JP2006045040A - Composite material having silicon-based ceramic and its manufacturing method - Google Patents

Composite material having silicon-based ceramic and its manufacturing method Download PDF

Info

Publication number
JP2006045040A
JP2006045040A JP2004232489A JP2004232489A JP2006045040A JP 2006045040 A JP2006045040 A JP 2006045040A JP 2004232489 A JP2004232489 A JP 2004232489A JP 2004232489 A JP2004232489 A JP 2004232489A JP 2006045040 A JP2006045040 A JP 2006045040A
Authority
JP
Japan
Prior art keywords
silicon
region
germanium
composite material
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004232489A
Other languages
Japanese (ja)
Inventor
Kohei Taguchi
功平 田口
Shinko Ogusu
真弘 小楠
Shinji Saito
慎二 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2004232489A priority Critical patent/JP2006045040A/en
Publication of JP2006045040A publication Critical patent/JP2006045040A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material having a silicon-based ceramic joined through a joining part having a strong joining strength and having a Ge-concentrated region in the vicinity of a joint interface. <P>SOLUTION: In the composite material in which a silicon-based ceramic member and a member to be joined are joined with the joining part consisting essentially of aluminum and containing 0.1-50 wt.% germanium, a first germanium-concentrated region is formed in the vicinity of a joint interface with the silicon-based ceramic member in the joining part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、Si系セラミックス、特にSi(窒化珪素)を有する複合材、およびその製造方法に関する。 The present invention relates to a composite material having Si-based ceramics, particularly Si 3 N 4 (silicon nitride), and a method for producing the same.

窒化珪素(Si)は高温強度に優れ、電気絶縁性が高く、さらにアルミナに比べて熱伝導率が高いことから、ヒーターや、放熱板、電気絶縁板として使用されている。しかし、セラミックスは一般に機械加工が困難であるため、所望形状のセラミックス製品を得るには接合方法の開発が重要である。 Silicon nitride (Si 3 N 4 ) is excellent in high-temperature strength, has high electrical insulation, and has higher thermal conductivity than alumina, and is therefore used as a heater, a heat sink, and an electrical insulation plate. However, since ceramics are generally difficult to machine, it is important to develop a bonding method in order to obtain a ceramic product having a desired shape.

また、金属材料の加工性の高さと窒化珪素の前述した利点を生かした高機能製品を製造することも可能である。   It is also possible to manufacture a high-functional product that takes advantage of the high workability of the metal material and the aforementioned advantages of silicon nitride.

特許文献1には、窒化珪素のようなセラミックス基板の少なくとも一主面にアルミニウムを主成分とする金属板をアルミニウムを主成分とし、マグネシウム(Mg)を含むろう材を介して接合したセラミックス回路基板が開示されている。このようなろう材から作られる接合部は、セラミックス回路基板との接合界面近傍に前記Mgが偏在した形態を有す。
特開2001−144433号公報
Patent Document 1 discloses a ceramic circuit board in which a metal plate containing aluminum as a main component is bonded to at least one main surface of a ceramic substrate such as silicon nitride through a brazing material containing aluminum (Mg) as a main component. Is disclosed. The joint made of such a brazing material has a form in which the Mg is unevenly distributed in the vicinity of the joint interface with the ceramic circuit board.
JP 2001-144433 A

上述の特許文献1では、Alを主成分とするろう材に添加されるMgが高い酸化性を示し、その添加量が制限されるため、セラミックス部材に対して金属板を十分な接合強度で接合することが困難であった。   In the above-mentioned Patent Document 1, Mg added to a brazing material containing Al as a main component exhibits high oxidizability, and the amount of addition is limited, so that a metal plate is bonded to a ceramic member with sufficient bonding strength. It was difficult to do.

本発明は、Alを主成分とし耐酸化性に優れたGeを比較的多量に含有させた接合部でSi系セラミックス部材と接合相手部材とを高強度にて接合した複合材およびその製造方法を提供する。   The present invention relates to a composite material in which a Si-based ceramic member and a joining partner member are joined with high strength at a joint portion containing Al as a main component and having a relatively large amount of Ge containing excellent oxidation resistance, and a method for manufacturing the same. provide.

本発明は、シリコン系セラミックス部材と接合相手部材が、アルミニウムを主成分としゲルマニウムを0.1重量%〜50重量%含む接合部で接合された複合材であって、前記接合部は、前記シリコン系セラミックス部材との接合界面近傍に第1のゲルマニウム濃化領域が形成されていることを特徴とする複合材を提供するものである。   The present invention is a composite material in which a silicon-based ceramic member and a bonding partner member are bonded together at a bonding portion containing aluminum as a main component and containing 0.1 to 50% by weight of germanium, wherein the bonding portion includes the silicon The present invention provides a composite material characterized in that a first germanium enriched region is formed in the vicinity of a bonding interface with a ceramic member.

また本発明は、シリコン系セラミックス部材と接合相手部材が、アルミニウムを主成分とし珪素を0.1重量%〜20重量%含む接合部で接合された複合材であって、前記接合部は、前記シリコン系セラミックス部材との接合界面近傍に珪素濃化領域が形成されていることを特徴とする複合材を提供するものである。   Further, the present invention is a composite material in which a silicon-based ceramic member and a bonding partner member are bonded at a bonding portion containing aluminum as a main component and containing 0.1 wt% to 20 wt% of silicon, The present invention provides a composite material characterized in that a silicon-concentrated region is formed in the vicinity of a bonding interface with a silicon-based ceramic member.

さらに本発明は、シリコン系セラミックス部材と接合相手部材の間にアルミニウムを主成分としゲルマニウムを0.1重量%〜50重量%含むろう材を介在し、加熱することにより前記シリコン系セラミックス部材との接合界面近傍にゲルマニウム濃化領域が存在する接合部を前記部材間に形成する工程を含むことを特徴とする複合材の製造方法を提供するものである。   Further, according to the present invention, a brazing material containing aluminum as a main component and containing germanium in an amount of 0.1% by weight to 50% by weight is interposed between a silicon-based ceramic member and a bonding partner member, and is heated. The present invention provides a method for producing a composite material, which includes a step of forming, between the members, a joint portion in which a germanium concentrated region exists in the vicinity of a joint interface.

本発明によると、低空隙率を示し接合強度が高い接合部を有すSi系セラミックスを有する複合材およびその製造方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the composite material which has Si type ceramics which has a low porosity and has a junction part with high joint strength, and its manufacturing method can be provided.

さらに、Geを含むろう材を用いることにより、ろう材の溶融(ろう付け)温度を下げることができ、様々な用途のSi系セラミックスを有する複合材を製造することが可能になる。   Furthermore, by using a brazing material containing Ge, the melting (brazing) temperature of the brazing material can be lowered, and it becomes possible to produce composite materials having Si-based ceramics for various uses.

以下、本発明に係る複合材を、図面を参照して詳細に説明する。   Hereinafter, a composite material according to the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1はこの第1実施形態に係るSi系セラミックスを有する複合材を示す部分切欠斜視図である。複合材1は、シリコン系セラミックス部材2が二つの接合相手部材3間に挟まれた状態で存在し、セラミックス部材2と二つの接合相手部材3との間にそれぞれ接合部4を介在して接合した構造を有する。
(First embodiment)
FIG. 1 is a partially cutaway perspective view showing a composite material having Si-based ceramics according to the first embodiment. The composite material 1 exists in a state in which a silicon-based ceramic member 2 is sandwiched between two bonding partner members 3, and is bonded with a bonding portion 4 interposed between the ceramic member 2 and the two bonding partner members 3. Has the structure.

