JP4801283B2 - Hybrid artificial ground constructed in ocean space and its construction method - Google Patents

Hybrid artificial ground constructed in ocean space and its construction method Download PDF

Info

Publication number
JP4801283B2
JP4801283B2 JP2001188928A JP2001188928A JP4801283B2 JP 4801283 B2 JP4801283 B2 JP 4801283B2 JP 2001188928 A JP2001188928 A JP 2001188928A JP 2001188928 A JP2001188928 A JP 2001188928A JP 4801283 B2 JP4801283 B2 JP 4801283B2
Authority
JP
Japan
Prior art keywords
caisson
pile
artificial ground
hybrid artificial
constructed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001188928A
Other languages
Japanese (ja)
Other versions
JP2003003453A (en
Inventor
昌昭 佐久田
Original Assignee
株式会社シーズ・インターナショナル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シーズ・インターナショナル filed Critical 株式会社シーズ・インターナショナル
Priority to JP2001188928A priority Critical patent/JP4801283B2/en
Priority to PCT/JP2002/007971 priority patent/WO2004012991A1/en
Publication of JP2003003453A publication Critical patent/JP2003003453A/en
Application granted granted Critical
Publication of JP4801283B2 publication Critical patent/JP4801283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment

Description

【産業上の利用分野】
本発明は、海洋空間に建造するハイブリッド方式地盤に係り、特に杭構造とケーソン構造を組合わせた人工地盤とその建造方法に関する。
【従来の技術】
従来、海洋空間に人工地盤を建造する手段として複数の施工法が提案されている。
第1の提案は、杭構造を利用した海洋空間に人工地盤を建造する工法である。すなわち、杭構造工法は、海底に杭を打設し、その杭を基礎として海洋建築物を構成する工法である。予め決定された地点での杭の打設が可能であるため、設計図通り正確な地点に杭を打設することが可能である。また、複数の杭を利用して海洋構造物を製造するが、各杭間の海底面の地質の海底地質の剛性および海底面の平担性は問われない。つまり、杭が打設できるか否かについては杭を打設する点のみの問題であり、各杭間の多少の平坦性や海底地質の剛性が損なわれていても海洋建築物の建築は可能である。
また、第2の提案は、ケーソン構造を利用した海洋空間に人工地盤を建設する工法である。ケーソン構造は、予め陸上でコンクリート並びに鉄鋼で建設された大きさ15m×15m程度の箱状構造物である。ケーソン構造の内部は空洞であり、陸上で上面以外に壁を設けた後に海上に浮遊した状態で輸送、目的地点まで、そのまま浮遊状態で移動され、設置点でその内部に海水等を入水させ、その入水重量でケーソン構造の上昇運動と下降運動を制御しながら、海底面へ沈設する。
さらに、第3の提案としては、埋め立て工法が存在する。すなわち、大量の土砂を海底に積層しながら海水と土砂を置換える単純な従来の手法である。
そして、第4の提案が、フロート工法である。海上に大型の浮遊物を敷き詰める工法であり、浮遊物が陸上で自由な形状に製造できしかも敷設が簡単であるという利点が存在する。
【発明が解決しようとする課題】
ところが、これら従来の工法においても幾つかの課題が生じていた。
第1の杭構造工法では、通常、杭を堅い岩盤に到達して水平方向の応力に対向できる軸耐力の生ずる深さまで打設する必要があった。このため、杭の打設時間が増加していた。しかも、海上での作業は、海象条件が悪化すると作業ができないため、ますます建造時間を延長させる要因となっていた。
また、水平方向の応力に対応する為には、杭の直径を増加させる必要があるが、この点も打設時間を延ばす要因となる。
一方、第2のケーソン構造工法は、ケーソン底面の平担性が必要である。すなわち、通常は直方体からなるケーソン構造を設置するため海底が平坦でない場合にケーソン構造が傾斜することがある。さらに、ケーソン構造が巨大であると共に、基軸の存在しない海中でケーソン構造の位置制御を行い精度を高く設置位置を指定することは困難であった。
さらに、第3の埋め立て工法は、大量の土砂を必要とすると共に工期が、他の工法と比較して著しく長く、コストが高くなる問題点を有している。しかも、埋め立て後に地盤が沈下する現象や地盤の液状化現象が解決しているわけではない。
そして、第4の工法であるフロートは、波の高さが40cm以下でなければ使用できず、通常使用するためには、使用海域を常時静水面として確保する為にフロート周囲に防波堤を設置する必要があり、却ってコストが防波堤設置に加えられていた。
そこで、本発明の目的は、設置する際の位置の制御精度が高く工期が短く竣工後広範囲の所要水平・垂直力に対応できるコストのかからない人工地盤とその建造方法を提供することにある。
【課題を解決するための手段】
前記目的を達成するために、本願発明の海洋空間に建造するハイブリッド方式人工地盤は、海底地盤上に打設する杭構造を側部四隅に備えたケーソンから構成される。
ケーソンと海底地盤に間隙が存在する場合に細砂又はコンクリートミルク又はモルタルで間隙を充填することで、平坦でない海底上でも設置が可能となる。
さらに、ケーソンの材質が、鋼殻又はコンクリート殻であることにより、コストや海象条件に適合した人口地盤を提供することができる。
また、ケーソンと杭構造とが、接合点・接合面に於いて伸縮自在に接合することにより、竣工後の人工地盤の海面高を自由自在に調整できる。
ケーソン内部には、さらに液体保存タンク構造を有することにより、人工地盤上の空間と人口地盤内部の空間を有効に活用可能となる。
ケーソン内部にさらに居住空間構造を有することで、海上により安価な居住空間を建造することが可能となる。
本願発明に係るハイブリッド方式人工地盤の建造にあたり、予め定められた海底地盤上の2点に特定の間隔を設けて杭構造を打設した後に特定の間隔と同長の幅を有する直方体からなるケーソンを前記幅の側面が前記杭構造間に嵌挿するよう沈設して反対側の側面が嵌挿されるようさらに杭構造を打設して海洋空間に建造する。
杭構造の打設は、同時に複数の杭を打設可能な杭打ち装置で打設することにより固定された作業台を中心に四辺形平面作業台の場合は四方向に短時間で杭の打設が可能になる。
【実施例】
以下、本発明の実施例について添付の図1〜図7により説明する。
図1に本願発明に係る海洋空間に建設するハイブリッド方式人工地盤の構造を概略的に説明する。図1(A)が概略平面図を示し、図1(B)がA−A断面図を示す。
図1(A)において、参照符号2はケーソンを示し、その形状は正方形の4隅の角を各辺に対して45度の角度で切り落とした8角形である。正方形の4辺にあたる辺で隣り合うケーソン2と接合する。切り落とした4隅にできる各小正方形空間の中心に杭4が配置され、杭4は伸縮自在な結合部6を介してケーソン2と結合される。各ケーソン2は、隣接するケーソンと各辺で接すると共に杭4を介して隣接するケーソン2、並びに対角上に存在するケーソン2と結合される。ケーソン2は、骨格に複数のH鋼が使用され、側板に鋼板等を用いる鋼殻ケーソンから構成される。しかし、鋼殻ケーソンに限定されるものではなく骨格を鉄筋で構成する鉄筋コンクリート殻であっても良い。いずれにしろケーソン2は内部中空な箱型に形成され、上面が開口する。ケーソン2の大きさは、例えば、水深10メートルの海洋の場合であれば、奥行き15メートル、幅15メートル、高さ20メートルである。また、杭4についても鋼材またはコンクリート材のいずれであってもよい。
