JP2006045838A - On-water structure and method of constructing the same - Google Patents

On-water structure and method of constructing the same Download PDF

Info

Publication number
JP2006045838A
JP2006045838A JP2004226412A JP2004226412A JP2006045838A JP 2006045838 A JP2006045838 A JP 2006045838A JP 2004226412 A JP2004226412 A JP 2004226412A JP 2004226412 A JP2004226412 A JP 2004226412A JP 2006045838 A JP2006045838 A JP 2006045838A
Authority
JP
Japan
Prior art keywords
flow
pile
water
girder
girder member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004226412A
Other languages
Japanese (ja)
Other versions
JP4574273B2 (en
Inventor
Satoru Fukuhara
哲 福原
Kazushi Kato
一志 加藤
Satoshi Ouchi
聡 大内
Takayoshi Okunuki
孝佳 奥貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2004226412A priority Critical patent/JP4574273B2/en
Publication of JP2006045838A publication Critical patent/JP2006045838A/en
Application granted granted Critical
Publication of JP4574273B2 publication Critical patent/JP4574273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Revetment (AREA)
  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an on-water structure which is constructed in a flow-down range in which water flow at a predetermined flow rate should be ensured, and has a minimally suppressed dimension, and to provide a method of constructing the on-water structure. <P>SOLUTION: According to the method of constructing the on-water structure, a plurality of piles 10A, 10B, etc. are erected on subaqueous bottom 2 in a body 1 of water, in which a cross sectional area for ensuring water flow at the predetermined flow rate is set as the flow-down range 1a, and connecting members 11 are fitted onto the piles 10A, 10A and mounted on the same. Then the connecting members 11 are settled down to a depth that is out of the flow-down range 1a below a water surface, and the piles 10A, 10A are connected together, followed by erecting girder members 12 over the piles 10A, 10B, etc., to thereby form the on-water structure 9. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水上に構築する人工地盤や桟橋などの水上構造物及びその構築方法に関するものである。   The present invention relates to a floating structure such as an artificial ground or a jetty constructed on the water and a construction method thereof.

従来、図8に示すような杭体5,・・・で支持される水上構造物8が知られている(特許文献1など参照)。   Conventionally, the floating structure 8 supported by the pile bodies 5, as shown in FIG. 8 is known (refer patent document 1 etc.).

この水上構造物8は、水底地盤2に間隔を置いて複数の杭体5,・・・を立設し、その杭体5,・・・に鋼製のジャケット6,・・・を装着することによって構築される。   This floating structure 8 is provided with a plurality of pile bodies 5,... Spaced from the water bottom ground 2, and a steel jacket 6, ... is mounted on the pile bodies 5,. Built by that.

このジャケット6には、床面を形成するデッキ部6bと、その下方に突出して前記杭体5,・・・を挿入させるための挿入孔を有する複数の接合鋼管6a,・・・とが設けられており、起重船に備えたワイヤ7でこのジャケット6を吊り上げて前記杭体5,・・・に装着される。   The jacket 6 is provided with a deck portion 6b that forms a floor surface, and a plurality of bonded steel pipes 6a,... That have insertion holes that project downward and allow the pile bodies 5,. The jacket 6 is lifted by the wire 7 provided in the hoisting ship and attached to the pile bodies 5,.

そして、前記ジャケット6を隣接して配置された別のジャケット6に連結する際には、ワイヤ7で吊り上げた不安定な状態で位置合わせをして、隣接するジャケット6との連結部8aを構築する。   When the jacket 6 is connected to another jacket 6 disposed adjacent to the jacket 6, alignment is performed in an unstable state lifted by the wire 7, and a connecting portion 8 a with the adjacent jacket 6 is constructed. To do.

一方、このような水上構造物8を河口付近に構築する場合には、次のような制約がある。   On the other hand, when constructing such a floating structure 8 near the estuary, there are the following restrictions.

すなわち、河川などの水路では、図9に示すように、洪水時に計画流量を流下させることが出来るように水路断面積が流下範囲1a(いわゆる河積)として定められており、その流下範囲1a内に構造物を設ければ、断面積が欠損して所定の流量の水を流下させることが出来なくなるため、その流下範囲1aを侵す構造物の構築は可能な限り避けるべきであるという制約がある。   That is, in a water channel such as a river, as shown in FIG. 9, the cross-sectional area of the water channel is determined as a flow area 1a (so-called river volume) so that the planned flow rate can flow down during a flood. If a structure is provided in the structure, the cross-sectional area is lost and it is impossible to flow down a predetermined flow rate of water. Therefore, there is a restriction that construction of a structure that violates the flow-down range 1a should be avoided as much as possible. .

特に、河川が海に流れ込む河口付近の水域1では、水底地盤2上にやわらかい底泥3が沈殿し易く、この底泥3が流下の妨げになるため、水底面付近の範囲を除いた範囲が流下範囲1aとして定められている。   In particular, in the water area 1 near the estuary where the river flows into the sea, soft bottom mud 3 tends to settle on the bottom ground 2 and this bottom mud 3 hinders the flow down. It is defined as the flow-down range 1a.

この流下範囲1aに構造物を構築すれば、洪水時などに計画された流量分の水を適切に流下させることが出来なくなり、河川水が護岸4を越えて流れ出す危険もあるため、できるだけ流下の阻害(河積阻害)になるような構造物の構築は避けなければならない。
特開平8−311868号公報(図4、0002段落)
If a structure is constructed in this flow area 1a, it will not be possible to properly flow the water for the planned flow rate during floods, etc., and there is a risk that river water will flow over the revetment 4. Construction of structures that would be obstructed (inhibition of rivers) must be avoided.
Japanese Patent Laid-Open No. 8-31868 (paragraph 0002, FIG. 4)

しかしながら、前記した従来のジャケット6を使用した水上構造物8の構築においては、重量の大きなジャケット6を吊り上げるために大型の起重船を使用する必要があるので、使用できる起重船が限られていると共に、その使用料によって施工費用が増加するという問題がある。   However, in the construction of the floating structure 8 using the conventional jacket 6 described above, since it is necessary to use a large hoisting ship in order to lift the heavy jacket 6, the hoisting ships that can be used are limited. In addition, there is a problem that the construction cost increases due to the usage fee.

また、ジャケット6の下方に突出した前記接合鋼管6a,・・・やブレス材6c,・・・が、前記流下範囲1aに配置されることになるため、断面積が大幅に欠損されて洪水時の計画高水流量の流下の妨げになる。   In addition, since the joint steel pipes 6a,... And the brace members 6c,... Projecting downward from the jacket 6 are disposed in the flow-down range 1a, the cross-sectional area is greatly lost and the flood is lost. This hinders the flow of the planned high water flow.

そこで、本発明は、所定の流量の流下を確保すべき流下範囲に構築される構造物を最小限に抑えた水上構造物及びその構築方法を提供することを目的としている。   Therefore, an object of the present invention is to provide a water structure and a method for constructing the same, which minimizes the structure constructed in the flow range in which the flow of a predetermined flow rate should be ensured.