前記シリコン系セラミックスは主たる成分が珪素含有セラミックスであればよく、特に主たる成分が窒化珪素であることが好ましい。この珪素含有セラミックスとしては、例えば窒化珪素(Si)、炭化珪素(SiC)、酸化珪素(SiO)、ムライト(Al−SiO)、コーディエライト((Mg,Fe)Al(SiAl)O18)、サイアロン(Si・AlN・SiO・Al)が挙げられる。窒化珪素は、通常アルミナ(Al)、イットリア(Y)、酸化マグネシウム(MgO)または酸化カルシウム(CaO)などの焼結助剤を含む焼結体の形態で用いられる。例えば、これら助剤成分はAl+YまたはMgO+Yなどの複数の成分であってもよい。これら助剤成分を含む窒化珪素の焼結体を具体的に例示すると、Si−3wt%Al−5wt%Y、Si−2wt%MgO−10wt%Yなどがある。 The main component of the silicon-based ceramics may be silicon-containing ceramics, and the main component is particularly preferably silicon nitride. Examples of the silicon-containing ceramic include silicon nitride (Si 3 N 4 ), silicon carbide (SiC), silicon oxide (SiO 2 ), mullite (Al 2 O 3 —SiO 2 ), and cordierite ((Mg, Fe). 2 Al 3 (Si 5 Al) O 18 ) and sialon (Si 3 N 4 .AlN.SiO 2 .Al 2 O 3 ). Silicon nitride is usually used in the form of a sintered body containing a sintering aid such as alumina (Al 2 O 3 ), yttria (Y 2 O 3 ), magnesium oxide (MgO) or calcium oxide (CaO). For example, these auxiliary components may be a plurality of components such as Al 2 O 3 + Y 2 O 3 or MgO + Y 2 O 3 . Specific examples of silicon nitride sintered bodies containing these auxiliary components include Si 3 N 4 -3 wt% Al 2 O 3 -5 wt% Y 2 O 3 , Si 3 N 4 -2 wt% MgO-10 wt% Y 2 O 3 and the like.

前記接合相手部材3としては、セラミックスまたは金属が挙げられる。前記接合相手部材3がセラミックスの場合、例えば前述したSi系セラミックスが好ましい。前記接合相手部材3が金属の場合、前記接合相手部材3は融点が300℃以上、好ましくは450℃以上の材料から作られることが望ましい。この接合相手部材3は、例えばAlを含有する金属、より好ましくはAlもしくはAl合金で作られることが望ましい。   Examples of the bonding partner member 3 include ceramics or metal. When the bonding partner member 3 is ceramic, for example, the Si-based ceramic described above is preferable. When the joining partner member 3 is a metal, the joining partner member 3 is desirably made of a material having a melting point of 300 ° C. or higher, preferably 450 ° C. or higher. The joining partner member 3 is desirably made of, for example, a metal containing Al, more preferably Al or an Al alloy.

前記接合部4とは、前記シリコン系セラミックス部材2および前記接合相手部材3の間に位置する領域で、これら接合部材のいずれに対しても組成が異なる領域を意味する。金属を前記接合相手部材3として選択する場合、接合界面から金属部材方向に向かって組成が徐々に変化する場合があり、その場合接合部の領域が明瞭でない。この場合、ある元素に注目して組成の範囲で領域を決定してもよい。   The said junction part 4 is an area | region located between the said silicon-type ceramic member 2 and the said other party member 3, and means the area | region where a composition differs with respect to all of these joining members. When a metal is selected as the bonding partner member 3, the composition may gradually change from the bonding interface toward the metal member, and in this case, the region of the bonding portion is not clear. In this case, the region may be determined within the composition range by paying attention to a certain element.

前記接合部4は、Alを主たる成分としGeを0.1重量%〜50重量%含む組成を有する。前記接合部4は、シリコン系セラミックス部材2との接合界面近傍5にGe濃化領域6が形成されている。   The joint 4 has a composition containing Al as a main component and Ge in an amount of 0.1 wt% to 50 wt%. The junction 4 is formed with a Ge-enriched region 6 in the vicinity of the junction interface 5 with the silicon-based ceramic member 2.

ここで界面近傍5とは、濃化領域の分布領域に相当し、接合界面から500μm以内の領域を意味する。接合部の厚さとは関係なく、濃化領域の分布領域は500μmを超えると強度が低下する虞があるため500μm以下が好ましい。   Here, the vicinity 5 of the interface corresponds to the distribution region of the concentrated region, and means a region within 500 μm from the bonding interface. Regardless of the thickness of the bonded portion, the distribution region of the concentrated region is preferably 500 μm or less because the strength may decrease when the region exceeds 500 μm.

濃化領域、濃化領域の濃度、およびその分布領域は以下の方法により判定される。   The density area, the density of the density area, and the distribution area are determined by the following method.

(a)濃化領域の判定
接合部断面にてセラミックス部材端面から接合相手部材方向に向かって、電子プローブ微量分析装置[(EPMA;electron probe microanalyser)(株)島津製作所、EPMA−1600]で元素ごとの2次元分布を計測し、該当元素のカウント数の分布を見て濃化領域を判定する。濃化領域は、他の領域に比べ該当元素のカウント数が計測誤差よりも大きなカウント数の差を有することが必要であり、2倍以上であることが本発明の効果を得るうえで望ましい。
(A) Judgment of the enriched region Element is measured with an electron probe microanalyzer [(EPMA; electron probe microanalyser) (Shimadzu Corporation, EPMA-1600) from the end face of the ceramic member to the direction of the joining partner member in the cross section of the joint. The two-dimensional distribution of each element is measured, and the concentration region is determined by looking at the distribution of the count number of the corresponding element. The concentration region needs to have a difference in the count number of the corresponding element larger than the measurement error as compared with other regions, and it is desirable to obtain the effect of the present invention that is twice or more.

(b)濃化領域の濃度の判定
まず、濃度が既知の複数のサンプルを用意して、これらのサンプルについてEPMAおよびエネルギー分散型蛍光X線分析装置[(EDX;Energy Dispersive X-ray Spectrometer)(株)島津製作所、EMAX−2770]を使用して該当元素のカウント数を測定する定量分析を行い、この測定結果から該当元素のカウント数と該当元素の濃度との関係を示す検量線を作成する。実際の濃化領域の該当元素の濃度は、前記EPMAおよびEDXから測定した該当元素のカウント数をこの検量線に照合することにより判定される。接合部の濃化領域以外の領域との濃度は、同様に該当元素のカウント数をこの検量線に照合することにより判定される。これらの判定結果から濃化領域以外の領域に対する濃化領域の濃度の倍率を求める。ただし、各領域の濃度は複数箇所の平均値として用いる。このような濃度倍率は1.5倍以上、より好ましくは2倍以上であることが望ましい。その倍率が1.5倍未満では、Si系セラミックス部材2と接合相手部材3とを十分な強度で接合することが困難になる場合がある。該当元素の濃化領域における濃度の上限は接合部に含まれる該当元素の濃度に依存する。
(B) Determination of concentration in concentrated region First, a plurality of samples with known concentrations are prepared, and EPMA and energy dispersive X-ray spectrometer [(EDX; Energy Dispersive X-ray Spectrometer) ( Shimadzu Corporation, EMAX-2770] is used to perform a quantitative analysis to measure the count number of the corresponding element, and a calibration curve indicating the relationship between the count number of the corresponding element and the concentration of the corresponding element is created from this measurement result. . The concentration of the corresponding element in the actual concentrated region is determined by checking the count number of the corresponding element measured from the EPMA and EDX against this calibration curve. Similarly, the concentration of the junction with the region other than the concentrated region is determined by comparing the count number of the corresponding element with this calibration curve. From these determination results, the magnification of the density of the darkened area relative to the area other than the darkened area is obtained. However, the density of each region is used as an average value at a plurality of locations. Such density magnification is desirably 1.5 times or more, more preferably 2 times or more. If the magnification is less than 1.5 times, it may be difficult to bond the Si-based ceramic member 2 and the bonding partner member 3 with sufficient strength. The upper limit of the concentration of the corresponding element in the concentration region depends on the concentration of the corresponding element contained in the junction.

(c)濃化領域の分布領域の判定
接合部断面にて、セラミックス部材端面から接合相手部材方向に向かってEPMAを用いて距離XまでとXから2Xまでの領域で測定し、その濃化領域の面積比率(該当する全領域面積に対する濃化領域の面積分率)が1.5倍に達した時の距離Xを濃化領域の分布領域とする。
(C) Judgment of the distribution region of the concentration region In the cross section of the joint, measurement is performed in the region from the distance X and from X to 2X using EPMA from the ceramic member end surface toward the bonding partner member, and the concentration region The distance X when the area ratio (area fraction of the concentrated area with respect to the total area area) reaches 1.5 times is defined as the distribution area of the concentrated area.