図1(B)は、図1(A)の人工地盤をA−A線で切断した断面図を示す。ケーソン2は、海底8上に沈設される。ここで、10が海面を示す。ケーソン2は、杭4と複数の結合部6で結合される。杭4は、海底8に1〜2メートルの深さまで打設される。
すなわち、水平方向の応力については、杭4のみで水平応力を支持する場合と比較して、ケーソンと杭で支持する本発明の構成ではケーソン2と海底8との摩擦力と水平応力が相殺される。このため、杭4には大きな水平応力は生じない。一方垂直方向にはケーソン底面で垂直力を分散させる為に杭4は軸耐力を必要とせず、杭打ち工法の場合に必要とされた杭側面と杭先端部で分担していた軸耐力を生ずるために必要であった海底深く支持層まで杭を打設する必要がない。
一方垂直方向において、既述のように杭4とケーソン2とが一体化しておりケーソン2の浮力が、杭4に作用する垂直方向の摩擦力および逆摩擦力を相殺する。このため、杭4とケーソン2から構成される人口地盤の垂直方向の耐力および水平方向の耐力を制御することとなる。すなわち、ケーソン2に注入する海水量でケーソン2の浮力を制御し、人工地盤全体のケーソン2の注入する海水量を制御することで人工地盤全体の浮力が制御可能である。
続いて、図2〜図6を用いてハイブリッド方式人工地盤の建造方法について具体的に説明する。
図2から図6において(A)が側面図を(B)が平面図を示す。図2(A)に示すように、沿岸域の水深10メートルの海面上10メートルに、幅50メートル奥行き50メートルの固定作業台12を設置して、図3(A)に示すように固定作業台12端部に片持ち梁16を設け、その梁長は15メートルであり、その先端に杭打ち機18を備えており直立杭柱4を打設する。ここで、杭打ち機18は振動ハンマーと重錘ハンマーの何れであってもよい。
図4に示すように、予めドライドッグ等で製造されたケーソン2が曳航船20に牽引されて3本の既設杭打ち点に運搬・嵌め込まれ正確な沈設が可能となる。
図5に示す通り運搬されたケーソン2は杭間にその3隅を接した状態で海底面まで沈設される。ケーソンが箱型、底板付きである場合は、ケーソン内部に注水して沈設させる。ここで、杭位置でケーソン沈設位置決めを行うため従来工法でのケーソン単体の位置決めと比較して容易であり、沈設を短時間で行える。
さらに、図6に示すように沈下安定したケーソン2の上部をコンクリート又は鋼板からなる遮蔽板22で遮蔽し、さらにケーソンの残る1隅側部に杭をそれぞれ打設する。その上で、外洋に面する杭上に図3と同様の片持ち梁16を設け、備えられた杭打ち機18で直立杭柱を片持ち梁16から15メートル外洋に打設する。続いて図4の工程に再び戻りケーソンを既に打設済みの3本の杭間にはめ込むよう沈設する。その後、ケーソン上部をコンクリートで遮蔽し、沈設したケーソンの残る1隅側部にさらに杭を打設する。この工程を固定作業台12と垂直方向並びに水平方向の両方向に渡り繰り返すことで15メートル毎に杭が打設されて、その間にケーソンが沈設されてより安定した構造を有し人工地盤が任意の大きさで設置される。当初の固定作業台から出発して順次以上の作業を繰返すことによりケーソン自体も順次作業台となるため安定した構造となり、海象条件に左右されることなく建造を推進できるので複雑な海象条件による工程の遅れを解消する。
また、杭打ち機18を2台以上連装して、正確な位置に打設済の杭を利用してケーソンの嵌め込み、正確な位置でのケーソンの沈設作業終了後、ケーソンの上面は作業床として利用され、片持ち梁の上部を移動する台車を設けることにより杭打ちの能率を向上させることも可能である。杭打ち機18の構成やその台数を増加させ杭打ち作業とケーソン嵌め込み・沈設作業を組合わせることで工期を短縮することもできる。
さらに、図7に示すように海底が平坦でない場合は、杭を打設してケーソンは、海底面の最も突出している点24とケーソンの底面が接するまで沈設する。その後、予めケーソン底部に設けた孔部26より海底面に、細砂又はコンクリートミルクまたは、モルタルを流し込みケーソン底部と海底面間の間隙を充填することにより平担性を保つことが可能である。
【発明の効果】
本発明によれば、杭構造とケーソン構造を一体化した形で施工し、構造的にも一体化した形で機能する為に全体構造物の垂直・水平方向の耐力を自由に加減し得る。
ケーソン上面の作業床への転用および片持ち梁等の杭打ち支援機構の構成を適切にケーソン嵌め込み沈設と組合わせることにより、周辺海象条件の影響を小にして、杭打ち作業可能な水深であれば、杭形状・規模の変化、杭間隔の広範囲な変更にも適宜対応可能である。このため、周辺陸上部と全く無関係に、海面上作業台を中心に杭構造、ケーソン構造、それらの組合せ・ハイブリッド構造からなる人工地盤を短期間で建造できる。また、建造工期を短縮することにより建造コストの低下を計ることができる。
【図面の簡単な説明】
【図1】本発明に係る海洋空間に建造するハイブリッド方式人工地盤の構造を概略的に説明したもので、(A)が概略平面図を示し、(B)がA−A断面図を示す。
【図2】本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法であって杭打設後の(A)側面図と(B)平面図を示す。
【図3】本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法であって杭打ち装置の(A)側面図と(B)平面図を示す。
【図4】本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法であってケーソン運搬時の(A)側面図と(B)平面図を示す。
【図5】本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法であってケーソン沈設時の(A)側面図と(B)平面図を示す。
【図6】本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法であって更なる杭打設工程の(A)側面図と(B)平面図を示す。
【図7】本発明に係る海洋空間に建造するハイブリッド方式人工地盤の建造方法であって海底が平坦でない場合の側面図を示す。
【符号の説明】
2 ケーソン
4 杭
6 結合部
8 海底
10 海面
12 固定作業台
14 位置決め装置
16 片持ち梁
18 杭打ち機
20 曳航船
22 ケーソン上の遮蔽板
24 海底面最突出点
26 充填材注入用孔部
[Industrial application fields]
The present invention relates to a hybrid type ground constructed in an ocean space, and more particularly to an artificial ground combining a pile structure and a caisson structure and a construction method thereof.
[Prior art]
Conventionally, a plurality of construction methods have been proposed as means for constructing artificial ground in an ocean space.
The first proposal is a method of constructing artificial ground in an ocean space using a pile structure. That is, the pile structure construction method is a construction method in which a pile is placed on the seabed and an offshore building is constructed based on the pile. Since it is possible to drive a pile at a predetermined point, it is possible to drive a pile at an accurate point according to the design drawing. Moreover, although an offshore structure is manufactured using several piles, the rigidity of the seabed geology of the seabed between each pile and the flatness of the seabed are not ask | required. In other words, whether or not piles can be placed is only a matter of placing piles, and it is possible to build offshore buildings even if some flatness between each pile and rigidity of the seabed geology are impaired. It is.
