JP2007092454A - Hybrid artificial ground constructed in ocean space, and construction method for the hybrid artificial ground - Google Patents

Hybrid artificial ground constructed in ocean space, and construction method for the hybrid artificial ground Download PDF

Info

Publication number
JP2007092454A
JP2007092454A JP2005285465A JP2005285465A JP2007092454A JP 2007092454 A JP2007092454 A JP 2007092454A JP 2005285465 A JP2005285465 A JP 2005285465A JP 2005285465 A JP2005285465 A JP 2005285465A JP 2007092454 A JP2007092454 A JP 2007092454A
Authority
JP
Japan
Prior art keywords
pile
artificial ground
caisson
constructed
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005285465A
Other languages
Japanese (ja)
Inventor
Masaaki Sakuta
昌昭 佐久田
Akito Suzuki
明人 鈴木
Toshiyuki Nishimura
敏之 西村
Hisato Sonoda
久登 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIIZU INTERNATIONAL KK
Kitagawa Iron Works Co Ltd
Tomec Corp
Original Assignee
SHIIZU INTERNATIONAL KK
Kitagawa Iron Works Co Ltd
Tomec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIIZU INTERNATIONAL KK, Kitagawa Iron Works Co Ltd, Tomec Corp filed Critical SHIIZU INTERNATIONAL KK
Priority to JP2005285465A priority Critical patent/JP2007092454A/en
Publication of JP2007092454A publication Critical patent/JP2007092454A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an artificial ground which allows highly precise control over installation location and requires a shorter construction period and less costs, and a construction method for the artificial ground. <P>SOLUTION: The hybrid artificial ground is a marine structure which is provided by reinforcing and constructing a pile structure driven into seabed ground, using caissons installed on the four corners of the pile structure. The hybrid artificial ground is also a marine structure which is provided by reinforcing and constructing pile structures attached to a temporary framework steel frame, using reinforced concrete wall panels and floor panels. The steel frame temporary framework is a rectangular parallelepipedic structure which is formed of four hollow steel pipes, which are set vertical and parallel with each other and are erected on the apexes of a square, respectively, and frame materials which are joined perpendicularly to the tops and bottoms of adjacent steel pipes, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、海洋空間に建造するハイブリッド方式地盤に係り、特に杭構造とケーソン構造を組合わせた人工地盤とその建造方法に関する。   The present invention relates to a hybrid type ground constructed in an ocean space, and more particularly to an artificial ground combining a pile structure and a caisson structure and a construction method thereof.

従来、海洋空間に人工地盤を建造する手段として複数の施工法が提案されている。   Conventionally, a plurality of construction methods have been proposed as means for constructing artificial ground in an ocean space.

第1の提案は、杭構造を利用した海洋空間に人工地盤を建造する工法である。すなわち、杭構造工法は、海底に杭を打設し、その杭を基礎として海洋建築物を構成する工法である。予め決定された地点での杭の打設が可能であるため、設計図通り正確な地点に杭を打設することが可能である。また、複数の杭を利用して海洋構造物を製造するが、各杭間の海底面の地質の海底地質の剛性および海底面の平担性は問われない。つまり、杭が打設できるか否かについては杭を打設する点のみの問題であり、各杭間の多少の平坦性や海底地質の剛性が損なわれていても海洋建築物の建築は可能である。   The first proposal is a method of constructing artificial ground in an ocean space using a pile structure. That is, the pile structure construction method is a construction method in which a pile is placed on the seabed and an offshore building is constructed based on the pile. Since it is possible to drive a pile at a predetermined point, it is possible to drive a pile at an accurate point according to the design drawing. Moreover, although an offshore structure is manufactured using several piles, the rigidity of the seabed geology of the seabed between each pile and the flatness of the seabed are not ask | required. In other words, whether or not piles can be placed is only a matter of placing piles, and it is possible to build offshore buildings even if some flatness between each pile and rigidity of the seabed geology are impaired. It is.

また、第2の提案は、ケーソン構造を利用した海洋空間に人工地盤を建設する工法である。ケーソン構造は、予め陸上でコンクリート並びに鉄鋼で建設された大きさ15m×15m程度の箱状構造物である。ケーソン構造の内部は空洞であり、陸上で上面以外に壁を設けた後に海上に浮遊した状態で輸送、目的地点まで、そのまま浮遊状態で移動され、設置点でその内部に海水等を入水させ、その入水重量でケーソン構造の上昇運動と下降運動を制御しながら、海底面へ沈設する。前記側壁板の両端にシール材が設けられていることを特徴とする。   The second proposal is a method of constructing artificial ground in an ocean space using a caisson structure. The caisson structure is a box-like structure having a size of about 15 m × 15 m, which is previously constructed on the land with concrete and steel. Inside the caisson structure is a hollow, transported in a floating state on the sea after providing a wall other than the upper surface on land, moved to the destination point in a floating state, and entered the seawater etc. into the interior at the installation point, The caisson structure's ascent and descent movements are controlled by the incoming weight, and it is submerged on the sea floor. Sealing materials are provided at both ends of the side wall plate.

さらに、第3の提案としては、埋め立て工法が存在する。すなわち、大量の土砂を海底に積層しながら海水と土砂を置換える単純な従来の手法である。   Furthermore, a landfill method exists as a third proposal. In other words, this is a simple conventional technique for replacing seawater and earth and sand while laminating a large amount of earth and sand on the seabed.

そして、第4の提案が、フロート工法である。海上に大型の浮遊物を敷き詰める工法であり、浮遊物が陸上で自由な形状に製造できしかも敷設が簡単であるという利点が存在する。   A fourth proposal is the float method. It is a method of laying large floating objects on the sea, and there is an advantage that floating objects can be manufactured in a free shape on land and that laying is easy.

特開2003−3453号公報JP 2003-3453 A

ところが、これら従来の工法においても幾つかの課題が生じていた。   However, some problems have arisen in these conventional methods.

第1の杭構造工法では、通常、杭を堅い岩盤に到達して水平方向の応力に対向できる軸耐力の生ずる深さまで打設する必要があった。このため、杭の打設時間が増加していた。しかも、海上での作業は、海象条件が悪化すると作業ができないため、ますます建造時間を延長させる要因となっていた。   In the first pile structure construction method, it is usually necessary to drive the pile to a depth that produces axial strength that can reach the hard rock and face the horizontal stress. For this reason, the driving time of the pile has increased. In addition, the work at sea has been a factor that further increases the construction time because the work cannot be performed if the sea conditions deteriorate.