接合部4に含まれるGeの含有量が0.1重量%未満では所望の濃化領域が形成することが困難になる。一方、Ge含有量が50重量%を超えると、Ge量が過剰になり接合不良などにより接合部自体の強度が低下する虞がある。より好ましいGeの含有量は、0.5重量%〜30重量%である。   If the content of Ge contained in the joint 4 is less than 0.1% by weight, it is difficult to form a desired concentrated region. On the other hand, when the Ge content exceeds 50% by weight, the amount of Ge becomes excessive, and there is a concern that the strength of the bonded portion itself may be reduced due to poor bonding or the like. A more preferable Ge content is 0.5 wt% to 30 wt%.

接合部4は、さらにSiを0.1重量%〜20重量%含むものであってよい。この場合、シリコン系セラミックス部材2との接合界面近傍5には、上述のGe濃化領域(第1濃化領域)に加えて、
(1)Si濃化領域、
(2)Ge・Si濃化領域、および
(3)Si濃化領域およびGe・Si濃化領域、
から選ばれる第2濃化領域が形成される。
The joint 4 may further contain 0.1 wt% to 20 wt% of Si. In this case, in the vicinity of the bonding interface 5 with the silicon-based ceramic member 2, in addition to the above-described Ge concentration region (first concentration region),
(1) Si concentration region,
(2) Ge.Si enriched region, and (3) Si enriched region and Ge.Si enriched region,
A second concentrated region selected from is formed.

前記Ge・Si濃化領域は、前記第1の濃化領域の一部にSiが含有されることにより形成されてもよい。   The Ge / Si concentration region may be formed by containing Si in a part of the first concentration region.

前記接合部4にSiが含有される場合において、Siの含有量が0.1重量%未満では所望の濃化領域を形成することが困難になる。一方、Siの含有量が20重量%を超えると、Si量が過剰になり接合不良などにより接合部自体の強度が低下する虞がある。より好ましいSiの含有量は0.2重量%〜10重量%である。   In the case where Si is contained in the joint 4, it is difficult to form a desired concentrated region if the Si content is less than 0.1% by weight. On the other hand, if the Si content exceeds 20% by weight, the amount of Si becomes excessive, and the strength of the joint itself may decrease due to poor bonding or the like. A more preferable Si content is 0.2 wt% to 10 wt%.

接合部4は、さらにMgを0.05重量%〜5重量%含むものであってよい。この場合、シリコン系セラミックス部材2との接合界面近傍5に、上述の第1濃化領域に加えて、
(4)Mg濃化領域、
(5)Ge・Mg濃化領域、および
(6)Mg濃化領域およびGe・Mg濃化領域
から選ばれる第3濃化領域が形成される。
The joint 4 may further contain 0.05 wt% to 5 wt% of Mg. In this case, in addition to the above-described first concentration region, in the vicinity of the bonding interface 5 with the silicon-based ceramic member 2,
(4) Mg concentration region,
(5) A Ge / Mg enriched region and (6) a third enriched region selected from the Mg enriched region and the Ge / Mg enriched region are formed.

前記Ge・Mg濃化領域は、前記第1の濃化領域の一部にMgが含有されることにより形成されてもよい。   The Ge / Mg concentration region may be formed by containing Mg in a part of the first concentration region.

前記接合部4にMgが含有される場合において、Mgの含有量が0.05重量%未満では所望の濃化領域を形成することが困難になる。一方、Mgの含有量が5重量%を超えると、Mg量が過剰になり接合不良などにより接合部自体の強度が低下する虞がある。より好ましいMgの含有量は0.1重量%〜2重量%である。   In the case where Mg is contained in the joint 4, it is difficult to form a desired concentrated region if the Mg content is less than 0.05% by weight. On the other hand, if the Mg content exceeds 5% by weight, the amount of Mg becomes excessive, and there is a concern that the strength of the joint part itself is lowered due to poor bonding or the like. A more preferable Mg content is 0.1 wt% to 2 wt%.

接合部4は、Siを0.1重量%〜20重量%含み、かつMgを0.05重量%〜5重量%含むものであってよい。この場合、シリコン系セラミックス部材2との接合界面近傍5には、第1濃化領域に加えて、前記第2濃化領域および第3濃化領域が形成されるか、またはこれら第1〜第3濃化領域に加えてGe・Si・Mg濃化領域(第4濃化領域)が形成される。   The joint portion 4 may include 0.1 wt% to 20 wt% Si and 0.05 wt% to 5 wt% Mg. In this case, in addition to the first concentration region, the second concentration region and the third concentration region are formed in the vicinity 5 of the bonding interface with the silicon-based ceramic member 2, or these first to first concentration regions are formed. A Ge / Si / Mg concentrated region (fourth concentrated region) is formed in addition to the three concentrated regions.

前記接合部4にSiおよびMgが含有される場合において、Siの含有量が0.1重量%未満では所望の濃化領域を形成することが困難になる。一方、Siの含有量が20重量%を超えると、Si量が過剰になり接合不良などにより接合部自体の強度が低下する虞がある。より好ましいSiの含有量は0.2重量%〜10重量%である。   In the case where Si and Mg are contained in the joint 4, it is difficult to form a desired concentrated region if the Si content is less than 0.1 wt%. On the other hand, if the Si content exceeds 20% by weight, the amount of Si becomes excessive, and the strength of the joint itself may decrease due to poor bonding or the like. A more preferable Si content is 0.2 wt% to 10 wt%.

また、前記接合部4にSiおよびMgが含有される場合において、Mgの含有量が0.05重量%未満では所望の濃化領域を形成することが困難になる。一方、Mgの含有量が5重量%を超えると、Mg量が過剰になり接合不良などにより接合部自体の強度が低下する虞がある。より好ましいMgの含有量は0.1重量%〜2重量%である。   Further, in the case where Si and Mg are contained in the joint portion 4, if the Mg content is less than 0.05% by weight, it becomes difficult to form a desired concentrated region. On the other hand, if the Mg content exceeds 5% by weight, the amount of Mg becomes excessive, and there is a concern that the strength of the joint part itself is lowered due to poor bonding or the like. A more preferable Mg content is 0.1 wt% to 2 wt%.

前述した前記第2、第3および第4濃化領域のそれぞれの分布領域は、前記第1Ge濃化領域と同様に、接合界面から500μm以内の領域を意味する前記接合界面近傍5に相当する。これらの濃化領域の分布領域は、接合部の厚さとは関係なく、500μmを超えると強度が低下する虞があるため500μm以下が好ましい。   Each of the distribution regions of the second, third, and fourth concentrated regions described above corresponds to the vicinity 5 of the bonding interface, which means a region within 500 μm from the bonding interface, like the first Ge concentrated region. The distribution region of these concentrated regions is preferably 500 μm or less because there is a possibility that the strength is lowered when the thickness exceeds 500 μm regardless of the thickness of the joint.

さらに接合部4は、不可避不純物が含まれていてもよく、セラミックス部材2または相手部材3由来の成分を含んでもよい。   Furthermore, the joint portion 4 may contain inevitable impurities, and may contain a component derived from the ceramic member 2 or the counterpart member 3.

なお、前述した各濃化領域は、例えば粒状または塊状で接合界面近傍5に存在される。   Note that each of the above-described concentrated regions exists, for example, in the vicinity of the bonding interface 5 in the form of particles or lumps.

次に本発明に係るSi系セラミックスを有する複合材の製造方法を図2を参照して一例として説明する。   Next, the manufacturing method of the composite material which has Si type ceramics concerning this invention is demonstrated as an example with reference to FIG.

まず、有機接着剤にGeまたはGeを含む合金の粉末を添加し、この粘稠性Ge含有粉末をSi系セラミックス部材2の両面に塗布してGe含有粉末層9をそれぞれ形成する。つづいて、このSi系セラミックス部材2の両面のGe含有粉末層9にAlを主成分とするろう材8をそれぞれ重ね、さらにこれらろう材8に接合相手材3を重ねることにより積層物7を作製する。   First, Ge or an alloy-containing powder is added to the organic adhesive, and the viscous Ge-containing powder is applied to both surfaces of the Si-based ceramic member 2 to form Ge-containing powder layers 9 respectively. Subsequently, a brazing material 8 made of Al as a main component is superposed on the Ge-containing powder layers 9 on both sides of the Si-based ceramic member 2, and a joining material 3 is further superposed on the brazing material 8 to produce a laminate 7. To do.