The second proposal is a method of constructing artificial ground in an ocean space using a caisson structure. The caisson structure is a box-like structure having a size of about 15 m × 15 m, which is previously constructed on the land with concrete and steel. Inside the caisson structure is a hollow, transported in a floating state on the sea after providing a wall other than the upper surface on land, moved to the destination point in a floating state, and entered the seawater etc. into the interior at the installation point, The caisson structure is controlled to move up and down by the weight of the incoming water, and is submerged on the sea floor.
Furthermore, a landfill method exists as a third proposal. In other words, this is a simple conventional technique for replacing seawater and earth and sand while laminating a large amount of earth and sand on the seabed.
A fourth proposal is the float method. It is a method of laying large floating objects on the sea, and there is an advantage that floating objects can be manufactured in a free shape on land and that laying is easy.
[Problems to be solved by the invention]
However, some problems have arisen in these conventional methods.
In the first pile structure construction method, it is usually necessary to drive the pile to a depth that produces axial strength that can reach the hard rock and face the horizontal stress. For this reason, the driving time of the pile has increased. In addition, the work at sea has been a factor that further increases the construction time because the work cannot be performed if the sea conditions deteriorate.
Moreover, in order to cope with the stress in the horizontal direction, it is necessary to increase the diameter of the pile, but this point is also a factor for extending the placing time.
On the other hand, the second caisson structure method requires flatness of the bottom of the caisson. In other words, since the caisson structure is usually formed of a rectangular parallelepiped, the caisson structure may be inclined when the sea floor is not flat. Furthermore, the caisson structure is huge, and it is difficult to specify the installation position with high accuracy by controlling the position of the caisson structure in the sea where the base axis does not exist.
Furthermore, the third landfill method has a problem that a large amount of earth and sand is required and the construction period is significantly longer than other methods and the cost is increased. Moreover, the phenomenon of ground subsidence and land liquefaction after landfill has not been solved.
The float, which is the fourth method, cannot be used unless the wave height is 40 cm or less, and in order to use it normally, a breakwater is installed around the float in order to ensure the sea area to be used as a constant hydrostatic surface. On the other hand, the cost was added to the breakwater installation.
SUMMARY OF THE INVENTION An object of the present invention is to provide an artificial ground that has a high position control accuracy at the time of installation, has a short construction period, can cope with a wide range of required horizontal / vertical forces after completion, and a construction method thereof.
[Means for Solving the Problems]
In order to achieve the object, the hybrid artificial ground constructed in the marine space of the present invention is composed of caissons provided with pile structures placed on the seabed ground at the four corners of the side.