前記目的を達成するために、請求項1の発明は、所定の流量の流下を確保すべき断面積が流下範囲として定められている水域に構築され、複数の杭体で桁部材が支持される水上構造物であって、前記杭体は少なくとも二本を一組として結構部材によって連結され、該結構部材は水面下の前記流下範囲外に沈設されたことを特徴とするものである。   In order to achieve the above object, the invention of claim 1 is constructed in a water area in which a cross-sectional area that should ensure a flow of a predetermined flow rate is defined as a flow range, and a girder member is supported by a plurality of pile bodies. It is a floating structure, and the piles are connected by a structural member as a set of at least two, and the structural member is set out of the flow range below the water surface.

また、請求項2に記載のものは、前記桁部材と隣接する他の前記桁部材との連結部の位置が、前記杭体位置上に配置された請求項1に記載の水上構造物であることを特徴とするものである。   Moreover, the thing of Claim 2 is a floating structure of Claim 1 in which the position of the connection part with the said other girder member adjacent to the said girder member is arrange | positioned on the said pile body position. It is characterized by this.

そして、請求項3に記載の発明は、所定の流量の流下を確保すべき断面積が流下範囲として定められている水域の水底地盤に複数の杭体を立設し、前記杭体の少なくとも二本を一組として、結構部材を前記杭体に挿通して水面下の前記流下範囲外まで沈設して前記杭体間を連結し、前記杭体上に桁部材を架け渡して形成する水上構造物の構築方法であることを特徴とする。   In the invention according to claim 3, a plurality of pile bodies are erected on the bottom of the water area where the cross-sectional area that should ensure the flow of a predetermined flow rate is defined as the flow area, and at least two of the pile bodies are erected. A water structure in which a set of books is inserted into the pile body, and the pile members are set to the outside of the flow range below the water surface to connect the pile bodies, and a girder member is bridged over the pile bodies. It is a construction method of an object.

さらに、請求項4に記載の方法は、前記桁部材と隣接して配置される他の前記桁部材とを、前記杭体位置上で連結することで前記杭体上に前記桁部材を架け渡す請求項3記載の水上構造物の構築方法であることを特徴とする。   Furthermore, the method of Claim 4 bridges the said girder member on the said pile body by connecting the said other girder member arrange | positioned adjacent to the said girder member on the said pile body position. It is the construction method of the water structure according to claim 3.

また、請求項5に記載の方法は、複数の前記桁部材を所定の場所で予め一体に連結し、その場所から連結した前記桁部材をジャッキで前記杭体上に押し出し、次に新たな前記桁部材をさらに連結して押し出し、これを繰り返すことで前記杭体上に前記桁部材を架け渡す請求項3記載の水上構造物の構築方法であることを特徴とする。   Further, according to the method of claim 5, a plurality of the girder members are integrally connected in advance at a predetermined location, and the girder members connected from the location are extruded onto the pile body with a jack, and then the new 4. The method for constructing a floating structure according to claim 3, wherein the girder member is further connected and extruded, and the girder member is bridged on the pile body by repeating this.

このように構成された請求項1の発明は、前記複数の杭体間を連結して水上構造物の変形を抑えるための前記結構部材が、所定の流量の流下を確保すべき前記流下範囲を避けて配置される。   In the invention according to claim 1 configured as described above, the structure member for connecting the plurality of pile bodies to suppress deformation of the floating structure has the flow range in which the flow of the predetermined flow rate should be ensured. Avoid being placed.

このため、前記流下範囲の流下可能流量を減少させることがほとんどない。そして、前記杭体間は前記結構部材によって連結されて変形が抑制されるため、杭体を立設する間隔を広げて前記流下範囲の前記杭体による断面欠損を最小限に抑えることができる。   For this reason, the flowable flow rate in the flow range is hardly reduced. And since the said pile bodies are connected by the said structural member and a deformation | transformation is suppressed, the space | interval which establishes a pile body can be expanded and the cross-sectional defect | deletion by the said pile body of the said flow-down range can be suppressed to the minimum.

さらに、前記結構部材と、前記桁部材を別々に設置するため、部材ごとの揚重重量が小さくなり、通常規模の起重船でも施工することができる。   Furthermore, since the structural member and the girder member are installed separately, the lifting weight of each member is reduced, and the construction can be performed even on a normal scale heavy ship.

また、請求項2に記載されたものは、前記桁部材間の連結部の位置が、前記杭体位置上に配置される。   Moreover, as for what was described in Claim 2, the position of the connection part between the said girder members is arrange | positioned on the said pile body position.

このため、前記連結部が前記杭体によって確実に支持されるので、連結部が杭体間に浮いた状態で配置される構造よりも構造耐力が向上する。   For this reason, since the said connection part is reliably supported by the said pile body, structural strength improves rather than the structure arrange | positioned in the state which the connection part floated between pile bodies.

そして、請求項3に記載の発明は、前記結構部材を前記杭体に挿通して装着する。このため、前記杭体間を前記結構部材によって容易に連結することができる。   And invention of Claim 3 inserts and mounts the said structural member to the said pile body. For this reason, the pile bodies can be easily connected by the structural member.

さらに、請求項4に記載された方法は、前記桁部材と隣接して配置される他の前記桁部材とを、前記杭体位置上で連結する。   Furthermore, the method described in Claim 4 connects the said girder member and the other said girder member arrange | positioned adjacently on the said pile body position.

このため、連結部の施工を吊り下げられた不安定な状態でなく、前記杭体上の安定した場所でおこなうことができるので、施工精度が向上すると共に、効率よく作業をおこなうことができる。   For this reason, since the construction of the connecting portion can be performed not in the suspended unstable state but in a stable place on the pile body, the construction accuracy is improved and the work can be performed efficiently.

また、請求項5に記載された方法は、所定の場所で連結した前記桁部材を前記ジャッキで押し出すことで、前記杭体上にその桁部材を架け渡す。   Moreover, the method described in Claim 5 spans the girder member on the pile body by pushing out the girder member connected at a predetermined place with the jack.

このため、陸上や決められた発進基地等の定位置から前記桁部材を送り出すことができ、水上を移動しながらの作業を最小限に抑えることができる。さらに、波浪や風等の影響をほとんど受けることなく施工できるので、施工性に優れている。   For this reason, the said girder member can be sent out from fixed positions, such as the land and the starting base decided, and the operation | work while moving on the water can be suppressed to the minimum. Furthermore, since it can be constructed almost without being affected by waves or winds, it is excellent in workability.

以下、本発明の最良の実施の形態について図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

なお、前記従来例と同一乃至均等な部分については、同一符号を付して説明する。   The same or equivalent parts as those in the conventional example will be described with the same reference numerals.

図1乃至図4は、本実施の形態による水上構造物9の構築手順を示した図である。   1 to 4 are diagrams showing the construction procedure of the floating structure 9 according to the present embodiment.