また、水平方向の応力に対応する為には、杭の直径を増加させる必要があるが、この点も打設時間を延ばす要因となる。   Moreover, in order to cope with the stress in the horizontal direction, it is necessary to increase the diameter of the pile, but this point is also a factor for extending the placing time.

一方、第2のケーソン構造工法は、ケーソン底面の平担性が必要である。すなわち、通常は直方体からなるケーソン構造を設置するため海底が平坦でない場合にケーソン構造が傾斜することがある。さらに、ケーソン構造が巨大であると共に、基軸の存在しない海中でケーソン構造の位置制御を行い精度を高く設置位置を指定することは困難であった。   On the other hand, the second caisson structure method requires flatness of the bottom of the caisson. In other words, since the caisson structure is usually formed of a rectangular parallelepiped, the caisson structure may be inclined when the sea floor is not flat. Furthermore, the caisson structure is huge, and it is difficult to specify the installation position with high accuracy by controlling the position of the caisson structure in the sea where the base axis does not exist.

さらに、第3の埋め立て工法は、大量の土砂を必要とすると共に工期が、他の工法と比較して著しく長く、コストが高くなる問題点を有している。しかも、埋め立て後に地盤が沈下する現象や地盤の液状化現象が解決しているわけではない。   Furthermore, the third landfill method has a problem that a large amount of earth and sand is required and the construction period is significantly longer than other methods and the cost is increased. Moreover, the phenomenon of ground subsidence and land liquefaction after landfill has not been solved.

そして、第4の工法であるフロートは、波の高さが40cm以下でなければ使用できず、通常使用するためには、使用海域を常時静水面として確保する為にフロート周囲に防波堤を設置する必要があり、却ってコストが防波堤設置に加えられていた。   The float, which is the fourth method, cannot be used unless the wave height is 40 cm or less, and in order to use it normally, a breakwater is installed around the float in order to ensure the sea area to be used as a constant hydrostatic surface. On the other hand, the cost was added to the breakwater installation.

そこで、本発明の目的は、設置する際の位置の制御精度が高く工期が短く竣工後広範囲の所要水平・垂直力に対応できるコストのかからない人工地盤とその建造方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an artificial ground that has a high position control accuracy at the time of installation, has a short construction period, can cope with a wide range of required horizontal / vertical forces after completion, and a construction method thereof.

前記目的を達成するために、本願発明の海洋空間に建造するハイブリッド方式人工地盤は、海底地盤上に打設する杭構造を側部四隅に備えた構造体から構成される海洋空間に建造する。また、海底地盤上に打設する杭構造を側部四隅に備えたケーソンから構成される。杭構造は、予め鋼管を設けてその中央に杭を配置するよう構成されてもよい。   In order to achieve the above-mentioned object, the hybrid artificial ground constructed in the marine space of the present invention is constructed in the marine space constituted by a structure having a pile structure to be placed on the seabed ground at the four corners. In addition, it is composed of caissons with pile structures placed on the seabed ground at the four corners. The pile structure may be configured such that a steel pipe is provided in advance and the pile is arranged at the center thereof.

ケーソンと海底地盤に間隙が存在する場合に細砂又はコンクリートミルク又はモルタルで間隙を充填することで、平坦でない海底上でも設置が可能となる。   When there is a gap between the caisson and the seabed ground, the gap can be filled with fine sand, concrete milk, or mortar, so that it can be installed even on an uneven seabed.

さらに、ケーソンの材質が、鋼殻又はコンクリート殻であることにより、コストや海象条件に適合した人工地盤を提供することができる。   Furthermore, when the caisson is made of steel shell or concrete shell, an artificial ground suitable for cost and sea conditions can be provided.

また、ケーソンと杭構造とが、伸縮自在に接合し、一体化した構造物の上部に更に床板を設けられることにより、竣工後の人工地盤の海面高を自由自在に調整できる。   In addition, the caisson and the pile structure are joined in a stretchable manner, and a floor board is further provided on the upper part of the integrated structure, so that the sea level of the artificial ground after completion can be adjusted freely.

ケーソン内部には、さらに液体保存タンク構造を有することにより、人工地盤上の空間と人工地盤内部の空間を有効に活用可能となる。   By further having a liquid storage tank structure inside the caisson, the space on the artificial ground and the space inside the artificial ground can be effectively utilized.

ケーソン内部にさらに居住空間構造を有することで、海上により安価な居住空間を建造することが可能となる。杭構造と鉄骨仮枠組みと側壁板とが一体化して更にその上部に床板が設けられてもよい。   By having a living space structure inside the caisson, it becomes possible to build a cheaper living space at sea. The pile structure, the steel frame temporary frame, and the side wall plate may be integrated, and a floor plate may be further provided on the top.

また、本願発明に係るハイブリッド方式人工地盤の建造方法は、海底地盤上に打設する杭構造を側部四隅に備えた構造体から構成される海洋空間に建造する。   Moreover, the construction method of the hybrid system artificial ground which concerns on this invention constructs in the marine space comprised from the structure provided with the pile structure put on the seabed ground at the four corners of the side part.

さらに、予め定められた海底地盤上の2点に特定の間隔を設けて杭構造を打設した後に特定の間隔と同長の幅を有する直方体からなるケーソンを前記幅の側面が前記杭構造間に嵌挿するよう沈設して反対側の側面が嵌挿されるようさらに杭構造を打設して海洋空間に建造してもよい。   Furthermore, a caisson made of a rectangular parallelepiped having a width the same length as the specific interval is set between the pile structures after the pile structure is placed at a predetermined interval at two points on the predetermined submarine ground. A pile structure may be further laid and built in the marine space so that the opposite side surface is inserted by being sunk so as to be inserted into the ocean.

杭構造の打設は、同時に複数の杭を打設可能な杭打ち装置で打設することにより固定された作業台を中心に四辺形平面作業台の場合は四方向に短時間で杭の打設が可能になる。   Pile construction is driven in a short time in four directions in the case of a quadrilateral planar work table centered on a fixed work table by using a pile driving device capable of driving multiple piles at the same time. Can be set up.

所定の鉄骨仮枠組みを予め海上または海中に一体化した形で設置・安定させる工程と、
前記鉄骨仮枠組みに添って杭を打ち込むとともに鉄骨仮枠組みに添って側壁用の鉄またはコンクリート板を垂直に建て込んで鉄骨仮枠および打設済杭と一体化して海中の杭構造と鉄・コンクリート壁板構造として安定させる工程と、
海上に露出している杭頭を水平に揃えて前記杭頭上に予め作成した鉄およびコンクリート床板を水平に設置または固定する海洋空間に建造してもよい。
A process of installing and stabilizing a predetermined steel temporary frame in an integrated form in the sea or in the sea;
The pile is driven along the steel temporary frame and the side wall iron or concrete plate is vertically built along the steel temporary frame and integrated with the steel temporary frame and the already installed pile. A process of stabilizing as a wallboard structure,
You may build in the marine space which arranges or fixes the iron and concrete floor board previously created on the said pile head by aligning the pile head exposed on the sea horizontally.