When there is a gap between the caisson and the seabed ground, the gap can be filled with fine sand, concrete milk, or mortar, so that it can be installed even on an uneven seabed.
Furthermore, since the caisson is made of steel shell or concrete shell, it is possible to provide an artificial ground suitable for cost and sea conditions.
In addition, the caisson and the pile structure can be stretched and joined at the joining point / joint surface so that the sea level of the artificial ground after completion can be adjusted freely.
By having a liquid storage tank structure inside the caisson, the space on the artificial ground and the space inside the artificial ground can be used effectively.
By having a living space structure inside the caisson, it becomes possible to build a cheaper living space at sea.
In the construction of the hybrid type artificial ground according to the present invention, a caisson comprising a rectangular parallelepiped having the same length as the specific interval after placing a pile structure at a predetermined interval at two points on a predetermined submarine ground The side of the width is set so as to be fitted between the pile structures, and the pile structure is further placed so that the opposite side is fitted and constructed in the marine space.
Pile construction is driven in a short time in four directions in the case of a quadrilateral planar work table centered on a fixed work table by using a pile driving device capable of driving multiple piles at the same time. Can be set up.
【Example】
Embodiments of the present invention will be described below with reference to FIGS.
FIG. 1 schematically illustrates the structure of a hybrid artificial ground constructed in an ocean space according to the present invention. FIG. 1A shows a schematic plan view, and FIG. 1B shows a cross-sectional view along AA.
In FIG. 1A, reference numeral 2 denotes a caisson, and its shape is an octagon obtained by cutting off the corners of the four corners of the square at an angle of 45 degrees with respect to each side. It joins with the adjacent caisson 2 at the sides corresponding to the four sides of the square. A pile 4 is arranged at the center of each small square space formed at the cut off four corners, and the pile 4 is coupled to the caisson 2 via a coupling portion 6 that can be expanded and contracted. Each caisson 2 is connected to the adjacent caisson 2 that contacts the adjacent caisson at each side and is adjacent to the adjacent caisson 2 via the pile 4 and the diagonally located caisson 2. The caisson 2 is composed of a steel shell caisson in which a plurality of H steels are used for the skeleton and a steel plate or the like is used for the side plate. However, it is not limited to the steel shell caisson, and may be a reinforced concrete shell whose skeleton is composed of reinforcing bars. In any case, the caisson 2 is formed in a hollow box shape having an inner top surface. The size of the caisson 2 is, for example, 15 meters deep, 15 meters wide, and 20 meters high in the case of an ocean having a water depth of 10 meters. Further, the pile 4 may be either a steel material or a concrete material.
FIG. 1 (B) shows a cross-sectional view of the artificial ground of FIG. 1 (A) cut along line AA. The caisson 2 is set on the seabed 8. Here, 10 indicates the sea level. The caisson 2 is coupled to the pile 4 by a plurality of coupling portions 6. The pile 4 is driven to the seabed 8 to a depth of 1 to 2 meters.