まず、構成から説明すると、このような本実施の形態の水上構造物9は、水底地盤2に立設された複数の杭体10A,10B,・・・と、該杭体10A,10B,・・・の少なくとも二本を一組として杭体10A,10A、杭体10B,10B間をそれぞれ連結する結構部材11,11と、前記複数の杭体10A,10B,・・・に跨って載置する桁部材12とから主に構成される。   First, from the configuration, the above-described water structure 9 according to the present embodiment includes a plurality of pile bodies 10A, 10B,..., And pile bodies 10A, 10B,. ··· At least two of the pile bodies 10A and 10A and the pile members 10B and 10B are connected to the structural members 11 and 11 and the pile bodies 10A, 10B,. The girder member 12 is mainly configured.

本実施の形態の杭体10A,10B,・・・は、所定の流量の流下を確保すべき断面積が流下範囲1aとして定められている水域1の水底地盤2に立設される。   The pile bodies 10A, 10B,... Of the present embodiment are erected on the water bottom ground 2 of the water area 1 where the cross-sectional area that should ensure the flow of a predetermined flow rate is defined as the flow range 1a.

例えば、河川が海に繋がる河口付近では、河川から海に流れ出す水を適切に流下させるために、底泥3(図9参照、その他の図面では省略)が沈殿し易い水底付近を除いた範囲を計画高水流量の流下に必要な確保すべき断面積と想定し、流下範囲1aとして定めている。   For example, in the vicinity of the estuary where the river is connected to the sea, the range excluding the vicinity of the bottom where the bottom mud 3 (see Fig. 9 and other drawings) is likely to settle in order to allow the water flowing from the river to the sea to flow appropriately. Assuming the cross-sectional area to be secured necessary for the flow of the planned high water flow rate, it is defined as the flow range 1a.

この流下範囲1aを有する水域1に、水上構造物9を支持させるための杭体10A,10B,・・・が水底地盤2に打設される。この杭体10A,10B,・・・には、鋼管杭、既製コンクリート杭等が使用される。   Pile bodies 10 </ b> A, 10 </ b> B,... For supporting the floating structure 9 are placed on the water bottom ground 2 in the water area 1 having the flow-down range 1 a. A steel pipe pile, a ready-made concrete pile, etc. are used for this pile body 10A, 10B, ....

前記杭体10A,10B,・・・は、少なくとも二本を一組として打設され、組み合わせとされた杭体10A,10A(杭体10B,10B)間の間隔は、後述する結構部材11の挿入孔11a,11aの間隔に一致する。   The pile bodies 10A, 10B,... Are placed as a set of at least two, and the distance between the combined pile bodies 10A, 10A (pile bodies 10B, 10B) is that of the structure member 11 to be described later. It corresponds to the interval between the insertion holes 11a and 11a.

この杭体10A,10B,・・・は、上部構造及び上載荷重が支持できる所定の深さまで打ち込まれ、杭頭部10a,・・・の高さは、杭体10A,10B,・・・同士で同じ高さとなるように形成される。   The pile bodies 10A, 10B,... Are driven to a predetermined depth that can support the superstructure and the overload, and the pile heads 10a,. In order to form the same height.

本実施の形態の結構部材11は、例えば図2のA−A線平面図である図3に示すように、杭体10A,10Aを挿入するための挿入孔11aが形成された鋼管11b,・・・が四隅に配置され、その鋼管11b,・・・の間は鋼製の水平連結材11c,11c,11d,11d及びブレス材11e,11e等によって連結される。   The structural member 11 of the present embodiment is a steel pipe 11b in which an insertion hole 11a for inserting pile bodies 10A, 10A is formed, as shown in FIG. .. are arranged at the four corners, and the steel pipes 11b,... Are connected by steel horizontal connecting members 11c, 11c, 11d, 11d and brace members 11e, 11e.

そして、図1に示すように、水深方向に間隔を置いて配置された水平連結材11c,11c間がブレス材11f,・・・によって連結される。   And as shown in FIG. 1, the horizontal connection material 11c and 11c arrange | positioned at intervals in the water depth direction are connected by the brace material 11f.

さらに、前記挿入孔11aに前記杭体10Aを挿通した際に発生する前記鋼管11bと前記杭体10Aの隙間には、セメント系固化材等の充填材が充填され、前記杭体10Aに前記結構部材11が固定される。   Further, a gap between the steel pipe 11b and the pile body 10A generated when the pile body 10A is inserted into the insertion hole 11a is filled with a filler such as a cement-based solidifying material, and the pile body 10A is filled with the structure. The member 11 is fixed.

この結構部材11は、前記流下範囲1aよりも深い水中に設置される。通常、河口付近の水底地盤2上には柔らかい底泥3が堆積しており、その上に結構部材11を沈めると、その重みで沈み込んで水底地盤2付近に設置される。   This structural member 11 is installed in water deeper than the flow-down range 1a. Usually, the soft bottom mud 3 is deposited on the water bottom ground 2 near the estuary, and when the submerged member 11 is submerged thereon, it sinks with its weight and is installed near the water bottom ground 2.

ここで、前記結構部材11は、設置された際に上端が前記流下範囲1aに侵入しないような高さに形成されている。   Here, the structural member 11 is formed in such a height that the upper end does not enter the flow-down range 1a when installed.

また、本実施の形態の桁部材12は、前記杭体10A,10B,・・・上に架け渡される部材である。   Moreover, the girder member 12 of this Embodiment is a member laid over the said pile bodies 10A, 10B, ....

この桁部材12は、図1の右側に示すように、鋼材を組み合わせて製作された桁部材としての単位桁材12aを複数連結することによって形成される。この単位桁材12aは、隣り合う杭体10A,10A、杭体10A,10B又は杭体10B,10Bの芯間隔と略等しい長さにそれぞれ形成され、その両端は杭体10A,10B,・・・位置上に載置される。   As shown on the right side of FIG. 1, the girder member 12 is formed by connecting a plurality of unit girder members 12a as a girder member produced by combining steel materials. This unit girder 12a is formed to have a length substantially equal to the core interval between adjacent pile bodies 10A, 10A, pile bodies 10A, 10B or pile bodies 10B, 10B, and both ends thereof are pile bodies 10A, 10B,.・ Mounted on position.

なお、図1では、杭頭10aと桁部材12(単位桁材12a)の間に、桁部材12の延伸方向と直交する方向に架け渡した横桁18,・・・が配置されている。   In FIG. 1, cross beams 18,... Spanned in a direction orthogonal to the extending direction of the beam member 12 are arranged between the pile head 10 a and the beam member 12 (unit beam member 12 a).

この横桁18,・・・は、図4の平面図に示すように、一端が杭体10A,10B,・・・に載置され、他端が対向する位置に立設された杭体10C,10D,・・・に載置される。   As shown in the plan view of FIG. 4, the cross beam 18,... Is a pile body 10 </ b> C in which one end is placed on the pile bodies 10 </ b> A, 10 </ b> B,. , 10D,...