本発明によれば、杭構造とケーソン構造を一体化した形で施工し、構造的にも一体化した形で機能する為に全体構造物の垂直・水平方向の耐力を自由に加減し得る。   According to the present invention, the pile structure and the caisson structure are constructed in an integrated manner, and the vertical and horizontal proof stresses of the entire structure can be freely adjusted in order to function in an integrated form.

ケーソン上面の作業床への転用および片持ち梁等の杭打ち支援機構の構成を適切にケーソン嵌め込み沈設と組合わせることにより、周辺海象条件の影響を小にして、杭打ち作業可能な水深であれば、杭形状・規模の変化、杭間隔の広範囲な変更にも適宜対応可能である。このため、周辺陸上部と全く無関係に、海面上作業台を中心に杭構造、ケーソン構造、それらの組合せ・ハイブリッド構造からなる人工地盤を短期間で建造できる。また、建造工期を短縮することにより建造コストの低下を計ることができる。   If the caisson upper surface is converted to a working floor and the structure of the pile driving support mechanism such as cantilever is combined with caisson insertion and subsidence appropriately, the effect of the surrounding sea conditions will be reduced, and the water depth will be able to be piled. For example, it is possible to respond appropriately to changes in pile shape / scale and wide changes in pile spacing. For this reason, an artificial ground consisting of a pile structure, a caisson structure, and a combination / hybrid structure thereof can be constructed in a short period of time centering on a work table on the sea surface, completely independent of the surrounding land. Moreover, the construction cost can be reduced by shortening the construction period.

以下、本発明の実施例について添付の図1〜図8により説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図1に本願発明に係る海洋空間に建設するハイブリッド方式人工地盤の構造を概略的に説明する。図1(A)が概略平面図を示し、図1(B)がA−A断面図を示す。   FIG. 1 schematically illustrates the structure of a hybrid artificial ground constructed in an ocean space according to the present invention. FIG. 1A shows a schematic plan view, and FIG. 1B shows a cross-sectional view along AA.

図1(A)において、参照符号2はケーソンを示し、その形状は正方形の4隅の角を各辺に対して45度の角度で切り落とした8角形である。正方形の4辺にあたる辺で隣り合うケーソン2と接合する。切り落とした4隅にできる各小正方形空間の中心に杭4が配置され、杭4は伸縮自在な結合部6を介してケーソン2と結合される。各ケーソン2は、隣接するケーソンと各辺で接すると共に杭4を介して隣接するケーソン2、並びに対角上に存在するケーソン2と結合される。ケーソン2は、骨格に複数のH鋼が使用され、側板に鋼板等を用いる鋼殻ケーソンから構成される。しかし、鋼殻ケーソンに限定されるものではなく骨格を鉄筋で構成する鉄筋コンクリート殻であっても良い。いずれにしろケーソン2は内部中空な箱型に形成され、上面が開口する。ケーソン2の大きさは、例えば、水深10メートルの海洋の場合であれば、奥行き15メートル、幅15メートル、高さ20メートルである。また、杭4についても鋼材またはコンクリート材のいずれであってもよい。   In FIG. 1A, reference numeral 2 denotes a caisson, and its shape is an octagon obtained by cutting off the corners of the four corners of the square at an angle of 45 degrees with respect to each side. It joins with the adjacent caisson 2 at the sides corresponding to the four sides of the square. A pile 4 is arranged at the center of each small square space formed at the cut off four corners, and the pile 4 is coupled to the caisson 2 via a coupling portion 6 that can be expanded and contracted. Each caisson 2 is connected to the adjacent caisson 2 that contacts the adjacent caisson at each side and is adjacent to the adjacent caisson 2 via the pile 4 and the diagonally located caisson 2. The caisson 2 is composed of a steel shell caisson using a plurality of H steels for the skeleton and using a steel plate or the like for the side plate. However, it is not limited to a steel shell caisson, and may be a reinforced concrete shell whose skeleton is composed of reinforcing bars. In any case, the caisson 2 is formed in an internal hollow box shape, and the upper surface is opened. The size of the caisson 2 is, for example, 15 meters deep, 15 meters wide, and 20 meters high in the case of an ocean having a water depth of 10 meters. Further, the pile 4 may be either a steel material or a concrete material.

図1(B)は、図1(A)の人工地盤をA−A線で切断した断面図を示す。ケーソン2は、海底8上に沈設される。ここで、10が海面を示す。ケーソン2は、杭4と複数の結合部6で結合される。杭4は、海底8に1〜2メートルの深さまで打設される。   FIG. 1 (B) shows a cross-sectional view of the artificial ground of FIG. 1 (A) cut along line AA. The caisson 2 is set on the seabed 8. Here, 10 indicates the sea level. The caisson 2 is coupled to the pile 4 by a plurality of coupling portions 6. The pile 4 is driven to the seabed 8 to a depth of 1 to 2 meters.

すなわち、水平方向の応力については、杭4のみで水平応力を支持する場合と比較して、ケーソンと杭で支持する本発明の構成ではケーソン2と海底8との摩擦力と水平応力が相殺される。このため、杭4には大きな水平応力は生じない。一方垂直方向にはケーソン底面で垂直力を分散させる為に杭4は軸耐力を必要とせず、杭打ち工法の場合に必要とされた杭側面と杭先端部で分担していた軸耐力を生ずるために必要であった海底深く支持層まで杭を打設する必要がない。   That is, regarding the horizontal stress, the frictional force between the caisson 2 and the seabed 8 and the horizontal stress are offset in the configuration of the present invention in which the caisson and the pile support the horizontal stress compared to the case where the horizontal stress is supported only by the pile 4. The For this reason, a large horizontal stress does not occur in the pile 4. On the other hand, in order to disperse the vertical force at the bottom of the caisson in the vertical direction, the pile 4 does not require axial strength, and the axial strength shared by the pile side and the tip of the pile required for the pile driving method is generated. Therefore, it is not necessary to drive piles deeply into the seabed, which was necessary for this purpose.

