JP2006048060A - 回折光学素子の製造方法 - Google Patents

回折光学素子の製造方法 Download PDF

Info

Publication number
JP2006048060A
JP2006048060A JP2005229476A JP2005229476A JP2006048060A JP 2006048060 A JP2006048060 A JP 2006048060A JP 2005229476 A JP2005229476 A JP 2005229476A JP 2005229476 A JP2005229476 A JP 2005229476A JP 2006048060 A JP2006048060 A JP 2006048060A
Authority
JP
Japan
Prior art keywords
optical element
substrate
mask
thin film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005229476A
Other languages
English (en)
Inventor
Tak Kui Wang
タク・クイ・ワン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agilent Technologies Inc
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Publication of JP2006048060A publication Critical patent/JP2006048060A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1852Manufacturing methods using mechanical means, e.g. ruling with diamond tool, moulding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】
回折光学素子を製造するための新規の方法を提供する。
【解決手段】
回折光学素子の製造方法が、基板104の一部分を露出させて第1のマスク102を形成するステップと、基板上104に第1の膜110を堆積させるステップと、第1のマスク102を除去して基板104上に第1の光学素子110Aを形成するステップと、第1の光学素子110Aの一部分を露出させて第2のマスク112を形成するステップと、基板104上に第2の膜120を堆積させるステップと、第2のマスク112を除去して第2の光学素子120Aを形成するステップとを含む。
【選択図】図4