そして、前記杭体10A,10B,・・・の列と、前記杭体10C,10D,・・・の列とにそれぞれ架け渡された桁部材12,12上に、平板状のデッキ部14が架け渡されて床面が形成される。   And the flat deck part 14 is on the girder members 12 and 12 bridge | crossed by the row | line | column of said pile body 10A, 10B, ... and the row | line | column of said pile body 10C, 10D, ..., respectively. The floor is formed over the bridge.

このデッキ部14には、平面視が四角形に形成された鋼製床版、コンクリート床版、鉄骨コンクリート床版等が使用できる。   The deck portion 14 can be a steel floor slab, a concrete floor slab, a steel concrete floor slab or the like that is formed in a square shape in plan view.

次に、本実施の形態の水上構造物9の構築方法について説明すると共に、その作用について説明する。   Next, the construction method of the floating structure 9 of the present embodiment will be described and the operation thereof will be described.

まず、前記流下範囲1aを有する水域1の水底地盤2に、前記杭体10A,10B,・・・を間隔を置いて打設する。   First, the piles 10A, 10B,... Are placed at intervals in the bottom ground 2 of the water area 1 having the flow-down range 1a.

この杭体10A,10B,・・・は、図3を参照しながら説明すると、前記結構部材11の四隅に配置される鋼管11b,・・・のうち、片側の2本の鋼管11b,11bに挿入される杭体10A,10Aのみ前記結構部材11の設置に先行して打設する。なお、杭体10B,10Bも同様に前記結構部材11の設置に先行して打設する。   When this pile body 10A, 10B, ... demonstrates with reference to FIG. 3, among the steel pipes 11b arrange | positioned at the four corners of the said structural member 11, two steel pipes 11b, 11b of one side are carried out. Only the piles 10 </ b> A and 10 </ b> A to be inserted are placed prior to the installation of the structural member 11. The pile bodies 10B and 10B are similarly placed prior to the installation of the structural member 11.

そして、図2に示すように、前記結構部材11をワイヤ7を介して起重船で吊り上げ、先行して打設された杭体10B,10B位置上方に前記鋼管11b,11bが配置されるように位置合わせをおこなう。   And as shown in FIG. 2, the said structural member 11 is lifted with the heavy ship via the wire 7, and the said steel pipes 11b and 11b are arrange | positioned above the pile body 10B and 10B position laid previously. Align to.

位置合わせ後、前記杭体10B,10Bの頭部から前記鋼管11b,11bを挿通し、前記杭体10B,10Bに沿って前記結構部材11を吊り下げる。この結構部材11は、前記流下範囲1aを侵さない深さの水中まで沈設される。   After the alignment, the steel pipes 11b and 11b are inserted from the heads of the pile bodies 10B and 10B, and the structural member 11 is suspended along the pile bodies 10B and 10B. This structural member 11 is submerged to a depth of water that does not invade the flow-down range 1a.

図3は、先行して打設した杭体10A,10Aに前記結構部材11を取り付けた状態の平面図である。この時点では、前記結構部材11の残りの2本の鋼管11b,11bには杭体10C,10Cが配置されていない。   FIG. 3 is a plan view showing a state in which the structural member 11 is attached to the pile bodies 10A and 10A previously placed. At this time, the piles 10C and 10C are not disposed on the remaining two steel pipes 11b and 11b of the structural member 11.

そこで、杭体10Cの挿入されていない鋼管11bをガイドにして、残りの杭体10C,10Cを打設する。このように、鋼管11bをガイドにして杭体10Cを打設すれば、打設時の位置管理の頻度を少なくしても正確かつ短時間で杭体10Cを打設することができる。   Therefore, the remaining pile bodies 10C and 10C are driven using the steel pipe 11b into which the pile body 10C is not inserted as a guide. Thus, if the pile body 10C is driven using the steel pipe 11b as a guide, the pile body 10C can be driven accurately and in a short time even if the frequency of position management at the time of driving is reduced.

次に、前記杭体10A,10C,・・・と前記鋼管11b,・・・の隙間に充填材を充填する。この充填材が硬化することによって、前記結構部材11は前記杭体10A,10C,・・・に固定される。   Next, a filler is filled in the gaps between the pile bodies 10A, 10C, ... and the steel pipes 11b, .... When the filler is cured, the structural member 11 is fixed to the pile bodies 10A, 10C,.

そして、打設された前記杭体10A,10B,10C,10D,・・・の上端を切断加工して、すべての杭頭部10a,・・・の高さを揃える。   Then, the upper ends of the pile bodies 10A, 10B, 10C, 10D,... That have been placed are cut and the heights of all the pile heads 10a,.

さらに、図4に示すように、対向して立設された前記杭体10A,10C、杭体10B,10D間には、前記横桁18,・・・を架け渡す。   Further, as shown in FIG. 4, the cross beams 18,... Are bridged between the pile bodies 10 </ b> A and 10 </ b> C and the pile bodies 10 </ b> B and 10 </ b> D that are erected facing each other.

次に、図1に示すように、前記横桁18,・・・を介して杭体10A,10B,・・・上に桁部材12を載置する。   Next, as shown in FIG. 1, the girder member 12 is placed on the pile bodies 10A, 10B,.

この桁部材12は、前記単位桁材12a毎に起重船で吊り上げて、前記横桁18,18上にその単位桁材12aの両端が配置されるように載置する。そして、既に配置された桁部材12の端面と、単位桁材12aの端面との間を溶接や高張力ボルト等で連結して連結部12bを形成する。   The girder member 12 is lifted by a heavy ship for each unit girder member 12a and placed so that both ends of the unit girder member 12a are arranged on the cross girders 18 and 18. And the connection part 12b is formed by connecting between the end face of the already arranged girder member 12 and the end face of the unit girder member 12a by welding, high tension bolts or the like.

そして、図4に示すように、前記桁部材12,12間に前記デッキ部14を架け渡すことで水上に床面を形成する。   Then, as shown in FIG. 4, a floor surface is formed on the water by bridging the deck portion 14 between the beam members 12 and 12.

以上に示したように、本実施の形態によれば、前記杭体10A,10A,10C,10C(又は前記杭体10B,10B,10D,10D)間を連結して水上構造物9の変形を抑えるための前記結構部材11が、前記流下範囲1aを避けて配置される。   As described above, according to the present embodiment, the pile bodies 10A, 10A, 10C, 10C (or the pile bodies 10B, 10B, 10D, 10D) are connected to deform the floating structure 9. The said structural member 11 for suppressing is arrange | positioned avoiding the said flow-down range 1a.

このため、前記結構部材11が前記流下範囲1aの断面積を欠損して、流下可能な流量を減少させることがほとんどない。   For this reason, the structural member 11 loses the cross-sectional area of the flow-down range 1a and hardly reduces the flowable flow rate.