一方垂直方向において、既述のように杭4とケーソン2とが一体化しておりケーソン2の浮力が、杭4に作用する垂直方向の摩擦力および逆摩擦力を相殺する。このため、杭4とケーソン2から構成される人工地盤の垂直方向の耐力および水平方向の耐力を制御することとなる。すなわち、ケーソン2に注入する海水量でケーソン2の浮力を制御し、人工地盤全体のケーソン2の注入する海水量を制御することで人工地盤全体の浮力が制御可能である。   On the other hand, in the vertical direction, the pile 4 and the caisson 2 are integrated as described above, and the buoyancy of the caisson 2 cancels out the vertical friction force and the reverse friction force acting on the pile 4. For this reason, the vertical strength and the horizontal strength of the artificial ground composed of the pile 4 and the caisson 2 are controlled. That is, the buoyancy of the entire artificial ground can be controlled by controlling the buoyancy of the caisson 2 by the amount of seawater injected into the caisson 2 and controlling the amount of seawater injected by the caisson 2 of the entire artificial ground.

続いて、図2〜図6を用いてハイブリッド方式人工地盤の建造方法について具体的に説明する。   Then, the construction method of a hybrid type artificial ground is demonstrated concretely using FIGS.

図2から図6において(A)が側面図を(B)が平面図を示す。図2(A)に示すように、沿岸域の水深10メートルの海面上1メートルに、幅50メートル奥行き50メートルの固定作業台12を設置して、図3(A)に示すように固定作業台12端部に片持ち梁16を設け、その梁長は15メートルであり、その先端に杭打ち機18を備えており直立杭柱4を打設する。ここで、杭打ち機18は振動ハンマーと重錘ハンマーの何れであってもよい。   2 to 6, (A) shows a side view and (B) shows a plan view. As shown in FIG. 2 (A), a fixed work table 12 having a width of 50 meters and a depth of 50 meters is installed 1 meter above the sea surface at a depth of 10 meters in the coastal area, and the fixing work is performed as shown in FIG. 3 (A). A cantilever 16 is provided at the end of the base 12, the beam length is 15 meters, a pile driving machine 18 is provided at the tip, and the upright pile pillar 4 is driven. Here, the pile driving machine 18 may be either a vibration hammer or a weight hammer.

図4に示すように、予めドライドッグ等で製造されたケーソン2が曳航船20に牽引されて3本の既設杭打ち点に運搬・嵌め込まれ正確な沈設が可能となる。   As shown in FIG. 4, the caisson 2 manufactured in advance by a dry dog or the like is pulled by the towed ship 20 and is transported and fitted to three existing pile driving points, thereby enabling accurate subsidence.

図5に示す通り運搬されたケーソン2は杭間にその3隅を接した状態で海底面まで沈設される。ケーソンが箱型、底板付きである場合は、ケーソン内部に注水して沈設させる。ここで、杭位置でケーソン沈設位置決めを行うため従来工法でのケーソン単体の位置決めと比較して容易であり、沈設を短時間で行える。   The caisson 2 transported as shown in FIG. 5 is laid down to the sea bottom with its three corners in contact between the piles. If the caisson is box-shaped and has a bottom plate, water is poured into the caisson and set. Here, since caisson laying positioning is performed at the pile position, it is easier than positioning the caisson alone in the conventional method, and laying can be performed in a short time.

さらに、図6に示すように沈下安定したケーソン2の上部をコンクリート又は鋼板からなる床板22で遮蔽し、さらにケーソンの残る1隅側部に杭をそれぞれ打設する。その上で、外洋に面する杭上に図3と同様の片持ち梁16を設け、備えられた杭打ち機18で直立杭柱を片持ち梁16から15メートル外洋に打設する。続いて図4の工程に再び戻りケーソンを既に打設済みの3本の杭間にはめ込むよう沈設する。その後、ケーソン上部をコンクリートで遮蔽し、沈設したケーソンの残る1隅側部にさらに杭を打設する。この工程を固定作業台12と垂直方向並びに水平方向の両方向に渡り繰り返すことで15メートル毎に杭が打設され、その間にケーソンが沈設されてより安定した構造の人工地盤が任意の大きさで設置される。当初の固定作業台から出発して順次以上の作業を繰返すことによりケーソン自体も順次作業台となるため安定した構造となり、海象条件に左右されることなく建造を推進できるので複雑な海象条件による工程の遅れを解消する。   Further, as shown in FIG. 6, the upper part of the caisson 2 that has settled and stabilized is shielded by a floor board 22 made of concrete or steel plate, and a pile is placed on one corner side portion where the caisson remains. Then, a cantilever 16 similar to that shown in FIG. 3 is provided on the pile facing the open ocean, and an upright pile column is driven from the cantilever 16 to the open ocean by 15 meters using the pile driver 18 provided. Subsequently, returning to the process of FIG. 4 again, the caisson is sunk so as to fit between the three piles that have already been placed. After that, the upper part of the caisson is shielded with concrete, and a pile is further driven in the remaining one corner side of the caisson that has been laid. By repeating this process across the fixed work table 12 in both the vertical and horizontal directions, piles are driven every 15 meters, and the caisson is sunk between them, and the artificial ground with a more stable structure can be of any size. Installed. By starting from the original fixed worktable and repeating the above work in sequence, the caisson itself becomes a worktable in turn, resulting in a stable structure, and the construction can be promoted without being affected by sea conditions, so the process is based on complex sea conditions To eliminate the delay.

また、杭打ち機18を2台以上連装して、正確な位置に打設済の杭を利用してケーソンの嵌め込み、正確な位置でのケーソンの沈設作業終了後、ケーソンの上面は作業床として利用され、片持ち梁の上部を移動する台車を設けることにより杭打ちの能率を向上させることも可能である。杭打ち機18の構成やその台数を増加させ杭打ち作業とケーソン嵌め込み・沈設作業を組合わせることで工期を短縮することもできる。   In addition, two or more pile driving machines 18 are connected in series, and the caisson is fitted using the piles that have already been placed in the correct position. After the caisson is placed in the correct position, the upper surface of the caisson is used as the work floor. It is also possible to improve the efficiency of pile driving by providing a carriage that moves over the cantilever. The construction period can be shortened by increasing the configuration and the number of pile driving machines 18 and combining the pile driving work and caisson fitting / sinking work.