次いで、得られた積層物7を真空炉中に設置し、最上段の接合相手部材3の上から荷重を加えながら真空中で加熱して、前記セラミックス部材2両面に対して接合相手部材3を接合部4を介してそれぞれ接合して複合材1を製造する。この接合において、1MPaの接合面圧を加える場合はホットプレスを採用し、0.01MPaの接合面圧を加える場合は重りを載せる。ここで接合面圧とは、接合時の荷重を接合部の面積で除した値である。   Next, the obtained laminate 7 is placed in a vacuum furnace and heated in a vacuum while applying a load from above the uppermost bonding partner member 3, so that the bonding partner member 3 is attached to both surfaces of the ceramic member 2. The composite material 1 is manufactured by joining through the joint portion 4. In this joining, a hot press is employed when a joining surface pressure of 1 MPa is applied, and a weight is placed when a joining surface pressure of 0.01 MPa is applied. Here, the bonding surface pressure is a value obtained by dividing the load at the time of bonding by the area of the bonded portion.

前述した製造方法によれば、セラミックス部材2との接合界面近傍5にゲルマニウム濃化領域が存在する接合部4で、二つの部材を接合された複合材が得られる。このような接合部4の接合界面近傍5に第1のGe濃化領域6が形成されるのは、Al中のGeの固溶限を超える濃度でGeが存在する場合、過剰なGeは析出して分離し、セラミックス部材2の珪素と化学的性質が類似であるため、なじむようにセラミックス部材2側に偏在するからではないかと考えられる。   According to the manufacturing method described above, a composite material in which two members are bonded at the bonding portion 4 where the germanium concentration region exists in the vicinity 5 of the bonding interface with the ceramic member 2 is obtained. The first Ge-enriched region 6 is formed in the vicinity 5 of the bonding interface 4 of the bonding part 4 when Ge is present at a concentration exceeding the solid solubility limit of Ge in Al. It can be considered that the ceramic member 2 has a chemical property similar to that of silicon, and is therefore unevenly distributed on the ceramic member 2 side.

次に本発明に係るSi系セラミックスを有する複合材の別の製造方法を図3を参照して説明する。この方法は、Si系セラミックス部材2とろう材8の間に前述したGe含有粉末層9を介さず、Si系セラミックス部材2の両面にろう材8を直接配置した以外、前述した複合材の製造方法と同様である。   Next, another method for producing a composite material having Si-based ceramics according to the present invention will be described with reference to FIG. In this method, the above-described composite material is manufactured except that the Ge-containing powder layer 9 is not interposed between the Si-based ceramic member 2 and the brazing material 8 and the brazing material 8 is directly disposed on both surfaces of the Si-based ceramic member 2. It is the same as the method.

ろう材8としては、以下の列挙する組成を有することが好ましい。   The brazing material 8 preferably has the following composition.

(i)Geを0.1〜50重量%、好ましくは5〜50重量%、さらに好ましくは10〜30重量%含み、残部が実質的にAlであるろう材。   (I) A brazing material containing 0.1 to 50% by weight, preferably 5 to 50% by weight, more preferably 10 to 30% by weight of Ge, with the balance being substantially Al.

(ii)前記(i)のGeに加え、珪素を1〜20重量%、好ましくは4〜15重量%含む、残部が実質的にAlのろう材。   (Ii) A brazing material containing substantially 1 to 20% by weight of silicon in addition to Ge of the above (i), preferably 4 to 15% by weight, and the balance being substantially Al.

(iii)前記(i)のGeに加え、Mgを0.1〜5重量%、好ましくは0.5〜3重量%含み、残部が実質的にAlであるろう材。   (Iii) A brazing material containing 0.1 to 5% by weight, preferably 0.5 to 3% by weight of Mg in addition to Ge of (i), with the balance being substantially Al.

(iv)前記(ii)のGeおよびSiに加え、Mgを0.1〜5重量%、好ましくは0.5〜3重量%含み、残部が実質的にAlであるろう材。   (Iv) A brazing material containing 0.1 to 5% by weight, preferably 0.5 to 3% by weight of Mg in addition to Ge and Si of (ii), with the balance being substantially Al.

なお、複合材の製造においてGeの他にSiおよびMgの少なくとも一方を含む接合部を形成する場合、これらの合金粉末を接着剤に混合し、これを前記部材間に介在させて加熱処理してもよい。   In the production of a composite material, when forming a joint including at least one of Si and Mg in addition to Ge, these alloy powders are mixed with an adhesive, and this is interposed between the members and subjected to heat treatment. Also good.

(第2実施形態)
この第2実施形態の複合材はSi系セラミックス部材と接合相手部材とを、Alを主たる成分としSiを0.1重量%〜20重量%含む組成を有する接合部で接合し、かつこの接合部はSi系セラミックス部材との接合界面近傍にSi濃化領域が形成されている。
(Second Embodiment)
The composite material according to the second embodiment joins a Si-based ceramic member and a joining partner member at a joint having a composition containing Al as a main component and containing 0.1 wt% to 20 wt% of Si. Has a Si-enriched region in the vicinity of the bonding interface with the Si-based ceramic member.

ここで界面近傍5とは、濃化領域の分布領域に相当し、接合界面から500μm以内の領域を意味する。濃化領域の分布領域は、接合部の厚さとは関係なく、500μmを超えると強度が低下する虞があるため500μm以下が好ましい。濃化領域、濃化領域の濃度、およびその分布領域の判定方法は第1実施形態と同様な方法によりなされ、濃化領域の濃度の倍率は1.5倍以上、好ましくは2.0倍以上であることが望ましい。   Here, the vicinity 5 of the interface corresponds to the distribution region of the concentrated region, and means a region within 500 μm from the bonding interface. The distribution region of the concentrated region is preferably 500 μm or less because there is a concern that the strength may decrease if it exceeds 500 μm regardless of the thickness of the joint. The density region, the density of the density region, and the method for determining the distribution region are the same as those in the first embodiment, and the density of the density of the density region is 1.5 times or more, preferably 2.0 times or more. It is desirable that

Siの含有量が0.1重量%未満では所望の濃化領域が形成されず、20重量%を超えると、Si量が過剰になり接合不良などにより接合部自体の強度が低下する虞がある。より好ましいSiの含有量は0.2重量%〜10重量%である。   When the Si content is less than 0.1% by weight, a desired concentrated region is not formed. When the Si content exceeds 20% by weight, the Si amount becomes excessive and the strength of the joint itself may be reduced due to poor bonding or the like. . A more preferable Si content is 0.2 wt% to 10 wt%.

接合部4は、さらにMgを0.05重量%〜5重量%含むものであってよい。この場合、シリコン系セラミックス部材2との接合界面近傍5に上述のSi濃化領域に加えて、
(7)Mg濃化領域、
(8)Si・Mg濃化領域、および
(9)Mg濃化領域およびSi・Mg濃化領域
から選ばれる濃化領域が形成される。
The joint 4 may further contain 0.05 wt% to 5 wt% of Mg. In this case, in addition to the Si concentration region described above in the vicinity of the bonding interface 5 with the silicon-based ceramic member 2,
(7) Mg concentration region,
(8) A Si / Mg concentrated region, and (9) a concentrated region selected from the Mg concentrated region and the Si / Mg concentrated region are formed.

前記Si・Mg濃化領域は、前記Si濃化領域の一部に同量のMgが含有されることにより形成されてもよい。   The Si / Mg enriched region may be formed by containing the same amount of Mg in a part of the Si enriched region.

