

Tire inspection device Download PDF

Info

Publication number
WO2013054466A1
WO2013054466A1 PCT/JP2012/005681 JP2012005681W WO2013054466A1 WO 2013054466 A1 WO2013054466 A1 WO 2013054466A1 JP 2012005681 W JP2012005681 W JP 2012005681W WO 2013054466 A1 WO2013054466 A1 WO 2013054466A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
air
rim
air passage
spindle
Prior art date
Application number
PCT/JP2012/005681
Other languages
French (fr)
Japanese (ja)
Inventor
宮崎 晋一
雅則 三垣
孝明 伊東
Original Assignee
大和製衡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大和製衡株式会社 filed Critical 大和製衡株式会社
Priority to CN201280043292.6A priority Critical patent/CN103782145B/en
Publication of WO2013054466A1 publication Critical patent/WO2013054466A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/02Details of balancing machines or devices
    • G01M1/04Adaptation of bearing support assemblies for receiving the body to be tested

Definitions

  • the present invention relates to a tire inspection apparatus for inspecting dynamic balance and uniformity of a tire.
  • a dynamic balancer for tires that inspects the dynamic balance of tires
  • the dynamic balance of tires is inspected as follows. That is, the tire to be inspected is sandwiched between an upper rim that is moved up and down and a lower rim that is connected and fixed to the spindle. In that state, air is supplied into the tire to inflate it. Thereafter, the spindle is driven to rotate to rotate the tire at a predetermined speed. At that time, the horizontal centrifugal force generated by the tire imbalance is measured by a load sensor such as a load cell. The supply of air into the tire and the discharge of air after the inspection are performed only on the lower rim side via an air passage formed in the spindle on the lower rim side (see, for example, Patent Document 1).
  • the air passage formed in the spindle has a small cross-sectional area that does not decrease the rigidity of the spindle. For this reason, the time required for supplying and discharging air to and from the tire becomes longer, which contributes to a longer inspection time.
  • the spindle diameter is increased to form an air passage with a large cross-sectional area, the air supply time and discharge time can be shortened.
  • Various parts such as bearings related to the above are also large-sized, which causes an increase in the size and weight of the entire apparatus.
  • the present invention has been made paying attention to such a situation, and ensures a sufficient air flow area without causing an increase in the size and weight of the entire apparatus accompanying an increase in the size of the member, and into the tire.
  • the main purpose is to shorten the air supply time and the discharge time of air filled and sealed in the tire.
  • the present invention is configured as follows.
  • the present invention is a tire inspection apparatus for supplying air into a tire sandwiched between an upper rim and a lower rim, and inspecting the tire by rotating the tire together with the upper rim and the lower rim, A first air passage on the upper rim side communicating with the tire sandwiched between the upper rim and the lower rim and a second air passage on the lower rim side communicating with the tire are provided.
  • the two air passages communicating with each other in the tire sandwiched between the two rims that is, the first air passage on the upper rim side and the second air passage on the lower rim side are provided.
  • the supply of air into the tire and the discharge of air from the tire can be performed simultaneously by the air passage of the system. Therefore, the time required for supplying and exhausting air can be shortened and the time required for inspecting the tire can be shortened as compared with a configuration in which air is supplied to the tire and exhausted from the tire in one system. be able to.
  • the first air passage is connectable to an air supply source and outside air, and supplies air into the tire and discharges air from the tire.
  • the second air passage is connectable to at least one of an air supply source and outside air, and performs at least one of supply of air into the tire and discharge of air in the tire. is there.
  • the first air passage air is supplied into the tire and exhausted in the tire
  • the second air passage air is supplied into the tire and inside the tire. Since at least one of air discharge is performed, at least one of the air supply time and the exhaust time is shortened as compared with the case of supplying air into the tire and discharging air from the tire with one system. can do.
  • the second air passage is connectable to an air supply source and outside air, and supplies air into the tire and discharges air from the tire.
  • the first air passage is connectable to at least one of an air supply source and outside air, and performs at least one of supply of air into the tire and discharge of air in the tire. is there.
  • the air in the second air passage, the air is supplied into the tire and the air in the tire is discharged, and in the first air passage, the air is supplied into the tire and in the tire. Since at least one of air discharge is performed, at least one of the air supply time and the exhaust time is shortened as compared with the case of supplying air into the tire and discharging air from the tire with one system. can do.
  • the lower rim is connected to a spindle, and a second ventilation hole forming a part of the second ventilation path is formed in the spindle.
  • a connecting shaft extends from the upper rim, and the connecting shaft is inserted and connected to the spindle, and a first ventilation hole that forms a part of the first ventilation path is formed in the connecting shaft.
  • the area of the air flow path is the sum of the first and second air passages of the two systems of the upper rim side and the lower rim side, so that the connecting shaft constituting the first air passage on the upper rim side A sufficient flow area can be secured while making the first vent hole drilled in the first vent hole and the second vent hole drilled in the spindle constituting the second vent path on the lower rim side having a small diameter, respectively.
  • the connecting shaft constituting the first air passage on the upper rim side A sufficient flow area can be secured while making the first vent hole drilled in the first vent hole and the second vent hole drilled in the spindle constituting the second vent path on the lower rim side having a small diameter, respectively.
  • a coupler that connects and separates a rotation-side air passage that rotates with the upper rim and a non-rotation-side air passage that rotates together with the upper rim is interposed in the first air passage
  • a coupler that connects and separates the rotating-side air passage that rotates together with the lower rim and the non-rotating-side air passage is interposed in the second air passage.
  • the coupler when the tire sandwiched between the upper and lower rims is rotated and inspected, the coupler is separated so that the rotation system can be rotated and operated in a free state mechanically separated from the fixed side. It is possible to perform a highly accurate inspection without being affected by external rotational resistance.
  • a coupler for connecting and separating the rotation-side air passage and the non-rotation-side air passage is provided only in one of the first air passage and the second air passage. May be.
  • the first air passage and the second air passage are connected to the air supply source and the outside air via an on-off valve, respectively.
  • air can be supplied into the tire through the two air passages of the first air passage and the second air passage, while the two air passages are provided.
  • the air enclosed in the tire on the road can be discharged. Therefore, the time for supplying and discharging air can be shortened as compared with the case of supplying and discharging with one system.
  • a sufficient air flow area is ensured without increasing the size and weight of the entire device due to the increase in the size of the member, and the air supply time into the tire and the tire are increased.
  • the time for discharging the filled air can be shortened, whereby the time required for the inspection can be shortened.
  • the loading / unloading direction of the tire W is referred to as the front / rear direction
  • the lateral direction perpendicular thereto is referred to as the left / right direction.
  • FIG. 1 is a side view of a tire inspection apparatus according to an embodiment of the present invention.
  • a lifting device B and a tire transport device C that sandwiches the tire W from the left and right and horizontally transports and moves up and down in the front-rear direction (perpendicular to the paper surface in FIG. 1) are provided.
  • the tire W carried into the measuring unit A by the tire conveying device C is vertically sandwiched between the lower rim 1 and the upper rim 2, the tire W is inflated by supplying air to the tire W and inflated. Rotate at a predetermined speed. In this rotating state, the dynamic balance of the tire W is inspected by measuring the horizontal centrifugal force generated by the unbalance of the tire W.
  • the structure of each part will be described.
  • the tire conveying device C includes a pair of left and right front and rear movable bases that can be moved back and forth along a base plate 3 fixedly arranged on both left and right sides of the tire conveying path, and rails 4 provided horizontally on the respective base plates 3. 5.
  • a pair of left and right movable bases 7 slidable along the rails 6 horizontally provided on the respective front and rear movable bases 5 and supported by the left and right movable bases 7 so as to be slidable up and down along the vertical rails 8.
  • the vertical movable table 9 is provided with a plurality of support rollers 10 that are axially supported at a plurality of positions before and after each vertical movable table 9.
  • the tire conveying device C includes driving means for moving the left and right front and rear movable bases 5 back and forth in synchronism with each other, driving means for moving the left and right left and right movable bases 7 toward and away from each other in synchronism with each other, Driving means for moving the movable base 9 up and down in synchronism with each other is provided.
  • the tire W By moving the corresponding left and right movable bases 7 in synchronization with each other across the tire conveyance path, the tire W can be pressed and centered from the left and right by the group of support rollers 10. Further, the tire W can be gripped by the group of support rollers 10 without being dropped by being strongly pressed and clamped by the left and right movable base 7. In this gripping state, the left and right front and rear movable bases 5 are moved back and forth in synchronization, so that the gripped tire W can be moved back and forth horizontally, and the left and right vertical movable bases 9 are synchronized in the tire gripping state. Thus, the gripped tire W can be lifted or lowered by moving it up and down.
  • the rim lifting device B includes a support frame 13 connected to a side surface of the main frame 11 in the measurement unit A via a frame 12.
  • a lifting platform 15 is supported via a vertical rail 14 so as to be slidable up and down.
  • the upper rim 2 is supported by the gripping mechanism 16 provided on the lifting platform 15.
  • the screw shaft 17 provided on the support frame 13 is rotated forward and backward by a motor 18 to move the lifting platform 15 up and down by screw feeding. As a result, the upper rim 2 gripped by the gripping mechanism 16 of the lift 15 is moved up and down.
  • the gripping mechanism 16 has a support bracket 19 and a movable gripping member 21.
  • the support bracket 19 is connected to the lower surface of the lifting platform 15.
  • a pair of front and rear movable gripping members 21 are provided.
  • Each movable gripping member 21 is mounted on the front surface of the support bracket 19 via a pair of upper and lower rails 20 so as to be horizontally movable in the front-rear direction.
  • a rack gear member 22 is connected to each movable gripping member 21.
  • a pinion gear 23 is supported around the horizontal fulcrum x at the center of the front surface of the support bracket 19 so as to be freely rotatable.
  • Each rack gear member 22 meshes with the upper and lower portions of the pinion gear 23.
  • the two movable gripping members 21 move counterclockwise in the front-rear direction in synchronization.
  • the two movable gripping members 21 move toward and away from each other in conjunction with the movement.
  • the support shaft 25 extends upward from the center portion of the upper rim 2, and a predetermined portion of the support shaft 25 is gripped from the front and rear by both movable gripping members 21 that move closer.
  • the support shaft 25 is integrally connected to the upper end of a connection shaft 26 that is connected to the upper rim 2 and extends downward.
  • a rim support shaft 27 used for rim replacement is externally connected to the connection shaft 26 (see FIG. 5).
  • the main frame 11 of the measuring unit A is configured in a rectangular box shape.
  • a spindle 32 is inserted into and supported by the main frame 11 so as to be rotatable.
  • the upper part of the spindle 32 protrudes from the upper surface of the main frame 11, and the lower rim 1 is connected to the upper part of the spindle 32.
  • FIG. 2 is a front view showing the configuration of the measurement unit A
  • FIG. 3 is a cross-sectional plan view of the measurement unit A
  • FIG. 4 is a longitudinal sectional view of the state where the upper rim is connected.
  • the two upper and lower portions of the support casing 31 provided in the central portion of the main frame 11 of the measuring unit A and the side wall 11a of the main frame 11 are connected via a pair of left and right torsion bars 33 arranged horizontally in parallel. Yes.
  • the upper and lower intermediate portions of the support casing 31 and the upper wall 11b of the main frame 11 are connected via a pair of front and rear torsion bars 34 arranged vertically.
  • a load cell 35 for load detection is installed across the upper and lower portions of the support casing 31 and the side wall 11 a of the main frame 11.
  • the support casing 31 includes an upper cylindrical portion 31a and a pair of plate-like portions 31b that are connected to the lower portion and face each other.
  • a spindle 32 is supported on the cylindrical portion 31a via two pairs of upper and lower bearings 36 so as to be rotatable around the vertical axis p.
  • the lower end portion of the spindle 32 is inserted between the opposing plate-like portions 31 b of the support casing 31.
  • a pulley 37 is provided at the insertion end of the spindle 32, that is, at the lower end.
  • a relay pulley 38 is provided outside the main frame 11.
  • a toothed belt 39 is wound around the pulley 37 and the relay pulley 38, and the pulley 37 and the relay pulley 38 are linked via the belt 39 without slipping.