そして、前記杭体10A,10C,・・・間は前記結構部材11によって連結されて変形が抑制されるため、前記杭体10A,10C,・・・を打設する間隔を広げたり、前記杭体10A,10C,・・・の直径を小さくしたりすることができる。このため、前記流下範囲1aの杭体10A,10C,・・・による断面欠損を最小限に抑えることができる。   And since the piles 10A, 10C,... Are connected by the structural member 11 and deformation is suppressed, the interval for placing the piles 10A, 10C,. It is possible to reduce the diameter of the bodies 10A, 10C,. For this reason, the cross-sectional defect | deletion by the pile bodies 10A, 10C, ... of the said flow-down range 1a can be suppressed to the minimum.

さらに、前記結構部材11と、前記桁部材12を別々に設置するため、部材ごとの揚重重量が小さくなり、通常規模の起重船でも容易に施工することができる。   Furthermore, since the structural member 11 and the girder member 12 are separately installed, the lifting weight of each member is reduced, and it can be easily constructed even on a normal scale heavy ship.

また、前記連結部12bが前記杭体10A,10B,・・・によって確実に支持されるので、連結部12bが杭体10A,10B,・・・間に浮いた状態で配置される構造よりも、前記デッキ部14に載荷する上載荷重に対する構造耐力を向上させることができる。   Moreover, since the said connection part 12b is reliably supported by the said pile bodies 10A, 10B, ..., rather than the structure where the connection part 12b is arrange | positioned in the state which floated between the pile bodies 10A, 10B, ... In addition, the structural yield strength against the overload loaded on the deck portion 14 can be improved.

そして、前記桁部材12を構成する前記単位桁材12aを前記横桁18,・・・上に載置し、その後に連結作業をおこなえばよいため、上下方向の揺れがほとんどない安定した場所で作業が実施でき、良好な連結によって前記連結部12bを形成することができる。   In addition, since the unit beam member 12a constituting the beam member 12 may be placed on the cross beam 18,... And connected after that, in a stable place with almost no vertical shaking. The operation can be performed, and the connecting portion 12b can be formed by a good connection.

また、前記結構部材11は、前記挿入孔11a,・・・に前記杭体10A,10Aを挿通させることで容易に装着できる。このため、前記杭体10A,10A間を前記結構部材11によって容易に連結することができる。   Further, the structural member 11 can be easily mounted by inserting the pile bodies 10A, 10A through the insertion holes 11a,. For this reason, the pile bodies 10 </ b> A and 10 </ b> A can be easily connected by the structural member 11.

以下、前記した実施の形態の実施例1について説明する。なお、前記実施の形態で説明した内容と同一乃至均等な部分の説明については同一符号を付して説明する。   Hereinafter, Example 1 of the above-described embodiment will be described. The description of the same or equivalent parts as those described in the above embodiment will be given the same reference numerals.

実施例1では、図5に示したように、桁部材13をジャッキ15,15によって押し出すことによって杭体10A,10B,・・・間に架設する。   In the first embodiment, as shown in FIG. 5, the girder member 13 is laid between the pile bodies 10 </ b> A, 10 </ b> B,.

まず、前記実施の形態で説明した方法と同様にして、杭体10A,10B,・・・の打設、結構部材11,・・・の設置、杭頭部10a,・・・の形成、横桁18,・・・の設置をおこなう。   First, similarly to the method described in the above embodiment, the pile bodies 10A, 10B,... Are placed, the structural members 11,... Are installed, the pile heads 10a,. Installation of the girder 18, ... is performed.

そして、前記横桁18,・・・上に桁部材13を押し出す。この桁部材13は、護岸4上に設けた作業ヤードで押し出しを行なう分ずつ組み立てる。また、前記桁部材13の上には、押し出す前にデッキ部14を設けておく。   Then, the girder member 13 is pushed out onto the cross beams 18,. The girder member 13 is assembled by the amount that is pushed out in the work yard provided on the revetment 4. Further, a deck portion 14 is provided on the beam member 13 before being pushed out.

そして、護岸4上には、前記桁部材13がスライドし易いように滑り支承17,・・・を設置する。   And on the revetment 4, the sliding support 17, ... is installed so that the said girder member 13 can slide easily.

さらに、押し出しに使用するジャッキ15は、護岸4上に設けた反力桁16に取り付ける。この反力桁16は、押し出し用のジャッキ15から発生する反力を受け止める部材であり、反力板16aと支持部材16b,16b等を組み合わせて製作する。   Furthermore, the jack 15 used for extrusion is attached to a reaction force girder 16 provided on the revetment 4. The reaction force beam 16 is a member that receives the reaction force generated from the jack 15 for extrusion, and is manufactured by combining the reaction force plate 16a and the support members 16b and 16b.

次に、前記桁部材13の後端にジャッキ15,15の先端を当接させ、そのジャッキ15,15を伸長させることによって前記桁部材13を前記杭体10A,10B,・・・側に押し出す。   Next, the front ends of the jacks 15 and 15 are brought into contact with the rear ends of the beam members 13, and the jacks 15 and 15 are extended to push the beam members 13 to the pile bodies 10A, 10B,. .

押し出しは、ジャッキ15,15を例えば1ストローク分伸長した時点で一旦、中断し、伸長したジャッキ15,15を縮めて元の長さに戻す。   The extrusion is temporarily stopped when the jacks 15 and 15 are extended by, for example, one stroke, and the extended jacks 15 and 15 are contracted to return to their original lengths.

そして、前記ジャッキ15,15の先端と前記桁部材13の後端との間に、1ストローク分の長さの桁用の部材を組み立てて、前記桁部材13の後端と連結して一体にする。この継ぎ足した部材の上にもデッキ部14を設ける。   Then, a member for a girder having a length of one stroke is assembled between the front ends of the jacks 15 and 15 and the rear end of the girder member 13, and connected to the rear end of the girder member 13 so as to be integrated. To do. The deck portion 14 is also provided on the added member.

こうした後に、再び、ジャッキ15,15によって前記桁部材13を押し出す。   After this, the beam member 13 is pushed out by the jacks 15 and 15 again.

このように実施例1の方法によれば、陸上や水上に設けられた発進基地等の定位置から前記桁部材13を送り出すことができるので、起重船で所定の位置まで単位桁材12aを運んで設置するような水上を移動しながらの作業を最小限に抑えることができ、効率的である。   As described above, according to the method of the first embodiment, since the beam member 13 can be sent out from a fixed position such as a starting base provided on land or on the water, the unit beam 12a is moved to a predetermined position by a heavy ship. Work while moving on the water, such as carrying and installing, can be minimized and efficient.

また、前記桁部材13の連結部13aの形成を陸上等の安定した場所でおこなうことができるので、連結作業が波浪や風等の影響をほとんど受けることなく効率的に実施することができる。   In addition, since the connecting portion 13a of the girder member 13 can be formed in a stable place such as on land, the connecting operation can be efficiently performed with almost no influence from waves or winds.

なお、他の構成及び作用効果については、前記実施の形態と略同様であるので説明を省略する。   Other configurations and operational effects are substantially the same as those in the above-described embodiment, and thus description thereof is omitted.