前記接合部にMgが含有される場合において、Mgの含有量が0.05重量%未満では所望の濃化領域を形成することが困難になる。一方、Mgの含有量が5重量%を超えると、Mg量が過剰になり接合不良などにより接合部自体の強度が低下する虞がある。より好ましいMgの含有量は0.1重量%〜2重量%である。   In the case where Mg is contained in the joint portion, it is difficult to form a desired concentrated region if the Mg content is less than 0.05% by weight. On the other hand, if the Mg content exceeds 5% by weight, the amount of Mg becomes excessive, and there is a concern that the strength of the joint part itself is lowered due to poor bonding or the like. A more preferable Mg content is 0.1 wt% to 2 wt%.

第2実施形態の接合部は、不可避不純物が含まれていてもよく、セラミックス部材または相手部材由来の成分を含んでもよい。   The joint portion of the second embodiment may contain inevitable impurities and may contain a component derived from a ceramic member or a counterpart member.

なお、前述した各濃化領域は、例えば粒状または塊状で接合界面近傍に存在される。   Each of the concentrated regions described above is present in the vicinity of the bonding interface, for example, in the form of particles or lumps.

次に第2実施形態に係る複合材の製造方法を一例として説明する。   Next, the manufacturing method of the composite material which concerns on 2nd Embodiment is demonstrated as an example.

Si系セラミックス部材の両面に直接Alを主成分とするろう材をそれぞれ重ね、さらにこれらろう材に接合相手材を重ねることにより積層物を作製する。   A laminate is prepared by superimposing a brazing material containing Al as a main component directly on both surfaces of a Si-based ceramic member, and further superimposing a bonding partner material on these brazing materials.

次いで、得られた積層物を真空炉中に設置し、最上段の接合相手部材の上から荷重を加えながら真空中で加熱して、前記セラミックス部材両面に対して接合相手部材を接合部を介してそれぞれ接合して複合材を製造する。この接合において、1MPaの接合面圧を加える場合はホットプレスを採用し、0.01MPaの接合面圧を加える場合は重りを載せる。   Next, the obtained laminate is placed in a vacuum furnace and heated in a vacuum while applying a load from above the uppermost mating member, and the mating member is bonded to both surfaces of the ceramic member via the joint. To produce a composite material. In this joining, a hot press is employed when a joining surface pressure of 1 MPa is applied, and a weight is placed when a joining surface pressure of 0.01 MPa is applied.

接合部4の接合界面近傍5にSi濃化領域が形成されるのは、Al中のSiの固溶限を超える濃度でSiが存在する場合、過剰なSiは析出して分離し、セラミックス部材2の珪素となじむようにセラミックス部材2側に偏在するからではないかと考えられる。   The Si-enriched region is formed in the vicinity of the bonding interface 5 of the bonding portion 4 when Si is present at a concentration exceeding the solid solubility limit of Si in Al. This is probably because it is unevenly distributed on the ceramic member 2 side so as to be compatible with silicon of No. 2.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

(実施例1)
まず、アクリル系樹脂をアルコールで希釈したバインダーに、平均粒径が25μmのGe粉末を添加して粘稠性Ge含有粉末を調製した。つづいて、前述した図2に示すように、焼結助剤として3重量%のAlおよび5重量%のYを含む、30×30×0.6mmの板体状のSi焼結体2の両面に前記粘稠性Ge含有粉末を塗布しGe重量で0.02gのGe粉末層9をそれぞれ形成した。引き続き、Si焼結体2両面の前記Ge粉末層9の両面に、Al−12Siからなる厚さ30μmの箔(ろう材)8をそれぞれ重ねた。さらに、これらろう材8上にJIS4000に規定されるNo.A1050Pである、30×30×0.5mmのAl板(接合相手部材)3を重ねて、積層物7とした。
Example 1
First, a viscous Ge-containing powder was prepared by adding Ge powder having an average particle size of 25 μm to a binder obtained by diluting an acrylic resin with alcohol. Subsequently, as shown in FIG. 2 described above, a plate-like Si of 30 × 30 × 0.6 mm containing 3 % by weight of Al 2 O 3 and 5% by weight of Y 2 O 3 as a sintering aid. The viscous Ge-containing powder was applied to both surfaces of the 3 N 4 sintered body 2 to form a Ge powder layer 9 having a Ge weight of 0.02 g. Subsequently, foils (brazing material) 8 made of Al-12Si and having a thickness of 30 μm were stacked on both sides of the Ge powder layer 9 on both sides of the Si 3 N 4 sintered body 2. Further, on these brazing materials 8, No. stipulated in JIS4000. The laminate 7 was formed by stacking 30 × 30 × 0.5 mm Al plates (joining counterpart members) 3 of A1050P.

次いで、前記積層物7を真空炉に設置した後、最上段のAl板の上から重りを使用し0.01MPaの接合面圧を加え、真空炉中のガスを排気して3×10−2Paの圧力に設定し、575℃で1時間加熱することによって複合材を製造した。この接合部は、EDXの組成分析により濃化領域以外の領域の濃度がGe6重量%、Si1重量%、残部が実質的にAlであった。 Next, after the laminate 7 was installed in a vacuum furnace, a joining surface pressure of 0.01 MPa was applied from above the uppermost Al plate, and the gas in the vacuum furnace was exhausted to 3 × 10 −2. The composite material was manufactured by setting the pressure at Pa and heating at 575 ° C. for 1 hour. According to the composition analysis of EDX, the concentration of the region other than the concentrated region was 6 wt% Ge, 1 wt% Si, and the balance was substantially Al.

また、前記複合材を接合界面近傍に垂直な方向に切断し、研磨した後、電子顕微鏡反射電子線像にて撮影した。この電子顕微鏡反射電子線像の写真を図4に示す。図4の中央部分の白い領域を、EPMAを用いて分析した結果、この領域はAl−Geの組成を有する濃化領域であった。その他にも接合界面近傍においてAl−Si−Oの組成を有する濃化領域の存在が確認された。これらの濃化領域はSi焼結体2との接合界面から100μmの範囲に分布していた。 The composite material was cut in a direction perpendicular to the vicinity of the bonding interface, polished, and then photographed with an electron microscope reflected electron beam image. A photograph of this electron microscope reflected electron beam image is shown in FIG. As a result of analyzing the white area | region of the center part of FIG. 4 using EPMA, this area | region was the concentration area | region which has a composition of Al-Ge. In addition, the presence of a concentrated region having an Al—Si—O composition in the vicinity of the bonding interface was confirmed. These concentrated regions were distributed in a range of 100 μm from the joint interface with the Si 3 N 4 sintered body 2.

濃化領域のGe濃度を前述した(b)の方法に基づいて測定した結果、接合部の他の領域に対して3〜6倍の濃度であった。同様に珪素に関しても、濃化領域のSi濃度は接合部の他の領域に対し平均して4倍の濃度であった。   As a result of measuring the Ge concentration in the concentrated region based on the method (b) described above, the concentration was 3 to 6 times that in the other region of the joint. Similarly, with respect to silicon, the Si concentration in the concentrated region was an average four times that in the other regions of the junction.

Si焼結体2と接合部4との界面における任意の視野内に存在する空隙の長さをその視野内の接合長さで除することにより空隙率を求めた。その結果、空隙率は2%以下であった。 The porosity was determined by dividing the length of the void existing in an arbitrary visual field at the interface between the Si 3 N 4 sintered body 2 and the bonding portion 4 by the bonding length within the visual field. As a result, the porosity was 2% or less.

このような実施例1では、接合部にAl−GeおよびAl−Si−Oの組成を有する濃化領域が接合界面近傍に形成されるため、低空隙率によって裏づけされたようにSi焼結体とAl板を高強度で接合された複合材を得ることができる。 In Example 1 as described above, a concentrated region having a composition of Al—Ge and Al—Si—O is formed in the vicinity of the bonding interface at the bonding portion, so that Si 3 N 4 is supported by the low porosity. A composite material in which the sintered body and the Al plate are joined with high strength can be obtained.