  • a belt 41 is wound around the shaft 38a of the relay pulley 38 and the servo motor 40, and the shaft 38a and the servo motor 40 are linked via the belt 41 without slipping. ing.
  • a belt 43 is wound around the spindle 32 and the rotary encoder 42, and the spindle 32 and the rotary encoder 42 are linked via the belt 43 at a constant speed without slipping. Thereby, the rotary position of the spindle 32 is detected by the rotary encoder 42.
  • the upper large diameter portion 32a of the spindle 32 protrudes upward beyond the support casing 31 and the upper wall 11b of the main frame 11 as shown in FIG.
  • the upper large diameter portion 32a is provided with a flange 44 for mounting a lower rim.
  • a self-aligning coupling 45 such as a Kirbic coupling or a Hearth coupling (trade name) is connected to the upper surface of the flange 44.
  • the self-aligning coupling 45 has a lower coupling 45a in which teeth are formed radially on the upper surface periphery and an upper coupling 45b in which teeth are formed radially on the lower surface periphery.
  • the lower coupling 45a is bolted to the spindle 32 concentrically.
  • a bracket 46 is connected to the lower surface of the lower rim 1, and the upper coupling 45 b is connected to the lower rim 1 with a bolt concentrically via the bracket 46.
  • the self-aligning coupling 45 is coupled in a state where the lower coupling 45a and the upper coupling 45b are engaged with each other in the vertical direction so that they are concentric and do not move relative to each other in the circumferential direction, front and rear, left and right. It is supposed to be. That is, the automatic alignment coupling 45 has an automatic alignment function.
  • the lower rim 1 is lowered from above the spindle 32, and the upper coupling 45b is placed on the lower coupling 45a on the flange 44 to engage with each other.
  • the rim 1 is concentric with the spindle 32 with high accuracy.
  • the measuring unit A has a pair of chuck mechanisms 47.
  • the chuck mechanism 47 connects and fixes the lower rim 1 mounted concentrically with the spindle 32 to the spindle 32. As shown in FIG. 2, the chuck mechanism 47 is provided at the outer peripheral portion of the flange 44 so as to be positioned diagonally with respect to the axis p of the spindle 32.
  • a pair of lock pins 48 that protrude downward from the diagonal position on the lower surface of the lower rim 1 are deployed and fixed to the outer periphery of the flange 44.
  • the lock pin 48 is inserted into the chuck case 49 from above and a lock ball is engaged with the inserted lock pin 48 to prevent the lock pin 48 from coming out of the chuck case 49.
  • the lower rim 1 is integrated with the spindle 32 by inserting the lock pin 48 into the chuck case 49 and applying a lock for preventing it from coming off.
  • the upper rim coupling cylinder shaft 51 is concentrically coupled to the upper end of the upper large diameter portion 32a of the spindle 32.
  • the connecting shaft 26 extending downward from the center of the upper rim 2 is inserted into the upper rim connecting cylinder shaft 51.
  • a plurality (eight in this example) of lock balls 52 are incorporated at two positions in the upper and lower portions of the lower half of the upper rim coupling cylinder shaft 51 at a constant circumferential pitch.
  • a large number of annular engaging grooves 53 are formed on the outer periphery of the lower portion of the connecting shaft 26 at a constant pitch.
  • Two groups of upper and lower lock balls 52 enter the engagement grooves 53.
  • the lock ball 52 is inserted into the upper rim coupling cylinder shaft 51 from the outer periphery of the cylinder shaft 51 so as to be movable radially inward and outward.
  • a part of the lock ball 52 protrudes on the inner periphery of the upper rim coupling cylinder shaft 51.
  • the connecting shaft 26 is inserted in this state, the lock ball 52 enters the engaging groove 53 of the connecting shaft 26.
  • the lock ball 52 moves radially outward and retracts outward from the inner circumference of the upper rim coupling cylinder shaft 51, the insertion and removal of the coupling shaft 26 is allowed.
  • the inner end of the ball insertion hole formed in the upper rim connecting cylinder shaft 51 is slightly smaller than the ball diameter, and the lock ball 52 can be connected to the upper rim connecting cylinder shaft even when the connecting shaft 26 is not inserted. 51 does not fall into the interior.
  • the operation cylinder shaft 55 is fitted on the outer periphery of the lower rim coupling cylinder shaft 51 so as to be slidable up and down.
  • An annular groove 56 is provided at two locations on the inner peripheral surface of the operation cylinder shaft 55 in the upper and lower portions.
  • each annular groove 56 is disengaged downward from the lock ball 52.
  • the lock ball 52 comes into contact with the inner surface of the operation cylinder shaft 55 and the outward movement thereof is blocked by the operation cylinder shaft 55.
  • each annular groove 56 faces the lock ball 52, and a space for moving the lock ball 52 outward in the radial direction is formed.
  • a small diameter shaft portion 55 a extends from the lower end of the operation tube shaft 55. As shown in FIG. 4, the small-diameter shaft portion 55 a is inserted between the opposing plate-like portions 31 b of the support casing 31.
  • a compression coil spring 57 is fitted on the outer periphery of the small diameter shaft portion 55a. The upper end of the compression coil spring 57 is supported by an upper spring receiving collar 58 that is connected and fixed to the spindle 32, and the lower end of the spring is supported by a lower spring receiving collar 59 that is externally fixed to the small-diameter shaft portion 51a. .
  • the operating cylinder shaft 55 is slidably biased toward the lower locking position by the elastic force of the compression coil spring 57.
  • an operation flange 55b is provided near the lower end of the small diameter shaft portion 55a.
  • An operation member 61 that is moved up and down by an air cylinder 60 is disposed inside the plate-like portion 31 b of the support casing 31.
  • the roller 61a provided at the upper end of the operation member 61 pushes up the operation flange 55b of the operation cylinder shaft 55.
  • the operation cylinder shaft 55 is slid upward against the compression coil spring 57 and enters the unlocked state described above.
  • first and second air passages communicating with the inside of the tire W are formed.
  • the first air passage is formed on the upper rim side
  • the second air passage is formed on the lower rim side.
  • the operation cylinder shaft 55 constituting the second air passage on the lower rim side has a small diameter shaft portion 55a.
  • a vent hole a communicating with the internal space of the operation cylinder shaft 55 is formed at the center of the small diameter shaft portion 55 a.
  • a rotary joint 65 is provided at the lower end of the small diameter shaft portion 55a.
  • the rotary joint 65 and the pressurized air supply device 66 shown in FIG. 6 are connected in communication via a coupler 68.
  • the coupler 68 can be connected and disconnected by an air cylinder 67 as shown in FIG.
  • the pressurized air supply device 66 sends pressurized air sent from a pressurized air supply source 69 such as a compressor or an air tank storing pressurized air via a high pressure reducing valve 70 and an electromagnetic on-off valve 72, or It is connected by piping so as to be fed into the rotary joint 65 through the low pressure reducing valve 71 and the electromagnetic opening / closing valve 73. Further, an exhaust passage d communicating with the atmosphere is branched from the lower piping of the electromagnetic on / off valves 72 and 73 connecting the electromagnetic on / off valves 72 and 73 and the rotary joint 65. The exhaust path d constitutes a second ventilation path. The exhaust path d is provided with an electromagnetic opening / closing valve 74 and a silencer 75.
  • a pressurized air supply source 69 such as a compressor or an air tank storing pressurized air via a high pressure reducing valve 70 and an electromagnetic on-off valve 72, or It is connected by piping so as to be fed into the rotary joint 65 through the low
  • a vent hole b is formed across the connecting shaft 26 and the center of the support shaft 25 connected to the upper end thereof.
  • the ventilation hole b constitutes a first ventilation path.
  • a rim support shaft 27 is fitted on the connecting shaft 26.
  • a plurality of vent holes c are formed radially from the vent hole b and the outer periphery of the rim support shaft 27.
  • the upper end portion of the support shaft 25 and the pressurized air supply device 76 are connected in communication via a coupler 78.
  • the coupler 78 can be connected and disconnected by an air cylinder 77 as shown in FIG.
  • the pressurized air supply device 76 sends the pressurized air sent from the pressurized air supply source 79 shown in FIG. 6 via the high-pressure pressure reducing valve 80 and the electromagnetic on-off valve 82, or It is connected by piping so as to be fed into the coupler 78 through the low pressure reducing valve 81 and the electromagnetic opening / closing valve 83.
  • An exhaust passage e communicating with the atmosphere is branched from the lower piping of the electromagnetic on / off valves 82 and 83 connecting the electromagnetic on / off valves 82 and 83 and the coupler 78.
  • the exhaust path e constitutes a first ventilation path.
  • the exhaust passage e is provided with an electromagnetic opening / closing valve 84 and a silencer 85.
  • the main part of the tire inspection apparatus is configured as described above. Next, the inspection operation will be described.
  • the upper rim 2 stands by at a position far away from the lower rim 1, and the tire W to be inspected is gripped by the tire conveying device C and centered. It is carried into the measuring unit A.
  • the air supply operation to the tire W is started from the second air passage on the lower rim side and the first air passage on the upper rim side. That is, first, the high-pressure electromagnetic open / close valves 72 and 82 are opened, and high-pressure air is sent to the vent holes a and b for a set time. Thereafter, the low-pressure side electromagnetic on-off valves 73 and 83 are opened, and the low-pressure air is sent to the vent holes a and b. Then, on the lower rim side, pressurized air is sent to the vent hole a through the connected coupler 68 and the rotary joint 65, and on the upper rim side, pressurized air is sent to the vent hole b through the connected coupler 78. It is. In this way, the pressurized air that is supplied from above and below and merges is supplied from the vent hole c into the tire.
  • the servo motor 40 is activated and the spindle 32 rotates. Then, the tire W sandwiched between the lower rim 1 and the upper rim 2 rotates at a predetermined speed.
  • the centrifugal force is detected by the upper and lower load cells 35 connected to the support casing 31.
  • the detected data and the rotational position information of the rotary encoder 42 are transmitted to an arithmetic processing unit (not shown).
  • the arithmetic processing unit calculates the dynamic balance of the tire W, and further calculates the light spot position and the like.
  • the supply of air into the tire W and the discharge of air from the inside of the tire W are performed through the two air passages on the upper rim 2 side and the lower rim 1 side.
  • the air supply time and the exhaust time can be shortened compared to a configuration in which the air is supplied to and discharged from the tire W by one system, and further, the inspection processing of the tire W can be improved.
  • the upper and lower couplers 68 and 78 are separated to separate the rotating portion and the external non-rotating portion. Highly accurate measurement can be performed without being affected by the above.
  • the coupler 68 is not provided, and an air hose for supplying and discharging air is always connected to the rotary joint 65. Therefore, when the tire W is rotated and the imbalance is measured, the air hose must be arranged so that the rotating part does not receive external force from the air hose. It is not easy to arrange. However, the above-described embodiment of the present invention does not have such a problem.
  • the rim lifting device B is used to remove the lower rim 1 from the spindle. 32 can be removed.
  • the lower rim 1 is rotated in a predetermined direction by a predetermined angle (for example, 45 degrees) from the reference position via the spindle 32.
  • a predetermined angle for example, 45 degrees
  • the chuck mechanism 47 is positioned directly above the unlocking cylinder 86 (see FIG. 5) installed on the upper surface of the main frame 11.
  • the unlocking cylinder 86 is operated to project upward.
  • the chuck mechanism 47 has a release operation member 47 a that performs unlocking, and the release operation member 47 a protrudes downward from the chuck mechanism 47.
  • the release operating member 47a is pushed up against the biasing force.
  • the chuck mechanism 47 is unlocked and the lock pin 48 can be pulled out of the chuck case 49.
  • the lower end of the rim support shaft 27 that is externally connected to the connecting shaft 26 is provided with an engaging claw 27 a in a cross shape, and a cross-shaped opening 1 a is provided in the center of the lower rim 1. Yes.
  • the engagement claw 27a can be engaged with the opening 1a.
  • the upper rim 2 is raised in this state, the lower claw 1 engaged with and supported by the lower end portion of the rim support shaft 27 is lifted together with the upper rim 2 by engaging the engaging claws 27a and the opening 1a.
  • the pressurized air is supplied to the tire W from the lower rim side and the upper rim side, and the air filled in the tire W is discharged. It is also possible to carry out only from the rim side and to discharge air from the tire W from the lower rim side and the upper rim side. According to this, the discharge time can be shortened compared to the conventional case where supply and discharge are performed only from the lower rim side.
  • pressurized air is supplied from the lower rim side and the upper rim side, and air is discharged from the tire W only from the lower rim side. According to this, the pressurized air supply time can be shortened compared to the conventional case where supply and discharge are performed only from the lower rim side.
  • At least a part of the configuration of the pressurized air supply device 66 on the lower rim side and the pressurized air supply device 76 on the upper rim side may be shared.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Balance (AREA)

Abstract

The present invention is provided with first and second ventilation channels capable of feeding air into a tire sandwiched by an upper rim and a lower rim and capable of discharging air in the tire. A part of each of the ventilation channels comprises a ventilation hole drilled in a spindle and a ventilation hole drilled in a connection shaft.