That is, regarding the horizontal stress, the frictional force between the caisson 2 and the seabed 8 and the horizontal stress are offset in the configuration of the present invention in which the caisson and the pile support the horizontal stress compared to the case where the horizontal stress is supported only by the pile 4. The For this reason, a large horizontal stress does not occur in the pile 4. On the other hand, in order to disperse the vertical force at the bottom of the caisson in the vertical direction, the pile 4 does not require axial strength, and the axial strength shared by the pile side and the tip of the pile required for the pile driving method is generated. Therefore, it is not necessary to drive piles deeply into the seabed, which was necessary for this purpose.
On the other hand, in the vertical direction, the pile 4 and the caisson 2 are integrated as described above, and the buoyancy of the caisson 2 cancels out the vertical friction force and the reverse friction force acting on the pile 4. For this reason, the vertical strength and horizontal strength of the artificial ground composed of the pile 4 and the caisson 2 are controlled. That is, the buoyancy of the entire artificial ground can be controlled by controlling the buoyancy of the caisson 2 by the amount of seawater injected into the caisson 2 and controlling the amount of seawater injected by the caisson 2 of the entire artificial ground.
Then, the construction method of a hybrid type artificial ground is demonstrated concretely using FIGS.
2 to 6, (A) shows a side view and (B) shows a plan view. As shown in FIG. 2 (A), a fixed work table 12 having a width of 50 meters and a depth of 50 meters is installed 10 meters above the sea surface at a water depth of 10 meters in the coastal area, and the fixing work is performed as shown in FIG. 3 (A). A cantilever 16 is provided at the end of the base 12, the beam length is 15 meters, a pile driving machine 18 is provided at the tip, and the upright pile pillar 4 is driven. Here, the pile driving machine 18 may be either a vibration hammer or a weight hammer.
As shown in FIG. 4, the caisson 2 manufactured in advance by a dry dog or the like is pulled by the towed ship 20 and is transported and fitted to three existing pile driving points, thereby enabling accurate subsidence.
The caisson 2 transported as shown in FIG. 5 is laid down to the sea bottom with its three corners in contact between the piles. If the caisson is box-shaped and has a bottom plate, water is poured into the caisson and set. Here, since caisson laying positioning is performed at the pile position, it is easier than positioning the caisson alone in the conventional method, and laying can be performed in a short time.
Furthermore, as shown in FIG. 6, the upper part of the caisson 2 that has settled and stabilized is shielded by a shielding plate 22 made of concrete or steel plate, and a pile is placed at one corner side portion where the caisson remains. Then, a cantilever 16 similar to that shown in FIG. 3 is provided on the pile facing the open ocean, and an upright pile column is driven from the cantilever 16 to the open ocean by 15 meters using the pile driver 18 provided. Subsequently, returning to the process of FIG. 4 again, the caisson is sunk so as to fit between the three piles that have already been placed. After that, the upper part of the caisson is shielded with concrete, and a pile is further driven in the remaining one corner side of the caisson that has been laid. By repeating this process across the fixed work table 12 in both the vertical and horizontal directions, piles are driven every 15 meters, and caisson is sunk between them. Installed in size. By starting from the original fixed worktable and repeating the above work in sequence, the caisson itself becomes a worktable in turn, resulting in a stable structure, and the construction can be promoted without being affected by sea conditions, so the process is based on complex sea conditions To eliminate the delay.