Description

本発明は、回折光学素子(DOE)の製造方法に関する。
回折光学素子(DOE)の製造方法は公知であり、特に、マスクを設けた後にエッチングを連続的に行う方法が知られている(例えば、特許文献1参照)。各マスクのエッチング深度は、バイナリ加重されている(深さの値が2つまたは多数になっている)。このような方法によれば、N枚のマスクを使用するだけで2の位相レベルを得ることができる。
米国特許第5,218,471号明細書(Swansonら)
本発明の課題は、回折光学素子(DOE)を製造するための新規の方法を提供することである。
本発明の一実施態様では、回折光学素子(DOE)を製造する方法は、基板の一部分を露出させて第1のマスクを形成するステップと、基板上に第1の膜を堆積させるステップと、第1のマスクを除去して基板上に第1の光学素子を形成するステップと、第1の光学素子の一部分を露出させて第2のマスクを形成するステップと、基板上に第2の膜を堆積させるステップと、第2のマスクを除去して第2の光学素子を形成するステップとを含んでいる。
本発明の別の態様では、DOEを製造する方法は、第1の材料をパターンニングして基板の一部分を露出させるステップと、基板上に第1の膜を堆積させるステップと、第1の膜と第1の材料を平坦化して第1の光学素子を形成するステップと、第2の材料をパターンニングして第1の光学素子の一部分を露出させるステップと、基板上に第2の膜を堆積させるステップと、第2の膜および第2の材料を平坦化して第2の光学素子を形成するステップとを含む。
以下に、本発明を図面に基づき詳説する。
異なる図面においても、同じ参照符合は同様または同一の要素を示す。図面は、精確な縮尺では描かれておらず、説明を目的としただけのものである。
図1〜図5に、本発明の一実施態様の、回折光学素子(DOE)を製造するためのリフトオフ法を示す。
図1で、リフトオフマスク102を基板104上に形成する。このマスク102は、リエントリ側面形状(上にいくほどせり出す形状)をした側壁106を有する。この側壁106は、基板104の一部分を露出させる窓108を画定する。基板104はシリコン基板であり、マスク102は、スピンコートされ、露光され、現像されたフォトレジストとすることができる。
図2で、基板104上に薄膜110を堆積させる。これにより、薄膜110は、マスク102上および基板104の露出部分上に設けられる。この薄膜110は、電子線蒸着またはスパッタリングにより堆積された誘電体(例えばSi、SiOまたはTiO)である。薄膜を蒸着により堆積させる場合には、蒸着装置に設けられたその場厚みモニタ(インサイトゥでの厚みを監視する装置)を利用することにより、その厚みを高い精度(例えばターゲット厚みの10%以内)で制御することができる。
図3で、マスク102を除去すると、その上に設けられた薄膜がリフトオフされ、基板104上に堆積させた薄膜が残される。残された薄膜は光学素子110Aを形成する。マスク102はレジスト剥離剤により化学的に除去することができる。
図4で、リフトオフマスク112を基板104上に形成する。マスク112は、リエントリ側面形状をした側壁116を有する。この側壁116は、光学素子110Aの一部分を露出させる窓118を画定する。マスク112は、光学素子110Aの側壁115も覆っているので、光学素子110A上にさらに別の光学素子を形成するために適切なオフセット(ずれ)が得られる。
次いで、薄膜120を基板104上に形成する。これにより、薄膜120は、マスク112上および光学素子110Aの露出部分上に設けられる。マスク112を除去すると、その上に堆積させた薄膜はリフトオフされ、光学素子110A上に堆積させた薄膜は残される。残された薄膜120は光学素子120A(図5)を形成する。
図5で、リフトオフマスク122を基板104上に形成する。このマスク122は、リエントリ側面形状をした側壁126を有する。側壁126は、光学素子120Aの一部分を露出させる窓128を画定する。マスク122は光学素子120Aの側壁125も覆っているので、光学素子120A上にさらに別の光学素子を形成するために適切なオフセットが得られる。
次いで、薄膜130を基板104上に堆積させる。これにより、薄膜130は、マスク122上および光学素子120Aの露出部分上に設けられる。マスク122を除去すると、その上に堆積した薄膜はリフトオフされ、光学素子120A上に堆積した薄膜は残される。残された薄膜130は光学素子130Aを形成する(図6)。
上記のように同じ処理を複数回繰り返すことにより、所望の厚みと形状を有する光学素子のスタックを製造することができる。
図6は、上述のプロセスから形成された光学素子110A、120A、130Aおよび140Aを有する構造体100を示す。一態様では、構造体100は透過型グレーティングのようなDOEである。もちろん、反射性の薄膜を使用すれば反射型グレーティングも製造することができる。
別の実施態様では、構造体100は、従来の紫外線(UV)複製プロセスを用いてDOEを製造するための型となる。
別の態様では、1つ以上の構造体100が、従来の射出成形プロセスを用いてDOEを製造するための型142を形成する。この態様では、基板104は金属基板であり、光学素子110A、120A、130Aおよび140Aは金属薄膜(例えばNi)からなっている。
別の態様では、構造体100は、従来のステップアンドフラッシュインプリントリソグラフィーを用いてDOEを製造するためのインプリントマスクを形成する。この態様では、基板104は金属基板であり、光学素子110A、120A、130Aおよび140Aは金属薄膜(例えばNi)からなっている。
図7〜図10に示した別の実施態様では、構造体100はm、DOEの製造に用いられる型のための原型である。この態様では、基板104は金属基板であり、光学素子110A、120A、130Aおよび140Aは金属薄膜(例えばCu、AuまたはW)からなっている。図7では、原型100を金属150(例えばNi)で覆うことによって、金属150の層を原型100上に形成する。
図8で、原型100と基板104を除去し、型150Aを形成する。型150Aは、DOEの形状を有する空洞152を画定している。原型100および基板104は、化学湿式エッチングにより除去することができる。図9では、型150A中に材料を堆積させ、DOE160を形成する。図10では、DOE160を型150Aから外し、使用のために準備する。その材料によって、DOE160は透過型グレーティングまたは反射型グレーティングとなりうる。
図11〜図16は、本発明の一態様で、バイナリ加重マスクを用いてDOEを製造するためのリフトオフ法を示す。