Description

タイヤ検査装置Tire inspection device
 本発明は、タイヤの動的釣合いやユニフォーミティなどを検査するタイヤ検査装置に関する。 The present invention relates to a tire inspection apparatus for inspecting dynamic balance and uniformity of a tire.
 タイヤ検査装置、例えば、タイヤの動的釣合いを検査するタイヤ用ダイナミックバランサでは、次のようにしてタイヤの動的釣合いを検査している。すなわち、検査対象のタイヤを、昇降される上リムと、スピンドルに連結固定された下リムとの間に挟持する。その状態でタイヤ内に空気を供給して膨張させる。その後、スピンドルを回転駆動してタイヤを所定速度で回転させる。その際、タイヤのアンバランスにより発生する水平方向の遠心力をロードセル等の荷重センサで計測する。タイヤ内への空気の供給および検査後の空気の排出は、下リム側のスピンドルの内部に形成したエア通路を介して下リム側のみで行う(例えば、特許文献1参照)。 In a tire inspection apparatus, for example, a dynamic balancer for tires that inspects the dynamic balance of tires, the dynamic balance of tires is inspected as follows. That is, the tire to be inspected is sandwiched between an upper rim that is moved up and down and a lower rim that is connected and fixed to the spindle. In that state, air is supplied into the tire to inflate it. Thereafter, the spindle is driven to rotate to rotate the tire at a predetermined speed. At that time, the horizontal centrifugal force generated by the tire imbalance is measured by a load sensor such as a load cell. The supply of air into the tire and the discharge of air after the inspection are performed only on the lower rim side via an air passage formed in the spindle on the lower rim side (see, for example, Patent Document 1).
特開平11-223570号公報Japanese Patent Laid-Open No. 11-223570
 上記従来例では、スピンドルの内部に形成するエア通路は、スピンドルの剛性を低下させない程度の断面積の小さいものである。そのため、タイヤへの空気の供給および排出に要する時間が長くなり、検査時間が長くなる一因となっている。もちろん、スピンドル径を大きくして断面積の大きいエア通路を形成すれば空気の供給時間および排出時間を短縮することが可能となるが、この場合には、スピンドルの大径化に伴って、スピンドルに関わるベアリング等の各種部品も大型のものとなり、このことが装置全体の大型化や重量増大を招く一因となる。 In the above conventional example, the air passage formed in the spindle has a small cross-sectional area that does not decrease the rigidity of the spindle. For this reason, the time required for supplying and discharging air to and from the tire becomes longer, which contributes to a longer inspection time. Of course, if the spindle diameter is increased to form an air passage with a large cross-sectional area, the air supply time and discharge time can be shortened. In this case, as the spindle diameter increases, Various parts such as bearings related to the above are also large-sized, which causes an increase in the size and weight of the entire apparatus.
 本発明は、このような実情に着目してなされたものであって、部材の大型化に伴う装置全体の大型化や重量増大を招くことなく空気の流路面積を十分確保し、タイヤ内への空気の供給時間やタイヤ内に充填封入された空気の排出時間を短縮できるようにすることを主たる目的とする。 The present invention has been made paying attention to such a situation, and ensures a sufficient air flow area without causing an increase in the size and weight of the entire apparatus accompanying an increase in the size of the member, and into the tire. The main purpose is to shorten the air supply time and the discharge time of air filled and sealed in the tire.
 上記目的を達成するために、本発明では、次のように構成している。 In order to achieve the above object, the present invention is configured as follows.
  (1)本発明は、上リムと下リムとで挟持したタイヤ内に空気を供給して、前記タイヤを前記上リムおよび前記下リムと共に回転させて検査するタイヤ検査装置であって、
 前記上リムと前記下リムとで挟持した前記タイヤ内に連通する上リム側の第1通気路と、前記タイヤ内に連通する下リム側の第2通気路とを設ける。
(1) The present invention is a tire inspection apparatus for supplying air into a tire sandwiched between an upper rim and a lower rim, and inspecting the tire by rotating the tire together with the upper rim and the lower rim,
A first air passage on the upper rim side communicating with the tire sandwiched between the upper rim and the lower rim and a second air passage on the lower rim side communicating with the tire are provided.
 本発明によると、両リムによって挟持されたタイヤ内に連通した2系統の通気路、すなわち、上リム側の第1通気路と下リム側の第2通気路とを備えているので、これら2系統の通気路によって、例えば、タイヤ内への空気の供給およびタイヤ内の空気の排出を同時に行うことができる。そのため、1系統でタイヤ内への空気の供給およびタイヤ内の空気の排出を行う構成に比べて、空気の供給および排出に要する時間を短縮することができ、タイヤの検査に要する時間を短縮することができる。 According to the present invention, the two air passages communicating with each other in the tire sandwiched between the two rims, that is, the first air passage on the upper rim side and the second air passage on the lower rim side are provided. For example, the supply of air into the tire and the discharge of air from the tire can be performed simultaneously by the air passage of the system. Therefore, the time required for supplying and exhausting air can be shortened and the time required for inspecting the tire can be shortened as compared with a configuration in which air is supplied to the tire and exhausted from the tire in one system. be able to.
 (2)本発明の好ましい実施態様では、前記第1通気路は、空気供給源および外気に接続可能であって、かつ前記タイヤ内への空気の供給および前記タイヤ内の空気の排出を行なうものであり、
 前記第2通気路は、空気供給源および外気の少なくともいずれか一方に接続可能であって、かつ前記タイヤ内への空気の供給および前記タイヤ内の空気の排出の少なくともいずれか一方を行なうものである。
(2) In a preferred embodiment of the present invention, the first air passage is connectable to an air supply source and outside air, and supplies air into the tire and discharges air from the tire. And
The second air passage is connectable to at least one of an air supply source and outside air, and performs at least one of supply of air into the tire and discharge of air in the tire. is there.
 この実施態様によると、第1通気路では、前記タイヤ内への空気の供給および該タイヤ内の空気の排出を行ない、第2通気路では、前記タイヤ内への空気の供給および該タイヤ内の空気の排出の少なくともいずれか一方を行なうので、1系統でタイヤ内への空気の供給およびタイヤ内の空気の排出を行う場合に比べて、空気の供給時間および排出時間の少なくとも一方の時間を短縮することができる。 According to this embodiment, in the first air passage, air is supplied into the tire and exhausted in the tire, and in the second air passage, air is supplied into the tire and inside the tire. Since at least one of air discharge is performed, at least one of the air supply time and the exhaust time is shortened as compared with the case of supplying air into the tire and discharging air from the tire with one system. can do.
 (3)本発明の好ましい実施態様では、前記第2通気路は、空気供給源および外気に接続可能であって、かつ前記タイヤ内への空気の供給および前記タイヤ内の空気の排出を行なうものであり、
 前記第1通気路は、空気供給源および外気の少なくともいずれか一方に接続可能であって、かつ前記タイヤ内への空気の供給および前記タイヤ内の空気の排出の少なくともいずれか一方を行なうものである。
(3) In a preferred embodiment of the present invention, the second air passage is connectable to an air supply source and outside air, and supplies air into the tire and discharges air from the tire. And
The first air passage is connectable to at least one of an air supply source and outside air, and performs at least one of supply of air into the tire and discharge of air in the tire. is there.
 この実施態様によると、第2通気路では、前記タイヤ内への空気の供給および該タイヤ内の空気の排出を行ない、第1通気路では、前記タイヤ内への空気の供給および該タイヤ内の空気の排出の少なくともいずれか一方を行なうので、1系統でタイヤ内への空気の供給およびタイヤ内の空気の排出を行う場合に比べて、空気の供給時間および排出時間の少なくとも一方の時間を短縮することができる。 According to this embodiment, in the second air passage, the air is supplied into the tire and the air in the tire is discharged, and in the first air passage, the air is supplied into the tire and in the tire. Since at least one of air discharge is performed, at least one of the air supply time and the exhaust time is shortened as compared with the case of supplying air into the tire and discharging air from the tire with one system. can do.
 (4)本発明の他の実施態様では、前記下リムは、スピンドルに連結され、前記スピンドルに前記第2通気路の一部を構成する第2通気孔が穿設され、
 前記上リムから連結軸が延出され、前記連結軸は、前記スピンドルに挿入連結されるものであり、前記連結軸に前記第1通気路の一部を構成する第1通気孔が穿設される。
(4) In another embodiment of the present invention, the lower rim is connected to a spindle, and a second ventilation hole forming a part of the second ventilation path is formed in the spindle.
A connecting shaft extends from the upper rim, and the connecting shaft is inserted and connected to the spindle, and a first ventilation hole that forms a part of the first ventilation path is formed in the connecting shaft. The
 この実施態様によると、空気の流路面積は上リム側と下リム側との2系統の第1、第2通気路の和となるので、上リム側の第1通気路を構成する連結軸に穿設した第1通気孔、および下リム側の第2通気路を構成するスピンドルに穿設した第2通気孔をそれぞれ小径のものにしながら十分な流路面積を確保することができ、その結果、第1、第2通気孔を穿設する部材およびこれに関わる部材の大型化を回避することができる。 According to this embodiment, the area of the air flow path is the sum of the first and second air passages of the two systems of the upper rim side and the lower rim side, so that the connecting shaft constituting the first air passage on the upper rim side A sufficient flow area can be secured while making the first vent hole drilled in the first vent hole and the second vent hole drilled in the spindle constituting the second vent path on the lower rim side having a small diameter, respectively. As a result, it is possible to avoid an increase in the size of the member for drilling the first and second vent holes and the member related thereto.
 (5)本発明の更に他の実施態様では、前記第1通気路には、上リムと共に回転する回転側の通気路と回転しない非回転側の通気路とを接続分離するカプラを介在させ、
 前記第2通気路には、下リムと共に回転する回転側の通気路と回転しない非回転側の通気路とを接続分離するカプラを介在させる。。
(5) In still another embodiment of the present invention, a coupler that connects and separates a rotation-side air passage that rotates with the upper rim and a non-rotation-side air passage that rotates together with the upper rim is interposed in the first air passage,
A coupler that connects and separates the rotating-side air passage that rotates together with the lower rim and the non-rotating-side air passage is interposed in the second air passage. .
 この実施態様によると、上下リムで挟持したタイヤを回転させて検査する際にカプラを分離操作しておくことで、回転系統を固定側から機械的に分離した自由状態にして回転作動させることができ、外部からの回転抵抗などの影響を受けることなく精度の高い検査を行うことができる。 According to this embodiment, when the tire sandwiched between the upper and lower rims is rotated and inspected, the coupler is separated so that the rotation system can be rotated and operated in a free state mechanically separated from the fixed side. It is possible to perform a highly accurate inspection without being affected by external rotational resistance.
 なお、本発明の他の実施形態として、回転側の通気路と回転しない非回転側の通気路とを接続分離するカプラを、第1通気路または第2通気路の一方の通気路だけに設けてもよい。 As another embodiment of the present invention, a coupler for connecting and separating the rotation-side air passage and the non-rotation-side air passage is provided only in one of the first air passage and the second air passage. May be.
 (6)本発明の他の実施態様では、前記第1通気路および前記第2通気路は、それぞれ開閉弁を介して前記空気供給源および前記外気に接続される。 (6) In another embodiment of the present invention, the first air passage and the second air passage are connected to the air supply source and the outside air via an on-off valve, respectively.
 この実施態様によると、開閉弁の開閉を制御することによって、第1通気路および第2通気路の2系統の通気路でタイヤ内に空気の供給を行うことができる一方、前記2系統の通気路でタイヤに封入した空気の排出を行うことができる。そのため、1系統で供給および排出を行う場合に比べて、空気の供給および排出の時間を短縮することができる。 According to this embodiment, by controlling the opening and closing of the on-off valve, air can be supplied into the tire through the two air passages of the first air passage and the second air passage, while the two air passages are provided. The air enclosed in the tire on the road can be discharged. Therefore, the time for supplying and discharging air can be shortened as compared with the case of supplying and discharging with one system.
 このように、本発明によれば、部材の大型化に伴う装置全体の大型化や重量増大を招くことなく空気の流路面積を十分確保し、タイヤ内への空気の供給時間やタイヤ内に充填された空気の排出時間を短縮することができ、これによって、検査に要する時間を短縮することができる。 As described above, according to the present invention, a sufficient air flow area is ensured without increasing the size and weight of the entire device due to the increase in the size of the member, and the air supply time into the tire and the tire are increased. The time for discharging the filled air can be shortened, whereby the time required for the inspection can be shortened.
タイヤ検査装置の側面図である。It is a side view of a tire inspection apparatus. 計測部の正面図である。It is a front view of a measurement part. 計測部の横断平面図である。It is a cross-sectional top view of a measurement part. 上リムを連結した状態の縦断面図である。It is a longitudinal cross-sectional view of the state where the upper rim is connected. 要部を拡大した縦断面図である。It is the longitudinal cross-sectional view which expanded the principal part. 加圧空気の給排構造を示す概略図である。It is the schematic which shows the supply / discharge structure of pressurized air. 把持機構の側面図である。It is a side view of a holding | grip mechanism. 把持機構の平面図である。It is a top view of a holding mechanism. 把持機構の駆動構造を示す正面図である。It is a front view which shows the drive structure of a holding | grip mechanism.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以降の説明においては、タイヤWの搬入搬出方向を前後方向、これと直交する横方向を左右方向と呼称する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the loading / unloading direction of the tire W is referred to as the front / rear direction, and the lateral direction perpendicular thereto is referred to as the left / right direction.
 図1は、本発明の一実施形態に係るタイヤ検査装置の側面図である。このタイヤ検査装置には、検査対象のタイヤWを嵌合支持する下リム1が装備された計測部Aと、下リム1と協同してタイヤWを上下から挟持する上リム2を昇降させるリム昇降装置Bと、タイヤWを左右から挟持して前後方向(図1中で紙面に垂直方向)に水平搬送および上下移動させるタイヤ搬送装置Cとが備えられている。 FIG. 1 is a side view of a tire inspection apparatus according to an embodiment of the present invention. In this tire inspection apparatus, a rim for raising and lowering an upper rim 2 that clamps the tire W from above and below in cooperation with the lower rim 1 and a measuring unit A equipped with a lower rim 1 for fitting and supporting the tire W to be inspected. A lifting device B and a tire transport device C that sandwiches the tire W from the left and right and horizontally transports and moves up and down in the front-rear direction (perpendicular to the paper surface in FIG. 1) are provided.