以下、前記した実施例1の一部を変更した実施例2について説明する。なお、前記実施例1又は実施の形態で説明した内容と同一乃至均等な部分の説明については同一符号を付して説明する。   Hereinafter, a second embodiment in which a part of the first embodiment is changed will be described. In addition, the description which attaches | subjects the same code | symbol about the description of the part same or equivalent to the content demonstrated in the said Example 1 or embodiment is demonstrated.

実施例2では、実施例1と同様に桁部材13をジャッキ15,15によって押し出すことによって杭体10A,10A間に架設するが、その先の杭体10B,・・・の打設、結構部材11,・・・の設置、横桁18,・・・の設置などは、架設済みの桁部材13を利用しておこなう。   In the second embodiment, as in the first embodiment, the girder member 13 is laid out between the pile bodies 10A and 10A by pushing out the jacks 15 and 15, but the pile body 10B,... .., Installation of the horizontal beams 18,... Is performed using the already installed girder member 13.

この実施例2では、図6に示すように、桁部材13に架け渡されたデッキ部14上にクローラクレーン23を設置し、このクローラクレーン23を使用して、油圧ハンマ24による杭体10Bの打設をおこなう。また、前記結構部材11の設置、その先の杭体10Bの打設なども、同様に前記クローラクレーン23を使用しておこなうことができる。   In the second embodiment, as shown in FIG. 6, a crawler crane 23 is installed on the deck portion 14 spanned over the girder member 13, and the pile body 10 </ b> B by the hydraulic hammer 24 is used by using the crawler crane 23. Make a placement. Further, the installation of the structural member 11 and the driving of the pile body 10B ahead of the structural member 11 can be similarly performed using the crawler crane 23.

そして、クローラクレーン23のアームの長さでは届かなくなったときに、前記桁部材13をジャッキ15,15によって前方に押し出し、再びクローラクレーン23による作業を進めればよい。   Then, when the length of the arm of the crawler crane 23 cannot be reached, the beam member 13 is pushed forward by the jacks 15 and 15 and the work by the crawler crane 23 is advanced again.

このように押し出された前記桁部材13を利用して、その上に設置されたクローラクレーン23で作業を進めることで、起重船による作業を大幅に削減することができ、効率的である。   Using the girder member 13 pushed out in this way and proceeding with the crawler crane 23 installed thereon, the work by the heavy ship can be greatly reduced, which is efficient.

なお、他の構成及び作用効果については、前記実施例1及び実施の形態と略同様であるので説明を省略する。   Other configurations and functions and effects are substantially the same as those of the first embodiment and the embodiment, and thus description thereof is omitted.

以下、前記した実施の形態の実施例3について説明する。なお、前記実施の形態で説明した内容と同一乃至均等な部分の説明については同一符号を付して説明する。   Hereinafter, Example 3 of the above-described embodiment will be described. The description of the same or equivalent parts as those described in the above embodiment will be given the same reference numerals.

実施例3では、図7に示したように平面的に広い床面を水上に形成する水上構造物22について説明する。   In Example 3, a floating structure 22 that forms a wide floor surface on the water as shown in FIG. 7 will be described.

この実施例3では、杭体10A,10B,・・・の列を3列以上形成し、その上に架け渡した桁部材20A,20B,・・・上にデッキ部19,・・・を敷き詰めて広い床面を形成する。   In this third embodiment, three or more rows of pile bodies 10A, 10B,... Are formed, and the deck portions 19 are spread on the beam members 20A, 20B,. A wide floor is formed.

例えば、前記実施の形態の前記杭体10C,10D,・・・によって形成される列、前記杭体10A,10B,・・・によって形成される列と略平行するように、杭体10E,10F,・・・によって形成される列、杭体10G,10H,・・・によって形成される列等を形成し、各列上にはそれぞれ桁部材20A,20B,20C,20Dを架け渡す。   For example, the pile bodies 10E, 10F so as to be substantially parallel to the rows formed by the pile bodies 10C, 10D,... And the rows formed by the pile bodies 10A, 10B,. ,..., The piles 10G, 10H,... Are formed, and the girder members 20A, 20B, 20C, and 20D are bridged on each row.

なお、図7では省略されているが、前記杭体10A,10C,・・・、前記杭体10B,10D,・・・、前記杭体10E,10G,・・・、前記杭体10F,10H,・・・は、それぞれ前記結構部材11,・・・で連結されている。   Although omitted in FIG. 7, the pile bodies 10A, 10C,..., The pile bodies 10B, 10D,..., The pile bodies 10E, 10G,. ,... Are connected by the structural members 11,.

また、前記桁部材20A,20Bと前記杭体10A,10C,・・・の間には横桁21A,・・・を介在させる。さらに、前記桁部材20C,20Dと前記杭体10E,10G,・・・の間には横桁21B,・・・を介在させる。   Further, horizontal beams 21A,... Are interposed between the beam members 20A, 20B and the pile bodies 10A, 10C,. Further, horizontal beams 21B,... Are interposed between the beam members 20C, 20D and the pile bodies 10E, 10G,.

そして、略平行に並べた前記桁部材20A,20B,20C,20D上にパネル状のデッキ部19を隙間なく架け渡す。   And the panel-shaped deck part 19 is spanned over the said girder members 20A, 20B, 20C, and 20D arranged substantially in parallel without gaps.

このようにして前記結構部材11,・・・でそれぞれ連結された杭体10A,10B,・・・を、平面的な広がりをもって配置すれば、広い床面を水上に容易に形成することができる。   In this way, if the pile bodies 10A, 10B,... Connected by the structural members 11,... Are arranged with a planar spread, a wide floor surface can be easily formed on the water. .

なお、他の構成及び作用効果については、前記実施の形態及び実施例1と略同様であるので説明を省略する。   Other configurations and functions and effects are substantially the same as those of the above-described embodiment and Example 1, and thus description thereof is omitted.

以上、図面を参照して、本発明の最良の実施の形態を詳述してきたが、具体的な構成は、この実施の形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。   Although the best embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes that do not depart from the gist of the present invention are possible. Are included in the present invention.

例えば、前記実施の形態の所定の流量の流下を確保すべき流下範囲1aは、各河川によって定められた所定の流量を流すために確保すべき断面積である河積と必ずしも一致しなくともよい。前記結構部材11の上端が、前記河積に侵入する場合であっても、本実施の形態で設定された前記流下範囲1aに前記結構部材11の上端が侵入していなければよい。   For example, the flow range 1a in which the flow of a predetermined flow rate in the embodiment is to be ensured does not necessarily coincide with the river volume that is a cross-sectional area to be secured in order to flow the predetermined flow rate determined by each river. . Even if the upper end of the structural member 11 penetrates into the river volume, the upper end of the structural member 11 may not enter into the flow-down range 1a set in the present embodiment.

また、前記結構部材11は、前記流下範囲1a外に配置されていればよく、水底地盤2に密着させなくともよい。   Moreover, the said structural member 11 should just be arrange | positioned outside the said flow-down range 1a, and does not need to be closely_contact | adhered to the underwater ground 2. FIG.