図11で、リフトオフマスク202を基板204上に形成する。マスク202は、基板204の一部分を露出させる窓208を画定する。基板204はシリコン基板であり、マスク202は、その上にスピンコートされ、露出され、現像されたフォトレジストである。図示していないが、マスク202の側壁がリエントリ側面形状を有していてもよいことが理解される。
次いで、薄膜210を基板204上に形成する。この薄膜210は、マスク202上および基板204の露出部分上に設けられる。薄膜210は、電子線蒸着またはスパッタリングにより堆積させた誘電体(例えばSi、SiOまたはTiO)である。
図12で、マスク202を除去すると、その上に設けられた薄膜がリフトオフされ、基板204上に設けられた薄膜が残される。残された薄膜は、光学素子210Aを形成する。マスク202は、レジスト剥離剤により化学的に除去することができる。
図13で、リフトオフマスク212を基板204上に形成する。バイナリ加重方式を実現するために、マスク212は光学素子210Aの一部分と基板204の一部分を露出させる窓218Aを画定する。マスク212は、基板204の他の部分を露出させる窓218Bも画定する。図示していないが、マスク212の側壁がリエントリ側面形状を有していてもよいことが理解される。
次いで、薄膜220を基板204上に形成し、マスク212上、ならびに光学素子210Aおよび基板204の露出部分上に堆積させる。バイナリ加重方式を実現するために、薄膜220の厚みは薄膜210の半分となっている。
図14で、マスク212を除去することにより、その上に設けられた薄膜がリフトオフされ、光学素子210Aおよび基板204上に設けられた薄膜が残される。残された薄膜は、光学素子220A、220Bおよび220Cを形成する。2つのマスクの使用することにより、4階層構造が形成される。
図15で、リフトオフマスク222を基板204上に形成する。バイナリ加重方式を実現するために、マスク222は窓228A、228B、228Cおよび228Dを画定する。窓228Aは、光学素子220Aの一部分を露出させている。窓228Bは、光学素子210Aの一部分を露出させている。窓228Cは、光学素子220Bの一部分を露出させている。窓228Dは、光学素子220Cの一部分および基板204の一部分を露出させている。図示していないが、マスク222の側壁がリエントリ側面形状を有していてもよいことが理解される。
次いで、薄膜230を基板204上に形成し、マスク222上、ならびに基板204および光学素子210A、220A、200B、220Cの露出部分上に堆積させる。バイナリ加重方式を実現するために、薄膜230の厚みは薄膜220の半分である。
図16で、マスク222を除去すると、その上に設けられた薄膜がリフトオフされ、基板204上および光学素子210A、220A、220Bおよび220C上に設けられた薄膜が残される。残された薄膜は光学素子230A、230B、230C、230Dおよび230Eを形成する。3つのマスクを使用することにより、8階層構造体200が形成される。一態様においては、構造体200は透過型グレーティングのようなDOEである。もちろん、反射性薄膜を使用すれば反射型グレーティングを作ることもできる。
上述のように、同じプロセスを複数回繰り返すことにより、所望の厚みおよび形状を有する光学素子のスタックを製造することができる。さらに、薄膜層の層厚は、順次薄くなっているが、その代わりに順次厚くなっていくように堆積させることもできる。このように順次厚くなっていくように薄膜を堆積させる場合には、フォトレジストのリフトオフマスクを、より均一にスピンコートすることができる。
別の態様では、構造体200は、従来のUV複製プロセスを用いてDOEを製造するための型である。
別の態様では、構造体200は、従来の射出成型プロセスを用いてDOEを製造するための型を形成する。この態様では、基板204は金属基板であり、薄膜210、220および230は金属薄膜(例えばNi)である。
別の実施態様では、構造体200は、従来のステップアンドリフトインプリントリソグラフィーを用いてDOEを製造するためのインプリントマスクを形成する。この態様では、基板204は金属基板であり、薄膜210、220および230は金属薄膜(例えばNi)である。
図17〜図20に示す別の態様では、構造体200は、DOEを製造するのに用いられる型のための原型となる。この態様では、基板204は金属基板であり、薄膜210、220および230は金属薄膜(例えばCu、AuまたはW)である。図17では、原型200を金属250(例えばNi)で覆うことにより、金属250の層が原型200上に形成される。
図18で、原型200および基板204を除去し、型250Aを形成する。型250AはDOEの形状を有する空洞252を画定している。原型200および基板204は化学湿式エッチングにより除去することができる。図19では、型250A中に材料を堆積させ、DOE260を形成する。図20では、DOE260は型250Aから外して、使用のために準備する。その材料によって、DOE260は透過型グレーティングまたは反射型グレーティングとなりうる。
図21〜図27に、本発明の一態様に基づき、DOEを製造するためのダマシン法に類似の方法を示す。
図21で、酸化物層302を基板304上に形成する。酸化物層302は、プラズマ化学気相蒸着法(PECVD)により堆積させたSiOであり、基板304は、シリコン基板である。次に、エッチングマスク305を酸化物層302上に形成する。エッチングマスク305は、スピンコートされ、露出され、現像されたフォトレジストである。エッチングマスク305は、酸化物層302の一部分を露出させる窓306を画定する。
図22で、酸化物層302の露出部分を除去する。酸化膜302の露出部分は、乾式または湿式エッチングにより除去することができる。
図23で、エッチングマスク305を除去する。このエッチングマスク305は、レジスト剥離剤により化学的に除去することができる。残された酸化膜302は基板304の一部分を露出させる窓308を画定している。
図24で、薄膜310を基板304上に形成する。これにより、薄膜310は、酸化膜302上および基板304の露出部分上に設けられる。薄膜310は、PECVDにより堆積させたSiであってもよい。
図25で、酸化物層302および薄膜310を、所望の厚みに平坦化する。酸化物層302および薄膜310は、化学機械研磨(CMP)により平坦化することができる。薄膜の残された部分が光学素子310Aを形成する。