 このタイヤ搬送装置Cによって計測部Aに搬入されたタイヤWを下リム1と上リム2とで上下に挟持した後、タイヤW内に空気を供給充填して膨張させ、膨張状態でタイヤWを所定速度で回転させる。この回転状態において、タイヤWのアンバランスによって発生する水平方向の遠心力を計測することで、タイヤWの動的釣合いを検査する。以下、各部の構造について説明する。 After the tire W carried into the measuring unit A by the tire conveying device C is vertically sandwiched between the lower rim 1 and the upper rim 2, the tire W is inflated by supplying air to the tire W and inflated. Rotate at a predetermined speed. In this rotating state, the dynamic balance of the tire W is inspected by measuring the horizontal centrifugal force generated by the unbalance of the tire W. Hereinafter, the structure of each part will be described.
 タイヤ搬送装置Cには、タイヤ搬送径路の左右両脇に固定配備されたベース板3、各ベース板3に前後水平に設けられたレール4に沿ってスライド前後移動可能な左右一対の前後可動台5、各前後可動台5に左右水平に設けられたレール6に沿ってスライド左右移動可能な左右一対の左右可動台7、縦レール8に沿ってスライド上下移動可能に左右可動台7に支持された上下可動台9、各上下可動台9の前後複数箇所に縦向きに軸支された多数個の支持ローラ10が備えられている。 The tire conveying device C includes a pair of left and right front and rear movable bases that can be moved back and forth along a base plate 3 fixedly arranged on both left and right sides of the tire conveying path, and rails 4 provided horizontally on the respective base plates 3. 5. A pair of left and right movable bases 7 slidable along the rails 6 horizontally provided on the respective front and rear movable bases 5 and supported by the left and right movable bases 7 so as to be slidable up and down along the vertical rails 8. The vertical movable table 9 is provided with a plurality of support rollers 10 that are axially supported at a plurality of positions before and after each vertical movable table 9.
 更に、タイヤ搬送装置Cには、左右の前後可動台5を互いに同調して前後移動させる駆動手段、左右の左右可動台7を互いに同調して接近および離反移動させる駆動手段、および、左右の上下可動台9を互いに同調して上下移動させる駆動手段等が備えられている。 Further, the tire conveying device C includes driving means for moving the left and right front and rear movable bases 5 back and forth in synchronism with each other, driving means for moving the left and right left and right movable bases 7 toward and away from each other in synchronism with each other, Driving means for moving the movable base 9 up and down in synchronism with each other is provided.
 タイヤ搬送径路を挟んで対応する左右可動台7を互いに同調させて接近移動させることで、支持ローラ10群によってタイヤWを左右から押圧してセンタリングすることができる。さらに左右可動台7によって強く押圧挟持することでタイヤWを落下させることなく支持ローラ10群で把持することができる。そして、この把持状態で左右の前後可動台5を同調して前後移動させることで、把持したタイヤWを水平に前後移動させることができ、また、タイヤ把持状態で左右の上下可動台9を同調して上下移動させることで、把持したタイヤWを持上げあるいは下降させることができる。 By moving the corresponding left and right movable bases 7 in synchronization with each other across the tire conveyance path, the tire W can be pressed and centered from the left and right by the group of support rollers 10. Further, the tire W can be gripped by the group of support rollers 10 without being dropped by being strongly pressed and clamped by the left and right movable base 7. In this gripping state, the left and right front and rear movable bases 5 are moved back and forth in synchronization, so that the gripped tire W can be moved back and forth horizontally, and the left and right vertical movable bases 9 are synchronized in the tire gripping state. Thus, the gripped tire W can be lifted or lowered by moving it up and down.
 リム昇降装置Bは、計測部Aにおける主フレーム11の側面にフレーム12を介して連結された支柱フレーム13を備えている。支柱フレーム13には、縦レール14を介して昇降台15が、スライド上下動可能に支持されている。この昇降台15に備えられた把持機構16によって、上リム2が支持される。支柱フレーム13に設けられたネジ軸17を、モータ18で正逆回転させることによって、昇降台15を上下にネジ送り移動させる。これによって、昇降台15の把持機構16によって把持された上リム2を昇降させる。 The rim lifting device B includes a support frame 13 connected to a side surface of the main frame 11 in the measurement unit A via a frame 12. On the support frame 13, a lifting platform 15 is supported via a vertical rail 14 so as to be slidable up and down. The upper rim 2 is supported by the gripping mechanism 16 provided on the lifting platform 15. The screw shaft 17 provided on the support frame 13 is rotated forward and backward by a motor 18 to move the lifting platform 15 up and down by screw feeding. As a result, the upper rim 2 gripped by the gripping mechanism 16 of the lift 15 is moved up and down.
 把持機構16の詳細な構造が図7~図9に示されている。把持機構16は、支持ブラケット19と可動把持部材21とを有する。支持ブラケット19は、昇降台15の下面に連結されている。可動把持部材21は、前後一対設けられている。各可動把持部材21は、支持ブラケット19の前面に上下一対のレール20を介して前後方向に水平移動可能に装着されている。各可動把持部材21には、ラックギヤ部材22が連結されている。支持ブラケット19の前面中央には、水平支点x周りにピニオンギヤ23が遊転自在に支持されている。各ラックギヤ部材22は、ピニオンギヤ23の上下箇所にそれぞれ咬合している。これにより両可動把持部材21が同調して前後方向に背反移動する。 The detailed structure of the gripping mechanism 16 is shown in FIGS. The gripping mechanism 16 has a support bracket 19 and a movable gripping member 21. The support bracket 19 is connected to the lower surface of the lifting platform 15. A pair of front and rear movable gripping members 21 are provided. Each movable gripping member 21 is mounted on the front surface of the support bracket 19 via a pair of upper and lower rails 20 so as to be horizontally movable in the front-rear direction. A rack gear member 22 is connected to each movable gripping member 21. A pinion gear 23 is supported around the horizontal fulcrum x at the center of the front surface of the support bracket 19 so as to be freely rotatable. Each rack gear member 22 meshes with the upper and lower portions of the pinion gear 23. As a result, the two movable gripping members 21 move counterclockwise in the front-rear direction in synchronization.
 一方の可動把持部材21をエアシリンダ24で前後動させることで、それに連動して両可動把持部材21が互いに接近移動および離反移動する。支持軸25は、図1に示されるように、上リム2の中心部から上方に延出しており、この支持軸25の所定箇所が、接近移動する両可動把持部材21によって前後から把持される。なお、支持軸25は、上リム2に連結されて下方に延出された連結軸26の上端に一体連結されている。連結軸26には、リム交換時に用いるリム支持軸27が外嵌連結されている(図5参照)。 When one movable gripping member 21 is moved back and forth by the air cylinder 24, the two movable gripping members 21 move toward and away from each other in conjunction with the movement. As shown in FIG. 1, the support shaft 25 extends upward from the center portion of the upper rim 2, and a predetermined portion of the support shaft 25 is gripped from the front and rear by both movable gripping members 21 that move closer. . The support shaft 25 is integrally connected to the upper end of a connection shaft 26 that is connected to the upper rim 2 and extends downward. A rim support shaft 27 used for rim replacement is externally connected to the connection shaft 26 (see FIG. 5).
 図1に示すように、計測部Aの主フレーム11は矩形箱形に構成されている。主フレーム11には、スピンドル32が回転自在に鉛直に挿通支持されている。スピンドル32の上部は主フレーム11の上面から突出しており、このスピンドル32の上部に下リム1が連結されている。 As shown in FIG. 1, the main frame 11 of the measuring unit A is configured in a rectangular box shape. A spindle 32 is inserted into and supported by the main frame 11 so as to be rotatable. The upper part of the spindle 32 protrudes from the upper surface of the main frame 11, and the lower rim 1 is connected to the upper part of the spindle 32.
 図2は、計測部Aの構成を示す正面図であり、図3は、計測部Aの横断平面図であり、図4は、上リムを連結した状態の縦断面図である。 2 is a front view showing the configuration of the measurement unit A, FIG. 3 is a cross-sectional plan view of the measurement unit A, and FIG. 4 is a longitudinal sectional view of the state where the upper rim is connected.
 計測部Aの主フレーム11の中央部位に配備された支持ケーシング31の上下2箇所と主フレーム11の側壁11aとが、平行に水平配備された左右一対ずつのトーションバー33を介して連結されている。支持ケーシング31の上下中間部位と主フレーム11の上壁11bとが、鉛直配備された前後一対のトーションバー34を介して連結されている。荷重検出用のロードセル35が、支持ケーシング31の上下2箇所と主フレーム11の側壁11aとに亘って架設されている。 The two upper and lower portions of the support casing 31 provided in the central portion of the main frame 11 of the measuring unit A and the side wall 11a of the main frame 11 are connected via a pair of left and right torsion bars 33 arranged horizontally in parallel. Yes. The upper and lower intermediate portions of the support casing 31 and the upper wall 11b of the main frame 11 are connected via a pair of front and rear torsion bars 34 arranged vertically. A load cell 35 for load detection is installed across the upper and lower portions of the support casing 31 and the side wall 11 a of the main frame 11.
 支持ケーシング31は、上方の筒状部31aと、その下部に連設されて対向する一対の板状部31bとを備えている。筒状部31aには、スピンドル32が上下2組の軸受け36を介して鉛直軸心p周りに回動可能に支承されている。 The support casing 31 includes an upper cylindrical portion 31a and a pair of plate-like portions 31b that are connected to the lower portion and face each other. A spindle 32 is supported on the cylindrical portion 31a via two pairs of upper and lower bearings 36 so as to be rotatable around the vertical axis p.
 スピンドル32の下端部は、支持ケーシング31の対向する板状部31bの間に挿入されている。スピンドル32の挿入端、すなわち下端部にはプーリ37が備えられている。主フレーム11の外側には、中継プーリ38が配備されている。プーリ37と中継プーリ38とには、歯付きのベルト39が巻き掛けられており、プーリ37と中継プーリ38とは、ベルト39を介してスリップすることなく連動している。図3に示すように、中継プーリ38の軸38aとサーボモータ40とには、ベルト41が巻き掛けられており、軸38aとサーボモータ40とは、ベルト41を介してスリップすることなく連動している。 The lower end portion of the spindle 32 is inserted between the opposing plate-like portions 31 b of the support casing 31. A pulley 37 is provided at the insertion end of the spindle 32, that is, at the lower end. A relay pulley 38 is provided outside the main frame 11. A toothed belt 39 is wound around the pulley 37 and the relay pulley 38, and the pulley 37 and the relay pulley 38 are linked via the belt 39 without slipping. As shown in FIG. 3, a belt 41 is wound around the shaft 38a of the relay pulley 38 and the servo motor 40, and the shaft 38a and the servo motor 40 are linked via the belt 41 without slipping. ing.
 また、スピンドル32とロータリエンコーダ42とには、ベルト43が巻き掛けられており、スピンドル32とロータリエンコーダ42とは、ベルト43を介してスリップなく等速で連動する。これによって、スピンドル32の回転位置がロータリエンコーダ42によって検出される。 Further, a belt 43 is wound around the spindle 32 and the rotary encoder 42, and the spindle 32 and the rotary encoder 42 are linked via the belt 43 at a constant speed without slipping. Thereby, the rotary position of the spindle 32 is detected by the rotary encoder 42.
 スピンドル32の上方大径部32aは、図5に示すように、支持ケーシング31および主フレーム11の上壁11bを越えて上方に突出している。上方大径部32aには、下リム装着用のフランジ44が備えられている。フランジ44の上面には、例えば、カービックカップリングやハースカップリング(商品名)などの自動調芯カップリング45が連結されている。 The upper large diameter portion 32a of the spindle 32 protrudes upward beyond the support casing 31 and the upper wall 11b of the main frame 11 as shown in FIG. The upper large diameter portion 32a is provided with a flange 44 for mounting a lower rim. For example, a self-aligning coupling 45 such as a Kirbic coupling or a Hearth coupling (trade name) is connected to the upper surface of the flange 44.
 自動調芯カップリング45は、上面周部に放射状に歯が形成された下側カップリング45aと、下面周部に放射状に歯が形成された上側カップリング45bとを有している。下側カップリング45aは、スピンドル32に同芯にボルト連結されている。下リム1の下面には、ブラケット46が連結されており、上側カップリング45bは、ブラケット46を介して下リム1に同芯にボルト連結されている。 The self-aligning coupling 45 has a lower coupling 45a in which teeth are formed radially on the upper surface periphery and an upper coupling 45b in which teeth are formed radially on the lower surface periphery. The lower coupling 45a is bolted to the spindle 32 concentrically. A bracket 46 is connected to the lower surface of the lower rim 1, and the upper coupling 45 b is connected to the lower rim 1 with a bolt concentrically via the bracket 46.
 自動調芯カップリング45は、周知のように、下側カップリング45aと上側カップリング45bとを互いに上下方向に咬合させることで、同芯にかつ周方向ならびに前後左右に相対移動しない状態で結合するようになっている。すなわち、自動調芯カップリング45は、自動調芯機能を備えている。 As is well known, the self-aligning coupling 45 is coupled in a state where the lower coupling 45a and the upper coupling 45b are engaged with each other in the vertical direction so that they are concentric and do not move relative to each other in the circumferential direction, front and rear, left and right. It is supposed to be. That is, the automatic alignment coupling 45 has an automatic alignment function.
 従って、下リム1をスピンドル32の上方から下降させ、上側カップリング45bをフランジ44上の下側カップリング45aに載せつけて咬合させるだけで、自動調芯カップリング45の自動調芯機能によって下リム1は高い精度でスピンドル32と同芯状態となる。 Therefore, the lower rim 1 is lowered from above the spindle 32, and the upper coupling 45b is placed on the lower coupling 45a on the flange 44 to engage with each other. The rim 1 is concentric with the spindle 32 with high accuracy.
 計測部Aは一対のチャック機構47を有する。チャック機構47は、スピンドル32と同芯に装着された下リム1をスピンドル32に連結固定する。チャック機構47は、図2に示すようにスピンドル32の軸心pに対して対角位置に位置するようフランジ44の外周部位に備えられている。 The measuring unit A has a pair of chuck mechanisms 47. The chuck mechanism 47 connects and fixes the lower rim 1 mounted concentrically with the spindle 32 to the spindle 32. As shown in FIG. 2, the chuck mechanism 47 is provided at the outer peripheral portion of the flange 44 so as to be positioned diagonally with respect to the axis p of the spindle 32.