In addition, two or more pile driving machines 18 are connected in series, and the caisson is fitted using the piles that have already been placed in the correct position. After the caisson is placed in the correct position, the upper surface of the caisson is used as the work floor. It is also possible to improve the efficiency of pile driving by providing a carriage that moves over the cantilever. The construction period can be shortened by increasing the configuration and the number of pile driving machines 18 and combining the pile driving work and caisson fitting / sinking work.
Furthermore, as shown in FIG. 7, when the sea bottom is not flat, a pile is driven and the caisson is sunk until the most projecting point 24 on the sea bottom contacts the bottom of the caisson. Thereafter, it is possible to maintain flatness by pouring fine sand, concrete milk, or mortar into the sea bottom from the hole 26 provided in the caisson bottom in advance to fill the gap between the caisson bottom and the sea bottom.
【The invention's effect】
According to the present invention, the pile structure and the caisson structure are constructed in an integrated manner, and the vertical and horizontal proof stresses of the entire structure can be freely adjusted in order to function in an integrated form.
If the caisson upper surface is converted to a working floor and the structure of pile driving support mechanisms such as cantilever beams is combined with caisson insertion and subsidence appropriately, the influence of the surrounding sea conditions will be reduced, and the water depth that enables pile driving work For example, it is possible to respond appropriately to changes in pile shape / scale and wide changes in pile spacing. For this reason, an artificial ground consisting of a pile structure, a caisson structure, and a combination / hybrid structure thereof can be constructed in a short period of time centering on the work table on the sea surface, completely independent of the surrounding land. In addition, the construction cost can be reduced by shortening the construction period.
[Brief description of the drawings]
1A and 1B schematically illustrate the structure of a hybrid artificial ground constructed in an ocean space according to the present invention, in which FIG. 1A is a schematic plan view and FIG. 1B is a cross-sectional view taken along line AA.
FIGS. 2A and 2B show a method for constructing a hybrid artificial ground constructed in an ocean space according to the present invention, wherein FIG. 2A shows a side view and FIG. 2B shows a plan view.
FIGS. 3A and 3B are a (A) side view and (B) plan view of a pile driving device for a hybrid artificial ground construction method constructed in an ocean space according to the present invention.
FIGS. 4A and 4B show a method for constructing a hybrid artificial ground constructed in an ocean space according to the present invention, in which (A) a side view and (B) a plan view are shown when a caisson is transported.
FIGS. 5A and 5B are a side view and a plan view, respectively, (A) of a method for constructing a hybrid artificial ground constructed in an ocean space according to the present invention when caisson is set.
FIGS. 6A and 6B are (A) a side view and (B) a plan view of a further pile placing process, which is a method for constructing a hybrid artificial ground constructed in an ocean space according to the present invention.
FIG. 7 is a side view showing a method for constructing a hybrid artificial ground constructed in an ocean space according to the present invention when the sea floor is not flat.
[Explanation of symbols]
2 Caisson 4 Pile 6 Joint part 8 Sea bottom 10 Sea surface 12 Fixed work table 14 Positioning device 16 Cantilever 18 Pile driver 20 Towing ship 22 Shield plate on caisson 24 Sea bottom most protruding point 26 Filling material injection hole