さらに、図7に示すように海底が平坦でない場合は、杭を打設してケーソンは、海底面の最も突出している点24とケーソンの底面が接するまで沈設する。その後、予めケーソン底部に設けた孔部26より海底面に、細砂又はコンクリートミルクまたは、モルタルを流し込みケーソン底部と海底面間の間隙を充填することにより平担性を保つことが可能である。   Furthermore, as shown in FIG. 7, when the sea bottom is not flat, a pile is driven and the caisson is sunk until the most projecting point 24 on the sea bottom contacts the bottom of the caisson. After that, it is possible to maintain flatness by pouring fine sand, concrete milk or mortar into the sea bottom from the hole 26 provided in the caisson bottom in advance to fill the gap between the caisson bottom and the sea bottom.

また、ケーソンを利用しないハイブリッド方式人工地盤並びにその建造方法について実施例2において図8A〜8Gを参照しながら説明する。海底地盤上に打設する杭を利用した海洋構造物建造の場合、図8Aに示すように立方体に形成した所定の鉄骨仮枠組み40を、予め海上・海中に一体化した形で設置・安定させる。この鉄骨仮枠組み40は、鉛直かつ互いに平行であって、正方形の頂点にそれぞれ立設する4本の中空の鋼管42と、隣接する鋼管42同士の頂部と底部とに其々垂直に結合するフレーム材44によって直方体状に形成される。すなわち、鋼管42が柱状に配置されて、フレーム材44が梁状に配置される。また、隣接する鋼管42は互いに溝部を向け合うように溝型鋼46が平行に接合される。この鉄骨仮枠組み40を海上・海中に一体化した形で設置・安定させる場合は、鋼管42が海底面に鉛直に立設するように設置される。   Further, a hybrid type artificial ground not using a caisson and a construction method thereof will be described in Example 2 with reference to FIGS. In the case of offshore structure construction using piles placed on the seabed ground, as shown in FIG. 8A, a predetermined steel frame temporary frame 40 formed into a cube is installed and stabilized in advance in an integrated form on the sea and in the sea. . This temporary steel frame 40 is vertical and parallel to each other, and is a frame that is vertically coupled to four hollow steel pipes 42 standing at the apexes of a square and the top and bottom of adjacent steel pipes 42, respectively. The material 44 forms a rectangular parallelepiped. That is, the steel pipe 42 is arranged in a columnar shape, and the frame material 44 is arranged in a beam shape. Moreover, the grooved steel 46 is joined in parallel so that the adjacent steel pipes 42 face each other. When this temporary steel frame 40 is installed and stabilized in an integrated form on the sea and in the sea, the steel pipe 42 is installed so as to stand vertically on the bottom of the sea.

その仮枠組み40に添って、海底面に杭構造48を打ち込む(図8B)。杭構造48は、中空の鋼管42の中心を貫通させて、上部から押圧されて杭構造48の先端が海底面に埋設するように立設される。この手法を採用することで杭構造48の埋設時に位置決めをする必要がなく、また波による影響を受けることなく埋設が可能となる。図8Bは、杭構造48が3本埋設され、1本が挿入される前の状態を示す。図8Cは、全杭構造48が埋設された状態を示す。   A pile structure 48 is driven into the bottom of the sea along the temporary framework 40 (FIG. 8B). The pile structure 48 is erected so as to penetrate the center of the hollow steel pipe 42 and be pressed from above so that the tip of the pile structure 48 is embedded in the sea bottom. By adopting this method, it is not necessary to position the pile structure 48 at the time of embedding, and the embedding can be performed without being affected by waves. FIG. 8B shows a state before three pile structures 48 are buried and one is inserted. FIG. 8C shows a state where the entire pile structure 48 is embedded.

さらに、必要に応じ、鉄骨仮枠組み40の鋼管42の側面に溝型鋼46が設けられその溝型鋼46に添って側壁用の鉄・コンクリート壁板構造50を垂直に挿入する。鉄骨仮枠・打設済杭と一体化して、海中の杭構造48と鉄・コンクリート壁板構造50として安定させる(図8D)。図8Dに挿入時の状態を示し、図8Eに挿入後の状態を示す。図9に鉄・コンクリート壁板構造50と溝型鋼46の配置についての詳細図面を示す。図9では杭構造48を貫通させた鋼管42に対して溝型鋼46がウェブの外側と接合され、ウェブの内側に鉄・コンクリート壁板構造50の端部が接合する。前記鋼管42の側面に設けられた前記溝型鋼46は、鉄骨仮枠組み40の全体構造強度によっては省略され、前記フレーム材44を直接鋼管に両面から取り付けることも出来る(図12)。この溝型鋼46の省略は、鉄骨仮枠組み全体重量軽減となり、好ましい結果をもたらすこととなる。さらに、前記鉄・コンクリート壁板構造50から90度回転した方向にも同様に溝型鋼46がウェブの外側と接合され、ウェブの内側に鉄・コンクリート壁板構造50の端部が接合するよう配置する。   Further, if necessary, a groove steel 46 is provided on the side surface of the steel pipe 42 of the temporary steel frame 40, and the side wall iron / concrete wall plate structure 50 is vertically inserted along the groove steel 46. It is integrated with the steel frame temporary frame / placed pile and stabilized as an underwater pile structure 48 and an iron / concrete wall plate structure 50 (FIG. 8D). FIG. 8D shows a state at the time of insertion, and FIG. 8E shows a state after the insertion. FIG. 9 shows a detailed drawing about the arrangement of the iron / concrete wall plate structure 50 and the grooved steel 46. In FIG. 9, the channel steel 46 is joined to the outside of the web with respect to the steel pipe 42 penetrating the pile structure 48, and the end of the iron / concrete wall plate structure 50 is joined to the inside of the web. The grooved steel 46 provided on the side surface of the steel pipe 42 is omitted depending on the overall structural strength of the steel temporary frame 40, and the frame material 44 can be directly attached to the steel pipe from both sides (FIG. 12). The omission of the grooved steel 46 reduces the overall weight of the temporary steel frame and provides favorable results. Further, the groove steel 46 is similarly joined to the outside of the web in the direction rotated 90 degrees from the iron / concrete wall board structure 50, and the end of the iron / concrete wall board structure 50 is joined to the inside of the web. To do.

続いて、杭構造48の頭部を切断して水平に揃える(図8F)。   Subsequently, the head of the pile structure 48 is cut and aligned horizontally (FIG. 8F).

その杭頭上に予め作成した鉄・コンクリート床板52を水平に設置・固定する(図8G)。なお、鉄骨仮枠組み40に隣接してさらに他の鉄骨仮枠組み40を設けることでより広い面積に渡って設置可能である(図10)。また、フレーム材44を柱と梁のみとせずブレース材54を取り入れた構成図を図11に示す。   An iron / concrete floor board 52 prepared in advance is horizontally installed and fixed on the pile head (FIG. 8G). In addition, it can be installed over a wider area by providing another steel frame temporary frame 40 adjacent to the steel frame temporary frame 40 (FIG. 10). Further, FIG. 11 shows a configuration diagram in which the frame material 44 is not limited to columns and beams but the brace material 54 is incorporated.