 詳細な構造は図示しないが、チャック機構47では、図5に示すように、下リム1の下面における対角位置から下方に突出させた一対のロックピン48を、フランジ44の外周部に配備固定されたチャックケース49に上方から挿入させ、挿入させたロックピン48にロックボールを係合させることで、チャックケース49からのロックピン48の抜け出しを阻止している。ロックピン48をチャックケース49に挿入して抜け止めロックをかけることで下リム1はスピンドル32と一体化する。 Although the detailed structure is not shown, in the chuck mechanism 47, as shown in FIG. 5, a pair of lock pins 48 that protrude downward from the diagonal position on the lower surface of the lower rim 1 are deployed and fixed to the outer periphery of the flange 44. The lock pin 48 is inserted into the chuck case 49 from above and a lock ball is engaged with the inserted lock pin 48 to prevent the lock pin 48 from coming out of the chuck case 49. The lower rim 1 is integrated with the spindle 32 by inserting the lock pin 48 into the chuck case 49 and applying a lock for preventing it from coming off.
 スピンドル32における上方大径部32aの上端に上リム連結用筒軸51が同芯に連結されている。上リム2の中心から下方に延出された連結軸26が、上リム連結用筒軸51に挿入される。上リム連結用筒軸51の下半部における上下2箇所それぞれには、周方向一定ピッチで複数個(この例では8個)のロックボール52が組み込まれている。 The upper rim coupling cylinder shaft 51 is concentrically coupled to the upper end of the upper large diameter portion 32a of the spindle 32. The connecting shaft 26 extending downward from the center of the upper rim 2 is inserted into the upper rim connecting cylinder shaft 51. A plurality (eight in this example) of lock balls 52 are incorporated at two positions in the upper and lower portions of the lower half of the upper rim coupling cylinder shaft 51 at a constant circumferential pitch.
 連結軸26の下部外周には、環状の係合溝53が一定のピッチで多数形成されている。これら係合溝53には、上下2組のロックボール52群が入り込む。ロックボール52は、上リム連結用筒軸51に径方向内外方向に移動可能に筒軸51の外周から挿入されている。ロックボール52が径方向内方に移動すると、上リム連結用筒軸51の内周にロックボール52の一部が突出する。この状態で連結軸26が挿入されている場合には、ロックボール52が連結軸26の係合溝53に入り込む。一方、ロックボール52が径方向外方に移動して上リム連結用筒軸51の内周から外方へ退避すると、連結軸26の挿抜が許容される。なお、上リム連結用筒軸51に形成されたボール挿入孔の内端は、ボール径より若干小さくなっており、連結軸26が挿入されていない状態でもロックボール52が上リム連結用筒軸51の内部に落ち込むことはない。 A large number of annular engaging grooves 53 are formed on the outer periphery of the lower portion of the connecting shaft 26 at a constant pitch. Two groups of upper and lower lock balls 52 enter the engagement grooves 53. The lock ball 52 is inserted into the upper rim coupling cylinder shaft 51 from the outer periphery of the cylinder shaft 51 so as to be movable radially inward and outward. When the lock ball 52 moves inward in the radial direction, a part of the lock ball 52 protrudes on the inner periphery of the upper rim coupling cylinder shaft 51. When the connecting shaft 26 is inserted in this state, the lock ball 52 enters the engaging groove 53 of the connecting shaft 26. On the other hand, when the lock ball 52 moves radially outward and retracts outward from the inner circumference of the upper rim coupling cylinder shaft 51, the insertion and removal of the coupling shaft 26 is allowed. Note that the inner end of the ball insertion hole formed in the upper rim connecting cylinder shaft 51 is slightly smaller than the ball diameter, and the lock ball 52 can be connected to the upper rim connecting cylinder shaft even when the connecting shaft 26 is not inserted. 51 does not fall into the interior.
 上リム連結用筒軸51の下端外周には、操作筒軸55が上下スライド可能に外嵌配備されている。操作筒軸55の内周面における上下2箇所には環状溝56が設けられている。操作筒軸55が図中下方にスライドされると、各環状溝56がロックボール52より下方に外れる。これにより、ロックボール52が操作筒軸55の内面に当接して、その外方移動が操作筒軸55によって阻止される。一方、操作筒軸55が上方にスライドされると、各環状溝56がロックボール52に対向してロックボール52の径方向外方への移動空間が形成される。つまり、操作筒軸55が下方スライド位置にあると、ロックボール52が径方向内方に突出してロック状態になる。反対に操作筒軸55が上方スライド位置にあると、ロックボール52の径方向外方への後退が許容されたロック解除状態になる。 The operation cylinder shaft 55 is fitted on the outer periphery of the lower rim coupling cylinder shaft 51 so as to be slidable up and down. An annular groove 56 is provided at two locations on the inner peripheral surface of the operation cylinder shaft 55 in the upper and lower portions. When the operation cylinder shaft 55 is slid downward in the figure, each annular groove 56 is disengaged downward from the lock ball 52. As a result, the lock ball 52 comes into contact with the inner surface of the operation cylinder shaft 55 and the outward movement thereof is blocked by the operation cylinder shaft 55. On the other hand, when the operation cylinder shaft 55 is slid upward, each annular groove 56 faces the lock ball 52, and a space for moving the lock ball 52 outward in the radial direction is formed. That is, when the operation cylinder shaft 55 is in the downward slide position, the lock ball 52 protrudes radially inward to be locked. On the other hand, when the operation cylinder shaft 55 is in the upward sliding position, the lock ball 52 is unlocked in a state where the lock ball 52 is allowed to retract outward in the radial direction.
 操作筒軸55の下端からは小径軸部55aが延出されている。小径軸部55aは、図4に示すように支持ケーシング31の対向する板状部31bの間に挿入されている。小径軸部55aの外周には、圧縮コイルバネ57が外嵌装着されている。圧縮コイルバネ57のバネ上端は、スピンドル32に連結固定された上部バネ受けカラー58に支持されており、バネ下端は、小径軸部51aに外嵌固定された下部バネ受けカラー59に支持されている。操作筒軸55は、圧縮コイルバネ57の弾発力によって下方のロック位置に向けてスライド付勢されている。 A small diameter shaft portion 55 a extends from the lower end of the operation tube shaft 55. As shown in FIG. 4, the small-diameter shaft portion 55 a is inserted between the opposing plate-like portions 31 b of the support casing 31. A compression coil spring 57 is fitted on the outer periphery of the small diameter shaft portion 55a. The upper end of the compression coil spring 57 is supported by an upper spring receiving collar 58 that is connected and fixed to the spindle 32, and the lower end of the spring is supported by a lower spring receiving collar 59 that is externally fixed to the small-diameter shaft portion 51a. . The operating cylinder shaft 55 is slidably biased toward the lower locking position by the elastic force of the compression coil spring 57.
 小径軸部55aの下端近くには、操作フランジ55bが備えられている。支持ケーシング31の板状部31bの内側には、エアシリンダ60によって上下移動される操作部材61が配備されている。エアシリンダ60を突出作動させて操作部材61を上方に移動させると、操作部材61の上端に設けられたローラ61aが操作筒軸55の操作フランジ55bを突き上げる。これにより、操作筒軸55は圧縮コイルバネ57に抗して上方にスライドされて、上述したロック解除状態となる。 Near the lower end of the small diameter shaft portion 55a, an operation flange 55b is provided. An operation member 61 that is moved up and down by an air cylinder 60 is disposed inside the plate-like portion 31 b of the support casing 31. When the operation member 61 is moved upward by projecting the air cylinder 60, the roller 61a provided at the upper end of the operation member 61 pushes up the operation flange 55b of the operation cylinder shaft 55. As a result, the operation cylinder shaft 55 is slid upward against the compression coil spring 57 and enters the unlocked state described above.
 このタイヤ検査装置においては、下リム1と上リム2とで挟持したタイヤWへの加圧空気の給気及び排気を下リム側および上リム側から行う。以下その構造を説明する。 In this tire inspection apparatus, supply and exhaust of pressurized air to the tire W sandwiched between the lower rim 1 and the upper rim 2 are performed from the lower rim side and the upper rim side. The structure will be described below.
 上リム2と下リム1とでタイヤWを挟持すると、タイヤW内に連通する第1,第2通気路が形成される。第1通気路は、上リム側に形成され、第2通気路は、下リム側に形成される。下リム側の第2通気路を構成する操作筒軸55は、小径軸部55aを有する。小径軸部55aの中心には、図4及び図5に示すように、操作筒軸55の内部空間に連通する通気孔aが形成されている。小径軸部55aの下端部には、ロータリジョイント65が装備されている。ロータリジョイント65と図6に示す加圧空気供給装置66とは、カプラ68を介して連通接続されている。カプラ68は図2に示すようにエアシリンダ67によって接続および分離可能となっている。 When the tire W is sandwiched between the upper rim 2 and the lower rim 1, first and second air passages communicating with the inside of the tire W are formed. The first air passage is formed on the upper rim side, and the second air passage is formed on the lower rim side. The operation cylinder shaft 55 constituting the second air passage on the lower rim side has a small diameter shaft portion 55a. As shown in FIGS. 4 and 5, a vent hole a communicating with the internal space of the operation cylinder shaft 55 is formed at the center of the small diameter shaft portion 55 a. A rotary joint 65 is provided at the lower end of the small diameter shaft portion 55a. The rotary joint 65 and the pressurized air supply device 66 shown in FIG. 6 are connected in communication via a coupler 68. The coupler 68 can be connected and disconnected by an air cylinder 67 as shown in FIG.
 加圧空気供給装置66は、コンプレッサや加圧空気を貯留したエアタンクなどの加圧空気供給源69から送出された加圧空気を、高圧の減圧弁70および電磁開閉弁72を介して、あるいは、低圧の減圧弁71および電磁開閉弁73を介してロータリジョイント65に送り込むよう配管接続されている。また、電磁開閉弁72,73とロータリジョイント65とを結ぶ電磁開閉弁72,73の下手側の配管からは、大気に連通する排気路dが分岐されている。排気路dは、第2通気路を構成している。排気路dには、電磁開閉弁74および消音器75が備えられている。 The pressurized air supply device 66 sends pressurized air sent from a pressurized air supply source 69 such as a compressor or an air tank storing pressurized air via a high pressure reducing valve 70 and an electromagnetic on-off valve 72, or It is connected by piping so as to be fed into the rotary joint 65 through the low pressure reducing valve 71 and the electromagnetic opening / closing valve 73. Further, an exhaust passage d communicating with the atmosphere is branched from the lower piping of the electromagnetic on / off valves 72 and 73 connecting the electromagnetic on / off valves 72 and 73 and the rotary joint 65. The exhaust path d constitutes a second ventilation path. The exhaust path d is provided with an electromagnetic opening / closing valve 74 and a silencer 75.
 上リム側においては、連結軸26と、その上端に連結された支持軸25の中心とに亘って通気孔bが穿設されている。通気孔bは、第1通気路を構成している。連結軸26には、リム支持軸27が外嵌されている。通気孔bとリム支持軸27の外周とに亘って、複数の通気孔cが放射状に穿設されている。 On the upper rim side, a vent hole b is formed across the connecting shaft 26 and the center of the support shaft 25 connected to the upper end thereof. The ventilation hole b constitutes a first ventilation path. A rim support shaft 27 is fitted on the connecting shaft 26. A plurality of vent holes c are formed radially from the vent hole b and the outer periphery of the rim support shaft 27.
 支持軸25の上端部と加圧空気供給装置76とは、カプラ78を介して連通接続されている。カプラ78は、図2に示すようにエアシリンダ77によって接続および分離可能となっている。加圧空気供給装置76は、下リム側と同様に、図6に示す加圧空気供給源79から送出された加圧空気を、高圧の減圧弁80および電磁開閉弁82を介して、あるいは、低圧の減圧弁81および電磁開閉弁83を介してカプラ78に送り込むよう配管接続されている。また、電磁開閉弁82,83とカプラ78とを結ぶ電磁開閉弁82,83の下手側の配管からは、大気に連通する排気路eが分岐されている。排気路eは、第1通気路を構成する。排気路eには、電磁開閉弁84および消音器85が備えられている。 The upper end portion of the support shaft 25 and the pressurized air supply device 76 are connected in communication via a coupler 78. The coupler 78 can be connected and disconnected by an air cylinder 77 as shown in FIG. Similarly to the lower rim side, the pressurized air supply device 76 sends the pressurized air sent from the pressurized air supply source 79 shown in FIG. 6 via the high-pressure pressure reducing valve 80 and the electromagnetic on-off valve 82, or It is connected by piping so as to be fed into the coupler 78 through the low pressure reducing valve 81 and the electromagnetic opening / closing valve 83. An exhaust passage e communicating with the atmosphere is branched from the lower piping of the electromagnetic on / off valves 82 and 83 connecting the electromagnetic on / off valves 82 and 83 and the coupler 78. The exhaust path e constitutes a first ventilation path. The exhaust passage e is provided with an electromagnetic opening / closing valve 84 and a silencer 85.
 タイヤ検査装置の主要部は以上のように構成されており、次に、その検査の動作について説明する。 The main part of the tire inspection apparatus is configured as described above. Next, the inspection operation will be described.
 (1)図1に示すように、初期セット状態では、上リム2は下リム1から上方に大きく離れた位置で待機しており、タイヤ搬送装置Cにセンタリング把持されて検査対象のタイヤWが計測部Aに搬入されてくる。 (1) As shown in FIG. 1, in the initial set state, the upper rim 2 stands by at a position far away from the lower rim 1, and the tire W to be inspected is gripped by the tire conveying device C and centered. It is carried into the measuring unit A.
 (2)タイヤWが計測部Aの中心上に到達すると、タイヤ搬送装置Cの上下可動台9が下降して、タイヤWの下側ビード部が下リム1に嵌合される。その後、左右の左右可動台7が互いに同調して後退移動することで、支持ローラ10群によるタイヤWの把持が解除される。 (2) When the tire W reaches the center of the measurement unit A, the vertical movable base 9 of the tire transport device C is lowered, and the lower bead portion of the tire W is fitted to the lower rim 1. Thereafter, the left and right movable platforms 7 move backward in synchronization with each other, whereby the gripping of the tire W by the group of support rollers 10 is released.
  (3)次に、待機位置の上リム2が下降される。このとき、スピンドル側では、操作筒軸55がエアシリンダ60によって上方にスライド操作されてロック解除状態にあるので、上リム2の連結軸26は上リム連結用筒軸51に挿入することができる。 (3) Next, the upper rim 2 of the standby position is lowered. At this time, on the spindle side, the operation cylinder shaft 55 is slid upward by the air cylinder 60 and is in the unlocked state, so that the connection shaft 26 of the upper rim 2 can be inserted into the upper rim connection cylinder shaft 51. .