上述したように、同じプロセスを複数回繰り返すことにより、所望の厚みおよび形状を有する光学素子のスタックを製造することができる。平坦化された表面は、次の光学素子の形成に用いるフォトレジストエッチングマスクをスピンコートするための滑らかな表面を提供する。このプロセスは、相補型金属酸化物半導体(CMOS)のプロセスにおいて銅の導体を形成するのに現在用いられているダマシン法に似ており、光学素子の厚み(例えば層間位置合わせ)および形状(例えばフィーチャサイズ)を、高い精度(例えば、それぞれ0.04μmおよび0.4μm)で制御することができる。
図26および図27に、上述したプロセスから形成された光学素子310A、320A、330A、340Aおよび350Aを含む5階層構造体300を示す。残された酸化物302、312、322および332は、乾式エッチングまたは湿式エッチングにより任意に除去することができる。しかし、一部の条件下では、残った酸化物をそのまま残しておく方が望ましい場合がある。一態様では、構造体300は透過型グレーティングのようなDOEである。もちろん、反射性薄膜を使用すれば、反射型グレーティングを製造することも可能である。
別の態様では、構造体300は、従来のUV複製プロセスを用いてDOEを製造するための型である。
別の態様では、構造体300は、従来の射出成型プロセスを用いてDOEを製造するための型を形成する。この態様では、基板304は金属基板であり、光学素子310A、320A、330A、340Aおよび350Aは金属薄膜(例えばNi)からなっている。
別の態様では、構造体300は、従来のステップアンドリフトリソグラフィーを用いてDOEを製造するためのインプリントマスクを形成するものである。この実施例においては、基板304は金属基板であり、光学素子310A、320A、330A、340Aおよび350Aは金属薄膜(例えばNi)からなっている。
図28〜図31に示す別の実施態様では、構造体300は、DOEを製造するのに用いられる型のための原型となっている。この態様で、光学素子310A、320A、330A、340Aおよび350Aは金属薄膜(例えばCu、AuまたはW)である。図28で、原型300に金属350(例えばNi)を被せることにより、金属350の層が原型300上に形成される。
図29で、原型300および基板304を除去して、型350Aを形成する。型350Aは、DOEの形状を有する空洞352を画定している。原型300および基板304は、化学湿式エッチングにより除去することができる。図30では、型350Aに材料を堆積させ、DOE360が形成されている。図31では、DOE360が型350Aから外されて使用のために準備されている。その材料によって、DOE360は透過型グレーティングまたは反射型グレーティングとなりうる。
上述したプロセスは、CMOSの製造およびオプトエレクトロニクスデバイスの製造の両方において実施することができる。CMOS製造での利点は、DOEを高い精度で量産することが可能となる点である。オプトエレクトロニクスデバイス製造での利点としては、DOEをオプトエレクトロニクスデバイスと共に同じ基板上に形成できるという点が挙げられる。
上記に開示した実施態様の別の様々な適応形態や特徴の組み合わせも、本発明の範囲内にある。このような多数の実施態様は、本発明の特許請求の範囲に包含されている。
本発明の一実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の一実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の一実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の一実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の一実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の一実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の一実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の一実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の一実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の一実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明の別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明のさらに別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明のさらに別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明のさらに別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明のさらに別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明のさらに別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明のさらに別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明のさらに別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明のさらに別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明のさらに別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明のさらに別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。 本発明のさらに別の実施態様による回折光学素子の製造方法の過程の1つにおける構造の断面図である。
符号の説明
100、160、200、260、300、360 回折光学素子、原型
102、202 第1のリフトオフ・マスク
104、204、304 基板
110、210、310 第1の薄膜
110A、210A、310A 第1の光学素子
112、212 第2のリフトオフ・マスク
115 第1の光学素子の側壁
120、220 第2の薄膜
120A、220A、320A 第2の光学素子
150、250、350 金属層
150A、250A、350A 型
210A、220A、220B、220C 第3の光学素子
302 第1の材料
312 第2の材料