本発明に係るハイブリッド方式人工地盤の第3の実施例について、図12(a)、(b)を利用して示す。図11との大きな違いは、フレーム材44及び56が二重に設けられ、鋼管42の内部に設けられるフレーム材44と鋼管42の外側に設けられる56から構成される。フレーム材44、56はL型鋼から構成されると廉価で強靭な構造が得られる。二重のフレーム材に加えてブレース材54と組みあわせることで頑丈なハイブリッド方式人工地盤の骨組みを構成することができる。   A third embodiment of the hybrid artificial ground according to the present invention will be described with reference to FIGS. The major difference from FIG. 11 is that the frame members 44 and 56 are doubled, and are composed of a frame member 44 provided inside the steel pipe 42 and 56 provided outside the steel pipe 42. If the frame members 44 and 56 are made of L-shaped steel, an inexpensive and strong structure can be obtained. By combining with the brace material 54 in addition to the double frame material, it is possible to construct a strong hybrid type artificial ground framework.

本発明に係るハイブリッド方式人工地盤の第4の実施例について、図13を利用して示す。溝型鋼46がウェブの外側と接合され、ウェブの内側に鉄・コンクリート壁板構造50の端部にゴム製のシールを設けたものである。このシール材によって止水効果を得ることができる。また、ウェブの内側に鉄・コンクリート壁板構造50を吊り下げる場合、溝型鋼46と鉄・コンクリート壁板構造50が直接接触しないため、スムースに挿入可能となる。溝型鋼46を省略し、鋼管42の両側面にL型鋼44と56を加えることも出来る。   A fourth embodiment of the hybrid artificial ground according to the present invention will be described with reference to FIG. A grooved steel 46 is joined to the outside of the web, and a rubber seal is provided at the end of the iron / concrete wallboard structure 50 inside the web. With this sealing material, a water stop effect can be obtained. Further, when the iron / concrete wall plate structure 50 is suspended inside the web, the grooved steel 46 and the iron / concrete wall plate structure 50 are not in direct contact with each other, and therefore can be inserted smoothly. It is also possible to omit the grooved steel 46 and add L-shaped steels 44 and 56 to both sides of the steel pipe 42.

以上で、海上空間に海上作業床である鉄・コンクリート床板を固定し、海上作業空間を得る。海中空間に、海上作業床を支持する杭・コンクリート壁板付き鉄骨仮枠組が、安定した形で得られる。   As described above, the marine work space is obtained by fixing the iron / concrete floor board, which is the marine work floor, to the marine space. A steel temporary frame with piles and concrete wall plates that support the work floor on the sea can be obtained in a stable shape between the sea hollows.

この手法を採用することで、ケーソンを利用した場合、陸上におけるケーソンの組立て・曳航作業に多くの困難が伴う付近海域の海象条件が厳しい場合にも採用可能である。   By adopting this method, when caisson is used, it can be adopted even when the sea conditions in the nearby sea area are severe due to many difficulties in assembling and towing the caisson on land.

また、この不利な条件を克服する為に、鉄骨仮枠組を予め作業床上に準備し、この仮枠組を作業床上のクレーンを利用して、仮枠組脚先端が海底面に到達するよう海上から吊り込む。その仮枠組に添って杭を打ち込む場合は、その杭の位置も既に明確に定まり、打ち込み作業が確実容易で、短時間に終了するところに今回の着想のメリットがある。   In order to overcome this disadvantageous condition, a temporary steel frame is prepared on the work floor in advance, and this temporary frame is suspended from the sea using a crane on the work floor so that the tip of the temporary frame leg reaches the bottom of the sea. Include. When a pile is driven along the temporary framework, the position of the pile is already clearly defined, the driving operation is easy and reliable, and there is a merit of the present idea in that it is completed in a short time.

さらに、鉄筋コンクリート壁の建て込みも、仮枠組脚先端が既に海底面に安定しているため確実容易で、短時間に終了することも今回の着想のメリットである。   In addition, the reinforced concrete wall can be built easily because the tip of the temporary frame assembly leg is already stable on the sea bottom, and it can be completed in a short time.

この工法は、ケーソンの曳航作業が周辺の海象条件で作業能率が左右されるのに対し、作業能率が変化することが少ない工法としてメリットを強調できる。   This method can emphasize the merit of the caisson towing work as a method with little change in work efficiency, while the work efficiency depends on the surrounding sea conditions.

加えて、本実施例では鋼管42の長さが一様な鉄骨仮枠組み40について説明したが、予め海底の地形を計測し4本の鋼管を地形に適合させて異なる長さとした鉄骨仮枠組とすることは設計変更の範囲内である。   In addition, in the present embodiment, the steel temporary frame 40 having a uniform length of the steel pipe 42 has been described. However, the steel temporary frame framework in which the topography of the seabed is measured in advance and the four steel pipes are adapted to the topography to have different lengths. It is within the scope of design changes.

本発明のハイブリッド方式人工地盤は、海中および海上に地盤を造成可能なため、従来埋め立て等が困難な場所においても容易に設置ができ、油田開発や、空港建設や、漁礁開発等が可能となる。   Since the hybrid type artificial ground of the present invention can be created in the sea and on the sea, it can be easily installed even in places where conventional landfilling has been difficult, and oil field development, airport construction, fishing reef development, etc. are possible. .