  (4)装着するタイヤWの幅に対応して予め設定されている高さ位置に上リム2が到達すると、上リム下降作動が停止される。その後、エアシリンダ60が後退作動すると、圧縮コイルバネ57の付勢を受けた操作筒軸55が、下方のロック位置にスライドする。ここで、連結軸26に形成した係合溝53のピッチは、タイヤサイズの変更ピッチに対応しているので、上下2組のロックボール52はそれぞれいずれかの係合溝53に対向し、ロックボール52は、下方にスライド移動する操作筒軸55に押されることで当該ロックボール52に対応する係合溝53に係合する。これによって上リム2の上下方向での位置決めロックが完了する。 (4) When the upper rim 2 reaches a preset height position corresponding to the width of the tire W to be mounted, the upper rim lowering operation is stopped. Thereafter, when the air cylinder 60 is moved backward, the operation cylinder shaft 55 urged by the compression coil spring 57 slides to the lower locking position. Here, since the pitch of the engagement grooves 53 formed in the connecting shaft 26 corresponds to the tire size change pitch, the two upper and lower sets of the lock balls 52 face each of the engagement grooves 53 and lock. The ball 52 is engaged with the engagement groove 53 corresponding to the lock ball 52 by being pushed by the operation cylinder shaft 55 that slides downward. Thereby, the positioning lock in the vertical direction of the upper rim 2 is completed.
 (5)次に、下リム側の第2通気路と上リム側の第1通気路からタイヤWへ空気供給作動が開始される。すなわち、先ず高圧側の電磁開閉弁72,82が開かれて高圧空気が設定時間だけ通気孔a,bに送出される。その後、低圧側の電磁開閉弁73,83が開かれて、低圧空気が通気孔a,bに送出される。そうすると、下リム側では、加圧空気が接続状態のカプラ68およびロータリジョイント65を経て通気孔aに送り込まれ、上リム側では、加圧空気が接続状態のカプラ78を経て通気孔bに送り込まれる。このようにして上下から供給されて合流する加圧空気が通気孔cからタイヤ内に供給される。 (5) Next, the air supply operation to the tire W is started from the second air passage on the lower rim side and the first air passage on the upper rim side. That is, first, the high-pressure electromagnetic open / close valves 72 and 82 are opened, and high-pressure air is sent to the vent holes a and b for a set time. Thereafter, the low-pressure side electromagnetic on-off valves 73 and 83 are opened, and the low-pressure air is sent to the vent holes a and b. Then, on the lower rim side, pressurized air is sent to the vent hole a through the connected coupler 68 and the rotary joint 65, and on the upper rim side, pressurized air is sent to the vent hole b through the connected coupler 78. It is. In this way, the pressurized air that is supplied from above and below and merges is supplied from the vent hole c into the tire.
 (6)下リム側および上リム側からの空気供給によってタイヤWが所定の内圧になるまで膨張されると、加圧空気の供給が停止される。そののち、上下の各カプラ68,78がエアシリンダ67,77によってそれぞれ分離処理される。各カプラ68,78は、接続処理されると通気状態となる一方、分離処理されると、それに連動して通路を閉じる自閉機能が備えられており、各カプラ68,78の分離後もタイヤ内の空気封入状態が維持される。加圧空気の供給が停止されると、把持機構16による支持軸25の把持が解除される。これにより、支持軸25は、把持機構16および加圧空気供給装置76から機械的に分離された自由状態となる。 (6) When the tire W is inflated to a predetermined internal pressure by supplying air from the lower rim side and the upper rim side, the supply of pressurized air is stopped. Thereafter, the upper and lower couplers 68 and 78 are separated by the air cylinders 67 and 77, respectively. Each coupler 68, 78 is in a vented state when connected, and is provided with a self-closing function that closes the passage in conjunction with the separation, and the tires are separated after the couplers 68, 78 are separated. The air-sealed state inside is maintained. When the supply of pressurized air is stopped, gripping of the support shaft 25 by the gripping mechanism 16 is released. As a result, the support shaft 25 is in a free state mechanically separated from the gripping mechanism 16 and the pressurized air supply device 76.
 (7)その後、サーボモータ40が起動されてスピンドル32が回転する。すると、下リム1と上リム2とで挟持されたタイヤWが所定の速度で回転する。タイヤ回転時にタイヤWのアンバランスによって水平方向の遠心力が発生すると、その遠心力は、支持ケーシング31に連結された上下のロードセル35で検出される。検出されたデータとロータリエンコ-ダ42の回転位置情報とは、図示しない演算処理装置に伝達される。演算処理装置はタイヤWの動的釣合いを演算し、さらに軽点位置などを演算する。 (7) Thereafter, the servo motor 40 is activated and the spindle 32 rotates. Then, the tire W sandwiched between the lower rim 1 and the upper rim 2 rotates at a predetermined speed. When a centrifugal force in the horizontal direction is generated due to imbalance of the tire W during tire rotation, the centrifugal force is detected by the upper and lower load cells 35 connected to the support casing 31. The detected data and the rotational position information of the rotary encoder 42 are transmitted to an arithmetic processing unit (not shown). The arithmetic processing unit calculates the dynamic balance of the tire W, and further calculates the light spot position and the like.
 (8)測定が終了すると、下リム1が基準位置に戻るようにスピンドル32の回転位置が制御される。その後、カプラ68,78が接続されかつ電磁開閉弁74,84が開かれることで排気径路d,eが開放される。これにより、タイヤWに充填封入された空気は、通気孔cから通気孔b,a(第1,第2の通気路)に分散して流入する。これによりタイヤWの封入空気は下リム側および上リム側の2系統から速やかに流出する。 (8) When the measurement is completed, the rotational position of the spindle 32 is controlled so that the lower rim 1 returns to the reference position. Thereafter, the couplers 68 and 78 are connected and the electromagnetic on-off valves 74 and 84 are opened to open the exhaust paths d and e. As a result, the air filled and sealed in the tire W flows from the vent hole c to the vent holes b and a (first and second vent paths) in a dispersed manner. Thereby, the sealed air of the tire W quickly flows out from the two systems on the lower rim side and the upper rim side.
 (9)その後、操作筒軸55が再び上方移動することで、ロックボール52がロック解除状態となると共に、上リム2の支持軸25が把持機構16によって把持される。さらにリム昇降装置Cが作動して上リム2を元の待機位置まで上昇させる。これにより次の測定処理に備えた待機状態となる。 (9) Thereafter, when the operation cylinder shaft 55 moves upward again, the lock ball 52 is unlocked and the support shaft 25 of the upper rim 2 is gripped by the gripping mechanism 16. Further, the rim lifting device C operates to raise the upper rim 2 to the original standby position. Thus, a standby state is prepared for the next measurement process.
 (10)次に、タイヤ搬送装置Cが作動して検査済みのタイヤWを強く把持した後、持ち上げることでタイヤWが下リム1から分離され、引き続きタイヤWが水平に搬出され、これで1回の検査が完了し、以後、新たなタイヤ搬入のつど上記手順を順次繰り返す。 (10) Next, after the tire conveying device C is operated to grip the inspected tire W strongly, the tire W is separated from the lower rim 1 by lifting, and the tire W is subsequently carried out horizontally. Once the inspection has been completed, the above procedure is repeated in sequence each time a new tire is loaded.
 以上のように、この実施形態によれば、上リム2側と下リム1側との2系統の通気路を介してタイヤW内への空気の供給と、タイヤW内からの空気の排出を行うので、1系統でタイヤWへの空気の供給および排出を行う構成に比べて、空気の供給時間および排出時間を短縮することができ、さらにはタイヤWの検査処理の向上を図ることができる。 As described above, according to this embodiment, the supply of air into the tire W and the discharge of air from the inside of the tire W are performed through the two air passages on the upper rim 2 side and the lower rim 1 side. As a result, the air supply time and the exhaust time can be shortened compared to a configuration in which the air is supplied to and discharged from the tire W by one system, and further, the inspection processing of the tire W can be improved. .
 また、タイヤWを回転させてそのアンバランスを測定する際には、上下の各カプラ68,78が分離されて回転部分と外部の非回転部分とが分離されるので、外部からの回転抵抗などの影響を受けることなく精度の高い測定を行うことができる。 Further, when the tire W is rotated and its imbalance is measured, the upper and lower couplers 68 and 78 are separated to separate the rotating portion and the external non-rotating portion. Highly accurate measurement can be performed without being affected by the above.
 また、下リム側のみで空気の供給および排出を行う従来例では、カプラ68を備えておらず、ロータリジョイント65に、空気の供給及び排出のためのエアホースが常時接続されている。そのため、タイヤWを回転させてそのアンバランスを測定する際には、回転部分がエアホースからの外力を受けることがないようにエアホースを配設しなければならないが、狭いスペースでそのようなエアホースの配設を行うことは容易でない。しかしながら、上述した本発明の実施形態では、かかる不具合もない。 In the conventional example in which air is supplied and discharged only on the lower rim side, the coupler 68 is not provided, and an air hose for supplying and discharging air is always connected to the rotary joint 65. Therefore, when the tire W is rotated and the imbalance is measured, the air hose must be arranged so that the rotating part does not receive external force from the air hose. It is not easy to arrange. However, the above-described embodiment of the present invention does not have such a problem.
 なお、この実施形態のタイヤ検査装置では、検査対象となるタイヤWのサイズ変更に伴って上下リム1,2の交換が必要となった場合、リム昇降装置Bを利用して下リム1をスピンドル32から取り外すことができるようになっている。 In the tire inspection apparatus according to this embodiment, when the upper and lower rims 1 and 2 need to be replaced as the size of the tire W to be inspected changes, the rim lifting device B is used to remove the lower rim 1 from the spindle. 32 can be removed.
 すなわち、上リム2を下降させて、連結軸26を上リム連結用筒軸51に挿入した後、スピンドル32を介して下リム1を基準位置から所定角度(例えば45度)だけ所定方向に回動させる。これにより、チャック機構47が、主フレーム11の上面に設置したロック解除用シリンダ86(図5参照)の直上に位置する。この状態でロック解除用シリンダ86を上方に突出作動させる。チャック機構47は、ロック解除を行う解除操作部材47aを有しており、解除操作部材47aはチャック機構47から下方に付勢突出している。ロック解除用シリンダ86が上方に突出作動されると、解除操作部材47aはその付勢力に抗して突き上げ操作される。これによりチャック機構47はロック解除されて、ロックピン48はチャックケース49から抜き出し可能な状態となる。 That is, after the upper rim 2 is lowered and the connecting shaft 26 is inserted into the upper rim connecting cylinder shaft 51, the lower rim 1 is rotated in a predetermined direction by a predetermined angle (for example, 45 degrees) from the reference position via the spindle 32. Move. As a result, the chuck mechanism 47 is positioned directly above the unlocking cylinder 86 (see FIG. 5) installed on the upper surface of the main frame 11. In this state, the unlocking cylinder 86 is operated to project upward. The chuck mechanism 47 has a release operation member 47 a that performs unlocking, and the release operation member 47 a protrudes downward from the chuck mechanism 47. When the unlocking cylinder 86 is operated to project upward, the release operating member 47a is pushed up against the biasing force. As a result, the chuck mechanism 47 is unlocked and the lock pin 48 can be pulled out of the chuck case 49.
 一方、下リム1を基準位置から所定角度だけ所定方向に回動させた状態では、次のようになる。すなわち、連結軸26に外嵌連結されたリム支持軸27の下端には、十字状に係合爪27aが備えられており、下リム1の中央には十字形の開口部1aが設けられている。下リム1を上述したように回動させた状態では、係合爪27aが開口部1aに係合可能な状態となる。この状態で上リム2を上昇させると、係合爪27aと開口部1aとが係合してリム支持軸27の下端部に係合支持された下リム1が上リム2と共に持ち上げられる。 On the other hand, in a state where the lower rim 1 is rotated in a predetermined direction by a predetermined angle from the reference position, the following occurs. That is, the lower end of the rim support shaft 27 that is externally connected to the connecting shaft 26 is provided with an engaging claw 27 a in a cross shape, and a cross-shaped opening 1 a is provided in the center of the lower rim 1. Yes. In the state where the lower rim 1 is rotated as described above, the engagement claw 27a can be engaged with the opening 1a. When the upper rim 2 is raised in this state, the lower claw 1 engaged with and supported by the lower end portion of the rim support shaft 27 is lifted together with the upper rim 2 by engaging the engaging claws 27a and the opening 1a.
 (他の実施形態)
 本発明は、以下のような形態で実施することもできる。
(Other embodiments)
The present invention can also be implemented in the following forms.
 (1)上記実施形態では、下リム側および上リム側から加圧空気をタイヤWに供給すると共に、タイヤWに充填した空気の排出を行うようにしているが、加圧空気の供給を下リム側からのみ行い、タイヤWからの空気の排出を下リム側および上リム側から行う形態で実施することもできる。これによると、下リム側からのみ供給及び排出を行っていた従来より排出時間を短縮することができる。 (1) In the above embodiment, the pressurized air is supplied to the tire W from the lower rim side and the upper rim side, and the air filled in the tire W is discharged. It is also possible to carry out only from the rim side and to discharge air from the tire W from the lower rim side and the upper rim side. According to this, the discharge time can be shortened compared to the conventional case where supply and discharge are performed only from the lower rim side.
 (2)また、加圧空気の供給を下リム側からおよび上リム側から行い、タイヤWからの空気の排出を下リム側からのみ行う形態で実施することもできる。これによると、下リム側からのみ供給及び排出を行っていた従来より加圧空気供給時間を短縮することができる。 (2) Further, it is also possible to carry out in such a form that pressurized air is supplied from the lower rim side and the upper rim side, and air is discharged from the tire W only from the lower rim side. According to this, the pressurized air supply time can be shortened compared to the conventional case where supply and discharge are performed only from the lower rim side.
 (3)下リム側の給排気系に介在したカプラ68を廃して、ロータリジョイント65と加圧空気供給装置66とを常時配管接続した従来の仕様で実施することもできる。この場合、上リム側の給排気系に備えたカプラ78に代えてロータリジョイントを設けてこのロータリジョイントと加圧空気供給装置76とを常時配管接続した形態としてもよい。 (3) The coupler 68 interposed in the supply / exhaust system on the lower rim side can be eliminated, and the conventional specification in which the rotary joint 65 and the pressurized air supply device 66 are always connected by piping can be implemented. In this case, a rotary joint may be provided instead of the coupler 78 provided in the air supply / exhaust system on the upper rim side, and the rotary joint and the pressurized air supply device 76 may be always connected by piping.
 (4)下リム側の加圧空気供給装置66と上リム側の加圧空気供給装置76の構成の少なくとも一部を共用してもよい。 (4) At least a part of the configuration of the pressurized air supply device 66 on the lower rim side and the pressurized air supply device 76 on the upper rim side may be shared.
 1       下リム
 2       上リム
 26      連結軸
 32      スピンドル
 66      加圧空気供給装置
 68      カプラ
 76      加圧空気供給装置
 78      カプラ
 a       通気孔(第2通気路)
 b       通気孔(第1通気路)
DESCRIPTION OF SYMBOLS 1 Lower rim 2 Upper rim 26 Connecting shaft 32 Spindle 66 Pressurized air supply device 68 Coupler 76 Pressurized air supply device 78 Coupler a Vent hole (second vent passage)
b Ventilation hole (first air passage)