(実施例2)
まず、アクリル系樹脂をアルコールで希釈したバインダーに、平均粒径が45μmのGe15重量%、Si8重量%、Mg1重量%、残部が実質Alである合金粉末を添加し、粘稠性Ge、SiおよびMg含有合金粉末を調製した。つづいて、前述した図2に示すように、焼結助剤として3重量%のAlおよび5重量%のYを含む、30×30×0.6mmの板体状のSi焼結体2の両面に前記粘稠性Ge、SiおよびMg含有合金粉末を塗布し厚さ70μmのGe、SiおよびMg含有合金粉末層9をそれぞれ形成した。引き続き、Si焼結体2両面の前記Ge粉末層9の両面にJIS4000に規定されるNo.A1050Pである、30×30×0.5mmのAl板(接合相手部材)3を重ねて、積層物7とした。
(Example 2)
First, an alloy powder in which an acrylic resin is diluted with alcohol, Ge powder having an average particle size of 45 μm, 15 wt% Si, 8 wt% Si, 1 wt% Mg, and the balance is substantially Al is added. Mg-containing alloy powder was prepared. Subsequently, as shown in FIG. 2 described above, a plate-like Si of 30 × 30 × 0.6 mm containing 3 % by weight of Al 2 O 3 and 5% by weight of Y 2 O 3 as a sintering aid. The viscous Ge, Si and Mg-containing alloy powders were applied to both surfaces of the 3 N 4 sintered body 2 to form Ge, Si and Mg-containing alloy powder layers 9 each having a thickness of 70 μm. Subsequently, on the both surfaces of the Ge powder layer 9 on both surfaces of the Si 3 N 4 sintered body 2, No. 3 specified in JIS4000. The laminate 7 was formed by stacking 30 × 30 × 0.5 mm Al plates (joining counterpart members) 3 of A1050P.

次いで、前記積層物7を真空炉に設置した後、最上段のAl板の上から重りを使用し0.01MPaの接合面圧を加え、真空炉中のガスを排気して3×10−2Paの圧力に設定し、575℃で1時間加熱することによって複合材を製造した。この接合部は、EDXの組成分析により濃化領域以外の領域の濃度はGe4重量%、Si1重量%、残部が実質的にAlであった(Mgは検出不能であった)。 Next, after the laminate 7 was installed in a vacuum furnace, a joining surface pressure of 0.01 MPa was applied from above the uppermost Al plate, and the gas in the vacuum furnace was exhausted to 3 × 10 −2. The composite material was manufactured by setting the pressure at Pa and heating at 575 ° C. for 1 hour. According to the composition analysis of EDX, the concentration of the region other than the concentrated region was Ge 4 wt%, Si 1 wt%, and the balance was substantially Al (Mg was not detectable).

前記複合材の接合界面近傍の電子顕微鏡反射電子線像を撮影した。その結果Al−Geの組成を有する濃化領域の他に図5に示す同反射電子線像の写真のように濃化領域が接合界面近傍に形成されていることが確認された。図5の白い領域およびやや白い領域をEPMAを用いて分析した結果、白い領域はAl−Geの組成を有す濃化領域であり、やや白い領域はAl−Siの組成を有す濃化領域であった。どちらの領域も微量ながらMgおよびOも濃化しており、部分的にAl−Ge−MgおよびAl−Si−Oの組成を有する濃化領域が存在することが確認された。これらの濃化領域はSi焼結体2との接合界面から100μmの範囲に分布していた。 An electron microscope reflected electron beam image in the vicinity of the bonding interface of the composite material was taken. As a result, it was confirmed that in addition to the concentrated region having the Al—Ge composition, the concentrated region was formed in the vicinity of the junction interface as shown in the photograph of the reflected electron beam image shown in FIG. As a result of analyzing the white region and the slightly white region in FIG. 5 using EPMA, the white region is a concentrated region having an Al—Ge composition, and the slightly white region is a concentrated region having an Al—Si composition. Met. Although both regions were trace amounts, both Mg and O were concentrated, and it was confirmed that there were partially concentrated regions having compositions of Al-Ge-Mg and Al-Si-O. These concentrated regions were distributed in a range of 100 μm from the joint interface with the Si 3 N 4 sintered body 2.

濃化領域のGe濃度を前述した(b)の方法に基づいて測定した結果、接合部の他の領域に対して2〜5倍の濃度であった。同様に珪素に関しても、濃化領域のSi濃度は接合部の他の領域に対し平均して2倍の濃度であった。また実施例1と同様に空隙率を測定したところ、空隙率は2%以内であった。   As a result of measuring the Ge concentration in the concentrated region based on the method (b) described above, the concentration was 2 to 5 times that in the other region of the joint. Similarly, with respect to silicon, the Si concentration in the concentrated region was twice as high as the average of other regions in the junction. Further, when the porosity was measured in the same manner as in Example 1, the porosity was within 2%.

このような実施例2では接合部にAl−Ge、Al−Si、Al−Ge―MgおよびAl−Si−Oの組成を有する濃化領域が形成されるため、低空隙率によって裏づけされたようにSi焼結体とAl板を高強度で接合された複合材を得ることができる。
(実施例3)
焼結助剤として3重量%のAlおよび5重量%のYを含む、30×30×0.6mmの板体状のSi焼結体の両面に、Al−12Siからなる厚さ30μmの箔(ろう材)をそれぞれ重ねた。さらに、これらろう材上にJIS4000に規定されるNo.A1050Pである、30×30×0.5mmのAl板(接合相手部材)を重ねて、積層物とした。
In Example 2 as described above, a concentrated region having a composition of Al—Ge, Al—Si, Al—Ge—Mg, and Al—Si—O is formed at the joint, so that it is supported by the low porosity. In addition, it is possible to obtain a composite material in which the Si 3 N 4 sintered body and the Al plate are joined with high strength.
(Example 3)
On both sides of a 30 × 30 × 0.6 mm plate-like Si 3 N 4 sintered body containing 3 % by weight of Al 2 O 3 and 5% by weight of Y 2 O 3 as a sintering aid, Al— A foil (brazing material) made of 12Si and having a thickness of 30 μm was stacked. Further, on these brazing filler metals, No. stipulated in JIS4000. A laminate of A1050P, 30 × 30 × 0.5 mm Al plates (joining mating members), was stacked.

次いで、前記積層物を真空炉に設置した後、最上段のAl板の上からホットプレスを使用し1MPaの接合面圧を加え、真空炉中のガスを排気して3×10−2Paの圧力に設定し、595℃で1時間加熱することによって複合材を製造した。EDXの組成分析により濃化領域以外の領域の濃度はSi2重量%、残部が実質的にAlであった。 Next, after the laminate was installed in a vacuum furnace, a hot press was used on the uppermost Al plate to apply a bonding surface pressure of 1 MPa, and the gas in the vacuum furnace was evacuated to 3 × 10 −2 Pa. The composite was produced by setting to pressure and heating at 595 ° C. for 1 hour. According to the composition analysis of EDX, the concentration in the region other than the concentrated region was 2% by weight of Si, and the balance was substantially Al.

前記複合材の接合界面近傍を、EPMAを用いて分析した結果、Al−Siの濃化領域が存在することが確認された。   As a result of analyzing the vicinity of the joint interface of the composite material using EPMA, it was confirmed that an Al-Si concentrated region was present.

濃化領域のSi濃度を前述した(b)の方法に基づいて測定した結果、接合部の他の領域に対して3倍の濃度であった。この濃化領域はSi焼結体との接合界面から100μmの範囲に分布していた。また実施例1と同様に空隙率を測定したところ、空隙率は2%以内であった。 As a result of measuring the Si concentration in the concentrated region based on the method (b) described above, the concentration was three times that in the other regions of the joint. This concentrated region was distributed in a range of 100 μm from the bonding interface with the Si 3 N 4 sintered body. Further, when the porosity was measured in the same manner as in Example 1, the porosity was within 2%.

このような実施例3では接合部にAl−Si濃化領域が形成されるため、低空隙率によって裏づけされたようにSi焼結体とAl板を高強度で接合された複合材を得ることができる。 In such Example 3, since an Al-Si concentrated region is formed in the joint, a composite material in which the Si 3 N 4 sintered body and the Al plate are joined with high strength as supported by the low porosity. Can be obtained.

以上のように説明した実施例1〜3の複合材において、Al−Ge、Al−Si、Al−Si−OまたはAl−Ge−Mgの組成を有する濃化領域が形成されることにより、Si系セラミックスに対するろう材の濡れ性が高まり、空隙率を低く抑えた良好な接合界面近傍を得ることができた。   In the composite materials of Examples 1 to 3 described above, a concentrated region having a composition of Al—Ge, Al—Si, Al—Si—O, or Al—Ge—Mg is formed. As a result, the wettability of the brazing material with respect to the ceramics was improved, and a good joint interface vicinity with a low porosity was obtained.