本発明に係る海洋空間に建造するハイブリッド方式人工地盤の構造を概略的に説明したもので、(A)が概略平面図を示し、(B)がA−A断面図を示す。BRIEF DESCRIPTION OF THE DRAWINGS The structure of the hybrid type artificial ground built in the ocean space which concerns on this invention is demonstrated roughly, (A) shows a schematic plan view, (B) shows AA sectional drawing. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法であって杭打設後の(A)側面図と(B)平面図を示す。It is a construction method of the hybrid system artificial ground built in the ocean space which concerns on this invention, Comprising: (A) Side view and (B) Top view after pile driving | running | working are shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法であって杭打ち装置の(A)側面図と(B)平面図を示す。It is a construction method of the hybrid type artificial ground built in the ocean space which concerns on this invention, Comprising: The (A) side view and (B) top view of a pile driving device are shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法であってケーソン運搬時の(A)側面図と(B)平面図を示す。It is the construction method of the hybrid system artificial ground built in the ocean space which concerns on this invention, Comprising: (A) Side view and (B) Top view at the time of caisson conveyance are shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法であってケーソン沈設時の(A)側面図と(B)平面図を示す。It is a construction method of the hybrid type artificial ground built in the marine space which concerns on this invention, Comprising: (A) Side view and (B) Top view at the time of caisson installation are shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法であって更なる杭打設工程の(A)側面図と(B)平面図を示す。It is a construction method of the hybrid type artificial ground built in the marine space which concerns on this invention, Comprising: The (A) side view and (B) top view of the further pile placing process are shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法であって海底が平坦でない場合の側面図を示す。The side view in case it is a construction method of the hybrid system artificial ground built in the ocean space which concerns on this invention, and the sea bottom is not flat is shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法である工程図を示す。The process figure which is the construction method of the hybrid system artificial ground built in the ocean space which concerns on this invention is shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法である工程図を示す。The process figure which is the construction method of the hybrid system artificial ground built in the ocean space which concerns on this invention is shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法である工程図を示す。The process figure which is the construction method of the hybrid system artificial ground built in the ocean space which concerns on this invention is shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法である工程図を示す。The process figure which is the construction method of the hybrid system artificial ground built in the ocean space which concerns on this invention is shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法である工程図を示す。The process figure which is the construction method of the hybrid system artificial ground built in the ocean space which concerns on this invention is shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法である工程図を示す。The process figure which is the construction method of the hybrid system artificial ground built in the ocean space which concerns on this invention is shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法である工程図を示す。The process figure which is the construction method of the hybrid system artificial ground built in the ocean space which concerns on this invention is shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法の鋼管近傍の詳細図を示す。The detailed drawing of the steel pipe vicinity of the construction method of the hybrid system artificial ground built in the ocean space which concerns on this invention is shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法において複数の鉄骨仮枠組みを配置した構成図を示す。The block diagram which has arrange | positioned the several steel frame temporary frame in the construction method of the hybrid system artificial ground built in the ocean space which concerns on this invention is shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法においてフレーム材に筋交い構造を適用した構成図を示す。The block diagram which applied the bracing structure to the frame material in the construction method of the hybrid system artificial ground built in the ocean space which concerns on this invention is shown. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法において第3の実施例による構成図を示す。The block diagram by the 3rd Example is shown in the construction method of the hybrid type artificial ground built in the ocean space which concerns on this invention. 本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法において第4の実施例による構成図を示す。The block diagram by the 4th Example is shown in the construction method of the hybrid type artificial ground built in the ocean space which concerns on this invention.

符号の説明Explanation of symbols

2 ケーソン
4 杭
6 結合部
8 海底
10 海面
12 固定作業台
14 位置決め装置
16 片持ち梁
18 杭打ち機
20 曳航船
22 床板
24 海底面最突出点
26 充填材注入用孔部
40 鉄骨仮枠組み
42 鋼管
44 フレーム材
46 溝型鋼
48 杭構造
50 鉄・コンクリート壁板構造
52 鉄・コンクリート床板
54 ブレース材
2 Caisson 4 Pile 6 Coupling part 8 Sea bottom 10 Sea surface 12 Fixed work table 14 Positioning device 16 Cantilever 18 Pile driver 20 Towing ship 22 Floor plate 24 Sea bottom most protruding point 26 Filling material injection hole 40 Steel temporary frame 42 Steel pipe 44 Frame material 46 Channel steel 48 Pile structure 50 Iron / concrete wall board structure 52 Iron / concrete floor board 54 Brace material

Claims (14)