Claims (6)

  1.  上リムと下リムとで挟持したタイヤ内に空気を供給して、前記タイヤを前記上リムおよび前記下リムと共に回転させて検査するタイヤ検査装置であって、
     前記上リムと前記下リムとで挟持した前記タイヤ内に連通する上リム側の第1通気路と、前記タイヤ内に連通する下リム側の第2通気路とを設ける、
     タイヤ検査装置。
    A tire inspection apparatus for supplying air into a tire sandwiched between an upper rim and a lower rim, and inspecting the tire by rotating the tire together with the upper rim and the lower rim,
    A first air passage on the upper rim side communicating with the tire sandwiched between the upper rim and the lower rim, and a second air passage on the lower rim side communicating with the tire;
    Tire inspection device.
  2.  前記第1通気路は、空気供給源および外気に接続可能であって、かつ前記タイヤ内への空気の供給および前記タイヤ内の空気の排出を行なうものであり、
     前記第2通気路は、空気供給源および外気の少なくともいずれか一方に接続可能であって、かつ前記タイヤ内への空気の供給および前記タイヤ内の空気の排出の少なくともいずれか一方を行なうものである、
     請求項1に記載のタイヤ検査装置。
    The first air passage is connectable to an air supply source and outside air, and supplies air into the tire and discharges air from the tire.
    The second air passage is connectable to at least one of an air supply source and outside air, and performs at least one of supply of air into the tire and discharge of air in the tire. is there,
    The tire inspection device according to claim 1.
  3.  前記第2通気路は、空気供給源および外気に接続可能であって、かつ前記タイヤ内への空気の供給および前記タイヤ内の空気の排出を行なうものであり、
     前記第1通気路は、空気供給源および外気の少なくともいずれか一方に接続可能であって、かつ前記タイヤ内への空気の供給および前記タイヤ内の空気の排出の少なくともいずれか一方を行なうものである、
     請求項1に記載のタイヤ検査装置。
    The second air passage is connectable to an air supply source and outside air, and supplies air into the tire and discharges air from the tire.
    The first air passage is connectable to at least one of an air supply source and outside air, and performs at least one of supply of air into the tire and discharge of air in the tire. is there,
    The tire inspection device according to claim 1.
  4.  前記下リムは、スピンドルに連結され、前記スピンドルに前記第2通気路の一部を構成する第2通気孔が穿設され、
     前記上リムから連結軸が延出され、前記連結軸は、前記スピンドルに挿入連結されるものであり、前記連結軸に前記第1通気路の一部を構成する第1通気孔が穿設される、
     請求項1ないし3のいずれかに記載のタイヤ検査装置。
    The lower rim is connected to a spindle, and the spindle is provided with a second ventilation hole that constitutes a part of the second ventilation path,
    A connecting shaft extends from the upper rim, and the connecting shaft is inserted and connected to the spindle, and a first ventilation hole that forms a part of the first ventilation path is formed in the connecting shaft. The
    The tire inspection device according to any one of claims 1 to 3.
  5.  前記第1通気路には、上リムと共に回転する回転側の通気路と回転しない非回転側の通気路とを接続分離するカプラを介在させ、
     前記第2通気路には、下リムと共に回転する回転側の通気路と回転しない非回転側の通気路とを接続分離するカプラを介在させる、
     請求項1ないし3のいずれかに記載のタイヤ検査装置。
    In the first air passage, a coupler for connecting and separating the air passage on the rotating side that rotates together with the upper rim and the air passage on the non-rotating side that does not rotate is interposed,
    In the second air passage, a coupler that connects and separates the air passage on the rotating side that rotates together with the lower rim and the air passage on the non-rotating side that does not rotate is interposed.
    The tire inspection device according to any one of claims 1 to 3.
  6.   前記第1通気路および前記第2通気路は、それぞれ開閉弁を介して前記空気供給源および前記外気に接続される、
      請求項2または3に記載のタイヤ検査装置。
    The first ventilation path and the second ventilation path are connected to the air supply source and the outside air via an on-off valve, respectively.
    The tire inspection device according to claim 2 or 3.
PCT/JP2012/005681 2011-10-11 2012-09-07 Tire inspection device WO2013054466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280043292.6A CN103782145B (en) 2011-10-11 2012-09-07 Tire checkup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-223701 2011-10-11
JP2011223701A JP5937327B2 (en) 2011-10-11 2011-10-11 Tire inspection device