Claims (10)

  1. 回折光学素子(100、160、200、260)の製造方法であって、
    基板(104、204)の一部分を露出させる第1のリフトオフマスク(102、202)を形成するステップと、
    第1の薄膜(110、210)を前記基板上に形成するステップと、
    前記第1のリフトオフマスクを除去して、これにより、第1の光学素子(110A、210A)を、前記基板の露出させた前記一部分上に残すステップと、
    前記第1の光学素子の一部分を露出させる第2のリフトオフマスク(112、212)を形成するステップと、
    第2の薄膜(120、220)を前記基板上に形成するステップと、
    前記第2のリフトオフマスクを除去して、これにより、第2の光学素子(120A、220A)を、前記第1の光学素子の露出させた前記一部分上に残すステップとを含む方法。
  2. 前記第2のリフトオフマスク(112)が、前記第1の光学素子(110A)の側壁(115)を覆うものであり、
    前記第1および第2の光学素子(110A、120A)が、前記回折光学素子または当該回折光学素子を製造するための型を含む、請求項1に記載の方法。
  3. 前記第2の薄膜(220)の厚みが前記第1の薄膜(210)の厚みと異なり、
    前記第2のリフトオフマスク(212)を形成する前記ステップにより、前記基板(204)の第2の部分がさらに露出し、
    前記第2のリフトオフマスクを除去するステップにより、前記基板の前記第2の部分上に第3の光学素子(220B、220C)が残される、請求項1に記載の方法。
  4. 前記第1、第2および第3の光学素子(210A、220A、220Bまたは220C)が、(i)前記回折光学素子、(ii)前記回折光学素子を製造するための型、または(iii)前記型(250A)を形成するための原型(200)を含む、請求項3に記載の方法。
  5. 前記第1および第2の薄膜(110、120、210、220)が金属薄膜であって、前記第1および第2の光学素子(110A、120A、210A、220B)が、前記回折光学素子用の型(150A、250A)を形成するための原型(100、200)を含んでおり、
    前記原型(100、200)上に金属層(150、250)を形成するステップと、
    前記基板(104、204)および前記原型を除去して、これにより、前記金属層に型を形成するステップと、
    前記型中に材料を堆積させ、前記回折光学素子(160;260)を形成するステップとを有する、請求項1に記載の方法。
  6. 回折光学素子(300、360)の製造方法であって、
    基板(304)上で第1の材料(302)をパターニングして、前記基板の一部分を露出させるステップと、
    第1の薄膜(310)を前記基板上に堆積させるステップと、
    前記第1の薄膜および前記第1の材料を平坦化して、第1の光学素子(310A)を形成するステップと、
    前記基板上で第2の材料(312)をパターニングして、前記第1の光学素子の少なくとも一部分を露出させるステップと、
    第2の薄膜を前記基板上に形成するステップと、
    前記第2の薄膜および前記第2の材料を平坦化して、第2の光学素子(320A)を形成するステップとを含む方法。
  7. 前記第1および第2の光学素子(310A、320A)が、前記回折光学素子(300)または前記回折光学素子を製造するための型を含む、請求項6に記載の方法。
  8. 前記第1および第2の薄膜がシリコンからなり、
    前記第1および第2の材料が二酸化シリコンからなっている、請求項7に記載の方法。
  9. 前記第1および第2の薄膜が金属薄膜からなっており、
    前記第1および第2の光学素子(310A、320A)が、前記回折光学素子(360)の型(350A)を形成するための原型(300)を含む、請求項7に記載の方法。
  10. 前記第1および第2の材料(302、312)を除去するステップと、
    前記原型(300)上に金属層(350)を形成するステップと、
    前記基板(304)および前記原型を除去して、型(350A)を形成するステップと、
    前記型中に材料を堆積させて、前記回折光学素子(360)を形成するステップとをさらに含む、請求項9に記載の方法。
JP2005229476A 2004-08-06 2005-08-08 回折光学素子の製造方法 Withdrawn JP2006048060A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/913,745 US20060029889A1 (en) 2004-08-06 2004-08-06 Method to fabricate diffractive optics

Publications (1)

Publication Number Publication Date
JP2006048060A true JP2006048060A (ja) 2006-02-16

Family

ID=34984105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229476A Withdrawn JP2006048060A (ja) 2004-08-06 2005-08-08 回折光学素子の製造方法

Country Status (4)