Claims (8)

海底地盤上に打設する杭構造を側部四隅に備えたケーソンから構成される海洋空間に建造するハイブリッド方式人工地盤。A hybrid artificial ground constructed in a marine space composed of caisson with four pile corners placed on the seabed ground. ケーソンと海底地盤に間隙が存在する場合に細砂又はコンクリートミルク又はモルタルで間隙を充填することを特徴とする請求項1記載の海洋空間に建造するハイブリッド方式人工地盤。2. The hybrid artificial ground constructed in an ocean space according to claim 1, wherein the gap is filled with fine sand, concrete milk or mortar when there is a gap between the caisson and the seabed ground. ケーソンの材質が、鋼殻又はコンクリート殻であることを特徴とする請求項1記載の海洋空間に建造するハイブリッド方式人工地盤。2. The hybrid artificial ground constructed in an ocean space according to claim 1, wherein the caisson is made of steel shell or concrete shell. ケーソンと杭構造とが、伸縮自在に接合することを特徴とする請求項1記載の海洋空間に建造するハイブリッド方式人工地盤。The hybrid artificial ground constructed in an ocean space according to claim 1, wherein the caisson and the pile structure are joined in a stretchable manner. ケーソン内部にさらに浮力調整用タンク構造を有することを特徴とする請求項1記載の海洋空間に建造するハイブリッド方式人工地盤。The hybrid artificial ground constructed in an ocean space according to claim 1, further comprising a tank structure for buoyancy adjustment inside the caisson. ケーソン内部にさらに居住空間構造を有することを特徴とする請求項1記載の海洋空間に建造するハイブリッド方式人工地盤。The hybrid artificial ground constructed in an ocean space according to claim 1, further comprising a living space structure inside the caisson. 予め定められた海底地盤上の2点に特定の間隔を設けて杭構造を打設した後に特定の間隔と同長の幅を有する直方体からなるケーソンを前記幅の側面が前記杭構造間に嵌め込まれるよう位置を定め、次に沈設してケーソン上面を遮蔽板にて覆うことにより作業床として利用しさらに杭構造を打設して海洋空間に建造するハイブリッド方式人工地盤の建造方法。A caisson made of a rectangular parallelepiped having the same length as the specific interval is placed between the pile structures after placing the pile structure with a specific interval at two points on the predetermined seabed ground. The hybrid artificial ground construction method is set up in a marine space by setting the position so that it can be placed next, and then sinking and covering the upper surface of the caisson with a shielding plate and using it as a work floor. 杭構造の打設は、同時に複数の杭を打設可能な杭打ち装置で打設することを特徴とする請求項7記載の海洋空間に建造するハイブリッド方式人工地盤の建造方法。8. The construction method for a hybrid artificial ground constructed in an ocean space according to claim 7, wherein the pile structure is placed by a pile driving device capable of simultaneously placing a plurality of piles.
JP2001188928A 2001-06-21 2001-06-21 Hybrid artificial ground constructed in ocean space and its construction method Expired - Fee Related JP4801283B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001188928A JP4801283B2 (en) 2001-06-21 2001-06-21 Hybrid artificial ground constructed in ocean space and its construction method
PCT/JP2002/007971 WO2004012991A1 (en) 2001-06-21 2002-08-05 Hybrid artificial ground built in ocean space and method for building the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001188928A JP4801283B2 (en) 2001-06-21 2001-06-21 Hybrid artificial ground constructed in ocean space and its construction method
PCT/JP2002/007971 WO2004012991A1 (en) 2001-06-21 2002-08-05 Hybrid artificial ground built in ocean space and method for building the same