Publications (1)

Publication Number Publication Date
WO2013054466A1 true WO2013054466A1 (en) 2013-04-18

Family

ID=48081538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005681 WO2013054466A1 (en) 2011-10-11 2012-09-07 Tire inspection device

Country Status (3)

Country Link
JP (1) JP5937327B2 (en)
CN (1) CN103782145B (en)
WO (1) WO2013054466A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532102A (en) * 2013-07-11 2016-10-13 アンドロイド インダストリーズ エルエルシー Equilibrium device, equal device, and method of using them
CN111656154A (en) * 2018-02-02 2020-09-11 三菱重工机械系统株式会社 Rim replacing machine, rim retaining device and tire testing system
EP4336161A1 (en) * 2022-09-08 2024-03-13 Akron Special Machinery, Inc. Tire inspection assembly including a spindle and a clamping mechanism

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447371B1 (en) 2013-06-13 2014-10-06 김진회 Apparatus for detecting damaged tire of vehicle
JP6057942B2 (en) * 2014-04-22 2017-01-11 三菱重工マシナリーテクノロジー株式会社 Tire holding device and tire test system including the tire holding device
US10371593B2 (en) * 2016-11-08 2019-08-06 Akron Special Machinery, Inc. Dynamic balancer
JP6798862B2 (en) * 2016-12-06 2020-12-09 住友ゴム工業株式会社 Tire dynamic balance and uniformity measuring device
JP6804174B2 (en) * 2017-09-15 2020-12-23 大和製衡株式会社 Tire inspection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109839U (en) * 1979-01-29 1980-08-01
JPH0254142A (en) * 1988-07-27 1990-02-23 Gebr Hofmann Gmbh & Co Kg Mas Fab Air pressure monitor controller for tire to be tested for tire tester
JPH09126956A (en) * 1995-10-26 1997-05-16 Kobe Steel Ltd Tire testing machine
JPH10160643A (en) * 1996-10-02 1998-06-19 Kobe Steel Ltd Tire-testing machine
JP2004205276A (en) * 2002-12-24 2004-07-22 Kobe Steel Ltd Tire uniformity machine
JP2006051791A (en) * 2004-07-16 2006-02-23 Yokohama Rubber Co Ltd:The Tire holding apparatus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014139A (en) * 1974-01-11 1977-03-29 Shooter Donald H Wheel balance and truing machine
US4222721A (en) * 1978-09-08 1980-09-16 The Firestone Tire & Rubber Company Apparatus for curing tires and the like
JPS57141534A (en) * 1981-02-26 1982-09-01 Kobe Steel Ltd Compensating method for measuring error of tire uniformity machine
JPH01310914A (en) * 1988-06-09 1989-12-15 Bridgestone Corp Postcure inflator
JPH0727649A (en) * 1993-06-23 1995-01-31 Mitsubishi Heavy Ind Ltd Tire holding device in dynamic balancer of tire
JP3904319B2 (en) * 1998-02-05 2007-04-11 国際計測器株式会社 Tire dynamic balance testing equipment
EP0924502A3 (en) * 1997-12-16 1999-07-07 Kokusai Keisokuki Kabushiki Kaisha Apparatus for measuring uniformity and/or dynamic-balance of tire
KR100566414B1 (en) * 2003-08-20 2006-03-31 금호타이어 주식회사 A Tire Cure System for Discharging Condensing Water with Facility
KR100581284B1 (en) * 2004-06-15 2006-05-17 현대자동차주식회사 Vehicle burglarproof apparatus
JP2006208245A (en) * 2005-01-28 2006-08-10 Yokohama Rubber Co Ltd:The Tire holding system
JP2007302032A (en) * 2006-05-09 2007-11-22 Toyota Motor Corp Air pressure feeding device
JP5483318B2 (en) * 2009-09-29 2014-05-07 大和製衡株式会社 Dynamic balance measuring device for tires
CN102133842A (en) * 2011-03-12 2011-07-27 张国利 Central inflation/deflation device for auto tires

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109839U (en) * 1979-01-29 1980-08-01
JPH0254142A (en) * 1988-07-27 1990-02-23 Gebr Hofmann Gmbh & Co Kg Mas Fab Air pressure monitor controller for tire to be tested for tire tester
JPH09126956A (en) * 1995-10-26 1997-05-16 Kobe Steel Ltd Tire testing machine
JPH10160643A (en) * 1996-10-02 1998-06-19 Kobe Steel Ltd Tire-testing machine
JP2004205276A (en) * 2002-12-24 2004-07-22 Kobe Steel Ltd Tire uniformity machine
JP2006051791A (en) * 2004-07-16 2006-02-23 Yokohama Rubber Co Ltd:The Tire holding apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532102A (en) * 2013-07-11 2016-10-13 アンドロイド インダストリーズ エルエルシー Equilibrium device, equal device, and method of using them
KR101840575B1 (en) 2013-07-11 2018-03-20 안드로이드 인더스트리즈 엘엘씨 Balancing device, uniformity device and methods for utilizing the same
CN111656154A (en) * 2018-02-02 2020-09-11 三菱重工机械系统株式会社 Rim replacing machine, rim retaining device and tire testing system
EP4336161A1 (en) * 2022-09-08 2024-03-13 Akron Special Machinery, Inc. Tire inspection assembly including a spindle and a clamping mechanism

Also Published As

Publication number Publication date
JP5937327B2 (en) 2016-06-22
JP2013083549A (en) 2013-05-09
CN103782145B (en) 2016-05-11
CN103782145A (en) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2013054466A1 (en) Tire inspection device
JP5313943B2 (en) Rim changing device and rim changing method for tire testing machine
KR101549682B1 (en) Apparatus for measuring uniformity of tire
US8176775B2 (en) Tire inflation method for tire testing machine
JP5917041B2 (en) Rim changing device in tire balance measuring device
US6772626B1 (en) Apparatus and method for measuring tire balance on a force variation machine
JP4242846B2 (en) Tire transport / holding device
US6308566B1 (en) Apparatus for measuring uniformity and/or dynamic-balance of tire
TW201447254A (en) Tire carrier method, tire carrying and fixing apparatus, and tire test system
WO2015155883A1 (en) Tire holding device and tire testing system
US8313319B2 (en) Post cure inflator
US11397137B2 (en) Clamping mechanism for a tyre testing device and method for clamping a tested tyre into the clamping mechanism
JP5896727B2 (en) Rim stock equipment for tires
JP6153497B2 (en) Tire testing machine
JP2015197368A (en) tire testing machine
JP4219465B2 (en) System for preventing relative displacement of rotating part of uniformity test equipment
JP2004205276A (en) Tire uniformity machine
KR102020711B1 (en) Wheel replacement device of tire uniformity testing machine
JP2004205275A (en) Tire uniformity machine
KR101824141B1 (en) Apparatus for checking green tire
JP2019035659A (en) Device for holding tire in tire equilibration tester
JP2016003953A (en) Tire testing machine
BRPI0400307B1 (en) Apparatus and method for measuring tire balancing in force-varying machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280043292.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840378

Country of ref document: EP

Kind code of ref document: A1