そして、前記実施の形態では、前記桁部材12,13上にデッキ部14を載置したが、桁部材とデッキ部を一体に形成することもできる。このように一体に形成することで、重量は大きくなるが、一度の作業で両方を設置することができ、施工性に優れている。   And in the said embodiment, although the deck part 14 was mounted on the said girder members 12 and 13, a girder member and a deck part can also be formed integrally. By integrally forming in this way, the weight increases, but both can be installed in one operation, and the workability is excellent.

そして、デッキ部14を設けずに桁部材12,13を架け渡すことによって完成する水上構造物9であってもよい。   And the floating structure 9 completed by spanning the girder members 12 and 13 without providing the deck part 14 may be sufficient.

また、前記実施の形態では、一部の杭体10A,10B,・・・を先行して打設し、残りの杭体10C,10D,・・・は前記結構部材11の鋼管11bをガイドにして打設したが、すべての杭体10A,10B,10C,10D,・・・を前記結構部材11を設置する前に打設してもよい。   Moreover, in the said embodiment, some pile bodies 10A, 10B, ... are driven in advance, and the remaining pile bodies 10C, 10D, ... use the steel pipe 11b of the said structural member 11 as a guide. However, all the pile bodies 10A, 10B, 10C, 10D,... May be placed before the structural member 11 is installed.

本発明の最良の実施の形態の水中構造物の構築方法を説明する説明図である。It is explanatory drawing explaining the construction method of the underwater structure of the best embodiment of this invention. 本発明の最良の実施の形態の水中構造物の構築方法の結構部材を設置する作業を説明する説明図である。It is explanatory drawing explaining the operation | work which installs the structure member of the construction method of the underwater structure of the best embodiment of this invention. 図2のA−A線平面図である。It is the AA line top view of FIG. 本発明の最良の実施の形態の水中構造物の一部切断平面図である。It is a partially cut-away plan view of the underwater structure of the best embodiment of the present invention. 実施例1の水中構造物の構築方法を説明する説明図である。It is explanatory drawing explaining the construction method of the underwater structure of Example 1. FIG. 実施例2の水中構造物の構築方法を説明する説明図である。It is explanatory drawing explaining the construction method of the underwater structure of Example 2. FIG. 実施例3の水中構造物の構成を説明する平面図である。6 is a plan view illustrating the configuration of an underwater structure according to Embodiment 3. FIG. 従来例のジャケットを使用した水中構造物の構築方法を説明する説明図である。It is explanatory drawing explaining the construction method of the underwater structure using the jacket of a prior art example. 河川の流下範囲を説明する断面図である。It is sectional drawing explaining the flow down range of a river.

符号の説明Explanation of symbols

1 水域
1a 流下範囲
2 水底地盤
9,22 水上構造物
10A,10B,・・・ 杭体
11 結構部材
12,13 桁部材
12a 単位桁材(桁部材)
12b,13a 連結部
15 ジャッキ
DESCRIPTION OF SYMBOLS 1 Water area 1a Flowing range 2 Submarine ground 9,22 Water structure 10A, 10B, ... Pile body 11 Structure member 12, 13 Girder member 12a Unit girder material (girder member)
12b, 13a connecting part 15 jack

Claims (5)

所定の流量の流下を確保すべき断面積が流下範囲として定められている水域に構築され、複数の杭体で桁部材が支持される水上構造物であって、前記杭体は少なくとも二本を一組として結構部材によって連結され、該結構部材は水面下の前記流下範囲外に沈設されたことを特徴とする水上構造物。   A floating structure in which a cross-sectional area that should ensure the flow of a predetermined flow rate is established in a water area defined as a flow range, and a girder member is supported by a plurality of pile bodies, the pile bodies having at least two A floating structure characterized in that it is connected as a set by a structural member, and the structural member is sunk outside the flow range below the surface of the water. 前記桁部材と隣接する他の前記桁部材との連結部の位置が、前記杭体位置上に配置されたことを特徴とする請求項1に記載の水上構造物。   The floating structure according to claim 1, wherein a position of a connecting portion between the girder member and another girder member adjacent to the girder member is disposed on the pile body position. 所定の流量の流下を確保すべき断面積が流下範囲として定められている水域の水底地盤に複数の杭体を立設し、前記杭体の少なくとも二本を一組として、結構部材を前記杭体に挿通して水面下の前記流下範囲外まで沈設して前記杭体間を連結し、前記杭体上に桁部材を架け渡して形成することを特徴とする水上構造物の構築方法。   A plurality of pile bodies are erected on the bottom of the water area where the cross-sectional area that should ensure the flow of a predetermined flow rate is defined as the flow area, and at least two of the pile bodies are set as one set, and the structural member is the pile. A construction method for a floating structure characterized by being formed by being inserted into a body and sinking to the outside of the flow-down range below the water surface, connecting the pile bodies, and bridging a girder member on the pile bodies. 前記桁部材と隣接して配置される他の前記桁部材とを、前記杭体位置上で連結することで前記杭体上に前記桁部材を架け渡すことを特徴とする請求項3に記載の水上構造物の構築方法。   The said girder member is bridge | crossed on the said pile body by connecting the said other girder member arrange | positioned adjacent to the said girder member on the said pile body position. Construction method for floating structures. 複数の前記桁部材を所定の場所で予め一体に連結し、その場所から連結した前記桁部材をジャッキで前記杭体上に押し出し、次に新たな前記桁部材をさらに連結して押し出し、これを繰り返すことで前記杭体上に前記桁部材を架け渡すことを特徴とする請求項3に記載の水上構造物の構築方法。
A plurality of the girder members are integrally connected in advance at a predetermined location, and the girder member connected from the location is extruded onto the pile body with a jack, and then the new girder member is further connected and extruded, The construction method of a floating structure according to claim 3, wherein the girder member is bridged on the pile body by repeating.
JP2004226412A 2004-08-03 2004-08-03 Water structure and its construction method Expired - Fee Related JP4574273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004226412A JP4574273B2 (en) 2004-08-03 2004-08-03 Water structure and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004226412A JP4574273B2 (en) 2004-08-03 2004-08-03 Water structure and its construction method

Publications (2)

Publication Number Publication Date
JP2006045838A true JP2006045838A (en) 2006-02-16
JP4574273B2 JP4574273B2 (en) 2010-11-04

Family

ID=36024737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004226412A Expired - Fee Related JP4574273B2 (en) 2004-08-03 2004-08-03 Water structure and its construction method

Country Status (1)