海底地盤上に打設する杭構造を側部四隅に備えた構造体から構成される海洋空間に建造するハイブリッド方式人工地盤。   A hybrid artificial ground constructed in a marine space composed of structures with pile structures placed on the seabed ground at the four corners. 杭構造は、予め鋼管を設けてその中央に杭を配置するよう構成されることを特徴とする請求項1記載のハイブリッド方式人工地盤。   2. The hybrid artificial ground according to claim 1, wherein the pile structure is configured such that a steel pipe is provided in advance and a pile is arranged in the center thereof. 海底地盤上に打設する杭構造を側部四隅に備えたケーソンから構成される海洋空間に建造する請求項1記載のハイブリッド方式人工地盤。   The hybrid artificial ground according to claim 1, wherein a pile structure to be placed on the seabed ground is constructed in an ocean space composed of caissons provided at the four corners of the side. ケーソンと海底地盤に間隙が存在する場合に細砂又はコンクリートミルク又はモルタルで間隙を充填することを特徴とする請求項1記載の海洋空間に建造するハイブリッド方式人工地盤。   2. The hybrid artificial ground constructed in an ocean space according to claim 1, wherein the gap is filled with fine sand, concrete milk or mortar when there is a gap between the caisson and the seabed ground. ケーソンの材質が、鋼殻又はコンクリート殻であることを特徴とする請求項1記載の海洋空間に建造するハイブリッド方式人工地盤。   2. The hybrid artificial ground constructed in an ocean space according to claim 1, wherein the caisson is made of steel shell or concrete shell. ケーソンと杭構造とが、伸縮自在に接合し、一体化した構造物の上部に更に床板を設けられることを特徴とする請求項1記載の海洋空間に建造するハイブリッド方式人工地盤。   2. The hybrid artificial ground constructed in an ocean space according to claim 1, wherein the caisson and the pile structure are joined in a stretchable manner, and a floor board is further provided on the integrated structure. ケーソン内部にさらに浮力調整用タンク構造を有することを特徴とする請求項1記載の海洋空間に建造するハイブリッド方式人工地盤。   The hybrid artificial ground constructed in an ocean space according to claim 1, further comprising a tank structure for buoyancy adjustment inside the caisson. ケーソン内部にさらに居住空間構造を有することを特徴とする請求項1記載の海洋空間に建造するハイブリッド方式人工地盤。   The hybrid artificial ground constructed in an ocean space according to claim 1, further comprising a living space structure inside the caisson. 杭構造と鉄骨仮枠組みと側壁板とが一体化して更にその上部に床板が設けられる請求項1記載のハイブリッド方式人工地盤。   The hybrid artificial ground according to claim 1, wherein the pile structure, the steel frame temporary frame and the side wall plate are integrated and a floor plate is further provided on the upper portion. 前記側壁板の両端にシール材が設けられていることを特徴とする請求項1記載のハイブリッド方式人工地盤。   The hybrid artificial ground according to claim 1, wherein sealing material is provided at both ends of the side wall plate. 海底地盤上に打設する杭構造を側部四隅に備えた構造体から構成される海洋空間に建造するハイブリッド方式人工地盤の建造方法。   A hybrid artificial ground construction method in which a pile structure to be placed on the seabed ground is constructed in a marine space composed of structures with four corners on the sides. 予め定められた海底地盤上の2点に特定の間隔を設けて杭構造を打設した後に特定の間隔と同長の幅を有する直方体からなるケーソンを前記幅の側面が前記杭構造間に嵌め込まれるよう位置を定め、次に沈設してケーソン上面を遮蔽板にて覆うことにより作業床として利用しさらに杭構造を打設して海洋空間に建造する請求項11記載のハイブリッド方式人工地盤の建造方法。   A caisson made of a rectangular parallelepiped having the same length as the specific interval is placed between the pile structures after placing the pile structure with a specific interval at two points on the predetermined seabed ground. 12. The hybrid artificial ground construction according to claim 11, wherein the position is set so as to be laid, and then the caisson upper surface is covered with a shielding plate so as to be used as a work floor, and a pile structure is further constructed in the ocean space. Method. 杭構造の打設は、同時に複数の杭を打設可能な杭打ち装置で打設することを特徴とする海洋空間に建造する請求項11記載のハイブリッド方式人工地盤の建造方法。   The construction method for a hybrid artificial ground according to claim 11, wherein the pile structure is constructed in an ocean space, wherein the pile structure is constructed by a pile driving device capable of simultaneously placing a plurality of piles. 所定の鉄骨仮枠組みを予め海上または海中に一体化した形で設置・安定させる工程と、
前記鉄骨仮枠組みに設けられた鋼管の中心に杭を打ち込むとともに鉄骨仮枠組みに添って側壁用の鉄またはコンクリート板を垂直に建て込んで鉄骨仮枠および打設済杭と一体化して海中の杭構造と鉄・コンクリート壁板構造として安定させる工程と、
海上に露出している杭頭を水平に揃えて前記杭頭上に予め作成した鉄およびコンクリート床板を水平に設置または固定する海洋空間に建造する請求項10記載のハイブリッド方式人工地盤の建造方法。
A process of installing and stabilizing a predetermined steel temporary frame in an integrated form in the sea or in the sea;
The pile is driven into the center of the steel pipe provided in the steel temporary frame and the steel or concrete plate for the side wall is vertically built along with the steel temporary frame to be integrated with the steel temporary frame and the installed pile. The process of stabilizing the structure and the iron / concrete wallboard structure,
The construction method of a hybrid type artificial ground according to claim 10, wherein the pile heads exposed on the sea are horizontally aligned and constructed in an ocean space in which iron and concrete floor boards prepared in advance are horizontally installed or fixed.
JP2005285465A 2005-09-29 2005-09-29 Hybrid artificial ground constructed in ocean space, and construction method for the hybrid artificial ground Pending JP2007092454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005285465A JP2007092454A (en) 2005-09-29 2005-09-29 Hybrid artificial ground constructed in ocean space, and construction method for the hybrid artificial ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005285465A JP2007092454A (en) 2005-09-29 2005-09-29 Hybrid artificial ground constructed in ocean space, and construction method for the hybrid artificial ground

Publications (1)

Publication Number Publication Date
JP2007092454A true JP2007092454A (en) 2007-04-12

Family

ID=37978479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285465A Pending JP2007092454A (en) 2005-09-29 2005-09-29 Hybrid artificial ground constructed in ocean space, and construction method for the hybrid artificial ground

Country Status (1)

Country Link
JP (1) JP2007092454A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134800B1 (en) 2012-01-13 2012-04-13 김석문 Breakwater structure capable of controlling amount of flowing water, control apparatus and method therefor
CN108104124A (en) * 2017-12-29 2018-06-01 中交二公局第工程有限公司 Three frame leading truck of Large-diameter Steel casing and auxiliary positioning stage apparatus
CN115500302A (en) * 2022-09-20 2022-12-23 中山市武汉理工大学先进工程技术研究院 Seabed fishing reef cluster-cemetery combination and construction and maintenance method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134800B1 (en) 2012-01-13 2012-04-13 김석문 Breakwater structure capable of controlling amount of flowing water, control apparatus and method therefor
CN108104124A (en) * 2017-12-29 2018-06-01 中交二公局第工程有限公司 Three frame leading truck of Large-diameter Steel casing and auxiliary positioning stage apparatus
CN115500302A (en) * 2022-09-20 2022-12-23 中山市武汉理工大学先进工程技术研究院 Seabed fishing reef cluster-cemetery combination and construction and maintenance method thereof

Similar Documents

Publication Publication Date Title
US9567720B2 (en) Offshore platform for a marine environment
US2667038A (en) Subaqueous supporting structure for working platforms
JP2005330718A (en) Construction method of underwater foundation
JP2007092454A (en) Hybrid artificial ground constructed in ocean space, and construction method for the hybrid artificial ground
CN104912093A (en) Deepwater pile foundation positioning and guiding structure and construction method
KR100995667B1 (en) System-block and construction method using the same
JP4801283B2 (en) Hybrid artificial ground constructed in ocean space and its construction method
CN105604061A (en) Floating-type device for rock embedment mounting of steel pipe pile in water and construction method thereof
AU2012313196B2 (en) Partially floating marine platform for offshore wind-power, bridges and marine buildings, and construction method
JPS6157721A (en) Method of constructing underwater foundation of multipile jacket structure
JP2010180684A (en) Pier of three-dimensional rigid frame structure and construction method
CN211898279U (en) Height-adjustable assembled offshore measuring platform
CN204690772U (en) A kind of pile foundation in deep water location, guide frame
CN109469080B (en) Underwater rock-socketed steel sheet pile cofferdam structure and construction method thereof
KR20200123977A (en) Lathe type quay structure reinforced sheet pile and method for reinforcement quay structure using sheet pile
CN103556640A (en) Method for sinking vertical piles in shallow sea reclamation area
JP3378982B2 (en) Basic structure of underwater tunnel
CN215329677U (en) But pier structure is assembled in prefabrication of rapid prototyping
JP2008082095A (en) Construction method of caisson skeleton
JP2676779B2 (en) Cylindrical caisson
JP2630994B2 (en) Construction method of quay using caisson
JPH0588326B2 (en)
CN117071503A (en) Filling device, foundation structure and method for filling sea
JP2997424B2 (en) Waterworks equipment structure
JPH06264424A (en) Column-shaped or column row-shaped water area structure and construction method thereof