Country Link
US (1) US20060029889A1 (ja)
JP (1) JP2006048060A (ja)
CN (1) CN1731225B (ja)
GB (1) GB2417730B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443993B2 (en) 2013-03-28 2016-09-13 Seiko Epson Corporation Spectroscopic sensor and method for manufacturing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101711646B1 (ko) * 2009-12-11 2017-03-03 엘지디스플레이 주식회사 임프린트용 몰드의 제조방법 및 임프린트용 몰드를 이용한 패턴 형성방법
JP5834458B2 (ja) * 2011-04-13 2015-12-24 株式会社ニコン 光学素子の製造方法および光学素子
US20140003777A1 (en) * 2012-07-02 2014-01-02 Commscope, Inc. Of North Carolina Light focusing structures for fiber optic communications systems and methods of fabricating the same using semiconductor processing and micro-machining techniques
US10241244B2 (en) * 2016-07-29 2019-03-26 Lumentum Operations Llc Thin film total internal reflection diffraction grating for single polarization or dual polarization
FI127799B (en) 2017-06-02 2019-02-28 Dispelix Oy Process for producing a diffraction grating
CN109116454B (zh) * 2017-06-26 2020-08-11 清华大学 光栅的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539222A (en) * 1983-11-30 1985-09-03 International Business Machines Corporation Process for forming metal patterns wherein metal is deposited on a thermally depolymerizable polymer and selectively removed
US4541168A (en) * 1984-10-29 1985-09-17 International Business Machines Corporation Method for making metal contact studs between first level metal and regions of a semiconductor device compatible with polyimide-filled deep trench isolation schemes
US5161059A (en) * 1987-09-21 1992-11-03 Massachusetts Institute Of Technology High-efficiency, multilevel, diffractive optical elements
EP0513755A3 (en) * 1991-05-14 1994-05-18 Canon Kk A method for producing a diffraction grating
US6670105B2 (en) * 1998-09-18 2003-12-30 Canon Kabushiki Kaisha Method of manufacturing diffractive optical element
JP2001100018A (ja) * 1999-09-29 2001-04-13 Canon Inc 光学素子及び素子製造方法
CN1195240C (zh) * 2002-07-13 2005-03-30 华中科技大学 一种制作多位相衍射光学元件的工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443993B2 (en) 2013-03-28 2016-09-13 Seiko Epson Corporation Spectroscopic sensor and method for manufacturing same

Also Published As

Publication number Publication date
GB2417730A (en) 2006-03-08
CN1731225A (zh) 2006-02-08
CN1731225B (zh) 2011-01-19
US20060029889A1 (en) 2006-02-09
GB0516072D0 (en) 2005-09-14
GB2417730B (en) 2009-10-28

Similar Documents

Publication Publication Date Title
US10049878B2 (en) Self-aligned patterning process
US9129906B2 (en) Self-aligned double spacer patterning process
US6852454B2 (en) Multi-tiered lithographic template and method of formation and use
US7368779B2 (en) Hemi-spherical structure and method for fabricating the same
TWI493626B (zh) 使蝕刻底蝕最小化並提供完全金屬剝落(liftoff)的方法
TWI501043B (zh) 在基板上形成圖案的方法
JP2006048060A (ja) 回折光学素子の製造方法
US20170301552A1 (en) Method for Patterning a Substrate Using a Layer with Multiple Materials
US8956962B2 (en) Method for fabricating large-area nanoscale pattern
TW200908093A (en) Method for fabricating semiconductor device
US9035408B2 (en) Nanometer-scale level structures and fabrication method for digital etching of nanometer-scale level structures
US7846345B2 (en) Method of manufacturing an imprinting template using a semiconductor manufacturing process and the imprinting template obtained
TW201017337A (en) Method for manufacturing semiconductor device
JPS6366939A (ja) 集積回路の製法
TW201513184A (zh) 金屬光柵的製備方法
CN101246307B (zh) 使用半导体工艺制造压印模板的方法及所制得的压印模板
US7585334B2 (en) Manufacturing method for molecular rulers
JP5983322B2 (ja) パターン構造体の形成方法
KR100843948B1 (ko) 반도체 소자의 미세 패턴 형성방법
KR100816210B1 (ko) 반도체 장치 형성 방법
JP2006220793A (ja) 孤立した微細構造体の製造方法
TWI381449B (zh) 半導體元件之蝕刻方法
JP6019966B2 (ja) パターン形成方法
JP2018160537A (ja) パターン形成方法
KR100734664B1 (ko) 랭뮤어 블로젯막의 배향 원리를 이용한 미세 패턴 형성방법

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091015