Country Link
JP (1) JP4574273B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280956A (en) * 2008-05-19 2009-12-03 Toyo Constr Co Ltd Reinforcing method and structure for existing pile bent bridge pier
JP2011162988A (en) * 2010-02-09 2011-08-25 Kajima Corp Temporary pier and method for constructing the same
JP2012102574A (en) * 2010-11-11 2012-05-31 Jfe Engineering Corp Construction method of artificial ground on water
JP2014005652A (en) * 2012-06-25 2014-01-16 Nippon Juuki Kensetsu Kk Construction method for pile type pier
JP2014201947A (en) * 2013-04-04 2014-10-27 ヒロセ株式会社 Frame structure of bearing pile and horizontal truss and construction method of frame structure
RU2568497C1 (en) * 2014-08-07 2015-11-20 Общество с ограниченной ответственностью "Научный и проектный центр "БЕРЕГОЗАЩИТА" Hydraulic structure with vertical profile on pile base and method of its erection
CN108842624A (en) * 2018-06-26 2018-11-20 杭州江润科技有限公司 High pier Cast-in-place Bent Cap combined type overhanging formwork system and construction method
WO2020230289A1 (en) * 2019-05-15 2020-11-19 株式会社 エンチ Seabed foundation construction robot
CN111962488A (en) * 2020-09-01 2020-11-20 浙江大学 Bottom tool and installation method for upper assembly of offshore wind power booster station
CN112030721A (en) * 2020-09-02 2020-12-04 刘�英 Bridge head roadbed reinforcing structure
TWI810300B (en) * 2019-05-16 2023-08-01 日商原啟股份有限公司 Seabed foundation construction robot

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483153C2 (en) * 2011-08-31 2013-05-27 Общество с ограниченной ответственностью Проектно-строительная фирма "СПЕЦФУНДАМЕНТСТРОЙ" Method for erection of bridge on water area
CN103276692B (en) * 2013-05-20 2015-09-30 三峡大学 A kind of movable falling zone water and soil conservation is every unrestrained device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142109A (en) * 1987-11-26 1989-06-05 Mitsubishi Heavy Ind Ltd Method of erection construction of bridge
JPH02210108A (en) * 1989-02-09 1990-08-21 P S Concrete Co Ltd Extruding upright elevated construction
JPH0953217A (en) * 1995-08-11 1997-02-25 Maeda Corp Method of jacket construction of water-surface erected structure by h-steel bearing pile
JP2002013118A (en) * 2000-06-30 2002-01-18 Toshimitsu Komatsu Bottom sediment movement control method
JP2003336249A (en) * 2002-05-23 2003-11-28 Jfe Engineering Kk Jacket type marine structure
JP2003336213A (en) * 2002-05-17 2003-11-28 Ps Mitsubishi Construction Co Ltd Concrete receiving beam and method for building girder by using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142109A (en) * 1987-11-26 1989-06-05 Mitsubishi Heavy Ind Ltd Method of erection construction of bridge
JPH02210108A (en) * 1989-02-09 1990-08-21 P S Concrete Co Ltd Extruding upright elevated construction
JPH0953217A (en) * 1995-08-11 1997-02-25 Maeda Corp Method of jacket construction of water-surface erected structure by h-steel bearing pile
JP2002013118A (en) * 2000-06-30 2002-01-18 Toshimitsu Komatsu Bottom sediment movement control method
JP2003336213A (en) * 2002-05-17 2003-11-28 Ps Mitsubishi Construction Co Ltd Concrete receiving beam and method for building girder by using it
JP2003336249A (en) * 2002-05-23 2003-11-28 Jfe Engineering Kk Jacket type marine structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280956A (en) * 2008-05-19 2009-12-03 Toyo Constr Co Ltd Reinforcing method and structure for existing pile bent bridge pier
JP2011162988A (en) * 2010-02-09 2011-08-25 Kajima Corp Temporary pier and method for constructing the same
JP2012102574A (en) * 2010-11-11 2012-05-31 Jfe Engineering Corp Construction method of artificial ground on water
JP2014005652A (en) * 2012-06-25 2014-01-16 Nippon Juuki Kensetsu Kk Construction method for pile type pier
JP2014201947A (en) * 2013-04-04 2014-10-27 ヒロセ株式会社 Frame structure of bearing pile and horizontal truss and construction method of frame structure
RU2568497C1 (en) * 2014-08-07 2015-11-20 Общество с ограниченной ответственностью "Научный и проектный центр "БЕРЕГОЗАЩИТА" Hydraulic structure with vertical profile on pile base and method of its erection
CN108842624A (en) * 2018-06-26 2018-11-20 杭州江润科技有限公司 High pier Cast-in-place Bent Cap combined type overhanging formwork system and construction method
WO2020230289A1 (en) * 2019-05-15 2020-11-19 株式会社 エンチ Seabed foundation construction robot
TWI810300B (en) * 2019-05-16 2023-08-01 日商原啟股份有限公司 Seabed foundation construction robot
CN111962488A (en) * 2020-09-01 2020-11-20 浙江大学 Bottom tool and installation method for upper assembly of offshore wind power booster station
CN111962488B (en) * 2020-09-01 2024-04-30 浙江大学 Bottom tool and installation method for upper component of offshore wind power booster station
CN112030721A (en) * 2020-09-02 2020-12-04 刘�英 Bridge head roadbed reinforcing structure

Also Published As

Publication number Publication date
JP4574273B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
US9567720B2 (en) Offshore platform for a marine environment
JP4574273B2 (en) Water structure and its construction method
JP4807809B1 (en) Pier construction method
JP6640945B1 (en) Construction method of pier structure and pier structure
JP6007307B1 (en) How to build a bridge
CN104736465A (en) Dock building apparatus and method of construction using the same
JP6105044B2 (en) Partially floating offshore platform for offshore wind power, bridges and offshore structures, and construction method
JP3850785B2 (en) Caisson laying method using main foundation pile
CN113106833A (en) Special-shaped pedestrian landscape bridge structure and construction method thereof
CN110735394B (en) Cable tower structure and construction method thereof
JP2004285735A (en) Method of constructing temporary landing bridge by using truss frame
CN114703757B (en) Multifunctional bracket for steel cross beam of cable-stayed bridge and assembly method of steel cross beam
JP5035505B2 (en) Temporary scaffolding for pile-type offshore structures
JP2002364004A (en) Installation method for underwater foundation
CN115491986A (en) Construction system suitable for trestle and construction method thereof
JP2001131938A (en) Construction method for launching pier
KR101117927B1 (en) Construction method of marine structure
JP6138192B2 (en) Steel pipe pile construction method
KR102262861B1 (en) Quay structure reinforced pier type erection and method for reinforcement quay structure using pier type erection
JP5853415B2 (en) Reinforcement structure and construction method for floating structures, reinforcement structure for bridges
JP4925092B2 (en) Temporary scaffolding for coastal construction
KR20200123977A (en) Lathe type quay structure reinforced sheet pile and method for reinforcement quay structure using sheet pile
JP2007092454A (en) Hybrid artificial ground constructed in ocean space, and construction method for the hybrid artificial ground
CN221741256U (en) Construction platform suitable for supporting piles of large-span trestle under high-wave condition of rapid flow
JP2020133121A (en) Method of constructing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Ref document number: 4574273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160827

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees