WO2021090759A1 - Graphene-containing carbonaceous member/ceramic assembly and copper/graphene-containing carbonaceous member/ceramic assembly - Google Patents

Graphene-containing carbonaceous member/ceramic assembly and copper/graphene-containing carbonaceous member/ceramic assembly Download PDF

Info

Publication number
WO2021090759A1
WO2021090759A1 PCT/JP2020/040652 JP2020040652W WO2021090759A1 WO 2021090759 A1 WO2021090759 A1 WO 2021090759A1 JP 2020040652 W JP2020040652 W JP 2020040652W WO 2021090759 A1 WO2021090759 A1 WO 2021090759A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
layer
containing carbonaceous
copper
active metal
Prior art date
Application number
PCT/JP2020/040652
Other languages
French (fr)
Japanese (ja)
Inventor
東洋 大橋
晶 櫻井
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020179736A external-priority patent/JP2021075452A/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2021090759A1 publication Critical patent/WO2021090759A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a graphene-containing carbonaceous member / ceramics joint having a structure in which a graphene-containing carbonaceous member containing a graphene aggregate and a ceramics member made of nitrogen-containing ceramics are joined, and the graphene-containing carbonaceous member /
  • the present invention relates to a copper / graphene-containing carbonaceous member / ceramics joint in which a copper member made of copper or a copper alloy is bonded to a ceramics joint.
  • the graphene-containing carbonaceous member containing the graphene aggregate is excellent in thermal conductivity, it is particularly suitable as a member constituting a heat radiating member, a heat conductive member, and the like.
  • a heat radiating member a heat conductive member, and the like.
  • an insulating layer made of ceramics or the like on the surface of the graphene-containing carbonaceous member containing the graphene aggregate described above, it can be used as an insulating substrate.
  • Patent Document 1 a structure in which graphene sheets are laminated along the first direction and an intermediate member (ceramics) joined to the end face of the structure in the second direction intersecting the first direction.
  • an intermediate member for example, ceramics
  • an insert material containing at least titanium is disclosed.
  • a cold cycle may be applied under the usage environment.
  • it may be used in a harsh environment such as an engine room, and a cold cycle under severe conditions with a large temperature difference may be loaded.
  • Patent Document 1 described above an intermediate made of ceramics and a graphene structure are joined via an insert material containing titanium, but depending on the joining conditions, the intermediate made of ceramics and graphene are joined. It was not possible to firmly join the structure of the above, and there was a risk of peeling when a cold cycle under severe conditions was applied.
  • the present invention has been made in view of the above-mentioned circumstances, and the ceramic member and the graphene-containing carbonaceous member containing a graphene aggregate are firmly bonded to each other, and peeling occurs even when a cold cycle load is applied.
  • the graphene-containing carbonaceous member / ceramics joint of one aspect of the present invention (hereinafter, "graphene-containing carbonaceous member / ceramics joint of the present invention"). ) Is a graphene-containing carbonaceous member / ceramics joint having a structure in which a graphene-containing carbonaceous member containing a graphene aggregate and a ceramics member made of ceramics containing nitrogen are joined, and the graphene-containing carbon is said.
  • an active metal nitride layer is formed on the joint surface of the ceramic member, and the thickness of the active metal nitride layer is within the range of 0.05 ⁇ m or more and 2 ⁇ m or less. It is characterized by being done.
  • an active metal nitride layer is formed on the joint surface of the ceramics member at the joint interface between the graphene-containing carbonaceous member and the ceramic member made of nitrogen-containing ceramics. Since the thickness of this active metal nitride layer is 0.05 ⁇ m or more, the joint surface of the ceramic member is sufficiently reacted by the active metal, and the graphene-containing carbonaceous member and the ceramic member are separated from each other. It is possible to firmly join.
  • the thickness of the active metal nitride layer is limited to 2 ⁇ m or less, it is possible to suppress the occurrence of cracks in the active metal nitride layer under a cold cycle load, and it is possible to improve the cold cycle reliability.
  • an active metal compound layer is formed on the bonding surface of the graphene-containing carbonaceous member at the bonding interface between the graphene-containing carbonaceous member and the ceramics member. It is preferably formed so that the thickness of the active metal compound layer is in the range of 0.05 ⁇ m or more and 3 ⁇ m or less. In this case, at the bonding interface between the graphene-containing carbonaceous member and the ceramic member, an active metal compound layer is formed on the bonding surface of the graphene-containing carbonaceous member, and the thickness of the active metal compound layer is 0.05 ⁇ m.
  • the joint surface of the graphene-containing carbonaceous member is sufficiently reacted by the active metal, and the graphene-containing carbonaceous member and the ceramic member can be joined more firmly. Further, since the thickness of the active metal compound layer is limited to 3 ⁇ m or less, it is possible to suppress the occurrence of cracks in the active metal compound layer when loaded with a cold cycle, and it is possible to improve the reliability of the cold cycle.
  • the graphene-containing carbonaceous member / ceramics joint of the present invention at the bonding interface between the graphene-containing carbonaceous member and the ceramics member, Ag is sandwiched between the active metal nitride layer and the active metal compound layer. It is preferable that an alloy layer containing Cu and Cu is formed, and the thickness of the alloy layer is within the range of 1 ⁇ m or more and 20 ⁇ m or less. In this case, the above-mentioned alloy layer is formed by the sufficient reaction of Ag and Cu contained in the bonding material, and the thickness of the alloy layer is 1 ⁇ m or more. The bonding strength with the ceramic member can be further improved. Further, since the thickness of the alloy layer is limited to 20 ⁇ m or less, it is possible to suppress the occurrence of cracks in the alloy layer when a cold cycle load is applied, and it is possible to improve the reliability of the cold cycle.
  • the graphene-containing carbonaceous member contains a graphene aggregate formed by depositing single-layer or multi-layer graphene and flat graphite particles, and is flat. It is preferable that the graphite particles having a shape are laminated with the graphene aggregate as a binder so that the basal surfaces thereof fold over, and the basal surfaces of the flat graphite particles are oriented in one direction. In this case, it is possible to further improve the heat conduction characteristics of the graphene-containing carbonaceous member.
  • the copper / graphene-containing carbonaceous member / ceramics joint (hereinafter, referred to as “copper / graphene-containing carbonaceous member / ceramics joint” of the present invention), which is another aspect of the present invention, is made of copper or a copper alloy.
  • the graphene-containing carbonaceous member of the carbon-containing member / ceramics joint is bonded to the copper member.
  • the graphene-containing carbonaceous member / ceramics joint of the graphene-containing carbonaceous member / ceramics joint has the graphene-containing carbonaceous member and the copper member bonded to each other. It will be excellent in reliability. Further, the graphene-containing carbonaceous member is protected by the copper member, and the occurrence of cracks in the graphene-containing carbonaceous member can be suppressed.
  • an active metal compound is formed on the bonding surface of the graphene-containing carbonaceous member at the bonding interface between the graphene-containing carbonaceous member and the copper member. It is preferable that the layer is formed and the thickness of the active metal compound layer is within the range of 0.05 ⁇ m or more and 3 ⁇ m or less. In this case, at the bonding interface between the graphene-containing carbonaceous member and the copper member, an active metal compound layer is formed on the bonding surface of the graphene-containing carbonaceous member, and the thickness of the active metal compound layer is 0.05 ⁇ m.
  • the joint surface of the graphene-containing carbonaceous member is sufficiently reacted by the active metal, and the graphene-containing carbonaceous member and the copper member can be joined more firmly. Further, since the thickness of the active metal compound layer is limited to 3 ⁇ m or less, it is possible to suppress the occurrence of cracks in the active metal compound layer when loaded with a cold cycle, and it is possible to improve the reliability of the cold cycle.
  • an Ag is formed between the copper member and the active metal compound layer.
  • an alloy layer containing Cu is formed and the thickness of the alloy layer is within the range of 1 ⁇ m or more and 20 ⁇ m or less.
  • the above-mentioned alloy layer is formed by the sufficient reaction of Ag and Cu contained in the bonding material, and the thickness of the alloy layer is 1 ⁇ m or more.
  • the bonding strength with the copper member can be further improved. Further, since the thickness of the alloy layer is limited to 20 ⁇ m or less, it is possible to suppress the occurrence of cracks in the alloy layer when a cold cycle load is applied, and it is possible to improve the reliability of the cold cycle.
  • the ceramic member and the graphene-containing carbonaceous member containing the graphene aggregate are firmly bonded to each other, no peeling occurs even under a cold cycle load, and graphene having excellent cold cycle reliability. It is possible to provide a carbonaceous member / ceramics joint containing carbonene and a copper / graphene-containing carbonic member / ceramics joint in which a copper member made of copper or a copper alloy is bonded to the graphene-containing carbonaceous member / ceramics joint. It will be possible.
  • the graphene-containing carbonaceous member / ceramics joint in the present embodiment is an insulating substrate 20 having a structure in which a graphene-containing carbonaceous member containing a graphene aggregate and ceramics containing nitrogen are joined.
  • the power module 1 shown in FIG. 1 includes an insulating circuit board 10, a semiconductor element 3 bonded to one surface side (upper side in FIG. 1) of the insulating circuit board 10 via a solder layer 2, and an insulating circuit board 10. It is provided with a heat sink 31 arranged on the other surface side (lower side in FIG. 1).
  • the insulating circuit board 10 is arranged on the insulating layer, the circuit layer 12 disposed on one surface of the insulating layer (upper surface in FIG. 1), and the other surface of the insulating layer (lower surface in FIG. 1). It includes a metal layer 13.
  • the insulating layer prevents electrical connection between the circuit layer 12 and the metal layer 13, and is composed of the insulating substrate 20 of the present embodiment.
  • the circuit layer 12 is formed by joining a metal plate having excellent conductivity to one surface of an insulating layer (insulating substrate 20).
  • a metal plate constituting the circuit layer 12 a copper plate made of copper or a copper alloy, specifically, a rolled plate of oxygen-free copper is used.
  • a circuit pattern is formed in the circuit layer 12, and one surface (upper surface in FIG. 1) is a mounting surface on which the semiconductor element 3 is mounted.
  • the thickness of the metal plate (copper plate) to be the circuit layer 12 is set within the range of 0.1 mm or more and 1.0 mm or less, and in the present embodiment, it is set to 0.6 mm.
  • the method of joining the metal plate (copper plate) to be the circuit layer 12 and the insulating substrate 20 is not particularly limited, and can be joined using an active metal brazing material or the like.
  • the metal layer 13 is formed by joining a metal plate having excellent thermal conductivity to the other surface of the insulating layer (insulating substrate 20).
  • a metal plate constituting the metal layer 13 a copper plate made of copper or a copper alloy, specifically, a rolled plate of oxygen-free copper is used.
  • the thickness of the metal plate (copper plate) to be the metal layer 13 is set within the range of 0.1 mm or more and 1.0 mm or less, and in the present embodiment, it is set to 0.6 mm.
  • the method of joining the metal plate (copper plate) to be the metal layer 13 and the insulating substrate 20 is not particularly limited, and can be joined using an active metal brazing material or the like.
  • the heat sink 31 is for cooling the above-mentioned insulating circuit board 10, and has a structure in which a plurality of flow paths 32 for flowing a cooling medium (for example, cooling water) are provided.
  • the heat sink 31 is preferably made of a material having good thermal conductivity, for example, aluminum or aluminum alloy, copper or copper alloy, and in this embodiment, it is made of 2N aluminum having a purity of 99 mass% or more. There is.
  • the metal layer 13 of the insulating circuit board 10 and the heat sink 31 are joined by a solid phase diffusion joining method.
  • the semiconductor element 3 is made of a semiconductor material such as Si or SiC.
  • the semiconductor element 3 is mounted on the circuit layer 12 via, for example, a solder layer 2 made of a Sn—Ag-based, Sn—In-based, or Sn—Ag—Cu-based solder material.
  • the insulating substrate 20 of the present embodiment constituting the insulating layer is a carbon plate made of a ceramic plate 25 made of nitrogen-containing ceramics and a graphene-containing carbonaceous member containing a graphene aggregate.
  • the structure is such that 21 and 21 are laminated, and carbon plates 21 are bonded to both main surfaces of the ceramic plate 25, respectively.
  • Examples of the nitrogen-containing ceramics constituting the ceramic plate 25 include aluminum nitride (AlN) and silicon nitride (Si 3 N 4 ).
  • the lower limit of the thickness of the ceramic plate 25 is preferably 100 ⁇ m or more, and more preferably 250 ⁇ m or more.
  • the upper limit of the thickness of the ceramic plate 25 is preferably 1500 ⁇ m or less, and more preferably 1000 ⁇ m or less.
  • the graphene-containing carbonaceous member constituting the carbon plate 21 contains graphene aggregates formed by depositing single-layer or multi-layer graphene and flat graphite particles so that the flat graphite particles fold their basal surfaces.
  • the graphene aggregate has a laminated structure as a binder.
  • the flat graphite particles have a basal surface on which a carbon hexagonal network surface appears and an edge surface on which an end portion of the carbon hexagonal network surface appears.
  • the flat graphite particles scaly graphite, scaly graphite, earthy graphite, flaky graphite, kiss graphite, pyrolytic graphite, highly oriented pyrolytic graphite and the like can be used.
  • the average particle size of the graphite particles as seen from the basal surface is preferably in the range of 10 ⁇ m or more and 1000 ⁇ m or less, and more preferably in the range of 50 ⁇ m or more and 800 ⁇ m or less.
  • the thickness of the graphite particles is preferably in the range of 1 ⁇ m or more and 50 ⁇ m or less, and more preferably in the range of 1 ⁇ m or more and 20 ⁇ m or less.
  • the orientation of the graphite particles is appropriately adjusted.
  • the thickness of the graphite particles within the range of 1/1000 to 1/2 of the particle size seen from the basal surface, excellent thermal conductivity and orientation of the graphite particles are appropriately adjusted.
  • the graphene aggregate is a deposit of single-layer or multi-layer graphene, and the number of layers of the multi-layer graphene is, for example, 100 layers or less, preferably 50 layers or less.
  • This graphene aggregate can be produced, for example, by dropping a graphene dispersion in which single-layer or multi-layer graphene is dispersed in a solvent containing lower alcohol or water onto a filter paper and depositing the graphene while separating the solvent. It is possible.
  • the average particle size of the graphene aggregate is preferably in the range of 1 ⁇ m or more and 1000 ⁇ m or less. By keeping the average particle size of the graphene aggregate within the above range, the thermal conductivity is improved.
  • the thickness of the graphene aggregate is preferably in the range of 0.05 ⁇ m or more and less than 50 ⁇ m. By keeping the thickness of the graphene aggregate within the above range, the strength of the carbonaceous member is ensured.
  • the thickness of the carbon plate 21 is preferably in the range of 0.5 mm or more and 5 mm or less.
  • FIGS. 3A and 3B show observational photographs of the interface between the carbon plate 21 made of a graphene-containing carbonaceous member and the ceramic plate 25, and FIG. 4 shows a carbon plate 21 made of a graphene-containing carbonaceous member and a ceramic plate.
  • the schematic diagram of the junction interface with 25 is shown.
  • the upper black portion is the carbon plate 21 (graphene-containing carbonaceous member)
  • the gray portion located below the carbon plate 21 is the ceramic plate 25.
  • an active metal nitride layer 41 is formed on the bonding surface of the ceramic plate 25.
  • an active metal compound layer 42 containing one or two types of active metal oxide and active metal carbide is formed on the bonding surface of the carbon plate 21.
  • an alloy layer 43 containing Ag and Cu is formed between the active metal nitride layer 41 and the active metal compound layer 42. That is, in the present embodiment, the bonding interface 40 has a structure in which the active metal nitride layer 41, the alloy layer 43, and the active metal compound layer 42 are laminated in this order from the ceramic plate 25 side.
  • the active metal nitride layer 41 is formed by reacting the active metal contained in the bonding material interposed between the carbon plate 21 and the ceramic plate 25 with nitrogen contained in the ceramic plate 25 at the time of bonding. is there.
  • the active metal constituting the active metal nitride layer 41 for example, one kind or two or more kinds selected from Ti, Zr, Hf, and Nb can be used.
  • the active metal is Ti
  • the active metal nitride layer 41 is made of titanium nitride (Ti—N).
  • the thickness t1 of the active metal nitride layer 41 is set within the range of 0.05 ⁇ m or more and 2 ⁇ m or less.
  • the lower limit of the thickness t1 of the active metal nitride layer 41 is more preferably 0.1 ⁇ m or more, and more preferably 0.2 ⁇ m or more.
  • the upper limit of the thickness t1 of the active metal nitride layer 41 is more preferably 1 ⁇ m or less, and more preferably 0.7 ⁇ m or less.
  • the active metal compound layer 42 is formed by reacting the active metal contained in the bonding material interposed between the carbon plate 21 and the ceramic plate 25 at the time of bonding with oxygen and carbon.
  • the active metal is Ti
  • the active metal compound layer 42 contains one or two types of titanium oxide (Ti—O) and titanium carbide (Ti—C). It is supposed to be.
  • the thickness t2 of the active metal compound layer 42 is 0.05 ⁇ m or more, the reaction between the bonding material and the carbon plate 21 is promoted, and the bonding strength of the carbon plate 21 is sufficiently secured.
  • the thickness t2 of the active metal compound layer 42 is 3 ⁇ m or less, it is possible to suppress the occurrence of cracks in the active metal compound layer 42 when the active metal compound layer 42 is loaded. Therefore, in the present embodiment, the thickness t2 of the active metal compound layer 42 is preferably in the range of 0.05 ⁇ m or more and 3 ⁇ m or less.
  • the lower limit of the thickness t2 of the active metal compound layer 42 is more preferably 0.1 ⁇ m or more, and more preferably 0.2 ⁇ m or more.
  • the upper limit of the thickness t2 of the active metal compound layer 42 is more preferably 2 ⁇ m or less, and more preferably 1.8 ⁇ m or less.
  • the alloy layer 43 is formed by reacting Ag and Cu contained in the bonding material interposed between the carbon plate 21 and the ceramic plate 25 at the time of bonding.
  • the alloy layer 43 contains Ag in the range of 30 mass% or more and 70 mass% or less, and Cu in the range of 15 mass% or more and 45 mass% or less.
  • the thickness t3 of the alloy layer 43 is 1 ⁇ m or more, the reaction of the bonding material is sufficiently promoted, and the bonding strength between the carbon plate 21 and the ceramic plate 25 is sufficiently secured.
  • the thickness t3 of the alloy layer 43 is 20 ⁇ m or less, it is possible to suppress the occurrence of cracks in the alloy layer 43 during a cold cycle load. Therefore, in the present embodiment, the thickness t3 of the alloy layer 43 is preferably in the range of 1 ⁇ m or more and 20 ⁇ m or less.
  • the lower limit of the thickness t3 of the alloy layer 43 is more preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • the upper limit of the thickness t3 of the alloy layer 43 is more preferably 10 ⁇ m or less, and more preferably 8 ⁇ m or less.
  • Carbon plate forming step S01 First, the above-mentioned flat graphite particles and graphene aggregates are weighed so as to have a predetermined blending ratio, and these are mixed by an existing mixing device such as a ball mill. A molded product is obtained by filling the obtained mixture in a mold having a predetermined shape and pressurizing the mixture. In addition, heating may be carried out at the time of pressurization. Then, the obtained molded product is cut out to obtain a carbon plate 21.
  • the pressure at the time of molding is preferably in the range of 20 MPa or more and 1000 MPa or less, and more preferably in the range of 100 MPa or more and 300 MPa or less. Further, the temperature at the time of molding is preferably in the range of 50 ° C. or higher and 300 ° C. or lower. Further, the pressurizing time is preferably in the range of 0.5 minutes or more and 10 minutes or less.
  • the above-mentioned carbon plates 21 are laminated on both main surfaces of the ceramic plate 25 via a bonding material.
  • a bonding material a material containing Ag, Cu, and an active metal (Ti in this embodiment) is used.
  • the bonding material may be in the form of a paste or in the form of a foil. Further, for example, a Cu—Ag alloy and an active metal may be laminated.
  • a material having a composition containing Cu in the range of 18 mass% or more and 34 mass% or less, Ti in the range of 0.3 mass% or more and 7 mass% or less, and the balance being Ag and unavoidable impurities is used as the bonding material. There is.
  • the ceramic plate 25 and the carbon plate 21 laminated via the bonding material are pressed in the laminating direction, heated, and then cooled to join the ceramic plate 25 and the carbon plate 21.
  • the heating temperature is preferably in the range of 790 ° C. or higher and 900 ° C. or lower.
  • the holding time at the heating temperature is preferably in the range of 20 minutes or more and 180 minutes or less.
  • the pressurizing pressure is preferably in the range of 0.1 MPa or more and 3.5 MPa or less.
  • the atmosphere is preferably a non-oxidizing atmosphere such as a reduced pressure atmosphere or a nitrogen gas atmosphere.
  • the active metal (Ti in the present embodiment) contained in the joining material reacts with nitrogen contained in the ceramic plate 25 to form the active metal nitride layer 41 on the joining surface of the ceramic plate 25.
  • the active metal (Ti in this embodiment) contained in the bonding material reacts with oxygen and carbon to form the active metal compound layer 42 on the bonding surface of the carbon plate 21.
  • the reaction between Cu and Ag contained in the bonding material forms an alloy layer 43 between the active metal nitride layer 41 and the active metal compound layer 42.
  • the graphene-containing carbonaceous member / ceramics joint (insulating substrate 20) of the present embodiment will be manufactured.
  • the carbon plate 21 made of the graphene-containing carbonaceous member and the ceramic plate 25 made of nitrogen-containing ceramics In the bonding interface 40 of the above, an active metal nitride layer 41 is formed on the bonding surface of the ceramic plate 25, and the thickness of the active metal nitride layer 41 is 0.05 ⁇ m or more, and thus is included in the bonding material.
  • the active metal Ti in this embodiment reacts sufficiently with the ceramic plate 25, and the carbon plate 21 and the ceramic plate 25 can be firmly bonded to each other.
  • the thickness of the active metal nitride layer 41 is limited to 2 ⁇ m or less, it is possible to suppress the occurrence of cracks in the active metal nitride layer under a cold cycle load, and it is possible to improve the cold cycle reliability. ..
  • the active metal compound layer 42 is formed on the joint surface of the carbon plate 21 at the joint interface 40 between the carbon plate 21 and the ceramic plate 25, and the thickness of the active metal compound layer 42 is 0.05 ⁇ m or more. If so, the joint surface of the carbon plate 21 made of the active metal (Ti in this embodiment) and the graphene-containing carbonaceous member contained in the joint material is sufficiently reacted, and the carbon plate 21 and the ceramic plate are sufficiently reacted. The bonding strength with 25 can be further improved. On the other hand, when the thickness of the active metal compound layer 42 is limited to 3 ⁇ m or less, it is possible to suppress the occurrence of cracks in the active metal compound layer 42 when the active metal compound layer 42 is loaded.
  • the thickness of the alloy layer 43 is 1 ⁇ m or more. Ag and Cu contained in the bonding material are sufficiently reacted with each other, and the bonding strength between the carbon plate 21 and the ceramic plate 25 can be further improved.
  • the thickness of the alloy layer 43 is limited to 20 ⁇ m or less, it is possible to suppress the occurrence of cracks in the alloy layer 43 during a cold cycle load.
  • the graphene-containing carbonaceous member constituting the carbon plate 21 contains graphene aggregates formed by depositing single-layer or multi-layer graphene and flat-shaped graphite particles, and the flat-shaped graphite particles.
  • the carbon plate 21 graphene is used. It is possible to further improve the heat conduction characteristics of the graphite-containing member).
  • the copper / graphene-containing carbonaceous member / ceramics joint in the present embodiment has a structure in which a copper member made of copper or a copper alloy, a graphene-containing carbonaceous member containing a graphene aggregate, and nitrogen-containing ceramics are joined. Insulated circuit board 110.
  • the power module 101 shown in FIG. 6 includes an insulating circuit board 110, a semiconductor element 3 bonded to one surface side (upper side in FIG. 6) of the insulating circuit board 110 via a solder layer 2, and an insulating circuit board 110. It is provided with a heat sink 31 arranged on the other surface side (lower side in FIG. 6).
  • the heat sink 31 is for cooling the above-mentioned insulating circuit board 10, and has a structure in which a plurality of flow paths 32 for flowing a cooling medium (for example, cooling water) are provided.
  • the heat sink 31 is preferably made of a material having good thermal conductivity, for example, aluminum or aluminum alloy, copper or copper alloy, and in this embodiment, it is made of 2N aluminum having a purity of 99 mass% or more. There is.
  • the metal layer 13 of the insulating circuit board 10 and the heat sink 31 are joined by a solid phase diffusion joining method.
  • the semiconductor element 3 is made of a semiconductor material such as Si or SiC.
  • the semiconductor element 3 is mounted on the circuit layer 12 via, for example, a solder layer 2 made of a Sn—Ag-based, Sn—In-based, or Sn—Ag—Cu-based solder material.
  • the copper / graphene-containing carbonaceous member / ceramics joint (insulating circuit substrate 110) of the present embodiment is the insulating substrate 20 made of the graphene-containing carbonaceous member / ceramics joint of the first embodiment and the insulating substrate. It includes a circuit layer 112 disposed on one surface (upper surface in FIG. 6) of 20 and a metal layer 113 arranged on the other surface (lower surface in FIG. 6) of the insulating substrate 20.
  • the circuit layer 112 is formed by joining a copper plate having excellent conductivity to one surface of the insulating substrate 20.
  • an oxygen-free copper rolled plate is used as the copper plate constituting the circuit layer 112.
  • the thickness of the copper plate (copper plate) to be the circuit layer 112 is set within the range of 0.1 mm or more and 1.0 mm or less, and in this embodiment, it is set to 0.6 mm.
  • the size of the circuit layer 112 is equal to or larger than that of the carbon plate 21.
  • the metal layer 113 is formed by joining a copper plate having excellent thermal conductivity to the other surface of the insulating substrate 20.
  • an oxygen-free copper rolled plate is used as the copper plate constituting the metal layer 113.
  • the thickness of the copper plate (copper plate) to be the metal layer 113 is set within the range of 0.1 mm or more and 1.0 mm or less, and in the present embodiment, it is set to 0.6 mm.
  • the size of the metal layer 113 is equal to or larger than that of the carbon plate 21.
  • FIG. 7 shows a schematic view of the bonding interface between the carbon plate 21 made of a graphene-containing carbonaceous member and the circuit layer 112 (metal layer 113).
  • the active metal oxide and the active metal carbide are formed on the bonding surface of the carbon plate 21.
  • An active metal compound layer 142 containing one or two of the above is formed.
  • an alloy layer 143 containing Ag and Cu is formed between the circuit layer 112 (metal layer 113) and the active metal compound layer 142. That is, in the present embodiment, the bonding interface 140 has a structure in which the alloy layer 143 and the active metal compound layer 142 are laminated in this order from the circuit layer 112 (metal layer 113) side.
  • the active metal compound layer 142 is formed by reacting the active metal contained in the bonding material interposed between the carbon plate 21 and the copper plate with oxygen and carbon at the time of bonding.
  • the active metal is Ti
  • the active metal compound layer 142 contains one or two types of titanium oxide (Ti—O) and titanium carbide (Ti—C). Has been done.
  • the thickness t12 of the active metal compound layer 142 is 0.05 ⁇ m or more, the reaction between the bonding material and the carbon plate 21 is promoted, and the bonding strength of the carbon plate 21 is sufficiently secured.
  • the thickness t12 of the active metal compound layer 142 is 3 ⁇ m or less, it is possible to suppress the occurrence of cracks in the active metal compound layer 142 during a cold cycle load. Therefore, in the present embodiment, the thickness t2 of the active metal compound layer 142 is preferably in the range of 0.05 ⁇ m or more and 3 ⁇ m or less.
  • the lower limit of the thickness t12 of the active metal compound layer 142 is more preferably 0.1 ⁇ m or more, and more preferably 0.2 ⁇ m or more.
  • the upper limit of the thickness t12 of the active metal compound layer 142 is more preferably 2 ⁇ m or less, and more preferably 1.8 ⁇ m or less.
  • the alloy layer 143 is formed by reacting Ag and Cu contained in the bonding material interposed between the carbon plate 21 and the copper plate at the time of bonding.
  • the alloy layer 143 contains Ag in the range of 30 mass% or more and 70 mass% or less, and Cu in the range of 15 mass% or more and 45 mass% or less.
  • the thickness t13 of the alloy layer 143 is 1 ⁇ m or more, the reaction of the bonding material is sufficiently promoted, and the bonding strength between the carbon plate 21, the circuit layer 112, and the metal layer 113 is sufficiently secured. ..
  • the thickness t13 of the alloy layer 143 is 20 ⁇ m or less, it is possible to suppress the occurrence of cracks in the alloy layer 143 during a cold cycle load. Therefore, in the present embodiment, the thickness t13 of the alloy layer 143 is preferably in the range of 1 ⁇ m or more and 20 ⁇ m or less.
  • the lower limit of the thickness t13 of the alloy layer 143 is more preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • the upper limit of the thickness t13 of the alloy layer 143 is more preferably 10 ⁇ m or less, and more preferably 8 ⁇ m or less.
  • the copper / graphene-containing carbonaceous member / ceramics joint (insulated circuit board 110) of the present embodiment is, for example, the graphene-containing carbonic member / ceramics joint (insulated substrate 20) described in the first embodiment. ), It can be manufactured by joining a copper plate to the surface of the carbon plate 21. Alternatively, when the ceramic plate 25 and the carbon plate 21 are joined to produce a graphene-containing carbonaceous member / ceramics joint (insulating substrate 20), the carbon plate 21 and the copper plate may be joined at the same time. In either case, the carbon plate 21 and the copper plate are joined by laminating the copper plate on the surface of the carbon plate 21 via a bonding material and heating while pressurizing in the stacking direction.
  • the bonding material a material containing Ag, Cu, and an active metal (Ti in this embodiment) is used.
  • the bonding material may be in the form of a paste or in the form of a foil. Further, for example, a Cu—Ag alloy and an active metal may be laminated.
  • the heating temperature is preferably in the range of 790 ° C. or higher and 900 ° C. or lower.
  • the holding time at the heating temperature is preferably in the range of 20 minutes or more and 180 minutes or less.
  • the pressurizing pressure is preferably in the range of 0.1 MPa or more and 3.5 MPa or less.
  • the atmosphere is preferably a non-oxidizing atmosphere such as a reduced pressure atmosphere or a nitrogen gas atmosphere.
  • the active metal (Ti in this embodiment) reacts with oxygen and carbon to act on the bonding surface of the carbon plate 21.
  • the metal compound layer 142 is formed. Further, the reaction between Cu and Ag contained in the bonding material forms an alloy layer 143 between the copper plate and the active metal compound layer 142.
  • the graphene-containing carbonaceous member / ceramics joint (insulated circuit board 110) of the present embodiment having the above-described configuration
  • the graphene-containing carbonaceous member / ceramics joint (insulated circuit board 110) of the first embodiment Since the carbon plate 21 of the insulating substrate 20), the circuit layer 112, and the metal layer 113 are bonded to each other, the reliability of the thermal cycle is excellent. Further, the carbon plate 21 is protected by the circuit layer 112 and the metal layer 113, and the occurrence of cracks in the carbon plate 21 can be suppressed.
  • the size of the circuit layer 112 and the metal layer 113 is equal to or larger than that of the carbon plate 21, the occurrence of cracks in the carbon plate 21 can be further suppressed.
  • the active metal compound layer 142 is formed on the bonding surface of the carbon plate 21, and the thickness t12 of the active metal compound layer 142. Since the value is 0.05 ⁇ m or more, the bonding surface of the carbon plate 21 is sufficiently reacted by the active metal, and the carbon plate 21, the circuit layer 112, and the metal layer 113 can be bonded more firmly. Become. Further, since the thickness t12 of the active metal compound layer 142 is limited to 3 ⁇ m or less, it is possible to suppress the occurrence of cracks in the active metal compound layer 142 when loaded with a cold cycle, and it is possible to improve the reliability of the cold cycle.
  • an alloy layer 143 containing Ag and Cu is formed between the circuit layer 112, the metal layer 113, and the active metal compound layer 142.
  • the bonding strength between the carbon plate 21, the circuit layer 112, and the metal layer 113 can be further improved.
  • the thickness of the alloy layer 143 is limited to 20 ⁇ m or less, it is possible to suppress the occurrence of cracks in the alloy layer 143 when a cold cycle load is applied, and it is possible to improve the cold cycle reliability.
  • a semiconductor element (power semiconductor element) is mounted on the circuit layer of the insulated circuit board to form a power module, but the present embodiment is not limited to this.
  • an LED element may be mounted on an insulated circuit board to form an LED module
  • a thermoelectric element may be mounted on a circuit layer of an insulated circuit board to form a thermoelectric module.
  • the insulating substrate 20 of the present embodiment is applied as the insulating layer of the insulating circuit board 10, but the present invention is not limited to this.
  • the method of using the graphene-containing carbonaceous member / ceramic joint of the present invention is not particularly limited.
  • the copper plate has been described as an example of the metal plate to be bonded to the insulating substrate 20, but the present invention is not limited to this, and other metal plates such as an aluminum plate may be used. ..
  • the flat graphite particles and the graphene aggregate are mixed at a predetermined blending ratio, mixed, and heated by pressurization to form the flat graphite particles on the basal surface thereof.
  • a molded body having a structure in which graphene aggregates were laminated as a binder was obtained so as to be folded over.
  • the obtained molded product was cut out to obtain a carbon plate (40 mm ⁇ 40 mm ⁇ thickness 1.5 mm) as a graphene-containing carbonaceous member.
  • the above-mentioned carbon plate is placed on both sides of the ceramic plate (40 mm ⁇ 40 mm ⁇ thickness 0.32 mm) shown in Table 1 via a bonding material (thickness 20 ⁇ m) having a composition of Ag-28 mass% Cu-3 mass% Ti. After laminating, the carbon plate and the ceramic plate were joined under the conditions shown in Table 1. Then, the bonding interface between the carbon plate and the ceramic plate was observed, and the thickness of the active metal nitride layer or the thickness of the active metal compound layer was confirmed.
  • an observation sample is taken from the central part of the graphene-containing carbonaceous member / ceramics junction, and the junction interface is measured using a scanning transmission electron microscope (FEI TitanChemiSTEM (with EDS detector)) at a magnification of 40,000. Observation is performed under the condition of double acceleration voltage of 200 kV, mapping is performed using energy dispersive X-ray analysis method (NSS7 manufactured by Thermo Scientific Co., Ltd.), and in the case of an active metal nitride layer, the region where the active metal and N overlap.
  • FEI TitanChemiSTEM with EDS detector
  • the active metal compound layer In the case of the active metal compound layer, the area of the region where the active metal exists is measured, and the value divided by the width of the measurement field (length: (2.3 ⁇ m ⁇ width: 3 ⁇ m)) is obtained. Was taken as the thickness of the active metal nitride layer or the active metal compound layer.
  • a cross-sectional observation sample near the junction interface of the graphene-containing carbonaceous member / ceramics junction was collected, and EPMA (JXA-8530F manufactured by JEOL Ltd., acceleration voltage: 15 kV, spot diameter: EPMA mapping was obtained using (1 ⁇ m or less), and the area of Ag within the range of 30 mass% or more and 70 mass% or less and Cu within the range of 15 mass% or more and 45 mass% or less was regarded as an alloy layer, and the area was measured.
  • the value obtained by dividing by the width dimension of (: 90 ⁇ m ⁇ width: 120 ⁇ m) was obtained, and the average value of the five visual fields was taken as the thickness of the alloy layer.
  • measurement points a total of 5 points were observed, which are the region of the center point of the insulated circuit board and the region of four vertices of a 20 mm ⁇ 20 mm quadrangle centered on that point.
  • the obtained conjugate was subjected to 2000 cycles of cooling and heating at ⁇ 40 ° C. ⁇ 5 minutes ⁇ ⁇ 150 ° C. ⁇ 5 minutes. Then, the bonding ratio at the interface between the carbon plate and the copper plate was evaluated using an ultrasonic flaw detector (FineSAT200 manufactured by Hitachi Power Solutions, Ltd.) and calculated from the following formula.
  • the initial joining area is the area to be joined before joining.
  • the peeling is shown by the white part in the joint, and the area of this white part is defined as the peeling area.
  • (Joining ratio) ⁇ (Initial joining area)-(Non-joining area) ⁇ / (Initial joining area) x 100
  • Comparative Example 1 in which the thickness of the active metal nitride layer was 2.20 ⁇ m and the thickness of the active metal compound layer was 3.30 ⁇ m, the bonding ratio after the thermal cycle test was as low as 75%.
  • Comparative Example 2 in which the thickness of the active metal nitride layer was 0.03 ⁇ m and the thickness of the active metal compound layer was 0.03 ⁇ m, the bonding ratio after the thermal cycle test was as low as 72%.
  • Example 1-10 of the present invention in which the thickness of the active metal nitride layer was in the range of 0.05 ⁇ m or more and 2 ⁇ m or less, the bonding ratio after the thermal cycle test was 80% or more, and the cold heat was obtained. It had excellent cycle reliability.
  • Example 2 The graphene-containing carbonaceous member / ceramics joints of Examples 3, 4, 6 and 10 of the present invention described above were prepared, and a bonding material having a composition of Ag-28 mass% Cu-3 mass% Ti was prepared on the surface of the carbon plate (thickness).
  • cracks in the carbon plate were evaluated by observing with a microscope (Digital Microscope VHX-7000 manufactured by KEYENCE CORPORATION). From the side surface of the copper / graphene-containing carbonaceous member / ceramics joint, observe the carbon plates bonded to both sides of the ceramic plate at a magnification that allows them to be seen, and the length is 2/3 or more of the thickness of the carbon plate. The case where the number of cracks was 15 or less was evaluated as " ⁇ ", and the case where the number of cracks exceeded 15 was evaluated as "x”. The length of the crack was defined as the length along the crack, and the longest length was defined as the crack when branched in the middle.
  • Copper / graphene-containing carbonaceous member / ceramic joint of Invention Examples 13, 14, 16 and 20 formed by joining a copper plate to the graphene-containing carbonaceous member / ceramic joint of Invention Examples 3, 4, 6 and 10. In each case, the occurrence of cracks in the carbon plate (graphene-containing carbonaceous member) could be suppressed.
  • Example 3 A carbon plate (40 mm ⁇ 40 mm ⁇ thickness 1.5 mm) to be a graphene-containing carbonaceous member was obtained by the same procedure as in Example 1. The above-mentioned carbon plate is placed on both sides of the ceramic plate (40 mm ⁇ 40 mm ⁇ thickness 0.32 mm) shown in Table 3 via a bonding material (thickness 20 ⁇ m) having a composition of Ag-28 mass% Cu-3 mass% Ti. Laminated. Further, a copper plate (40 mm ⁇ 40 mm ⁇ thickness 0.) Made of rolled oxygen-free copper is interposed on the surface of the carbon plate via a bonding material (thickness 20 ⁇ m) having a composition of Ag-28 mass% Cu-3 mass% Ti. 8 mm) was laminated. Then, under the conditions shown in Table 3, the ceramic plate, the carbon plate, and the copper plate were simultaneously bonded to obtain a copper / graphene-containing carbonaceous member / ceramic bonded body.
  • Example 2 the bonding interface between the carbon plate and the ceramic plate was observed, and the thickness of the active metal nitride layer or the thickness of the active metal compound layer was confirmed. In addition, the bonding interface between the carbon plate and the copper plate was observed to confirm the thickness of the active metal compound layer. Further, as in Example 2, cracks in the carbon plate (graphene-containing carbonaceous member) were evaluated by observation with a microscope.
  • the ceramic member and the graphene-containing carbonaceous member containing the graphene aggregate are firmly bonded to each other, and peeling does not occur even under a cold cycle load. It was confirmed that it is possible to provide a graphene-containing carbonaceous member / ceramics joint having excellent cycle reliability and a copper / graphene-containing carbonaceous member / ceramics joint.
  • the ceramics member and the graphene-containing carbonaceous member containing the graphene aggregate are firmly bonded to each other, and peeling does not occur even under a cold cycle load, and the graphene-containing carbonaceous member / ceramics having excellent thermal cycle reliability. It is possible to provide a joint body and a copper / graphene-containing carbonaceous member / ceramics joint body in which a copper member made of copper or a copper alloy is bonded to the graphene-containing carbonaceous member / ceramics joint body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

Disclosed is a graphene-containing carbonaceous member/ceramic assembly having a structure wherein a graphene-containing carbonaceous member (21) containing a graphene aggregate and a ceramic member (25) made of a ceramic containing nitrogen are joined together. At a joining interface (40) between the graphene-containing carbonaceous member (21) and the ceramic member (25), an active metal nitride layer (41) is formed on the joining surface of the ceramic member (25), and the thickness of the active metal nitride layer is within a range from 0.05 µm to 2 µm.

Description

グラフェン含有炭素質部材/セラミックス接合体、および、銅/グラフェン含有炭素質部材/セラミックス接合体Graphene-containing carbonaceous member / ceramics joint and copper / graphene-containing carbonaceous member / ceramics joint
 この発明は、グラフェン集合体を含有するグラフェン含有炭素質部材と窒素を含むセラミックスからなるセラミックス部材とが接合された構造のグラフェン含有炭素質部材/セラミックス接合体、および、このグラフェン含有炭素質部材/セラミックス接合体に銅又は銅合金からなる銅部材が接合された銅/グラフェン含有炭素質部材/セラミックス接合体に関するものである。
 本願は、2019年11月5日に日本に出願された特願2019-200724号及び2020年10月27日に日本に出願された特願2020-179736号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a graphene-containing carbonaceous member / ceramics joint having a structure in which a graphene-containing carbonaceous member containing a graphene aggregate and a ceramics member made of nitrogen-containing ceramics are joined, and the graphene-containing carbonaceous member / The present invention relates to a copper / graphene-containing carbonaceous member / ceramics joint in which a copper member made of copper or a copper alloy is bonded to a ceramics joint.
This application claims priority based on Japanese Patent Application No. 2019-290724 filed in Japan on November 5, 2019 and Japanese Patent Application No. 2020-179736 filed in Japan on October 27, 2020. Is used here.
 グラフェン集合体を含有するグラフェン含有炭素質部材は、熱伝導性に優れていることから、放熱部材及び熱伝導部材等を構成する部材として特に適している。
 例えば、上述のグラフェン集合体を含有するグラフェン含有炭素質部材の表面にセラミックス等からなる絶縁層を形成することにより、絶縁基板として使用することが可能となる。
Since the graphene-containing carbonaceous member containing the graphene aggregate is excellent in thermal conductivity, it is particularly suitable as a member constituting a heat radiating member, a heat conductive member, and the like.
For example, by forming an insulating layer made of ceramics or the like on the surface of the graphene-containing carbonaceous member containing the graphene aggregate described above, it can be used as an insulating substrate.
 ここで、例えば特許文献1には、第1方向に沿ってグラフェンシートが積層された構造体と、第1方向と交差する第2方向における上記構造体の端面に接合される中間部材(セラミックス)と、を有し、この中間部材(例えばセラミックス)が、少なくともチタンを含むインサート材を介して、上記端面に加圧接合された異方性熱伝導素子が開示されている。 Here, for example, in Patent Document 1, a structure in which graphene sheets are laminated along the first direction and an intermediate member (ceramics) joined to the end face of the structure in the second direction intersecting the first direction. Disclosed is an anisotropic heat conductive element in which an intermediate member (for example, ceramics) is pressure-bonded to the end face via an insert material containing at least titanium.
日本国特開2012-238733号公報(A)Japanese Patent Application Laid-Open No. 2012-238733 (A)
 ところで、上述の絶縁基板においては、使用環境下において冷熱サイクルが負荷されることがある。特に、最近では、エンジンルーム等の過酷な環境下で使用されることがあり、温度差が大きな厳しい条件の冷熱サイクルが負荷されることがある。
 ここで、上述の特許文献1においては、セラミックスからなる中間体とグラフェンの構造体とを、チタンを含むインサート材を介して接合しているが、接合条件によっては、セラミックスからなる中間体とグラフェンの構造体とを強固に接合することができず、厳しい条件の冷熱サイクルが負荷された際に剥離が生じるおそれがあった。
By the way, in the above-mentioned insulating substrate, a cold cycle may be applied under the usage environment. In particular, recently, it may be used in a harsh environment such as an engine room, and a cold cycle under severe conditions with a large temperature difference may be loaded.
Here, in Patent Document 1 described above, an intermediate made of ceramics and a graphene structure are joined via an insert material containing titanium, but depending on the joining conditions, the intermediate made of ceramics and graphene are joined. It was not possible to firmly join the structure of the above, and there was a risk of peeling when a cold cycle under severe conditions was applied.
 この発明は、前述した事情に鑑みてなされたものであって、セラミックス部材とグラフェン集合体を含有するグラフェン含有炭素質部材とが強固に接合されており、冷熱サイクル負荷時においても剥離が生じることがなく、冷熱サイクル信頼性に優れたグラフェン含有炭素質部材/セラミックス接合体、および、このグラフェン含有炭素質部材/セラミックス接合体に銅又は銅合金からなる銅部材が接合された銅/グラフェン含有炭素質部材/セラミックス接合体を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and the ceramic member and the graphene-containing carbonaceous member containing a graphene aggregate are firmly bonded to each other, and peeling occurs even when a cold cycle load is applied. Graphene-containing carbonaceous member / ceramics joint with excellent thermal cycle reliability, and copper / graphene-containing carbon in which a copper member made of copper or a copper alloy is bonded to the graphene-containing carbonaceous member / ceramics joint. It is an object of the present invention to provide a quality member / ceramics joint.
 このような課題を解決して、前記目的を達成するために、本発明の一態様のグラフェン含有炭素質部材/セラミックス接合体(以下、「本発明のグラフェン含有炭素質部材/セラミックス接合体」と称する。)は、グラフェン集合体を含有するグラフェン含有炭素質部材と、窒素を含むセラミックスからなるセラミックス部材とが接合された構造のグラフェン含有炭素質部材/セラミックス接合体であって、前記グラフェン含有炭素質部材と前記セラミックス部材との接合界面において、前記セラミックス部材の接合面に活性金属窒化物層が形成されており、この活性金属窒化物層の厚さが0.05μm以上2μm以下の範囲内とされていることを特徴としている。 In order to solve such a problem and achieve the above object, the graphene-containing carbonaceous member / ceramics joint of one aspect of the present invention (hereinafter, "graphene-containing carbonaceous member / ceramics joint of the present invention"). ) Is a graphene-containing carbonaceous member / ceramics joint having a structure in which a graphene-containing carbonaceous member containing a graphene aggregate and a ceramics member made of ceramics containing nitrogen are joined, and the graphene-containing carbon is said. At the joint interface between the quality member and the ceramic member, an active metal nitride layer is formed on the joint surface of the ceramic member, and the thickness of the active metal nitride layer is within the range of 0.05 μm or more and 2 μm or less. It is characterized by being done.
 この構成のグラフェン含有炭素質部材/セラミックス接合体においては、前記グラフェン含有炭素質部材と窒素を含むセラミックスからなるセラミックス部材との接合界面において、前記セラミックス部材の接合面に活性金属窒化物層が形成されており、この活性金属窒化物層の厚さが0.05μm以上とされているので、活性金属によってセラミックス部材の接合面が十分に反応しており、グラフェン含有炭素質部材とセラミックス部材とを強固に接合することが可能となる。
 また、活性金属窒化物層の厚さが2μm以下に制限されているので、冷熱サイクル負荷時において活性金属窒化物層にクラックが生じることを抑制でき、冷熱サイクル信頼性を向上させることができる。
In the graphene-containing carbonaceous member / ceramics joint having this configuration, an active metal nitride layer is formed on the joint surface of the ceramics member at the joint interface between the graphene-containing carbonaceous member and the ceramic member made of nitrogen-containing ceramics. Since the thickness of this active metal nitride layer is 0.05 μm or more, the joint surface of the ceramic member is sufficiently reacted by the active metal, and the graphene-containing carbonaceous member and the ceramic member are separated from each other. It is possible to firmly join.
Further, since the thickness of the active metal nitride layer is limited to 2 μm or less, it is possible to suppress the occurrence of cracks in the active metal nitride layer under a cold cycle load, and it is possible to improve the cold cycle reliability.
 ここで、本発明のグラフェン含有炭素質部材/セラミックス接合体においては、前記グラフェン含有炭素質部材と前記セラミックス部材との接合界面において、前記グラフェン含有炭素質部材の接合面に、活性金属化合物層が形成されており、前記活性金属化合物層の厚さが0.05μm以上3μm以下の範囲内とされていることが好ましい。
 この場合、前記グラフェン含有炭素質部材と前記セラミックス部材との接合界面において、前記グラフェン含有炭素質部材の接合面に、活性金属化合物層が形成され、前記活性金属化合物層の厚さが0.05μm以上とされているので、活性金属によってグラフェン含有炭素質部材の接合面が十分に反応しており、グラフェン含有炭素質部材とセラミックス部材とをさらに強固に接合することが可能となる。また、前記活性金属化合物層の厚さが3μm以下に制限されているので、冷熱サイクル負荷時において活性金属化合物層にクラックが生じることを抑制でき、冷熱サイクル信頼性を向上させることができる。
Here, in the graphene-containing carbonaceous member / ceramics joint of the present invention, an active metal compound layer is formed on the bonding surface of the graphene-containing carbonaceous member at the bonding interface between the graphene-containing carbonaceous member and the ceramics member. It is preferably formed so that the thickness of the active metal compound layer is in the range of 0.05 μm or more and 3 μm or less.
In this case, at the bonding interface between the graphene-containing carbonaceous member and the ceramic member, an active metal compound layer is formed on the bonding surface of the graphene-containing carbonaceous member, and the thickness of the active metal compound layer is 0.05 μm. As described above, the joint surface of the graphene-containing carbonaceous member is sufficiently reacted by the active metal, and the graphene-containing carbonaceous member and the ceramic member can be joined more firmly. Further, since the thickness of the active metal compound layer is limited to 3 μm or less, it is possible to suppress the occurrence of cracks in the active metal compound layer when loaded with a cold cycle, and it is possible to improve the reliability of the cold cycle.
 さらに、本発明のグラフェン含有炭素質部材/セラミックス接合体においては、前記グラフェン含有炭素質部材と前記セラミックス部材との接合界面において、前記活性金属窒化物層と前記活性金属化合物層の間に、AgとCuを含む合金層が形成されており、前記合金層の厚さが1μm以上20μm以下の範囲内とされていることが好ましい。
 この場合、接合材に含まれるAgとCuが十分に反応することで上述の合金層が形成されており、前記合金層の厚さが1μm以上とされているので、前記グラフェン含有炭素質部材と前記セラミックス部材との接合強度をさらに向上させることができる。また、前記合金層の厚さが20μm以下に制限されているので、冷熱サイクル負荷時において前記合金層にクラックが生じることを抑制でき、冷熱サイクル信頼性を向上させることができる。
Further, in the graphene-containing carbonaceous member / ceramics joint of the present invention, at the bonding interface between the graphene-containing carbonaceous member and the ceramics member, Ag is sandwiched between the active metal nitride layer and the active metal compound layer. It is preferable that an alloy layer containing Cu and Cu is formed, and the thickness of the alloy layer is within the range of 1 μm or more and 20 μm or less.
In this case, the above-mentioned alloy layer is formed by the sufficient reaction of Ag and Cu contained in the bonding material, and the thickness of the alloy layer is 1 μm or more. The bonding strength with the ceramic member can be further improved. Further, since the thickness of the alloy layer is limited to 20 μm or less, it is possible to suppress the occurrence of cracks in the alloy layer when a cold cycle load is applied, and it is possible to improve the reliability of the cold cycle.
 さらに、本発明のグラフェン含有炭素質部材/セラミックス接合体においては、前記グラフェン含有炭素質部材は、単層又は多層のグラフェンが堆積してなるグラフェン集合体と扁平形状の黒鉛粒子とを含み、扁平形状の前記黒鉛粒子が、そのベーサル面が折り重なるように前記グラフェン集合体をバインダーとして積層され、扁平形状の前記黒鉛粒子のベーサル面が一方向に向けて配向した構造とされていることが好ましい。
 この場合、グラフェン含有炭素質部材における熱伝導特性をさらに向上させることが可能となる。
Further, in the graphene-containing carbonaceous member / ceramics joint of the present invention, the graphene-containing carbonaceous member contains a graphene aggregate formed by depositing single-layer or multi-layer graphene and flat graphite particles, and is flat. It is preferable that the graphite particles having a shape are laminated with the graphene aggregate as a binder so that the basal surfaces thereof fold over, and the basal surfaces of the flat graphite particles are oriented in one direction.
In this case, it is possible to further improve the heat conduction characteristics of the graphene-containing carbonaceous member.
 また、本発明の他態様である銅/グラフェン含有炭素質部材/セラミックス接合体(以下、「本発明の銅/グラフェン含有炭素質部材/セラミックス接合体」と称する)は、銅又は銅合金からなる銅部材と、グラフェン集合体を含有するグラフェン含有炭素質部材と、窒素を含むセラミックスからなるセラミックス部材とが接合された構造の銅/グラフェン含有炭素質部材/セラミックス接合体であって、上述のグラフェン含有炭素質部材/セラミックス接合体の前記グラフェン含有炭素質部材と前記銅部材とが接合されていることを特徴としている。 Further, the copper / graphene-containing carbonaceous member / ceramics joint (hereinafter, referred to as “copper / graphene-containing carbonaceous member / ceramics joint” of the present invention), which is another aspect of the present invention, is made of copper or a copper alloy. A copper / graphene-containing carbonaceous member / ceramics joint having a structure in which a copper member, a graphene-containing carbonaceous member containing a graphene aggregate, and a ceramics member made of nitrogen-containing ceramics are joined, and the graphene is described above. The graphene-containing carbonaceous member of the carbon-containing member / ceramics joint is bonded to the copper member.
 この構成の銅/グラフェン含有炭素質部材/セラミックス接合体によれば、上述のグラフェン含有炭素質部材/セラミックス接合体の前記グラフェン含有炭素質部材と前記銅部材とが接合されているので、冷熱サイクル信頼性に優れることになる。また、銅部材によってグラフェン含有炭素質部材が保護され、前記グラフェン含有炭素質部材におけるひび割れの発生を抑制することができる。 According to the copper / graphene-containing carbonaceous member / ceramics joint having this configuration, the graphene-containing carbonaceous member / ceramics joint of the graphene-containing carbonaceous member / ceramics joint has the graphene-containing carbonaceous member and the copper member bonded to each other. It will be excellent in reliability. Further, the graphene-containing carbonaceous member is protected by the copper member, and the occurrence of cracks in the graphene-containing carbonaceous member can be suppressed.
 ここで、本発明の銅/グラフェン含有炭素質部材/セラミックス接合体においては、前記グラフェン含有炭素質部材と前記銅部材との接合界面において、前記グラフェン含有炭素質部材の接合面に、活性金属化合物層が形成されており、前記活性金属化合物層の厚さが0.05μm以上3μm以下の範囲内とされていることが好ましい。
 この場合、前記グラフェン含有炭素質部材と前記銅部材との接合界面において、前記グラフェン含有炭素質部材の接合面に、活性金属化合物層が形成され、前記活性金属化合物層の厚さが0.05μm以上とされているので、活性金属によってグラフェン含有炭素質部材の接合面が十分に反応しており、グラフェン含有炭素質部材と銅部材とをさらに強固に接合することが可能となる。また、前記活性金属化合物層の厚さが3μm以下に制限されているので、冷熱サイクル負荷時において活性金属化合物層にクラックが生じることを抑制でき、冷熱サイクル信頼性を向上させることができる。
Here, in the copper / graphene-containing carbonaceous member / ceramics joint of the present invention, an active metal compound is formed on the bonding surface of the graphene-containing carbonaceous member at the bonding interface between the graphene-containing carbonaceous member and the copper member. It is preferable that the layer is formed and the thickness of the active metal compound layer is within the range of 0.05 μm or more and 3 μm or less.
In this case, at the bonding interface between the graphene-containing carbonaceous member and the copper member, an active metal compound layer is formed on the bonding surface of the graphene-containing carbonaceous member, and the thickness of the active metal compound layer is 0.05 μm. As described above, the joint surface of the graphene-containing carbonaceous member is sufficiently reacted by the active metal, and the graphene-containing carbonaceous member and the copper member can be joined more firmly. Further, since the thickness of the active metal compound layer is limited to 3 μm or less, it is possible to suppress the occurrence of cracks in the active metal compound layer when loaded with a cold cycle, and it is possible to improve the reliability of the cold cycle.
 また、本発明の銅/グラフェン含有炭素質部材/セラミックス接合体においては、前記グラフェン含有炭素質部材と前記銅部材との接合界面において、前記銅部材と前記活性金属化合物層の間に、AgとCuを含む合金層が形成されており、前記合金層の厚さが1μm以上20μm以下の範囲内とされていることが好ましい。
 この場合、接合材に含まれるAgとCuが十分に反応することで上述の合金層が形成されており、前記合金層の厚さが1μm以上とされているので、前記グラフェン含有炭素質部材と前記銅部材との接合強度をさらに向上させることができる。また、前記合金層の厚さが20μm以下に制限されているので、冷熱サイクル負荷時において前記合金層にクラックが生じることを抑制でき、冷熱サイクル信頼性を向上させることができる。
Further, in the copper / graphene-containing carbonaceous member / ceramics joint of the present invention, at the bonding interface between the graphene-containing carbonaceous member and the copper member, an Ag is formed between the copper member and the active metal compound layer. It is preferable that an alloy layer containing Cu is formed and the thickness of the alloy layer is within the range of 1 μm or more and 20 μm or less.
In this case, the above-mentioned alloy layer is formed by the sufficient reaction of Ag and Cu contained in the bonding material, and the thickness of the alloy layer is 1 μm or more. The bonding strength with the copper member can be further improved. Further, since the thickness of the alloy layer is limited to 20 μm or less, it is possible to suppress the occurrence of cracks in the alloy layer when a cold cycle load is applied, and it is possible to improve the reliability of the cold cycle.
 本発明によれば、セラミックス部材とグラフェン集合体を含有するグラフェン含有炭素質部材とが強固に接合されており、冷熱サイクル負荷時においても剥離が生じることがなく、冷熱サイクル信頼性に優れたグラフェン含有炭素質部材/セラミックス接合体、および、このグラフェン含有炭素質部材/セラミックス接合体に銅又は銅合金からなる銅部材が接合された銅/グラフェン含有炭素質部材/セラミックス接合体を提供することが可能となる。 According to the present invention, the ceramic member and the graphene-containing carbonaceous member containing the graphene aggregate are firmly bonded to each other, no peeling occurs even under a cold cycle load, and graphene having excellent cold cycle reliability. It is possible to provide a carbonaceous member / ceramics joint containing carbonene and a copper / graphene-containing carbonic member / ceramics joint in which a copper member made of copper or a copper alloy is bonded to the graphene-containing carbonaceous member / ceramics joint. It will be possible.
本発明の第1の実施形態であるグラフェン含有炭素質部材/セラミックス接合体(絶縁基板)を用いたパワーモジュールの概略説明図である。It is a schematic explanatory drawing of the power module using the graphene-containing carbonaceous member / ceramics joint (insulating substrate) which is 1st Embodiment of this invention. 本発明の第1の実施形態であるグラフェン含有炭素質部材/セラミックス接合体(絶縁基板)の概略説明図である。It is a schematic explanatory drawing of the graphene-containing carbonaceous material member / ceramics joint (insulating substrate) which is 1st Embodiment of this invention. 本発明の第1の実施形態であるグラフェン含有炭素質部材/セラミックス接合体(絶縁基板)のグラフェン含有炭素質部材(炭素板)とセラミックス部材(セラミックス板)の接合界面の観察結果であり、倍率500倍での観察結果である。It is an observation result of the bonding interface between the graphene-containing carbonaceous member (carbon plate) and the ceramic member (ceramic plate) of the graphene-containing carbonaceous member / ceramics joint (insulating substrate) according to the first embodiment of the present invention, and the magnification is It is an observation result at 500 times. 本発明の第1の実施形態であるグラフェン含有炭素質部材/セラミックス接合体(絶縁基板)のグラフェン含有炭素質部材(炭素板)とセラミックス部材(セラミックス板)の接合界面の観察結果であり、倍率5000倍での観察結果である。It is an observation result of the bonding interface between the graphene-containing carbonaceous member (carbon plate) and the ceramic member (ceramic plate) of the graphene-containing carbonaceous member / ceramics joint (insulating substrate) according to the first embodiment of the present invention, and the magnification is It is an observation result at 5000 times. 本発明の第1の実施形態であるグラフェン含有炭素質部材/セラミックス接合体(絶縁基板)のグラフェン含有炭素質部材とセラミックス部材の接合界面の模式図である。It is a schematic diagram of the bonding interface between the graphene-containing carbonaceous member and the ceramic member of the graphene-containing carbonaceous member / ceramics joint (insulating substrate) according to the first embodiment of the present invention. 本発明の第1の実施形態であるグラフェン含有炭素質部材/セラミックス接合体(絶縁基板)の製造方法の一例を示すフロー図である。It is a flow chart which shows an example of the manufacturing method of the graphene-containing carbonaceous member / ceramics joint (insulating substrate) which is 1st Embodiment of this invention. 本発明の第2の実施形態である銅/グラフェン含有炭素質部材/セラミックス接合体(絶縁回路基板)の概略説明図である。It is a schematic explanatory drawing of the copper / graphene-containing carbonaceous material member / ceramics joint (insulation circuit board) which is 2nd Embodiment of this invention. 本発明の第2の実施形態である銅/グラフェン含有炭素質部材/セラミックス接合体(絶縁回路基板)の銅部材(回路層および金属層)とグラフェン含有炭素質部材(炭素板)との接合界面の模式図である。The bonding interface between the copper member (circuit layer and metal layer) of the copper / graphene-containing carbonaceous member / ceramics joint (insulating circuit substrate) and the graphene-containing carbonaceous member (carbon plate) according to the second embodiment of the present invention. It is a schematic diagram of.
 以下に、本発明の実施形態について添付した図面を参照して説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. It should be noted that each of the embodiments shown below is specifically described in order to better understand the gist of the invention, and is not limited to the present invention unless otherwise specified. In addition, the drawings used in the following description may be shown by enlarging the main parts for convenience in order to make the features of the present invention easy to understand, and the dimensional ratios of the respective components are the same as the actual ones. Is not always the case.
 (第1の実施形態)
 まず、図1から図5を参照して本発明の第1の実施形態であるグラフェン含有炭素質部材/セラミックス接合体について説明する。
 本実施形態におけるグラフェン含有炭素質部材/セラミックス接合体は、グラフェン集合体を含有するグラフェン含有炭素質部材と窒素を含むセラミックスとを接合した構造の絶縁基板20とされている。
(First Embodiment)
First, the graphene-containing carbonaceous member / ceramics joint according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
The graphene-containing carbonaceous member / ceramics joint in the present embodiment is an insulating substrate 20 having a structure in which a graphene-containing carbonaceous member containing a graphene aggregate and ceramics containing nitrogen are joined.
 まず、本実施形態であるグラフェン含有炭素質部材/セラミックス接合体(絶縁基板20)を用いたパワーモジュールについて説明する。
 図1に示すパワーモジュール1は、絶縁回路基板10と、この絶縁回路基板10の一方の面側(図1において上側)にはんだ層2を介して接合された半導体素子3と、絶縁回路基板10の他方の面側(図1において下側)に配設されたヒートシンク31とを備えている。
First, a power module using a graphene-containing carbonaceous member / ceramics joint (insulating substrate 20) according to the present embodiment will be described.
The power module 1 shown in FIG. 1 includes an insulating circuit board 10, a semiconductor element 3 bonded to one surface side (upper side in FIG. 1) of the insulating circuit board 10 via a solder layer 2, and an insulating circuit board 10. It is provided with a heat sink 31 arranged on the other surface side (lower side in FIG. 1).
 絶縁回路基板10は、絶縁層と、この絶縁層の一方の面(図1において上面)に配設された回路層12と、絶縁層の他方の面(図1において下面)に配設された金属層13とを備えている。
 絶縁層は、回路層12と金属層13との間の電気的接続を防止するものであって、本実施形態である絶縁基板20で構成されている。
The insulating circuit board 10 is arranged on the insulating layer, the circuit layer 12 disposed on one surface of the insulating layer (upper surface in FIG. 1), and the other surface of the insulating layer (lower surface in FIG. 1). It includes a metal layer 13.
The insulating layer prevents electrical connection between the circuit layer 12 and the metal layer 13, and is composed of the insulating substrate 20 of the present embodiment.
 回路層12は、絶縁層(絶縁基板20)の一方の面に、導電性に優れた金属板が接合されることによって形成されている。本実施形態では、回路層12を構成する金属板として、銅又は銅合金からなる銅板、具体的には無酸素銅の圧延板が用いられている。この回路層12には、回路パターンが形成されており、その一方の面(図1において上面)が、半導体素子3が搭載される搭載面とされている。
 また、回路層12となる金属板(銅板)の厚さは0.1mm以上1.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。
 なお、回路層12となる金属板(銅板)と絶縁基板20との接合方法は、特に制限はなく、活性金属ろう材等を用いて接合することができる。
The circuit layer 12 is formed by joining a metal plate having excellent conductivity to one surface of an insulating layer (insulating substrate 20). In the present embodiment, as the metal plate constituting the circuit layer 12, a copper plate made of copper or a copper alloy, specifically, a rolled plate of oxygen-free copper is used. A circuit pattern is formed in the circuit layer 12, and one surface (upper surface in FIG. 1) is a mounting surface on which the semiconductor element 3 is mounted.
Further, the thickness of the metal plate (copper plate) to be the circuit layer 12 is set within the range of 0.1 mm or more and 1.0 mm or less, and in the present embodiment, it is set to 0.6 mm.
The method of joining the metal plate (copper plate) to be the circuit layer 12 and the insulating substrate 20 is not particularly limited, and can be joined using an active metal brazing material or the like.
 金属層13は、絶縁層(絶縁基板20)の他方の面に、熱伝導性に優れた金属板が接合されることにより形成されている。本実施形態においては、金属層13を構成する金属板として、銅又は銅合金からなる銅板、具体的には無酸素銅の圧延板が用いられている。
 また、金属層13となる金属板(銅板)の厚さは0.1mm以上1.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。
 なお、金属層13となる金属板(銅板)と絶縁基板20との接合方法は、特に制限はなく、活性金属ろう材等を用いて接合することができる。
The metal layer 13 is formed by joining a metal plate having excellent thermal conductivity to the other surface of the insulating layer (insulating substrate 20). In the present embodiment, as the metal plate constituting the metal layer 13, a copper plate made of copper or a copper alloy, specifically, a rolled plate of oxygen-free copper is used.
Further, the thickness of the metal plate (copper plate) to be the metal layer 13 is set within the range of 0.1 mm or more and 1.0 mm or less, and in the present embodiment, it is set to 0.6 mm.
The method of joining the metal plate (copper plate) to be the metal layer 13 and the insulating substrate 20 is not particularly limited, and can be joined using an active metal brazing material or the like.
 ヒートシンク31は、前述の絶縁回路基板10を冷却するためのものであり、冷却媒体(例えば冷却水)を流通するための流路32が複数設けられた構造をなしている。
 このヒートシンク31は、熱伝導性が良好な材質、例えばアルミニウム又はアルミニウム合金、銅又は銅合金で構成されていることが好ましく、本実施形態においては、純度が99mass%以上の2Nアルミニウムで構成されている。
 なお、本実施形態では、絶縁回路基板10の金属層13とヒートシンク31は、固相拡散接合法によって接合されている。
The heat sink 31 is for cooling the above-mentioned insulating circuit board 10, and has a structure in which a plurality of flow paths 32 for flowing a cooling medium (for example, cooling water) are provided.
The heat sink 31 is preferably made of a material having good thermal conductivity, for example, aluminum or aluminum alloy, copper or copper alloy, and in this embodiment, it is made of 2N aluminum having a purity of 99 mass% or more. There is.
In this embodiment, the metal layer 13 of the insulating circuit board 10 and the heat sink 31 are joined by a solid phase diffusion joining method.
 半導体素子3は、例えばSiやSiC等の半導体材料で構成されている。この半導体素子3は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材からなるはんだ層2を介して回路層12上に搭載されている。 The semiconductor element 3 is made of a semiconductor material such as Si or SiC. The semiconductor element 3 is mounted on the circuit layer 12 via, for example, a solder layer 2 made of a Sn—Ag-based, Sn—In-based, or Sn—Ag—Cu-based solder material.
 そして、絶縁層を構成する本実施形態である絶縁基板20は、図2に示すように、窒素を含むセラミックスからなるセラミックス板25と、グラフェン集合体を含有するグラフェン含有炭素質部材からなる炭素板21と、が積層した構造とされており、セラミックス板25の両主面にそれぞれ炭素板21が接合されている。 As shown in FIG. 2, the insulating substrate 20 of the present embodiment constituting the insulating layer is a carbon plate made of a ceramic plate 25 made of nitrogen-containing ceramics and a graphene-containing carbonaceous member containing a graphene aggregate. The structure is such that 21 and 21 are laminated, and carbon plates 21 are bonded to both main surfaces of the ceramic plate 25, respectively.
 セラミックス板25を構成する窒素を含むセラミックスとしては、例えば、窒化アルミニウム(AlN)、窒化ケイ素(Si)等が挙げられる。
 このセラミックス板25の厚さの下限は100μm以上であることが好ましく、250μm以上であることがさらに好ましい。一方、セラミックス板25の厚さの上限は1500μm以下であることが好ましく、1000μm以下であることがさらに好ましい。
Examples of the nitrogen-containing ceramics constituting the ceramic plate 25 include aluminum nitride (AlN) and silicon nitride (Si 3 N 4 ).
The lower limit of the thickness of the ceramic plate 25 is preferably 100 μm or more, and more preferably 250 μm or more. On the other hand, the upper limit of the thickness of the ceramic plate 25 is preferably 1500 μm or less, and more preferably 1000 μm or less.
 炭素板21を構成するグラフェン含有炭素質部材は、単層又は多層のグラフェンが堆積してなるグラフェン集合体と扁平形状の黒鉛粒子とを含み、扁平形状の黒鉛粒子が、そのベーサル面が折り重なるように、グラフェン集合体をバインダーとして積層された構造とされていることが好ましい。 The graphene-containing carbonaceous member constituting the carbon plate 21 contains graphene aggregates formed by depositing single-layer or multi-layer graphene and flat graphite particles so that the flat graphite particles fold their basal surfaces. In addition, it is preferable that the graphene aggregate has a laminated structure as a binder.
 扁平形状の黒鉛粒子は、炭素六角網面が現れるベーサル面と、炭素六角網面の端部が現れるエッジ面と、を有するものである。この扁平形状の黒鉛粒子としては、鱗片状黒鉛、鱗状黒鉛、土状黒鉛、薄片状黒鉛、キッシュグラファイト、熱分解黒鉛、高配向熱分解黒鉛等を用いることができる。
 ここで、黒鉛粒子のベーサル面から見た平均粒径は、10μm以上1000μm以下の範囲内であることが好ましく、50μm以上800μm以下の範囲内であることがさらに好ましい。黒鉛粒子の平均粒径を上述の範囲内とすることで、熱伝導性が向上する。
 さらに、黒鉛粒子の厚さは、1μm以上50μm以下の範囲内であることが好ましく、1μm以上20μm以下の範囲内であることがさらに好ましい。黒鉛粒子の厚さを上述の範囲内とすることで、黒鉛粒子の配向性が適度に調整される。
 また、黒鉛粒子の厚みがベーサル面から見た粒径の1/1000~1/2の範囲内とすることによって、優れた熱伝導性と黒鉛粒子の配向性が適度に調整される。
The flat graphite particles have a basal surface on which a carbon hexagonal network surface appears and an edge surface on which an end portion of the carbon hexagonal network surface appears. As the flat graphite particles, scaly graphite, scaly graphite, earthy graphite, flaky graphite, kiss graphite, pyrolytic graphite, highly oriented pyrolytic graphite and the like can be used.
Here, the average particle size of the graphite particles as seen from the basal surface is preferably in the range of 10 μm or more and 1000 μm or less, and more preferably in the range of 50 μm or more and 800 μm or less. By setting the average particle size of the graphite particles within the above range, the thermal conductivity is improved.
Further, the thickness of the graphite particles is preferably in the range of 1 μm or more and 50 μm or less, and more preferably in the range of 1 μm or more and 20 μm or less. By setting the thickness of the graphite particles within the above range, the orientation of the graphite particles is appropriately adjusted.
Further, by setting the thickness of the graphite particles within the range of 1/1000 to 1/2 of the particle size seen from the basal surface, excellent thermal conductivity and orientation of the graphite particles are appropriately adjusted.
 グラフェン集合体は、単層又は多層のグラフェンが堆積したものであり、多層のグラフェンの積層数は、例えば100層以下、好ましくは50層以下とされている。このグラフェン集合体は、例えば、単層又は多層のグラフェンが低級アルコールや水を含む溶媒に分散されたグラフェン分散液を、ろ紙上に滴下し、溶媒を分離しながら堆積させることによって製造することが可能である。
 ここで、グラフェン集合体の平均粒径は、1μm以上1000μm以下の範囲内であることが好ましい。グラフェン集合体の平均粒径を上述の範囲内とすることで、熱伝導性が向上する。
 さらに、グラフェン集合体の厚さは、0.05μm以上50μm未満の範囲内であることが好ましい。グラフェン集合体の厚さを上述の範囲内とすることで、炭素質部材の強度が確保される。
 なお、炭素板21の厚さとしては、0.5mm以上5mm以下の範囲内であることが好ましい。
The graphene aggregate is a deposit of single-layer or multi-layer graphene, and the number of layers of the multi-layer graphene is, for example, 100 layers or less, preferably 50 layers or less. This graphene aggregate can be produced, for example, by dropping a graphene dispersion in which single-layer or multi-layer graphene is dispersed in a solvent containing lower alcohol or water onto a filter paper and depositing the graphene while separating the solvent. It is possible.
Here, the average particle size of the graphene aggregate is preferably in the range of 1 μm or more and 1000 μm or less. By keeping the average particle size of the graphene aggregate within the above range, the thermal conductivity is improved.
Further, the thickness of the graphene aggregate is preferably in the range of 0.05 μm or more and less than 50 μm. By keeping the thickness of the graphene aggregate within the above range, the strength of the carbonaceous member is ensured.
The thickness of the carbon plate 21 is preferably in the range of 0.5 mm or more and 5 mm or less.
 ここで、図3A及び図3Bに、グラフェン含有炭素質部材からなる炭素板21とセラミックス板25との接合界面の観察写真を、図4に、グラフェン含有炭素質部材からなる炭素板21とセラミックス板25との接合界面の模式図を示す。
 図3A及び図3Bにおいて、上方の黒色部が炭素板21(グラフェン含有炭素質部材)であり、その下方に位置する灰色部がセラミックス板25である。
Here, FIGS. 3A and 3B show observational photographs of the interface between the carbon plate 21 made of a graphene-containing carbonaceous member and the ceramic plate 25, and FIG. 4 shows a carbon plate 21 made of a graphene-containing carbonaceous member and a ceramic plate. The schematic diagram of the junction interface with 25 is shown.
In FIGS. 3A and 3B, the upper black portion is the carbon plate 21 (graphene-containing carbonaceous member), and the gray portion located below the carbon plate 21 is the ceramic plate 25.
 図3A及び図4に示すように、グラフェン含有炭素質部材からなる炭素板21とセラミックス板25との接合界面40においては、セラミックス板25の接合面に、活性金属窒化物層41が形成されている。
 また、図3B及び図4に示すように、接合界面40においては、炭素板21の接合面に、活性金属酸化物及び活性金属炭化物の1種又は2種を含む活性金属化合物層42が形成されている。
 さらに、図3B及び図4に示すように、活性金属窒化物層41と活性金属化合物層42の間には、AgとCuを含有する合金層43が形成されている。
 すなわち、本実施形態においては、接合界面40は、セラミックス板25側から順に、活性金属窒化物層41、合金層43、活性金属化合物層42が積層された構造とされている。
As shown in FIGS. 3A and 4, at the bonding interface 40 between the carbon plate 21 made of a graphene-containing carbonaceous member and the ceramic plate 25, an active metal nitride layer 41 is formed on the bonding surface of the ceramic plate 25. There is.
Further, as shown in FIGS. 3B and 4, at the bonding interface 40, an active metal compound layer 42 containing one or two types of active metal oxide and active metal carbide is formed on the bonding surface of the carbon plate 21. ing.
Further, as shown in FIGS. 3B and 4, an alloy layer 43 containing Ag and Cu is formed between the active metal nitride layer 41 and the active metal compound layer 42.
That is, in the present embodiment, the bonding interface 40 has a structure in which the active metal nitride layer 41, the alloy layer 43, and the active metal compound layer 42 are laminated in this order from the ceramic plate 25 side.
 活性金属窒化物層41は、接合時において炭素板21とセラミックス板25の間に介在される接合材に含まれる活性金属が、セラミックス板25に含まれる窒素と反応することによって形成されるものである。
 活性金属窒化物層41を構成する活性金属としては、例えば、Ti、Zr、Hf、Nbから選択される1種又は2種以上を用いることができる。本実施形態では、活性金属はTiとされており、活性金属窒化物層41はチタン窒化物(Ti-N)で構成されている。
The active metal nitride layer 41 is formed by reacting the active metal contained in the bonding material interposed between the carbon plate 21 and the ceramic plate 25 with nitrogen contained in the ceramic plate 25 at the time of bonding. is there.
As the active metal constituting the active metal nitride layer 41, for example, one kind or two or more kinds selected from Ti, Zr, Hf, and Nb can be used. In the present embodiment, the active metal is Ti, and the active metal nitride layer 41 is made of titanium nitride (Ti—N).
 ここで、活性金属窒化物層41の厚さt1が0.05μm未満であると、接合材とセラミックス板25との反応が十分ではなく、セラミックス板25の接合強度が不十分となるおそれがある。一方、活性金属窒化物層41の厚さt1が2μmを超えると、冷熱サイクル負荷時に活性金属窒化物層41においてクラックが発生するおそれがある。
 よって、本実施形態では、活性金属窒化物層41の厚さt1を、0.05μm以上2μm以下の範囲内に設定している。
 なお、活性金属窒化物層41の厚さt1の下限は0.1μm以上であることがさらに好ましく、0.2μm以上であることがより好ましい。一方、活性金属窒化物層41の厚さt1の上限は1μm以下であることがさらに好ましく、0.7μm以下であることがより好ましい。
Here, if the thickness t1 of the active metal nitride layer 41 is less than 0.05 μm, the reaction between the bonding material and the ceramic plate 25 may not be sufficient, and the bonding strength of the ceramic plate 25 may be insufficient. .. On the other hand, if the thickness t1 of the active metal nitride layer 41 exceeds 2 μm, cracks may occur in the active metal nitride layer 41 during a cold cycle load.
Therefore, in the present embodiment, the thickness t1 of the active metal nitride layer 41 is set within the range of 0.05 μm or more and 2 μm or less.
The lower limit of the thickness t1 of the active metal nitride layer 41 is more preferably 0.1 μm or more, and more preferably 0.2 μm or more. On the other hand, the upper limit of the thickness t1 of the active metal nitride layer 41 is more preferably 1 μm or less, and more preferably 0.7 μm or less.
 活性金属化合物層42は、接合時において炭素板21とセラミックス板25の間に介在される接合材に含まれる活性金属が、酸素及び炭素と反応することで形成されるものである。
 上述のように、本実施形態では、活性金属はTiとされており、活性金属化合物層42は、チタン酸化物(Ti-O)及びチタン炭化物(Ti-C)の1種又は2種を含むものとされている。
The active metal compound layer 42 is formed by reacting the active metal contained in the bonding material interposed between the carbon plate 21 and the ceramic plate 25 at the time of bonding with oxygen and carbon.
As described above, in the present embodiment, the active metal is Ti, and the active metal compound layer 42 contains one or two types of titanium oxide (Ti—O) and titanium carbide (Ti—C). It is supposed to be.
 ここで、活性金属化合物層42の厚さt2が0.05μm以上であれば、接合材と炭素板21との反応が促進されており、炭素板21の接合強度が十分に確保される。一方、活性金属化合物層42の厚さt2が3μm以下であれば、冷熱サイクル負荷時に活性金属化合物層42におけるクラックの発生を抑制することができる。
 よって、本実施形態においては、活性金属化合物層42の厚さt2は、0.05μm以上3μm以下の範囲内とされていることが好ましい。
 なお、活性金属化合物層42の厚さt2の下限は0.1μm以上であることがさらに好ましく、0.2μm以上であることがより好ましい。一方、活性金属化合物層42の厚さt2の上限は2μm以下であることがさらに好ましく、1.8μm以下であることがより好ましい。
Here, when the thickness t2 of the active metal compound layer 42 is 0.05 μm or more, the reaction between the bonding material and the carbon plate 21 is promoted, and the bonding strength of the carbon plate 21 is sufficiently secured. On the other hand, when the thickness t2 of the active metal compound layer 42 is 3 μm or less, it is possible to suppress the occurrence of cracks in the active metal compound layer 42 when the active metal compound layer 42 is loaded.
Therefore, in the present embodiment, the thickness t2 of the active metal compound layer 42 is preferably in the range of 0.05 μm or more and 3 μm or less.
The lower limit of the thickness t2 of the active metal compound layer 42 is more preferably 0.1 μm or more, and more preferably 0.2 μm or more. On the other hand, the upper limit of the thickness t2 of the active metal compound layer 42 is more preferably 2 μm or less, and more preferably 1.8 μm or less.
 合金層43は、接合時において炭素板21とセラミックス板25の間に介在される接合材に含まれるAg、Cuが反応することで形成されるものである。
 本実施形態においては、この合金層43は、Agを30mass%以上70mass%以下の範囲内、Cuを15mass%以上45mass%以下の範囲内で含むものとされている。
The alloy layer 43 is formed by reacting Ag and Cu contained in the bonding material interposed between the carbon plate 21 and the ceramic plate 25 at the time of bonding.
In the present embodiment, the alloy layer 43 contains Ag in the range of 30 mass% or more and 70 mass% or less, and Cu in the range of 15 mass% or more and 45 mass% or less.
 ここで、合金層43の厚さt3が1μm以上であれば、接合材の反応が十分に促進されており、炭素板21とセラミックス板25との接合強度が十分に確保される。一方、合金層43の厚さt3が20μm以下であれば、冷熱サイクル負荷時に合金層43におけるクラックの発生を抑制することができる。
 よって、本実施形態においては、合金層43の厚さt3は、1μm以上20μm以下の範囲内とされていることが好ましい。
 なお、合金層43の厚さt3の下限は2μm以上であることがさらに好ましく、3μm以上であることがより好ましい。一方、合金層43の厚さt3の上限は10μm以下であることがさらに好ましく、8μm以下であることがより好ましい。
Here, when the thickness t3 of the alloy layer 43 is 1 μm or more, the reaction of the bonding material is sufficiently promoted, and the bonding strength between the carbon plate 21 and the ceramic plate 25 is sufficiently secured. On the other hand, when the thickness t3 of the alloy layer 43 is 20 μm or less, it is possible to suppress the occurrence of cracks in the alloy layer 43 during a cold cycle load.
Therefore, in the present embodiment, the thickness t3 of the alloy layer 43 is preferably in the range of 1 μm or more and 20 μm or less.
The lower limit of the thickness t3 of the alloy layer 43 is more preferably 2 μm or more, and more preferably 3 μm or more. On the other hand, the upper limit of the thickness t3 of the alloy layer 43 is more preferably 10 μm or less, and more preferably 8 μm or less.
 次に、本実施形態であるグラフェン含有炭素質部材/セラミックス接合体(絶縁基板20)の製造方法について、図5に示すフロー図を参照して説明する。 Next, the method for manufacturing the graphene-containing carbonaceous member / ceramics joint (insulating substrate 20) according to the present embodiment will be described with reference to the flow chart shown in FIG.
 (炭素板形成工程S01)
 まず、上述した扁平形状の黒鉛粒子とグラフェン集合体とを所定の配合比となるように秤量し、これをボールミル等の既存の混合装置によって混合する。
 得られた混合物を、所定の形状の金型に充填して加圧することにより成形体を得る。なお、加圧時に加熱を実施してもよい。
 そして、得られた成形体に対して切り出し加工を行い、炭素板21を得る。
(Carbon plate forming step S01)
First, the above-mentioned flat graphite particles and graphene aggregates are weighed so as to have a predetermined blending ratio, and these are mixed by an existing mixing device such as a ball mill.
A molded product is obtained by filling the obtained mixture in a mold having a predetermined shape and pressurizing the mixture. In addition, heating may be carried out at the time of pressurization.
Then, the obtained molded product is cut out to obtain a carbon plate 21.
 なお、成形時の圧力は、20MPa以上1000MPa以下の範囲内とすることが好ましく、100MPa以上300MPa以下の範囲内とすることがさらに好ましい。
 また、成形時の温度は、50℃以上300℃以下の範囲内とすることが好ましい。
 さらに、加圧時間は、0.5分以上10分以下の範囲内とすることが好ましい。
The pressure at the time of molding is preferably in the range of 20 MPa or more and 1000 MPa or less, and more preferably in the range of 100 MPa or more and 300 MPa or less.
Further, the temperature at the time of molding is preferably in the range of 50 ° C. or higher and 300 ° C. or lower.
Further, the pressurizing time is preferably in the range of 0.5 minutes or more and 10 minutes or less.
 (積層工程S02)
 次に、セラミックス板25の両主面に、接合材を介して、上述の炭素板21をそれぞれ積層する。
 ここで、接合材としては、AgとCuと活性金属(本実施形態ではTi)を含有するものを使用する。なお、接合材は、ペースト状であってもよいし、箔であってもよい。また、例えばCu-Ag合金と活性金属とを積層したものであってもよい。
 本実施形態では、接合材として、Cuを18mass%以上34mass%以下の範囲、Tiを0.3mass%以上7mass%以下の範囲で含み、残部がAg及び不可避不純物とされた組成のものを用いている。
(Laminating step S02)
Next, the above-mentioned carbon plates 21 are laminated on both main surfaces of the ceramic plate 25 via a bonding material.
Here, as the bonding material, a material containing Ag, Cu, and an active metal (Ti in this embodiment) is used. The bonding material may be in the form of a paste or in the form of a foil. Further, for example, a Cu—Ag alloy and an active metal may be laminated.
In the present embodiment, as the bonding material, a material having a composition containing Cu in the range of 18 mass% or more and 34 mass% or less, Ti in the range of 0.3 mass% or more and 7 mass% or less, and the balance being Ag and unavoidable impurities is used. There is.
 (接合工程S03)
 次に、接合材を介して積層したセラミックス板25及び炭素板21を、積層方向に加圧するとともに加熱した後、冷却することにより、セラミックス板25と炭素板21とを接合する。
 ここで、加熱温度は790℃以上900℃以下の範囲内とすることが好ましい。また、加熱温度での保持時間は20分以上180分以下の範囲内とすることが好ましい。さらに、加圧圧力は0.1MPa以上3.5MPa以下の範囲内とすることが好ましい。また、雰囲気は減圧雰囲気や窒素ガス雰囲気などの非酸化雰囲気とされていることが好ましい。
(Joining step S03)
Next, the ceramic plate 25 and the carbon plate 21 laminated via the bonding material are pressed in the laminating direction, heated, and then cooled to join the ceramic plate 25 and the carbon plate 21.
Here, the heating temperature is preferably in the range of 790 ° C. or higher and 900 ° C. or lower. Further, the holding time at the heating temperature is preferably in the range of 20 minutes or more and 180 minutes or less. Further, the pressurizing pressure is preferably in the range of 0.1 MPa or more and 3.5 MPa or less. Further, the atmosphere is preferably a non-oxidizing atmosphere such as a reduced pressure atmosphere or a nitrogen gas atmosphere.
 この接合工程S03により、接合材に含まれる活性金属(本実施形態ではTi)がセラミックス板25に含まれる窒素と反応することで、セラミックス板25の接合面に活性金属窒化物層41が形成される。
 また、接合材に含まれる活性金属(本実施形態ではTi)が酸素及び炭素と反応することで、炭素板21の接合面に活性金属化合物層42が形成される。
 さらに、接合材に含まれるCuとAgが反応することで、活性金属窒化物層41と活性金属化合物層42の間に合金層43が形成される。
In this joining step S03, the active metal (Ti in the present embodiment) contained in the joining material reacts with nitrogen contained in the ceramic plate 25 to form the active metal nitride layer 41 on the joining surface of the ceramic plate 25. To.
Further, the active metal (Ti in this embodiment) contained in the bonding material reacts with oxygen and carbon to form the active metal compound layer 42 on the bonding surface of the carbon plate 21.
Further, the reaction between Cu and Ag contained in the bonding material forms an alloy layer 43 between the active metal nitride layer 41 and the active metal compound layer 42.
 以上の工程により、本実施形態であるグラフェン含有炭素質部材/セラミックス接合体(絶縁基板20)が製造されることになる。 By the above steps, the graphene-containing carbonaceous member / ceramics joint (insulating substrate 20) of the present embodiment will be manufactured.
 以上のような構成とされた本実施形態のグラフェン含有炭素質部材/セラミックス接合体(絶縁基板20)によれば、グラフェン含有炭素質部材からなる炭素板21と窒素を含むセラミックスからなるセラミックス板25の接合界面40において、セラミックス板25の接合面に活性金属窒化物層41が形成されており、この活性金属窒化物層41の厚さが0.05μm以上とされているので、接合材に含まれる活性金属(本実施形態では、Ti)とセラミックス板25とが十分に反応しており、炭素板21とセラミックス板25とを強固に接合することが可能となる。
 また、活性金属窒化物層41の厚さが2μm以下に制限されているので、冷熱サイクル負荷時において活性金属窒化物層にクラックが生じることを抑制でき、冷熱サイクル信頼性を向上させることができる。
According to the graphene-containing carbonaceous member / ceramics joint (insulating substrate 20) of the present embodiment having the above-described configuration, the carbon plate 21 made of the graphene-containing carbonaceous member and the ceramic plate 25 made of nitrogen-containing ceramics In the bonding interface 40 of the above, an active metal nitride layer 41 is formed on the bonding surface of the ceramic plate 25, and the thickness of the active metal nitride layer 41 is 0.05 μm or more, and thus is included in the bonding material. The active metal (Ti in this embodiment) reacts sufficiently with the ceramic plate 25, and the carbon plate 21 and the ceramic plate 25 can be firmly bonded to each other.
Further, since the thickness of the active metal nitride layer 41 is limited to 2 μm or less, it is possible to suppress the occurrence of cracks in the active metal nitride layer under a cold cycle load, and it is possible to improve the cold cycle reliability. ..
 本実施形態において、炭素板21とセラミックス板25の接合界面40における炭素板21の接合面に、活性金属化合物層42が形成されており、活性金属化合物層42の厚さが0.05μm以上とされている場合には、接合材に含まれる活性金属(本実施形態では、Ti)とグラフェン含有炭素質部材からなる炭素板21の接合面が十分に反応しており、炭素板21とセラミックス板25との接合強度をさらに向上させることができる。一方、活性金属化合物層42の厚さが3μm以下に制限されている場合には、冷熱サイクル負荷時に活性金属化合物層42におけるクラックの発生を抑制することができる。 In the present embodiment, the active metal compound layer 42 is formed on the joint surface of the carbon plate 21 at the joint interface 40 between the carbon plate 21 and the ceramic plate 25, and the thickness of the active metal compound layer 42 is 0.05 μm or more. If so, the joint surface of the carbon plate 21 made of the active metal (Ti in this embodiment) and the graphene-containing carbonaceous member contained in the joint material is sufficiently reacted, and the carbon plate 21 and the ceramic plate are sufficiently reacted. The bonding strength with 25 can be further improved. On the other hand, when the thickness of the active metal compound layer 42 is limited to 3 μm or less, it is possible to suppress the occurrence of cracks in the active metal compound layer 42 when the active metal compound layer 42 is loaded.
 また、本実施形態において、炭素板21とセラミックス板25の接合界面40に、AgとCuを含む合金層43が形成されており、この合金層43の厚さが1μm以上とされている場合には、接合材に含まれるAgとCuが十分に反応しており、炭素板21とセラミックス板25との接合強度をさらに向上させることができる。一方、合金層43の厚さが20μm以下に制限されている場合には、冷熱サイクル負荷時に合金層43におけるクラックの発生を抑制することができる。 Further, in the present embodiment, when an alloy layer 43 containing Ag and Cu is formed at the bonding interface 40 between the carbon plate 21 and the ceramic plate 25, and the thickness of the alloy layer 43 is 1 μm or more. Ag and Cu contained in the bonding material are sufficiently reacted with each other, and the bonding strength between the carbon plate 21 and the ceramic plate 25 can be further improved. On the other hand, when the thickness of the alloy layer 43 is limited to 20 μm or less, it is possible to suppress the occurrence of cracks in the alloy layer 43 during a cold cycle load.
 さらに、本実施形態において、炭素板21を構成するグラフェン含有炭素質部材が、単層又は多層のグラフェンが堆積してなるグラフェン集合体と扁平形状の黒鉛粒子とを含み、扁平形状の前記黒鉛粒子が、そのベーサル面が折り重なるように前記グラフェン集合体をバインダーとして積層され、扁平形状の前記黒鉛粒子のベーサル面が一方向に向けて配向した構造とされている場合には、炭素板21(グラフェン含有炭素質部材)における熱伝導特性をさらに向上させることが可能となる。 Further, in the present embodiment, the graphene-containing carbonaceous member constituting the carbon plate 21 contains graphene aggregates formed by depositing single-layer or multi-layer graphene and flat-shaped graphite particles, and the flat-shaped graphite particles. However, when the graphene aggregates are laminated as a binder so that the basal surfaces are folded so that the basal surfaces of the flat graphite particles are oriented in one direction, the carbon plate 21 (graphene) is used. It is possible to further improve the heat conduction characteristics of the graphite-containing member).
 (第2の実施形態)
 次に、図6及び図7を参照して本発明の第2の実施形態である銅/グラフェン含有炭素質部材/セラミックス接合体について説明する。
 本実施形態における銅/グラフェン含有炭素質部材/セラミックス接合体は、銅又は銅合金からなる銅部材と、グラフェン集合体を含有するグラフェン含有炭素質部材と、窒素を含むセラミックスと、を接合した構造の絶縁回路基板110とされている。
(Second Embodiment)
Next, the copper / graphene-containing carbonaceous member / ceramics joint according to the second embodiment of the present invention will be described with reference to FIGS. 6 and 7.
The copper / graphene-containing carbonaceous member / ceramics joint in the present embodiment has a structure in which a copper member made of copper or a copper alloy, a graphene-containing carbonaceous member containing a graphene aggregate, and nitrogen-containing ceramics are joined. Insulated circuit board 110.
 まず、本実施形態である銅/グラフェン含有炭素質部材/セラミックス接合体(絶縁回路基板110)を用いたパワーモジュールについて説明する。
図6に示すパワーモジュール101は、絶縁回路基板110と、この絶縁回路基板110の一方の面側(図6において上側)にはんだ層2を介して接合された半導体素子3と、絶縁回路基板110の他方の面側(図6において下側)に配設されたヒートシンク31とを備えている。
First, a power module using a copper / graphene-containing carbonaceous member / ceramics joint (insulated circuit board 110) according to the present embodiment will be described.
The power module 101 shown in FIG. 6 includes an insulating circuit board 110, a semiconductor element 3 bonded to one surface side (upper side in FIG. 6) of the insulating circuit board 110 via a solder layer 2, and an insulating circuit board 110. It is provided with a heat sink 31 arranged on the other surface side (lower side in FIG. 6).
 ヒートシンク31は、前述の絶縁回路基板10を冷却するためのものであり、冷却媒体(例えば冷却水)を流通するための流路32が複数設けられた構造をなしている。
 このヒートシンク31は、熱伝導性が良好な材質、例えばアルミニウム又はアルミニウム合金、銅又は銅合金で構成されていることが好ましく、本実施形態においては、純度が99mass%以上の2Nアルミニウムで構成されている。
なお、本実施形態では、絶縁回路基板10の金属層13とヒートシンク31は、固相拡散接合法によって接合されている。
The heat sink 31 is for cooling the above-mentioned insulating circuit board 10, and has a structure in which a plurality of flow paths 32 for flowing a cooling medium (for example, cooling water) are provided.
The heat sink 31 is preferably made of a material having good thermal conductivity, for example, aluminum or aluminum alloy, copper or copper alloy, and in this embodiment, it is made of 2N aluminum having a purity of 99 mass% or more. There is.
In this embodiment, the metal layer 13 of the insulating circuit board 10 and the heat sink 31 are joined by a solid phase diffusion joining method.
 半導体素子3は、例えばSiやSiC等の半導体材料で構成されている。この半導体素子3は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材からなるはんだ層2を介して回路層12上に搭載されている。 The semiconductor element 3 is made of a semiconductor material such as Si or SiC. The semiconductor element 3 is mounted on the circuit layer 12 via, for example, a solder layer 2 made of a Sn—Ag-based, Sn—In-based, or Sn—Ag—Cu-based solder material.
 本実施形態である銅/グラフェン含有炭素質部材/セラミックス接合体(絶縁回路基板110)は、第1の実施形態であるグラフェン含有炭素質部材/セラミックス接合体からなる絶縁基板20と、この絶縁基板20の一方の面(図6において上面)に配設された回路層112と、絶縁基板20の他方の面(図6において下面)に配設された金属層113とを備えている。 The copper / graphene-containing carbonaceous member / ceramics joint (insulating circuit substrate 110) of the present embodiment is the insulating substrate 20 made of the graphene-containing carbonaceous member / ceramics joint of the first embodiment and the insulating substrate. It includes a circuit layer 112 disposed on one surface (upper surface in FIG. 6) of 20 and a metal layer 113 arranged on the other surface (lower surface in FIG. 6) of the insulating substrate 20.
 回路層112は、絶縁基板20の一方の面に、導電性に優れた銅板が接合されることによって形成されている。本実施形態では、回路層112を構成する銅板として、無酸素銅の圧延板が用いられている。
 ここで、回路層112となる銅板(銅板)の厚さは0.1mm以上1.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。
 なお、本実施形態では、図6に示すように、回路層112の大きさは、炭素板21と同等以上とされている。
The circuit layer 112 is formed by joining a copper plate having excellent conductivity to one surface of the insulating substrate 20. In the present embodiment, an oxygen-free copper rolled plate is used as the copper plate constituting the circuit layer 112.
Here, the thickness of the copper plate (copper plate) to be the circuit layer 112 is set within the range of 0.1 mm or more and 1.0 mm or less, and in this embodiment, it is set to 0.6 mm.
In this embodiment, as shown in FIG. 6, the size of the circuit layer 112 is equal to or larger than that of the carbon plate 21.
 金属層113は、絶縁基板20の他方の面に、熱伝導性に優れた銅板が接合されることにより形成されている。本実施形態においては、金属層113を構成する銅板として、無酸素銅の圧延板が用いられている。
 ここで、金属層113となる銅板(銅板)の厚さは0.1mm以上1.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。
 なお、本実施形態では、図6に示すように、金属層113の大きさは、炭素板21と同等以上とされている。
The metal layer 113 is formed by joining a copper plate having excellent thermal conductivity to the other surface of the insulating substrate 20. In the present embodiment, an oxygen-free copper rolled plate is used as the copper plate constituting the metal layer 113.
Here, the thickness of the copper plate (copper plate) to be the metal layer 113 is set within the range of 0.1 mm or more and 1.0 mm or less, and in the present embodiment, it is set to 0.6 mm.
In this embodiment, as shown in FIG. 6, the size of the metal layer 113 is equal to or larger than that of the carbon plate 21.
 ここで、図7に、グラフェン含有炭素質部材からなる炭素板21と回路層112(金属層113)との接合界面の模式図を示す。
 図7に示すように、グラフェン含有炭素質部材からなる炭素板21と回路層112(金属層113)との接合界面140においては、炭素板21の接合面に、活性金属酸化物及び活性金属炭化物の1種又は2種を含む活性金属化合物層142が形成されている。
 さらに、図4に示すように、回路層112(金属層113)と活性金属化合物層142の間には、AgとCuを含有する合金層143が形成されている。
 すなわち、本実施形態においては、接合界面140は、回路層112(金属層113)側から順に、合金層143、活性金属化合物層142が積層された構造とされている。
Here, FIG. 7 shows a schematic view of the bonding interface between the carbon plate 21 made of a graphene-containing carbonaceous member and the circuit layer 112 (metal layer 113).
As shown in FIG. 7, at the bonding interface 140 between the carbon plate 21 made of a graphene-containing carbonaceous member and the circuit layer 112 (metal layer 113), the active metal oxide and the active metal carbide are formed on the bonding surface of the carbon plate 21. An active metal compound layer 142 containing one or two of the above is formed.
Further, as shown in FIG. 4, an alloy layer 143 containing Ag and Cu is formed between the circuit layer 112 (metal layer 113) and the active metal compound layer 142.
That is, in the present embodiment, the bonding interface 140 has a structure in which the alloy layer 143 and the active metal compound layer 142 are laminated in this order from the circuit layer 112 (metal layer 113) side.
 活性金属化合物層142は、接合時において炭素板21と銅板の間に介在される接合材に含まれる活性金属が酸素及び炭素と反応することで形成されるものである。
 ここで、本実施形態では、活性金属はTiとされており、活性金属化合物層142は、チタン酸化物(Ti-O)及びチタン炭化物(Ti-C)の1種又は2種を含むものとされている。
The active metal compound layer 142 is formed by reacting the active metal contained in the bonding material interposed between the carbon plate 21 and the copper plate with oxygen and carbon at the time of bonding.
Here, in the present embodiment, the active metal is Ti, and the active metal compound layer 142 contains one or two types of titanium oxide (Ti—O) and titanium carbide (Ti—C). Has been done.
 ここで、活性金属化合物層142の厚さt12が0.05μm以上であれば、接合材と炭素板21との反応が促進されており、炭素板21の接合強度が十分に確保される。一方、活性金属化合物層142の厚さt12が3μm以下であれば、冷熱サイクル負荷時に活性金属化合物層142におけるクラックの発生を抑制することができる。
 よって、本実施形態においては、活性金属化合物層142の厚さt2は、0.05μm以上3μm以下の範囲内とされていることが好ましい。
 なお、活性金属化合物層142の厚さt12の下限は0.1μm以上であることがさらに好ましく、0.2μm以上であることがより好ましい。一方、活性金属化合物層142の厚さt12の上限は2μm以下であることがさらに好ましく、1.8μm以下であることがより好ましい。
Here, when the thickness t12 of the active metal compound layer 142 is 0.05 μm or more, the reaction between the bonding material and the carbon plate 21 is promoted, and the bonding strength of the carbon plate 21 is sufficiently secured. On the other hand, when the thickness t12 of the active metal compound layer 142 is 3 μm or less, it is possible to suppress the occurrence of cracks in the active metal compound layer 142 during a cold cycle load.
Therefore, in the present embodiment, the thickness t2 of the active metal compound layer 142 is preferably in the range of 0.05 μm or more and 3 μm or less.
The lower limit of the thickness t12 of the active metal compound layer 142 is more preferably 0.1 μm or more, and more preferably 0.2 μm or more. On the other hand, the upper limit of the thickness t12 of the active metal compound layer 142 is more preferably 2 μm or less, and more preferably 1.8 μm or less.
 合金層143は、接合時において炭素板21と銅板の間に介在される接合材に含まれるAg、Cuが反応することで形成されるものである。
 本実施形態においては、この合金層143は、Agを30mass%以上70mass%以下の範囲内、Cuを15mass%以上45mass%以下の範囲内で含むものとされている。
The alloy layer 143 is formed by reacting Ag and Cu contained in the bonding material interposed between the carbon plate 21 and the copper plate at the time of bonding.
In the present embodiment, the alloy layer 143 contains Ag in the range of 30 mass% or more and 70 mass% or less, and Cu in the range of 15 mass% or more and 45 mass% or less.
 ここで、合金層143の厚さt13が1μm以上であれば、接合材の反応が十分に促進されており、炭素板21と回路層112および金属層113との接合強度が十分に確保される。一方、合金層143の厚さt13が20μm以下であれば、冷熱サイクル負荷時に合金層143におけるクラックの発生を抑制することができる。
 よって、本実施形態においては、合金層143の厚さt13は、1μm以上20μm以下の範囲内とされていることが好ましい。
 なお、合金層143の厚さt13の下限は2μm以上であることがさらに好ましく、3μm以上であることがより好ましい。一方、合金層143の厚さt13の上限は10μm以下であることがさらに好ましく、8μm以下であることがより好ましい。
Here, when the thickness t13 of the alloy layer 143 is 1 μm or more, the reaction of the bonding material is sufficiently promoted, and the bonding strength between the carbon plate 21, the circuit layer 112, and the metal layer 113 is sufficiently secured. .. On the other hand, when the thickness t13 of the alloy layer 143 is 20 μm or less, it is possible to suppress the occurrence of cracks in the alloy layer 143 during a cold cycle load.
Therefore, in the present embodiment, the thickness t13 of the alloy layer 143 is preferably in the range of 1 μm or more and 20 μm or less.
The lower limit of the thickness t13 of the alloy layer 143 is more preferably 2 μm or more, and more preferably 3 μm or more. On the other hand, the upper limit of the thickness t13 of the alloy layer 143 is more preferably 10 μm or less, and more preferably 8 μm or less.
 ここで、本実施形態である銅/グラフェン含有炭素質部材/セラミックス接合体(絶縁回路基板110)は、例えば、第1の実施形態で説明したグラフェン含有炭素質部材/セラミックス接合体(絶縁基板20)の炭素板21の表面に、銅板を接合することによって製造することができる。
 あるいは、セラミックス板25と炭素板21とを接合してグラフェン含有炭素質部材/セラミックス接合体(絶縁基板20)を製造する際に、炭素板21と銅板とを同時に接合してもよい。
 いずれの場合でも、炭素板21の表面に、接合材を介して銅板を積層し、積層方向に加圧しながら加熱することによって炭素板21と銅板を接合することになる。
Here, the copper / graphene-containing carbonaceous member / ceramics joint (insulated circuit board 110) of the present embodiment is, for example, the graphene-containing carbonic member / ceramics joint (insulated substrate 20) described in the first embodiment. ), It can be manufactured by joining a copper plate to the surface of the carbon plate 21.
Alternatively, when the ceramic plate 25 and the carbon plate 21 are joined to produce a graphene-containing carbonaceous member / ceramics joint (insulating substrate 20), the carbon plate 21 and the copper plate may be joined at the same time.
In either case, the carbon plate 21 and the copper plate are joined by laminating the copper plate on the surface of the carbon plate 21 via a bonding material and heating while pressurizing in the stacking direction.
 このとき、接合材としては、AgとCuと活性金属(本実施形態ではTi)を含有するものを使用する。なお、接合材は、ペースト状であってもよいし、箔であってもよい。また、例えばCu-Ag合金と活性金属とを積層したものであってもよい。
 また、加熱温度は790℃以上900℃以下の範囲内とすることが好ましい。加熱温度での保持時間は20分以上180分以下の範囲内とすることが好ましい。加圧圧力は0.1MPa以上3.5MPa以下の範囲内とすることが好ましい。また、雰囲気は減圧雰囲気や窒素ガス雰囲気などの非酸化雰囲気とされていることが好ましい。
At this time, as the bonding material, a material containing Ag, Cu, and an active metal (Ti in this embodiment) is used. The bonding material may be in the form of a paste or in the form of a foil. Further, for example, a Cu—Ag alloy and an active metal may be laminated.
The heating temperature is preferably in the range of 790 ° C. or higher and 900 ° C. or lower. The holding time at the heating temperature is preferably in the range of 20 minutes or more and 180 minutes or less. The pressurizing pressure is preferably in the range of 0.1 MPa or more and 3.5 MPa or less. Further, the atmosphere is preferably a non-oxidizing atmosphere such as a reduced pressure atmosphere or a nitrogen gas atmosphere.
 そして、上述のように、炭素板21に銅板を接合する際に、接合材に含まれる活性金属(本実施形態ではTi)が酸素及び炭素と反応することで、炭素板21の接合面に活性金属化合物層142が形成される。
 さらに、接合材に含まれるCuとAgが反応することで、銅板と活性金属化合物層142の間に合金層143が形成される。
Then, as described above, when the copper plate is bonded to the carbon plate 21, the active metal (Ti in this embodiment) reacts with oxygen and carbon to act on the bonding surface of the carbon plate 21. The metal compound layer 142 is formed.
Further, the reaction between Cu and Ag contained in the bonding material forms an alloy layer 143 between the copper plate and the active metal compound layer 142.
 以上のような構成とされた本実施形態の銅/グラフェン含有炭素質部材/セラミックス接合体(絶縁回路基板110)によれば、第1の実施形態であるグラフェン含有炭素質部材/セラミックス接合体(絶縁基板20)の炭素板21と回路層112および金属層113とが接合されているので、冷熱サイクル信頼性に優れることになる。また、回路層112および金属層113によって炭素板21が保護され、炭素板21におけるひび割れの発生を抑制することができる。特に、本実施形態では、回路層112および金属層113の大きさが炭素板21と同等以上とされているので、炭素板21におけるひび割れの発生をさらに抑制することができる。 According to the copper / graphene-containing carbonaceous member / ceramics joint (insulated circuit board 110) of the present embodiment having the above-described configuration, the graphene-containing carbonaceous member / ceramics joint (insulated circuit board 110) of the first embodiment ( Since the carbon plate 21 of the insulating substrate 20), the circuit layer 112, and the metal layer 113 are bonded to each other, the reliability of the thermal cycle is excellent. Further, the carbon plate 21 is protected by the circuit layer 112 and the metal layer 113, and the occurrence of cracks in the carbon plate 21 can be suppressed. In particular, in the present embodiment, since the size of the circuit layer 112 and the metal layer 113 is equal to or larger than that of the carbon plate 21, the occurrence of cracks in the carbon plate 21 can be further suppressed.
 また、本実施形態において、炭素板21と回路層112および金属層113との接合界面において、炭素板21の接合面に、活性金属化合物層142が形成され、活性金属化合物層142の厚さt12が0.05μm以上とされているので、活性金属によって炭素板21の接合面が十分に反応しており、炭素板21と回路層112および金属層113とをさらに強固に接合することが可能となる。また、活性金属化合物層142の厚さt12が3μm以下に制限されているので、冷熱サイクル負荷時に活性金属化合物層142にクラックが生じることを抑制でき、冷熱サイクル信頼性を向上させることができる。 Further, in the present embodiment, at the bonding interface between the carbon plate 21, the circuit layer 112, and the metal layer 113, the active metal compound layer 142 is formed on the bonding surface of the carbon plate 21, and the thickness t12 of the active metal compound layer 142. Since the value is 0.05 μm or more, the bonding surface of the carbon plate 21 is sufficiently reacted by the active metal, and the carbon plate 21, the circuit layer 112, and the metal layer 113 can be bonded more firmly. Become. Further, since the thickness t12 of the active metal compound layer 142 is limited to 3 μm or less, it is possible to suppress the occurrence of cracks in the active metal compound layer 142 when loaded with a cold cycle, and it is possible to improve the reliability of the cold cycle.
 さらに、本実施形態において、炭素板21と回路層112および金属層113との接合界面において、回路層112および金属層113と活性金属化合物層142の間に、AgとCuを含む合金層143が形成されており、合金層143の厚さが1μm以上である場合には、炭素板21と回路層112および金属層113との接合強度をさらに向上させることができる。また、合金層143の厚さが20μm以下に制限されている場合には、冷熱サイクル負荷時に合金層143にクラックが生じることを抑制でき、冷熱サイクル信頼性を向上させることができる。 Further, in the present embodiment, at the bonding interface between the carbon plate 21, the circuit layer 112, and the metal layer 113, an alloy layer 143 containing Ag and Cu is formed between the circuit layer 112, the metal layer 113, and the active metal compound layer 142. When the alloy layer 143 is formed and the thickness of the alloy layer 143 is 1 μm or more, the bonding strength between the carbon plate 21, the circuit layer 112, and the metal layer 113 can be further improved. Further, when the thickness of the alloy layer 143 is limited to 20 μm or less, it is possible to suppress the occurrence of cracks in the alloy layer 143 when a cold cycle load is applied, and it is possible to improve the cold cycle reliability.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、絶縁回路基板の回路層に半導体素子(パワー半導体素子)を搭載してパワーモジュールを構成するものとして説明したが、これに限定されることはない。例えば、絶縁回路基板にLED素子を搭載してLEDモジュールを構成してもよいし、絶縁回路基板の回路層に熱電素子を搭載して熱電モジュールを構成してもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the invention.
For example, in the present embodiment, a semiconductor element (power semiconductor element) is mounted on the circuit layer of the insulated circuit board to form a power module, but the present embodiment is not limited to this. For example, an LED element may be mounted on an insulated circuit board to form an LED module, or a thermoelectric element may be mounted on a circuit layer of an insulated circuit board to form a thermoelectric module.
 また、第1の実施形態では、図1に示すように、絶縁回路基板10の絶縁層として、本実施形態である絶縁基板20を適用したものとして説明したが、これに限定されることはなく、本発明のグラフェン含有炭素質部材/セラミックス接合体の使用方法に特に制限はない。
 さらに、第1の実施形態では、絶縁基板20に接合する金属板として銅板を例に挙げて説明したが、これに限定されることはなく、アルミニウム板等の他の金属板であってもよい。
Further, in the first embodiment, as shown in FIG. 1, it has been described that the insulating substrate 20 of the present embodiment is applied as the insulating layer of the insulating circuit board 10, but the present invention is not limited to this. The method of using the graphene-containing carbonaceous member / ceramic joint of the present invention is not particularly limited.
Further, in the first embodiment, the copper plate has been described as an example of the metal plate to be bonded to the insulating substrate 20, but the present invention is not limited to this, and other metal plates such as an aluminum plate may be used. ..
 本発明の有効性を確認するために行った確認実験について説明する。 The confirmation experiment conducted to confirm the effectiveness of the present invention will be described.
 (実施例1)
 本実施形態で開示したように、扁平形状の黒鉛粒子とグラフェン集合体を所定の配合比で配合して混合し、加圧加熱して成形することにより、扁平形状の黒鉛粒子が、そのベーサル面が折り重なるようにグラフェン集合体をバインダーとして積層された構造の成形体を得た。得られた成形体を切り出して、グラフェン含有炭素質部材となる炭素板(40mm×40mm×厚さ1.5mm)を得た。
(Example 1)
As disclosed in the present embodiment, the flat graphite particles and the graphene aggregate are mixed at a predetermined blending ratio, mixed, and heated by pressurization to form the flat graphite particles on the basal surface thereof. A molded body having a structure in which graphene aggregates were laminated as a binder was obtained so as to be folded over. The obtained molded product was cut out to obtain a carbon plate (40 mm × 40 mm × thickness 1.5 mm) as a graphene-containing carbonaceous member.
 表1に示すセラミックス板(40mm×40mm×厚さ0.32mm)の両面に、Ag-28mass%Cu-3mass%Tiからなる組成の接合材(厚さ20μm)を介して、上述の炭素板を積層し、表1に示す条件で、炭素板とセラミックス板とを接合した。
 そして、炭素板とセラミックス板との接合界面を観察し、活性金属窒化物層の厚さ、あるいは活性金属化合物層の厚さを確認した。
The above-mentioned carbon plate is placed on both sides of the ceramic plate (40 mm × 40 mm × thickness 0.32 mm) shown in Table 1 via a bonding material (thickness 20 μm) having a composition of Ag-28 mass% Cu-3 mass% Ti. After laminating, the carbon plate and the ceramic plate were joined under the conditions shown in Table 1.
Then, the bonding interface between the carbon plate and the ceramic plate was observed, and the thickness of the active metal nitride layer or the thickness of the active metal compound layer was confirmed.
 具体的には、グラフェン含有炭素質部材/セラミックス接合体の中央部から観察試料を採取し、接合界面を走査型透過電子顕微鏡(FEI社製TitanChemiSTEM(EDS検出器付き))を用いて、倍率40000倍、加速電圧200kVの条件で観察を行い、エネルギー分散型X線分析法(サーモサイエンティフィック社製NSS7)を用いてマッピングを行い、活性金属窒化物層の場合は活性金属とNが重なる領域の面積、活性金属化合物層の場合は、活性金属が存在する領域の面積を測定し、測定視野(縦:(2.3μm×横:3μm)の幅の寸法で除した値を求め、5視野の平均値を活性金属窒化物層あるいは活性金属化合物層の厚さとした。 Specifically, an observation sample is taken from the central part of the graphene-containing carbonaceous member / ceramics junction, and the junction interface is measured using a scanning transmission electron microscope (FEI TitanChemiSTEM (with EDS detector)) at a magnification of 40,000. Observation is performed under the condition of double acceleration voltage of 200 kV, mapping is performed using energy dispersive X-ray analysis method (NSS7 manufactured by Thermo Scientific Co., Ltd.), and in the case of an active metal nitride layer, the region where the active metal and N overlap. In the case of the active metal compound layer, the area of the region where the active metal exists is measured, and the value divided by the width of the measurement field (length: (2.3 μm × width: 3 μm)) is obtained. Was taken as the thickness of the active metal nitride layer or the active metal compound layer.
 また、合金層の厚さについては、グラフェン含有炭素質部材/セラミックス接合体の接合界面付近の断面観察試料を採取し、EPMA(日本電子株式会社製JXA-8530F、加速電圧:15kV、スポット径:1μm以下)を用いてEPMAマッピングを得て、Agを30mass%以上70mass%以下の範囲内、Cuを15mass%以上45mass%以下の領域を合金層と見なしてその面積を測定し、測定視野(縦:90μm×横:120μm)の幅の寸法で除した値を求め、5視野の平均値を合金層の厚さとした。測定箇所としては絶縁回路基板の中心点の領域と、その点を中心とする20mm×20mmの四角形の4つの頂点の領域の合計5点を観察した。 Regarding the thickness of the alloy layer, a cross-sectional observation sample near the junction interface of the graphene-containing carbonaceous member / ceramics junction was collected, and EPMA (JXA-8530F manufactured by JEOL Ltd., acceleration voltage: 15 kV, spot diameter: EPMA mapping was obtained using (1 μm or less), and the area of Ag within the range of 30 mass% or more and 70 mass% or less and Cu within the range of 15 mass% or more and 45 mass% or less was regarded as an alloy layer, and the area was measured. The value obtained by dividing by the width dimension of (: 90 μm × width: 120 μm) was obtained, and the average value of the five visual fields was taken as the thickness of the alloy layer. As measurement points, a total of 5 points were observed, which are the region of the center point of the insulated circuit board and the region of four vertices of a 20 mm × 20 mm quadrangle centered on that point.
 また、得られた接合体に対して、-40℃×5分←→150℃×5分の冷熱サイクルを2000サイクル負荷した。その後、炭素板と銅板との界面の接合率について超音波探傷装置(株式会社日立パワーソリューションズ製FineSAT200)を用いて評価し、以下の式から算出した。ここで、初期接合面積とは、接合前における接合すべき面積とした。超音波探傷像を二値化処理した画像において剥離は接合部内の白色部で示されることから、この白色部の面積を剥離面積とした。
 (接合率)={(初期接合面積)-(非接合部面積)}/(初期接合面積)×100
Further, the obtained conjugate was subjected to 2000 cycles of cooling and heating at −40 ° C. × 5 minutes ← → 150 ° C. × 5 minutes. Then, the bonding ratio at the interface between the carbon plate and the copper plate was evaluated using an ultrasonic flaw detector (FineSAT200 manufactured by Hitachi Power Solutions, Ltd.) and calculated from the following formula. Here, the initial joining area is the area to be joined before joining. In the image obtained by binarizing the ultrasonic flaw detection image, the peeling is shown by the white part in the joint, and the area of this white part is defined as the peeling area.
(Joining ratio) = {(Initial joining area)-(Non-joining area)} / (Initial joining area) x 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 活性金属窒化物層の厚さが2.20μm、活性金属化合物層の厚さが3.30μmである比較例1においては、冷熱サイクル試験後の接合率が75%と低くなった。
 活性金属窒化物層の厚さが0.03μm、活性金属化合物層の厚さが0.03μmである比較例2においては、冷熱サイクル試験後の接合率が72%と低くなった。
In Comparative Example 1 in which the thickness of the active metal nitride layer was 2.20 μm and the thickness of the active metal compound layer was 3.30 μm, the bonding ratio after the thermal cycle test was as low as 75%.
In Comparative Example 2 in which the thickness of the active metal nitride layer was 0.03 μm and the thickness of the active metal compound layer was 0.03 μm, the bonding ratio after the thermal cycle test was as low as 72%.
 これに対して、活性金属窒化物層の厚さが0.05μm以上2μm以下の範囲内とされた本発明例1-10においては、冷熱サイクル試験後の接合率が80%以上であり、冷熱サイクル信頼性に優れていた。 On the other hand, in Example 1-10 of the present invention in which the thickness of the active metal nitride layer was in the range of 0.05 μm or more and 2 μm or less, the bonding ratio after the thermal cycle test was 80% or more, and the cold heat was obtained. It had excellent cycle reliability.
 (実施例2)
 上述した本発明例3、4、6、10のグラフェン含有炭素質部材/セラミックス接合体を準備し、炭素板の表面に、Ag-28mass%Cu-3mass%Tiからなる組成の接合材(厚さ20μm)を介して、無酸素銅の圧延板からなる銅板(40mm×40mm×厚さ0.8mm)を積層し、表2に示す条件で、炭素板と銅板とを接合し、銅/グラフェン含有炭素質部材/セラミックス接合体を得た。
 そして、実施例1と同様に、炭素板と銅板との接合界面を観察し、活性金属化合物層の厚さを確認した。
(Example 2)
The graphene-containing carbonaceous member / ceramics joints of Examples 3, 4, 6 and 10 of the present invention described above were prepared, and a bonding material having a composition of Ag-28 mass% Cu-3 mass% Ti was prepared on the surface of the carbon plate (thickness). A copper plate (40 mm × 40 mm × thickness 0.8 mm) made of an oxygen-free copper rolled plate is laminated via 20 μm), and the carbon plate and the copper plate are joined under the conditions shown in Table 2 to contain copper / graphene. A carbonaceous member / ceramics joint was obtained.
Then, in the same manner as in Example 1, the bonding interface between the carbon plate and the copper plate was observed, and the thickness of the active metal compound layer was confirmed.
 また、炭素板(グラフェン含有炭素質部材)におけるひび割れをマイクロスコープ(キーエンス社製デジタルマイクロスコープVHX-7000)による観察によって評価した。銅/グラフェン含有炭素質部材/セラミックス接合体の側面から、セラミックス板の両面にそれぞれ接合された炭素板が視野に入る倍率で観察し、長さが炭素板の厚さの2/3以上となるひび割れが15本以内の場合を「〇」、15本超えの場合を「×」と評価した。なお、ひび割れの長さは、ひび割れに沿った長さとし、途中で分岐した場合には最長の長さをひび割れとした。 In addition, cracks in the carbon plate (graphene-containing carbonaceous member) were evaluated by observing with a microscope (Digital Microscope VHX-7000 manufactured by KEYENCE CORPORATION). From the side surface of the copper / graphene-containing carbonaceous member / ceramics joint, observe the carbon plates bonded to both sides of the ceramic plate at a magnification that allows them to be seen, and the length is 2/3 or more of the thickness of the carbon plate. The case where the number of cracks was 15 or less was evaluated as "○", and the case where the number of cracks exceeded 15 was evaluated as "x". The length of the crack was defined as the length along the crack, and the longest length was defined as the crack when branched in the middle.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明例3、4、6、10のグラフェン含有炭素質部材/セラミックス接合体に銅板を接合して形成した本発明例13、14、16、20の銅/グラフェン含有炭素質部材/セラミックス接合体においては、いずれも炭素板(グラフェン含有炭素質部材)におけるひび割れの発生を抑制することができた。 Copper / graphene-containing carbonaceous member / ceramic joint of Invention Examples 13, 14, 16 and 20 formed by joining a copper plate to the graphene-containing carbonaceous member / ceramic joint of Invention Examples 3, 4, 6 and 10. In each case, the occurrence of cracks in the carbon plate (graphene-containing carbonaceous member) could be suppressed.
 (実施例3)
 実施例1と同様の手順により、グラフェン含有炭素質部材となる炭素板(40mm×40mm×厚さ1.5mm)を得た。
 表3に示すセラミックス板(40mm×40mm×厚さ0.32mm)の両面に、Ag-28mass%Cu-3mass%Tiからなる組成の接合材(厚さ20μm)を介して、上述の炭素板を積層した。また、炭素板の表面に、Ag-28mass%Cu-3mass%Tiからなる組成の接合材(厚さ20μm)を介して、無酸素銅の圧延板からなる銅板(40mm×40mm×厚さ0.8mm)を積層した。そして、表3に示す条件で、セラミックス板と炭素板と銅板とを同時接合し、銅/グラフェン含有炭素質部材/セラミックス接合体を得た。
(Example 3)
A carbon plate (40 mm × 40 mm × thickness 1.5 mm) to be a graphene-containing carbonaceous member was obtained by the same procedure as in Example 1.
The above-mentioned carbon plate is placed on both sides of the ceramic plate (40 mm × 40 mm × thickness 0.32 mm) shown in Table 3 via a bonding material (thickness 20 μm) having a composition of Ag-28 mass% Cu-3 mass% Ti. Laminated. Further, a copper plate (40 mm × 40 mm × thickness 0.) Made of rolled oxygen-free copper is interposed on the surface of the carbon plate via a bonding material (thickness 20 μm) having a composition of Ag-28 mass% Cu-3 mass% Ti. 8 mm) was laminated. Then, under the conditions shown in Table 3, the ceramic plate, the carbon plate, and the copper plate were simultaneously bonded to obtain a copper / graphene-containing carbonaceous member / ceramic bonded body.
 そして、実施例1と同様に、炭素板とセラミックス板との接合界面を観察し、活性金属窒化物層の厚さ、あるいは活性金属化合物層の厚さを確認した。また、炭素板と銅板との接合界面を観察し、活性金属化合物層の厚さを確認した。
 さらに、実施例2と同様に、炭素板(グラフェン含有炭素質部材)におけるひび割れをマイクロスコープによる観察によって評価した。
Then, in the same manner as in Example 1, the bonding interface between the carbon plate and the ceramic plate was observed, and the thickness of the active metal nitride layer or the thickness of the active metal compound layer was confirmed. In addition, the bonding interface between the carbon plate and the copper plate was observed to confirm the thickness of the active metal compound layer.
Further, as in Example 2, cracks in the carbon plate (graphene-containing carbonaceous member) were evaluated by observation with a microscope.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 セラミックス板と炭素板と銅板とを同時接合した本発明例21-24の銅/グラフェン含有炭素質部材/セラミックス接合体においても、いずれも炭素板(グラフェン含有炭素質部材)におけるひび割れの発生を抑制することができた。 In the copper / graphene-containing carbonaceous member / ceramics joint of Example 21-24 of the present invention in which the ceramic plate, the carbon plate, and the copper plate are simultaneously bonded, the occurrence of cracks in the carbon plate (graphene-containing carbonaceous member) is suppressed. We were able to.
 以上の実験結果から、本発明例によれば、セラミックス部材とグラフェン集合体を含有するグラフェン含有炭素質部材とが強固に接合されており、冷熱サイクル負荷時においても剥離が生じることがなく、冷熱サイクル信頼性に優れたグラフェン含有炭素質部材/セラミックス接合体、および、銅/グラフェン含有炭素質部材/セラミックス接合体を提供可能であることが確認された。 From the above experimental results, according to the example of the present invention, the ceramic member and the graphene-containing carbonaceous member containing the graphene aggregate are firmly bonded to each other, and peeling does not occur even under a cold cycle load. It was confirmed that it is possible to provide a graphene-containing carbonaceous member / ceramics joint having excellent cycle reliability and a copper / graphene-containing carbonaceous member / ceramics joint.
産業の利用可能性Industrial availability
 セラミックス部材とグラフェン集合体を含有するグラフェン含有炭素質部材とが強固に接合されており、冷熱サイクル負荷時においても剥離が生じることがなく、冷熱サイクル信頼性に優れたグラフェン含有炭素質部材/セラミックス接合体、および、このグラフェン含有炭素質部材/セラミックス接合体に銅又は銅合金からなる銅部材が接合された銅/グラフェン含有炭素質部材/セラミックス接合体を提供することが可能となる。 The ceramics member and the graphene-containing carbonaceous member containing the graphene aggregate are firmly bonded to each other, and peeling does not occur even under a cold cycle load, and the graphene-containing carbonaceous member / ceramics having excellent thermal cycle reliability. It is possible to provide a joint body and a copper / graphene-containing carbonaceous member / ceramics joint body in which a copper member made of copper or a copper alloy is bonded to the graphene-containing carbonaceous member / ceramics joint body.
  20 絶縁基板(グラフェン含有炭素質部材/セラミックス接合体)
  21 炭素板(グラフェン含有炭素質部材)
  25 セラミックス板(セラミックス部材)
  40 接合界面
  41 活性金属窒化物層
  42 活性金属化合物層
  43 合金層
  110 絶縁回路基板
  112 回路層(銅部材)
  113 金属層(銅部材)
  140 接合界面
  142 活性金属化合物層
  143 合金層
20 Insulated substrate (graphene-containing carbonaceous member / ceramic joint)
21 Carbon plate (graphene-containing carbonaceous material)
25 Ceramic plate (ceramic member)
40 Bonding interface 41 Active metal nitride layer 42 Active metal compound layer 43 Alloy layer 110 Insulated circuit board 112 Circuit layer (copper member)
113 Metal layer (copper member)
140 Bonding interface 142 Active metal compound layer 143 Alloy layer

Claims (7)

  1.  グラフェン集合体を含有するグラフェン含有炭素質部材と、窒素を含むセラミックスからなるセラミックス部材とが接合された構造のグラフェン含有炭素質部材/セラミックス接合体であって、
     前記グラフェン含有炭素質部材と前記セラミックス部材との接合界面において、前記セラミックス部材の接合面に活性金属窒化物層が形成されており、この活性金属窒化物層の厚さが0.05μm以上2μm以下の範囲内とされていることを特徴とするグラフェン含有炭素質部材/セラミックス接合体。
    A graphene-containing carbonaceous member / ceramics joint having a structure in which a graphene-containing carbonaceous member containing a graphene aggregate and a ceramics member made of nitrogen-containing ceramics are joined.
    At the bonding interface between the graphene-containing carbonaceous member and the ceramic member, an active metal nitride layer is formed on the bonding surface of the ceramic member, and the thickness of the active metal nitride layer is 0.05 μm or more and 2 μm or less. A graphene-containing carbonaceous member / ceramics joint characterized by being within the range of.
  2.  前記グラフェン含有炭素質部材と前記セラミックス部材との接合界面において、前記グラフェン含有炭素質部材の接合面に、活性金属化合物層が形成されており、前記活性金属化合物層の厚さが0.05μm以上3μm以下の範囲内とされていることを特徴とする請求項1に記載のグラフェン含有炭素質部材/セラミックス接合体。 At the bonding interface between the graphene-containing carbonaceous member and the ceramic member, an active metal compound layer is formed on the bonding surface of the graphene-containing carbonaceous member, and the thickness of the active metal compound layer is 0.05 μm or more. The graphene-containing carbonaceous member / ceramic joint according to claim 1, wherein the graphene is within a range of 3 μm or less.
  3.  前記グラフェン含有炭素質部材と前記セラミックス部材との接合界面において、前記活性金属窒化物層と前記活性金属化合物層の間に、AgとCuを含む合金層が形成されており、前記合金層の厚さが1μm以上20μm以下の範囲内とされていることを特徴とする請求項2に記載のグラフェン含有炭素質部材/セラミックス接合体。 At the junction interface between the graphene-containing carbonaceous member and the ceramic member, an alloy layer containing Ag and Cu is formed between the active metal nitride layer and the active metal compound layer, and the thickness of the alloy layer The graphene-containing carbonaceous member / ceramics joint according to claim 2, wherein the thickness is within the range of 1 μm or more and 20 μm or less.
  4.  前記グラフェン含有炭素質部材は、単層又は多層のグラフェンが堆積してなるグラフェン集合体と扁平形状の黒鉛粒子とを含み、扁平形状の前記黒鉛粒子が、そのベーサル面が折り重なるように前記グラフェン集合体をバインダーとして積層され、扁平形状の前記黒鉛粒子のベーサル面が一方向に向けて配向した構造とされていることを特徴とする請求項1から請求項3のいずれか一項に記載のグラフェン含有炭素質部材/セラミックス接合体。 The graphene-containing carbonaceous member includes a graphene aggregate formed by depositing single-layer or multi-layer graphene and flat graphite particles, and the graphene aggregates such that the flat graphite particles fold their basal surfaces. The graphene according to any one of claims 1 to 3, wherein the graphene is laminated with the body as a binder, and the basal surface of the flat graphite particles is oriented in one direction. Containing carbonaceous member / ceramics joint.
  5.  銅又は銅合金からなる銅部材と、グラフェン集合体を含有するグラフェン含有炭素質部材と、窒素を含むセラミックスからなるセラミックス部材とが接合された構造の銅/グラフェン含有炭素質部材/セラミックス接合体であって、
     請求項1から請求項4のいずれか一項に記載のグラフェン含有炭素質部材/セラミックス接合体の前記グラフェン含有炭素質部材と前記銅部材とが接合されていることを特徴とする銅/グラフェン含有炭素質部材/セラミックス接合体。
    A copper / graphene-containing carbonaceous member / ceramics joint having a structure in which a copper member made of copper or a copper alloy, a graphene-containing carbonaceous member containing a graphene aggregate, and a ceramics member made of nitrogen-containing ceramics are joined. There,
    A copper / graphene-containing member of the graphene-containing carbonaceous member / ceramics joint according to any one of claims 1 to 4, wherein the graphene-containing carbonaceous member and the copper member are bonded to each other. Carbonaceous member / ceramic joint.
  6.  前記グラフェン含有炭素質部材と前記銅部材との接合界面において、前記グラフェン含有炭素質部材の接合面に、活性金属化合物層が形成されており、前記活性金属化合物層の厚さが0.05μm以上3μm以下の範囲内とされていることを特徴とする請求項5に記載の銅/グラフェン含有炭素質部材/セラミックス接合体。 At the joint interface between the graphene-containing carbonaceous member and the copper member, an active metal compound layer is formed on the joint surface of the graphene-containing carbonaceous member, and the thickness of the active metal compound layer is 0.05 μm or more. The copper / graphene-containing carbonaceous member / ceramics joint according to claim 5, wherein the range is 3 μm or less.
  7.  前記グラフェン含有炭素質部材と前記銅部材との接合界面において、前記銅部材と前記活性金属化合物層の間に、AgとCuを含む合金層が形成されており、前記合金層の厚さが1μm以上20μm以下の範囲内とされていることを特徴とする請求項6に記載の銅/グラフェン含有炭素質部材/セラミックス接合体。 At the bonding interface between the graphene-containing carbonaceous member and the copper member, an alloy layer containing Ag and Cu is formed between the copper member and the active metal compound layer, and the thickness of the alloy layer is 1 μm. The copper / graphene-containing carbonaceous member / ceramics joint according to claim 6, wherein the range is 20 μm or less.
PCT/JP2020/040652 2019-11-05 2020-10-29 Graphene-containing carbonaceous member/ceramic assembly and copper/graphene-containing carbonaceous member/ceramic assembly WO2021090759A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019200724 2019-11-05
JP2019-200724 2019-11-05
JP2020-179736 2020-10-27
JP2020179736A JP2021075452A (en) 2019-11-05 2020-10-27 Graphene-containing carbonaceous member/ceramics joint body and copper/graphene-containing carbonaceous member/ceramics joint body

Publications (1)

Publication Number Publication Date
WO2021090759A1 true WO2021090759A1 (en) 2021-05-14

Family

ID=75849756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040652 WO2021090759A1 (en) 2019-11-05 2020-10-29 Graphene-containing carbonaceous member/ceramic assembly and copper/graphene-containing carbonaceous member/ceramic assembly

Country Status (1)

Country Link
WO (1) WO2021090759A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220238414A1 (en) * 2021-01-27 2022-07-28 CTRON Advanced Material Co., Ltd Thermal conductive structure and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087432A1 (en) * 2009-01-29 2010-08-05 株式会社オクテック Heat dissipating base body and electronic device using same
JP2012246173A (en) * 2011-05-27 2012-12-13 Toyo Tanso Kk Carbon material joint, joining material for carbon material and method of manufacturing carbon material joint
JP2015532531A (en) * 2012-09-25 2015-11-09 モーメンティブ・パフォーマンス・マテリアルズ・インク Thermal management assembly containing bulk graphene material
JP6130362B2 (en) * 2012-05-15 2017-05-17 東洋炭素株式会社 Method for producing carbon material-ceramic material assembly, and carbon material-ceramic material assembly
JP2019129154A (en) * 2018-01-27 2019-08-01 ツィンファ ユニバーシティ Transmission electron microscope grid and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087432A1 (en) * 2009-01-29 2010-08-05 株式会社オクテック Heat dissipating base body and electronic device using same
JP2012246173A (en) * 2011-05-27 2012-12-13 Toyo Tanso Kk Carbon material joint, joining material for carbon material and method of manufacturing carbon material joint
JP6130362B2 (en) * 2012-05-15 2017-05-17 東洋炭素株式会社 Method for producing carbon material-ceramic material assembly, and carbon material-ceramic material assembly
JP2015532531A (en) * 2012-09-25 2015-11-09 モーメンティブ・パフォーマンス・マテリアルズ・インク Thermal management assembly containing bulk graphene material
JP2019129154A (en) * 2018-01-27 2019-08-01 ツィンファ ユニバーシティ Transmission electron microscope grid and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220238414A1 (en) * 2021-01-27 2022-07-28 CTRON Advanced Material Co., Ltd Thermal conductive structure and electronic device

Similar Documents

Publication Publication Date Title
JP6904088B2 (en) Copper / ceramic joints and insulated circuit boards
KR102459745B1 (en) Copper/ceramic bonded body, insulated circuit board, and copper/ceramic bonded body manufacturing method, insulated circuit board manufacturing method
KR102078891B1 (en) Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member
KR102279553B1 (en) Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, paste for copper plate bonding, and method for producing bonded body
JP7192451B2 (en) COPPER/CERAMIC JOINT, INSULATED CIRCUIT BOARD, METHOD FOR MANUFACTURING COPPER/CERAMIC JOINT, AND METHOD FOR MANUFACTURING INSULATED CIRCUIT BOARD
WO2019088222A1 (en) Joint body and insulating circuit substrate
JP6048541B2 (en) Power module substrate, power module substrate with heat sink, power module, power module substrate manufacturing method, and copper member bonding paste
WO2015163232A1 (en) Process for producing united object and process for producing substrate for power module
WO2021149802A1 (en) Copper/graphene joined body and method for manufacturing same, and copper/graphene joined structure
WO2021100860A1 (en) Ceramic/copper/graphene assembly and method for manufacturing same, and ceramic/copper/graphene joining structure
WO2021090759A1 (en) Graphene-containing carbonaceous member/ceramic assembly and copper/graphene-containing carbonaceous member/ceramic assembly
TW201841310A (en) Manufacturing method of insulated circuit substrate with heat sink
WO2017135139A1 (en) METAL MEMBER WITH Ag UNDERLAYER, INSULATED CIRCUIT BOARD WITH Ag UNDERLAYER, SEMICONDUCTOR DEVICE, INSULATED CIRCUIT BOARD WITH HEATSINK, AND METHOD OF MANUFACTURING METAL MEMBER WITH Ag UNDERLAYER
WO2021106904A1 (en) Graphene bonded body
WO2021085451A1 (en) Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board
KR20200083455A (en) Bonded body and insulating circuit board
JP2019081690A (en) Joint body and insulating circuit substrate
JP2021088502A (en) Ceramic/copper/graphene assembly and method for manufacturing the same, and ceramic/copper/graphene joining structure
JP2021075452A (en) Graphene-containing carbonaceous member/ceramics joint body and copper/graphene-containing carbonaceous member/ceramics joint body
WO2019082970A1 (en) Bonded body and insulated circuit board
JP2021090046A (en) Graphene conjugate
JP6908173B2 (en) Copper / Ceramics Joint, Insulated Circuit Board, Copper / Ceramics Joint Manufacturing Method, Insulated Circuit Board Manufacturing Method
TW201841870A (en) Ceramic/aluminum bonded body, insulating circuit substrate, LED module, ceramic member, method of manufacturing ceramic/aluminum bonded body and method of manufacturing insulating circuit substrate
JP6947318B2 (en) Copper / graphene junction and its manufacturing method, and copper / graphene junction structure
WO2023008565A1 (en) Copper/ceramic bonded body and insulated circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885591

Country of ref document: EP

Kind code of ref document: A1