さらに実施例2の複合材の接合部では、接合界面近傍にAl−Ge−MgおよびAl−Si−Oの組成を有する濃化領域が形成されることで濡れ性が大幅に向上し、重り程度の小さな加圧でも接合することが可能となった。これにより、ホットプレスなど特別な加圧装置を使用することなく複合材の作成が可能となり、製造コストを抑えることができる。加えて、実施例1および2のように接合部にGeが含まれることにより、Geを含まない接合部を用いる場合よりもろう付け温度を下げることが可能となる。温度を下げたことでも、Al−Si−Oの濃化領域が十分形成でき、コスト削減の達成ならびに処理可能な製品の範囲を広げることが可能になる。   Furthermore, in the joint part of the composite material of Example 2, the wettability is greatly improved by forming a concentrated region having a composition of Al—Ge—Mg and Al—Si—O in the vicinity of the joint interface, and the weight is about It became possible to join even with a small pressure. Thereby, it becomes possible to create a composite material without using a special pressing device such as a hot press, and the manufacturing cost can be reduced. In addition, the inclusion of Ge in the joint as in Examples 1 and 2 makes it possible to lower the brazing temperature than when using a joint that does not contain Ge. Even when the temperature is lowered, a concentrated region of Al—Si—O can be sufficiently formed, and cost reduction can be achieved and the range of products that can be processed can be expanded.

本発明に係るSi系セラミックスを有する複合材のを示す部分切欠斜視図。The partial notch perspective view which shows the composite material which has Si type ceramics concerning this invention. 本発明に係るSi系セラミックスを有する複合材の製造方法を示す分解斜視図。The disassembled perspective view which shows the manufacturing method of the composite material which has Si type ceramics concerning this invention. 本発明に係るSi系セラミックスを有する複合材の他の製造方法を示す分解斜視図。The disassembled perspective view which shows the other manufacturing method of the composite material which has Si type ceramics concerning this invention. 本発明の実施例1に従って製造されたSi系セラミックスを有する複合材の接合界面近傍の、電子顕微鏡反射電子線像の写真。The photograph of the electron microscope reflection electron beam image of the joint interface vicinity of the composite material which has Si type ceramics manufactured according to Example 1 of this invention. 本発明の実施例2に従って製造されたSi系セラミックスを有する複合材の接合界面近傍の、電子顕微鏡反射電子線像の写真。The photograph of the electron microscope reflection electron beam image of the joint interface vicinity of the composite material which has Si type ceramics manufactured according to Example 2 of this invention.

符号の説明Explanation of symbols

1…複合材、2…セラミックス部材、3…接合相手部材、4…接合部、5…接合界面近傍、6…濃化領域。   DESCRIPTION OF SYMBOLS 1 ... Composite material, 2 ... Ceramic member, 3 ... Joining partner member, 4 ... Joint part, 5 ... Joint interface vicinity, 6 ... Concentration area | region.

Claims (14)

シリコン系セラミックス部材と接合相手部材が、アルミニウムを主成分としゲルマニウムを0.1重量%〜50重量%含む接合部で接合された複合材であって、
前記接合部は、前記シリコン系セラミックス部材との接合界面近傍に、第1のゲルマニウム濃化領域が形成されていることを特徴とする複合材。
A silicon-based ceramic member and a joining partner member are composite materials joined at a joint portion containing aluminum as a main component and containing 0.1 to 50% by weight of germanium,
The composite material according to claim 1, wherein a first germanium-enriched region is formed in the vicinity of the joint interface with the silicon-based ceramic member.
前記接合部は0.1重量%〜20重量%の珪素をさらに含み、前記第1のゲルマニウム濃化領域のほかに、前記シリコン系セラミックス部材の接合界面近傍に珪素濃化領域およびゲルマニウム・珪素濃化領域から選ばれる少なくとも1つの第2濃化領域が、さらに形成されていることを特徴とする請求項1記載の複合材。   The joint further includes 0.1 wt% to 20 wt% silicon, and in addition to the first germanium concentrated region, a silicon concentrated region and a germanium / silicon concentration in the vicinity of the joint interface of the silicon-based ceramic member. The composite material according to claim 1, wherein at least one second thickening region selected from the thickening region is further formed. 前記珪素濃化領域は、珪素−アルミニウム−酸素の組成を有することを特徴とする請求項2記載の複合材。   The composite material according to claim 2, wherein the silicon concentration region has a composition of silicon-aluminum-oxygen. 前記接合部は0.05重量%〜5重量%のマグネシウムをさらに含み、前記第1のゲルマニウム濃化領域のほかに、前記シリコン系セラミックス部材の接合界面近傍にマグネシウム濃化領域およびゲルマニウム・マグネシウム濃化領域から選ばれる少なくとも1つの第3濃化領域が、さらに形成されていることを特徴とする請求項1記載の複合材。   The joint further includes 0.05 wt% to 5 wt% magnesium, and in addition to the first germanium concentrated region, a magnesium concentrated region and a germanium / magnesium concentrated concentration in the vicinity of the joint interface of the silicon-based ceramic member. The composite material according to claim 1, wherein at least one third concentration region selected from the concentration region is further formed. 前記接合材は、0.1重量%〜20重量%の珪素および0.05重量%〜5重量%のマグネシウムをさらに含み、前記第1のゲルマニウム濃化領域のほかに、前記シリコン系セラミックス部材の接合界面近傍に珪素濃化領域およびゲルマニウム・珪素濃化領域から選ばれる少なくとも一つの第2濃化領域と、マグネシウム濃化領域およびゲルマニウム・マグネシウム濃化領域から選ばれる少なくとも1つの第3濃化領域とが、さらに形成されていることを特徴とする請求項1記載の複合材。   The bonding material further includes 0.1 wt% to 20 wt% silicon and 0.05 wt% to 5 wt% magnesium. In addition to the first germanium concentration region, the bonding material includes the silicon-based ceramic member. At least one second concentration region selected from a silicon concentration region and a germanium / silicon concentration region, and at least one third concentration region selected from a magnesium concentration region and a germanium / magnesium concentration region in the vicinity of the bonding interface. The composite material according to claim 1, further comprising: 前記第1のゲルマニウム濃化領域の少なくとも一部は珪素をさらに含有することを特徴とする請求項2または5記載の複合材。   The composite material according to claim 2, wherein at least a part of the first germanium concentration region further contains silicon. 前記ゲルマニウム・珪素濃化領域は、前記第1のゲルマニウム濃化領域の一部に形成されることを特徴とする請求項項2または5記載の複合材。   6. The composite material according to claim 2, wherein the germanium / silicon concentrated region is formed in a part of the first germanium concentrated region. 前記第1のゲルマニウム濃化領域の少なくとも一部はマグネシウムをさらに含有することを特徴とする請求項4または5記載の複合材。   The composite material according to claim 4, wherein at least a part of the first germanium concentration region further contains magnesium. 前記ゲルマニウム・マグネシウム濃化領域は、前記第1のゲルマニウム濃化領域の一部に形成されることを特徴とする請求項項4または5記載の複合材。   The composite material according to claim 4, wherein the germanium / magnesium concentration region is formed in a part of the first germanium concentration region. 前記ゲルマニウム・珪素濃化領域は、前記第1のゲルマニウム濃化領域の一部に形成され、かつ前記ゲルマニウム・マグネシウム濃化領域は前記第1ゲルマニウム濃化領域の残りの一部に形成されることを特徴とする請求項5記載の複合材。   The germanium / silicon concentration region is formed in a part of the first germanium concentration region, and the germanium / magnesium concentration region is formed in a remaining part of the first germanium concentration region. The composite material according to claim 5. シリコン系セラミックス部材と接合相手部材が、アルミニウムを主成分とし珪素を0.1重量%〜20重量%含む接合部で接合された複合材であって、
前記接合部は、前記シリコン系セラミックス部材との接合界面近傍に珪素濃化領域が形成されていることを特徴とする複合材。
A silicon-based ceramic member and a bonding partner member are composite materials bonded together at a bonding portion containing aluminum as a main component and 0.1 wt% to 20 wt% of silicon,
The composite material according to claim 1, wherein a silicon-concentrated region is formed in the vicinity of a joint interface with the silicon-based ceramic member.
前記シリコン系セラミックスが窒化珪素(Si)であることを特徴とする請求項1ないし11のいずれか1項記載の複合材。 The composite material according to claim 1, wherein the silicon-based ceramic is silicon nitride (Si 3 N 4 ). 前記接合相手部材はアルミニウムまたはアルミニウム合金であることを特徴とする請求項1ないし11のいずれか1項記載の複合材。   The composite material according to claim 1, wherein the joining partner member is aluminum or an aluminum alloy. シリコン系セラミックス部材と接合相手部材の間にアルミニウムを主成分としゲルマニウムを0.1重量%〜50重量%含むろう材を介在し、加熱することにより前記シリコン系セラミックス部材との接合界面近傍にゲルマニウム濃化領域が存在する接合部を前記部材間に形成する工程を含むことを特徴とする複合材の製造方法。   A brazing material containing aluminum as a main component and 0.1 to 50% by weight of germanium is interposed between the silicon-based ceramic member and the bonding partner member, and is heated in the vicinity of the bonding interface with the silicon-based ceramic member by heating. The manufacturing method of the composite material characterized by including the process of forming the junction part in which the concentration area | region exists between the said members.
JP2004232489A 2004-08-09 2004-08-09 Composite material having silicon-based ceramic and its manufacturing method Pending JP2006045040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232489A JP2006045040A (en) 2004-08-09 2004-08-09 Composite material having silicon-based ceramic and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232489A JP2006045040A (en) 2004-08-09 2004-08-09 Composite material having silicon-based ceramic and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006045040A true JP2006045040A (en) 2006-02-16

Family

ID=36024043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232489A Pending JP2006045040A (en) 2004-08-09 2004-08-09 Composite material having silicon-based ceramic and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006045040A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277992A (en) * 2008-05-16 2009-11-26 Mitsubishi Materials Corp Substrate for power module, power module, and method of manufacturing substrate for power module
JP2009277990A (en) * 2008-05-16 2009-11-26 Mitsubishi Materials Corp Substrate for power module, power module, and method of manufacturing substrate for power module
US8609993B2 (en) 2008-05-16 2013-12-17 Mitsubishi Materials Corporation Power module substrate, power module, and method for manufacturing power module substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891951A (en) * 1994-09-22 1996-04-09 Sumitomo Electric Ind Ltd Aluminum-silicon nitride conjugate and its production
JPH08169778A (en) * 1994-12-14 1996-07-02 Nhk Spring Co Ltd Brazing filler alloy for joining alumina ceramics to aluminum alloy and joined body
JP2001062586A (en) * 1999-08-25 2001-03-13 Denki Kagaku Kogyo Kk Brazing material for aluminum circuit board, and ceramic circuit substrate using it
JP2001144433A (en) * 1999-11-18 2001-05-25 Denki Kagaku Kogyo Kk Ceramics circuit board
JP2003048787A (en) * 2001-08-06 2003-02-21 Nhk Spring Co Ltd COMPOSITE MATERIAL WITH Al-BASE CERAMIC AND METHOD FOR MANUFACTURING THE SAME
JP2004241567A (en) * 2003-02-05 2004-08-26 Nhk Spring Co Ltd Composite material and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891951A (en) * 1994-09-22 1996-04-09 Sumitomo Electric Ind Ltd Aluminum-silicon nitride conjugate and its production
JPH08169778A (en) * 1994-12-14 1996-07-02 Nhk Spring Co Ltd Brazing filler alloy for joining alumina ceramics to aluminum alloy and joined body
JP2001062586A (en) * 1999-08-25 2001-03-13 Denki Kagaku Kogyo Kk Brazing material for aluminum circuit board, and ceramic circuit substrate using it
JP2001144433A (en) * 1999-11-18 2001-05-25 Denki Kagaku Kogyo Kk Ceramics circuit board
JP2003048787A (en) * 2001-08-06 2003-02-21 Nhk Spring Co Ltd COMPOSITE MATERIAL WITH Al-BASE CERAMIC AND METHOD FOR MANUFACTURING THE SAME
JP2004241567A (en) * 2003-02-05 2004-08-26 Nhk Spring Co Ltd Composite material and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277992A (en) * 2008-05-16 2009-11-26 Mitsubishi Materials Corp Substrate for power module, power module, and method of manufacturing substrate for power module
JP2009277990A (en) * 2008-05-16 2009-11-26 Mitsubishi Materials Corp Substrate for power module, power module, and method of manufacturing substrate for power module
US8609993B2 (en) 2008-05-16 2013-12-17 Mitsubishi Materials Corporation Power module substrate, power module, and method for manufacturing power module substrate
US9095062B2 (en) 2008-05-16 2015-07-28 Mitsubishi Materials Corporation Power module substrate, power module, and method for manufacturing power module substrate
US9101063B2 (en) 2008-05-16 2015-08-04 Mitsubishi Materials Corporation Power module substrate, power module, and method for manufacturing power module substrate

Similar Documents

Publication Publication Date Title
KR102034335B1 (en) Metal-ceramic substrate and method for producing a metal-ceramic substrate
KR102279553B1 (en) Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, paste for copper plate bonding, and method for producing bonded body
JP5645307B2 (en) Brazing material for air bonding, bonded body, and current collecting material
WO2013115359A1 (en) Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member
CA2679846C (en) Metal-ceramic composite air braze with ceramic particulate
WO2011142262A1 (en) Brazing material for bonding in atmosphere, bonded article, and current collecting material
CN102047413A (en) Substrate for power module, power module, and method for producing substrate for power module
CN110383468A (en) Flange-cooled power module substrate
JP2003527292A (en) Method for assembling parts made of SiC-based material by non-reactive refractory brazing, solder composition for brazing and refractory joints and assemblies obtained by this method
JP5928535B2 (en) Power module substrate, power module substrate with heat sink, power module, power module substrate manufacturing method, and copper member bonding paste
JP6658400B2 (en) Method for producing ceramic / Al-SiC composite material joined body and method for producing substrate for power module with heat sink
JP4104253B2 (en) Board integrated structure
JP2006045040A (en) Composite material having silicon-based ceramic and its manufacturing method
JP2015185705A (en) Metallized ceramics substrate, and manufacturing method therefor, board for power module, and manufacturing method therefor
TWI744474B (en) Ceramic/aluminum bonded body, insulating circuit substrate, led module, ceramic member, method of manufacturing ceramic/aluminum bonded body and method of manufacturing insulating circuit substrate
Liu et al. Effect of Ti content on microstructure and strength of Si3N4/Si3N4 joints brazed with Cu–Pd–Ti filler metals
WO2021106904A1 (en) Graphene bonded body
WO2021090759A1 (en) Graphene-containing carbonaceous member/ceramic assembly and copper/graphene-containing carbonaceous member/ceramic assembly
JP6769169B2 (en) Method for manufacturing a bonded body of a ceramic substrate and an aluminum-impregnated silicon carbide porous body
JP5732814B2 (en) Joining method of ceramic and metal materials
JP3120826B2 (en) Terminal structure of power module substrate
TWI780113B (en) METHOD OF MANUFACTURING CERAMIC/Al-SiC COMPOSITE MATERIAL BONDED BODY AND METHOD OF MANUFACTURING POWER MODULE SUBSTRATE WITH HEAT SINK
JP2017183360A (en) Manufacturing method of board for power module with heat sink
WO2019159257A1 (en) METHOD FOR MANUFACTURING CERAMIC/AL-SiC COMPOSITE MATERIAL JOINED BODY, AND METHOD FOR MANUFACTURING HEAT SINK-EQUIPPED SUBSTRATE FOR POWER MODULE
JP4348112B2 (en) Metallized layer forming ceramic sintered body, metallized paste, and metallized layer forming ceramic sintered body manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070420

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100331

A131 Notification of reasons for refusal

Effective date: 20100420

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101026

Free format text: JAPANESE INTERMEDIATE CODE: A02