Publications (2)

Publication Number Publication Date
JP2003003453A JP2003003453A (en) 2003-01-08
JP4801283B2 true JP4801283B2 (en) 2011-10-26

Family

ID=32396100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001188928A Expired - Fee Related JP4801283B2 (en) 2001-06-21 2001-06-21 Hybrid artificial ground constructed in ocean space and its construction method

Country Status (2)

Country Link
JP (1) JP4801283B2 (en)
WO (1) WO2004012991A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO320988B1 (en) * 2003-08-14 2006-02-20 Tidetec As Device for concrete construction in the sea, and method for installation of the same
JP4575061B2 (en) * 2004-07-23 2010-11-04 第一建設機工株式会社 Construction method for offshore wind power generation facilities

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383331A (en) * 1976-12-28 1978-07-22 Taisei Corp Method of building underwater construction
JP2792220B2 (en) * 1990-10-05 1998-09-03 鹿島建設株式会社 Sliding seismic isolation offshore structure
JPH0582942U (en) * 1992-04-14 1993-11-09 株式会社熊谷組 Water carrier for sand etc.
JP2001049649A (en) * 1999-08-09 2001-02-20 Hiroshi Inagaki Method for constructing floating artificial ground

Also Published As

Publication number Publication date
WO2004012991A1 (en) 2004-02-12
JP2003003453A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US9567720B2 (en) Offshore platform for a marine environment
JPH042734B2 (en)
JP6177332B2 (en) Dock building apparatus and construction method using the building apparatus
JP2005330718A (en) Construction method of underwater foundation
CN101392521A (en) Rock-socketed steel dock structure and construction method thereof
JP2007092454A (en) Hybrid artificial ground constructed in ocean space, and construction method for the hybrid artificial ground
JP4801283B2 (en) Hybrid artificial ground constructed in ocean space and its construction method
KR100995667B1 (en) System-block and construction method using the same
JPS6157721A (en) Method of constructing underwater foundation of multipile jacket structure
KR20190049284A (en) Concrete Caisson and Constructing Method thereof
CN104099894B (en) A kind of without anchor deep-cement sheet-pile wharf
JPH0930487A (en) Artificial island having half-floating structure
KR20200123977A (en) Lathe type quay structure reinforced sheet pile and method for reinforcement quay structure using sheet pile
JP2630994B2 (en) Construction method of quay using caisson
JP2676779B2 (en) Cylindrical caisson
JPH11200337A (en) Wave absorbing dike structure and construction method thereof
JP2008082095A (en) Construction method of caisson skeleton
CN117071503A (en) Filling device, foundation structure and method for filling sea
JPS62258010A (en) Wave dissipation structure
JPH11336102A (en) Foundation structure for underwater tunnel and its construction method
JPH0588326B2 (en)
JP2022045748A (en) Concrete structure construction method and concrete structure
JPS6256291B2 (en)
JPH0211688B2 (en)
JPH059922A (en) Off-shore foundation structure construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4801283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees