JP2006036915A - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP2006036915A
JP2006036915A JP2004218703A JP2004218703A JP2006036915A JP 2006036915 A JP2006036915 A JP 2006036915A JP 2004218703 A JP2004218703 A JP 2004218703A JP 2004218703 A JP2004218703 A JP 2004218703A JP 2006036915 A JP2006036915 A JP 2006036915A
Authority
JP
Japan
Prior art keywords
resin
weight
resin composition
silica
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004218703A
Other languages
Japanese (ja)
Other versions
JP4460968B2 (en
Inventor
Masahito Noya
雅人 野家
San Abe
賛 安部
Takeshi Yanagihara
武 楊原
Kenta Hori
健太 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2004218703A priority Critical patent/JP4460968B2/en
Publication of JP2006036915A publication Critical patent/JP2006036915A/en
Application granted granted Critical
Publication of JP4460968B2 publication Critical patent/JP4460968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition which has a high content of a silica filler having a small particle size, is high in fluidity, and is excellent in heat resistance and moisture resistance. <P>SOLUTION: The resin composition comprises a spherical silica particle having an average particle size of 0.1 μm or more and 5 μm or less and sphericity of 0.8 or more, a silica nano-particle having an average particle size of 1 nm or more and 50 nm or less, and one or more resins selected from a heat- or light-curable resin and a thermoplastic resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子部品の封止等に使用される樹脂組成物に関する。   The present invention relates to a resin composition used for sealing electronic parts and the like.

電子機器の高性能化、高機能化、小型軽量化に伴い、搭載される半導体パッケージの形態も、高集積化、小型化、薄型化が進んでいる。このような半導体パッケージの実用化には、ICチップの開発とともに、封止材の開発が必要不可欠となる。封止材には、半導体素子の各種信頼性を確保するため、接着性、耐熱性、耐湿性等が要求される。現在では、封止材として、エポキシ樹脂等の熱硬化性樹脂が多く用いられている。また、マトリックスとなるエポキシ樹脂に、シリカフィラーを配合した樹脂組成物も開発されている(例えば、特許文献1参照。)。
特開2000−063630号公報
As electronic devices have higher performance, higher functionality, and smaller and lighter weight, the form of semiconductor packages to be mounted is becoming more highly integrated, smaller, and thinner. For practical use of such a semiconductor package, development of a sealing material is indispensable together with development of an IC chip. The sealing material is required to have adhesiveness, heat resistance, moisture resistance and the like in order to ensure various reliability of the semiconductor element. At present, a thermosetting resin such as an epoxy resin is often used as a sealing material. A resin composition in which a silica filler is blended with an epoxy resin serving as a matrix has also been developed (see, for example, Patent Document 1).
JP 2000-063630 A

例えば、フリップチップ実装では、ICチップと基板との隙間等に液状の封止材(アンダーフィル材)が充填される。つまり、極めて小さな隙間に、封止材を浸入させる必要がある。よって、封止材には高い流動性が要求される。一方、封止材の熱膨張係数や吸湿率を低下させ、耐熱性、耐吸湿性を向上させるためには、樹脂にフィラーをできるだけ多量に配合することが望ましい。しかし、フィラーの配合量を増加させると流動性が低下する。また、最近の挟ピッチ化に伴い、封止材中のフィラーの粒子径をより小さくすることが求められる。フィラーの粒子径を小さくすると、樹脂中への高密度の配合は難しくなる。例えば、上記特許文献1に記載されているシリカフィラーの配合量は、最大で80重量%である。このように、現状では、樹脂中に粒子径の小さなフィラーを高密度に配合することは難しい。   For example, in flip chip mounting, a liquid sealing material (underfill material) is filled in a gap between the IC chip and the substrate. That is, it is necessary to allow the sealing material to enter a very small gap. Therefore, high fluidity is required for the sealing material. On the other hand, in order to reduce the thermal expansion coefficient and moisture absorption rate of the sealing material and improve heat resistance and moisture absorption resistance, it is desirable to add as much filler as possible to the resin. However, when the blending amount of the filler is increased, the fluidity is lowered. Further, with the recent narrow pitch, it is required to further reduce the particle size of the filler in the sealing material. When the particle size of the filler is reduced, it is difficult to mix the resin with a high density. For example, the maximum amount of silica filler described in Patent Document 1 is 80% by weight. Thus, at present, it is difficult to mix a filler having a small particle diameter in a resin at a high density.

本発明は、このような実状を鑑みてなされたものであり、粒子径の小さなシリカフィラーを高い配合割合で配合し、流動性が高く、耐熱性、耐吸湿性に優れた樹脂組成物を提供することを課題とする。   The present invention has been made in view of such a situation, and provides a resin composition having high fluidity and excellent heat resistance and moisture absorption resistance by incorporating a silica filler having a small particle diameter at a high blending ratio. The task is to do.

本発明の樹脂組成物は、平均粒子径0.1μm以上5μm以下、かつ、真球度0.8以上の球状シリカ粒子と、平均粒子径1nm以上50nm以下のシリカナノ粒子と、熱または光により硬化する硬化性樹脂、熱可塑性樹脂から選ばれる一種以上の樹脂と、を含むことを特徴とする。   The resin composition of the present invention is cured by heat or light with spherical silica particles having an average particle size of 0.1 μm to 5 μm and a sphericity of 0.8 or more, silica nanoparticles having an average particle size of 1 nm to 50 nm, and heat or light. And one or more resins selected from a curable resin and a thermoplastic resin.

本発明の樹脂組成物には、平均粒子径の大小異なる少なくとも二種類のシリカ(SiO2)フィラーが混合して配合される。その一つである球状シリカ粒子は、真球度0.8以上の略真球状の形状をなす。本明細書では、「真球度」を「粒子の最大径に対する最小径の比」と定義する。例えば、走査型電子顕微鏡(SEM)による観察の結果、観測される最大径に対する最小径の比が0.8以上であればよい。 In the resin composition of the present invention, at least two types of silica (SiO 2 ) fillers having different average particle sizes are mixed and blended. One of them, the spherical silica particles, has a substantially spherical shape with a sphericity of 0.8 or more. In this specification, “sphericity” is defined as “ratio of minimum diameter to maximum diameter of particle”. For example, the ratio of the minimum diameter to the maximum diameter observed as a result of observation with a scanning electron microscope (SEM) may be 0.8 or more.

このように、粒子形状が略真球状で、平均粒子径0.1μm以上5μm以下の球状シリカ粒子に、平均粒子径1nm以上50nm以下のシリカナノ粒子を混合することで、樹脂中に粒子径の小さなシリカフィラーを高い配合割合で分散させることができる。これは、球状シリカ粒子の粒子形状、および球状シリカ粒子とシリカナノ粒子との粒子径の違いにより、樹脂中でシリカフィラーの最密充填状態が形成されるためと考えられる。また、粒子形状が略真球状の球状シリカ粒子を配合することで、樹脂組成物の粘性を低く抑えることができる。したがって、本発明の樹脂組成物は、粒子径の小さなシリカフィラーを高い配合割合で配合することができ、流動性が高く、耐熱性、耐吸湿性に優れる。   Thus, by mixing silica nanoparticles having an average particle size of 1 nm or more and 50 nm or less into spherical silica particles having an approximately true spherical particle shape and an average particle size of 0.1 μm or more and 5 μm or less, the particle size is small in the resin. Silica filler can be dispersed at a high blending ratio. This is presumably because the closest packed state of the silica filler is formed in the resin due to the difference in the particle shape of the spherical silica particles and the particle diameter of the spherical silica particles and the silica nanoparticles. Moreover, the viscosity of a resin composition can be restrained low by mix | blending the spherical silica particle with a substantially spherical shape. Therefore, the resin composition of this invention can mix | blend the silica filler with a small particle diameter with a high compounding ratio, has high fluidity | liquidity, and is excellent in heat resistance and moisture absorption resistance.

本発明の樹脂組成物によれば、樹脂中に粒子径の小さなシリカフィラーを高い配合割合で配合することができる。このため、本発明の樹脂組成物は、ICチップと基板との隙間等を封止する封止材として好適である。   According to the resin composition of the present invention, a silica filler having a small particle diameter can be blended in the resin at a high blending ratio. For this reason, the resin composition of this invention is suitable as a sealing material which seals the clearance gap between an IC chip and a board | substrate.

以下、本発明の樹脂組成物の実施形態について詳しく説明する。なお、本発明の樹脂組成物は、下記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   Hereinafter, embodiments of the resin composition of the present invention will be described in detail. In addition, the resin composition of the present invention is not limited to the following embodiments, and may be implemented in various forms that have been modified or improved by those skilled in the art without departing from the scope of the present invention. be able to.

〈球状シリカ粒子〉
本発明の樹脂組成物を構成する球状シリカ粒子の平均粒子径は、0.1μm以上5μm以下である。配合するフィラーの粒子径をできるだけ小さくするという観点から、球状シリカ粒子の平均粒子径を3μm以下とすると好適である。また、球状シリカ粒子の真球度は0.8以上とする。本発明の樹脂組成物の流動性や樹脂中における分散性を向上させるとともに、シリカフィラーをより最密充填状態に近づけるという観点から、真球度を0.9以上とするとよい。球状シリカ粒子を後述する樹脂に配合する場合、上記範囲内の平均粒子径を持ち、真球度0.8以上の球状シリカ粒子の粉体を一種類だけ配合してもよく、また、二種類以上を混合して配合してもよい。なお、必要に応じて、5μm以上、3μm以上等の粗粒を除去することが望ましい。
<Spherical silica particles>
The average particle diameter of the spherical silica particles constituting the resin composition of the present invention is 0.1 μm or more and 5 μm or less. From the viewpoint of making the particle diameter of the filler to be blended as small as possible, the average particle diameter of the spherical silica particles is preferably 3 μm or less. The sphericity of the spherical silica particles is 0.8 or more. From the viewpoint of improving the fluidity of the resin composition of the present invention and the dispersibility in the resin, and making the silica filler closer to the closest packing state, the sphericity is preferably 0.9 or more. When the spherical silica particles are blended in the resin described later, only one kind of spherical silica particle powder having an average particle diameter in the above range and a sphericity of 0.8 or more may be blended, or two kinds. You may mix and mix the above. If necessary, it is desirable to remove coarse particles of 5 μm or more, 3 μm or more.

球状シリカ粒子の製造方法は、特に限定されるものではないが、例えば、VMC(Vap-erized Metal Combustion)法により、シリコン粉末を燃焼して製造することが望ましい。VMC法とは、酸素を含む雰囲気中でバーナーにより化学炎を形成し、この化学炎中に目的とする酸化物粒子の一部を構成する金属粉末を粉塵雲が形成される程度の量投入し、爆燃を起こさせて酸化物粒子を得る方法である。   The method for producing the spherical silica particles is not particularly limited. For example, it is desirable to produce silicon particles by burning them by a VMC (Vap-erized Metal Combustion) method. In the VMC method, a chemical flame is formed by a burner in an oxygen-containing atmosphere, and metal powder that constitutes part of the target oxide particles is introduced into the chemical flame in such an amount that a dust cloud is formed. In this method, deflagration is caused to obtain oxide particles.

VMC法の作用について説明すれば以下のようになる。まず、容器中に反応ガスである酸素を含有するガスを充満させ、この反応ガス中化学炎を形成する。次いで、この化学炎に金属粉末を投入し高濃度(500g/m3以上)の粉塵雲を形成する。すると、化学炎により金属粉末表面に熱エネルギが与えられ、金属粉末の表面温度が上昇し、金属粉末表面から金属の蒸気が周囲に広がる。この金属蒸気が酸素ガスと反応して発火し火炎を生じる。この火炎により生じた熱は、さらに金属粉末の気化を促進し、生じた金属蒸気と反応ガスが混合され、連鎖的に発火伝播する。このとき金属粉末自体も破壊して飛散し、火炎伝播を促す。燃焼後に生成ガスが自然冷却されることにより、酸化物粒子の雲ができる。得られた酸化物粒子は、電気集塵器等により帯電させて捕獲される。 The operation of the VMC method will be described as follows. First, a gas containing oxygen, which is a reaction gas, is filled in a container to form a chemical flame in the reaction gas. Next, metal powder is introduced into the chemical flame to form a dust cloud with a high concentration (500 g / m 3 or more). Then, thermal energy is given to the metal powder surface by the chemical flame, the surface temperature of the metal powder rises, and metal vapor spreads from the metal powder surface to the surroundings. This metal vapor reacts with oxygen gas to ignite and produce a flame. The heat generated by the flame further promotes the vaporization of the metal powder, and the generated metal vapor and the reaction gas are mixed and propagated in a chain. At this time, the metal powder itself is destroyed and scattered, which promotes flame propagation. The product gas is naturally cooled after combustion, thereby forming a cloud of oxide particles. The obtained oxide particles are charged and captured by an electric dust collector or the like.

VMC法は粉塵爆発の原理を利用するものである。VMC法によれば、瞬時に大量の酸化物粒子が得られる。得られる酸化物粒子は、略真球状の形状をなす。例えば、シリカ粒子を得る場合にはシリコン粉末を投入すればよい。投入するシリコン粉末の粒子径、投入量、火炎温度等を調整することにより、得られる酸化物粒子の粒子径を調整することが可能である。   The VMC method uses the principle of dust explosion. According to the VMC method, a large amount of oxide particles can be obtained instantaneously. The resulting oxide particles have a substantially spherical shape. For example, when obtaining silica particles, silicon powder may be added. It is possible to adjust the particle diameter of the resulting oxide particles by adjusting the particle diameter, input amount, flame temperature, and the like of the silicon powder to be input.

〈シリカナノ粒子〉
本発明の樹脂組成物を構成するシリカナノ粒子は、平均粒子径1nm以上50nm以下である。最密充填状態を形成し易くするという観点から、シリカナノ粒子の平均粒子径を5nm以上30nm以下とするとよい。シリカナノ粒子の製造方法は、特に限定されるものではない。例えば、乾式法として、上記VMC法やPVS(Physical Vapor Synthesis)法等の燃焼法が挙げられる。また、湿式法として、沈降法やゲル法が挙げられる。
<Silica nanoparticles>
The silica nanoparticles constituting the resin composition of the present invention have an average particle diameter of 1 nm to 50 nm. From the viewpoint of facilitating the formation of the close-packed state, the average particle diameter of the silica nanoparticles is preferably 5 nm to 30 nm. The method for producing silica nanoparticles is not particularly limited. For example, examples of the dry method include combustion methods such as the VMC method and the PVS (Physical Vapor Synthesis) method. Moreover, a precipitation method and a gel method are mentioned as a wet method.

〈表面処理〉
球状シリカ粒子およびシリカナノ粒子は、後述する樹脂との密着性を向上させるため、表面処理が施されていることが望ましい。表面処理は、例えば、シラン系、チタネート系、アルミネート系、ジルコネート系の各種カップリング剤、カチオン、アニオン、両性、中性の各種界面活性剤、フェノール樹脂等の極性基を有する樹脂等を用いて行うことができる。例えば、シランカップリング剤による表面処理は、球状シリカ粒子、シリカナノ粒子からなる被処理粉体を処理容器に収容し、この被処理粉体を攪拌しながら気化させたシランカップリング剤と反応させればよい。
<surface treatment>
The spherical silica particles and silica nanoparticles are preferably subjected to a surface treatment in order to improve adhesion with a resin described later. Surface treatment uses, for example, various silane, titanate, aluminate and zirconate coupling agents, cations, anions, amphoteric and neutral surfactants, resins having polar groups such as phenol resins, etc. Can be done. For example, in the surface treatment with a silane coupling agent, a powder to be treated consisting of spherical silica particles and silica nanoparticles is placed in a treatment container, and this powder to be treated is allowed to react with the silane coupling agent vaporized while stirring. That's fine.

表面処理に用いる処理剤の重量は、被処理粉体の重量を100重量%とした場合の10重量%以下とすることが望ましい。10重量%より多くすると、本発明の樹脂組成物の特性に影響を及ぼすおそれがあるからである。6重量%以下とするとより好適である。また、表面処理の効果を充分に発揮させるためには、処理剤の重量を、被処理粉体の重量の0.05重量%以上とすることが望ましい。   The weight of the treatment agent used for the surface treatment is desirably 10% by weight or less when the weight of the powder to be treated is 100% by weight. This is because if it exceeds 10% by weight, the properties of the resin composition of the present invention may be affected. It is more preferable that the amount be 6% by weight or less. Moreover, in order to fully exhibit the effect of the surface treatment, it is desirable that the weight of the treatment agent is 0.05% by weight or more of the weight of the powder to be treated.

〈樹脂〉
本発明の樹脂組成物を構成する樹脂は、熱または光により硬化する硬化性樹脂、熱可塑性樹脂から選ばれる一種以上とする。ここで、熱硬化性樹脂としては、エポキシ樹脂、ケイ素樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂等が挙げられる。また、光硬化性樹脂としては、アクリル樹脂(メタクリル樹脂)、シリコーン樹脂、フッ素樹脂等が挙げられる。また、熱可塑性樹脂としては、ポリイミド、ポリアミド樹脂(ポリアミドイミド、ポリエーテルイミド等)、ポリエステル(ポリブチレンテレフタレート、ポリエチレンテレフタレート、全芳香族ポリエステル等)、ポリスルホン系樹脂、ポリカーボネート等が挙げられる。
<resin>
The resin constituting the resin composition of the present invention is at least one selected from a curable resin and a thermoplastic resin that are cured by heat or light. Here, examples of the thermosetting resin include an epoxy resin, a silicon resin, a phenol resin, a melamine resin, a urea resin, and an unsaturated polyester resin. Examples of the photocurable resin include acrylic resin (methacrylic resin), silicone resin, and fluororesin. Examples of the thermoplastic resin include polyimide, polyamide resin (polyamideimide, polyetherimide, etc.), polyester (polybutylene terephthalate, polyethylene terephthalate, wholly aromatic polyester, etc.), polysulfone resin, polycarbonate, and the like.

本発明の樹脂組成物を、電子部品の封止材として用いる場合には、樹脂としてエポキシ樹脂、あるいはアクリル樹脂を採用するとよい。エポキシ樹脂としては、1分子中にエポキシ基を2個以上有するオリゴマー、ポリマーが好適である。例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、トリアジン核含有エポキシ樹脂等が挙げられる。これらのうち一つを単独で、あるいは複数を混合して用いればよい。   When the resin composition of the present invention is used as a sealing material for electronic components, an epoxy resin or an acrylic resin may be employed as the resin. As the epoxy resin, oligomers and polymers having two or more epoxy groups in one molecule are suitable. For example, biphenyl type epoxy resin, stilbene type epoxy resin, bisphenol type epoxy resin, triphenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, naphthol type epoxy resin, triazine core containing An epoxy resin etc. are mentioned. One of these may be used alone, or a plurality may be used in combination.

また、アクリル樹脂としては、光重合性を有するモノマーを重合して得られるオリゴマー、ポリマーが好適である。光重合性モノマーとしては、例えば、以下(a)〜(e)に示すモノマーが挙げられる。(a)〜(e)に示したモノマーの一種を単独で、あるいは二種以上を組み合わせて重合し、得られたオリゴマー、ポリマーを用いればよい。
(a)アクリル酸、メタクリル酸、イタコン酸、シトラコン酸、マレイン酸、フマル酸等のα,β−不飽和カルボン酸、およびこれらの無水物、ハーフエステル化物。
(b)メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、メチルメタアクリレート、エチルメタアクリレート等のα,β−不飽和カルボン酸エステル。
(c)スチレン、α−メチルスチレン、p−ビニルトルエン等のスチレン類。
(d)ヒドロキシメチルアクリレート、ヒドロキシメチルメタクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート等の、アクリル酸と炭素数1〜10のグリコールとのモノエステル化物、およびエポキシエステル化合物等のヒドロキシル基含有モノマー。
(e)アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、酢酸ビニル、グリシジルアクリレート、グリシジルメタクリレート。
Moreover, as an acrylic resin, the oligomer and polymer obtained by superposing | polymerizing the monomer which has photopolymerizability are suitable. As a photopolymerizable monomer, the monomer shown to (a)-(e) below is mentioned, for example. One kind of the monomers shown in (a) to (e) may be used alone or in combination of two or more kinds, and the resulting oligomer or polymer may be used.
(A) α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, citraconic acid, maleic acid and fumaric acid, and anhydrides and half-esterified products thereof.
(B) α, β-unsaturated carboxylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, methyl methacrylate, and ethyl methacrylate.
(C) Styrenes such as styrene, α-methylstyrene, and p-vinyltoluene.
(D) Hydroxyl group content such as monoesterified product of acrylic acid and glycol having 1 to 10 carbon atoms such as hydroxymethyl acrylate, hydroxymethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and epoxy ester compound monomer.
(E) Acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl acetate, glycidyl acrylate, glycidyl methacrylate.

〈樹脂組成物の調製〉
球状シリカ粒子およびシリカナノ粒子を樹脂に配合して、本発明の樹脂組成物を調製する。この際、樹脂中にシリカナノ粒子を均一に分散させるため、予め、シリカナノ粒子を有機溶媒に分散させたスラリーを調製し、このスラリーに樹脂と球状シリカ粒子とを混合するとよい。例えば、シリカナノ粒子の粉体を使用する場合には、まず、シリカナノ粒子の粉体を有機溶媒に分散させてスラリーを調製する。次に、該スラリーに樹脂を混合し、有機溶媒を除去した後、球状シリカ粒子を混合すればよい。また、湿式法で製造されたシリカナノ粒子の分散液を使用する場合には、必要に応じて該分散液の溶媒置換を行い、それに樹脂を混合して溶媒を除去した後、球状シリカ粒子を混合すればよい。
<Preparation of resin composition>
The resin composition of the present invention is prepared by blending spherical silica particles and silica nanoparticles with a resin. At this time, in order to uniformly disperse the silica nanoparticles in the resin, a slurry in which the silica nanoparticles are dispersed in an organic solvent is prepared in advance, and the resin and the spherical silica particles are mixed with the slurry. For example, when silica nanoparticle powder is used, first, a slurry is prepared by dispersing silica nanoparticle powder in an organic solvent. Next, after mixing resin with this slurry and removing an organic solvent, spherical silica particles may be mixed. In addition, when using a dispersion of silica nanoparticles produced by a wet method, solvent replacement of the dispersion is performed as necessary, and after mixing the resin and removing the solvent, the spherical silica particles are mixed. do it.

シリカナノ粒子を分散させる有機溶媒には、メチルエチルケトン(MEK)、N−メチル−2ピロリドン(NMP)、アセトン、メチルセロソルブ、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、シクロヘキサノン、酢酸エチル、テトラヒドロフラン(THF)、イソプロピルアルコール(IPA)、エーテル、塩化メチレン、キシレン等を用いればよい。   Examples of the organic solvent in which silica nanoparticles are dispersed include methyl ethyl ketone (MEK), N-methyl-2pyrrolidone (NMP), acetone, methyl cellosolve, dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), cyclohexanone, ethyl acetate. , Tetrahydrofuran (THF), isopropyl alcohol (IPA), ether, methylene chloride, xylene, or the like may be used.

このように、樹脂にシリカナノ粒子を分散させた後、球状シリカ粒子を加え、熱ロール、ニーダー等で溶融混練して、本発明の樹脂組成物とすればよい。本発明の樹脂組成物を用い、トランスファーモールド法、インジェクションモールド法、滴下封止法等により、ICチップ等の電子部品を封止することができる。   Thus, after dispersing silica nanoparticles in a resin, spherical silica particles are added and melt kneaded with a hot roll, a kneader or the like to obtain the resin composition of the present invention. Using the resin composition of the present invention, an electronic component such as an IC chip can be sealed by a transfer molding method, an injection molding method, a dropping sealing method, or the like.

本発明の樹脂組成物におけるシリカフィラーの配合量、つまり、球状シリカ粒子およびシリカナノ粒子の合計配合量は、耐熱性、耐吸湿性を向上させるという観点から多い方が望ましい。例えば、球状シリカ粒子およびシリカナノ粒子の合計配合量を、樹脂組成物の全体重量を100重量%とした場合の85重量%以上とするとよい。両者の合計配合量を87重量%以上、さらには90重量%以上とするとより好適である。   The blending amount of the silica filler in the resin composition of the present invention, that is, the total blending amount of the spherical silica particles and the silica nanoparticles is preferably large from the viewpoint of improving heat resistance and moisture absorption resistance. For example, the total amount of the spherical silica particles and the silica nanoparticles may be 85% by weight or more when the total weight of the resin composition is 100% by weight. It is more preferable that the total blending amount of both is 87% by weight or more, further 90% by weight or more.

ここで、シリカナノ粒子の配合量は、球状シリカ粒子の配合量の1重量%以上40重量%以下とすることが望ましい。1重量%未満および40重量%を超える場合には、樹脂中でシリカフィラーの最密充填状態を形成し難いからである。5重量%以上25重量%以下とするとより好適である。   Here, the blending amount of the silica nanoparticles is desirably 1% by weight or more and 40% by weight or less of the blending amount of the spherical silica particles. This is because when the content is less than 1% by weight and exceeds 40% by weight, it is difficult to form a close-packed state of silica filler in the resin. It is more preferable that the content be 5 wt% or more and 25 wt% or less.

本発明の樹脂組成物は、球状シリカ粒子、シリカナノ粒子、樹脂に加え、さらに硬化剤、硬化触媒を含む態様が望ましい。硬化剤には、既に公知の硬化剤を用いればよく、例えば、脂肪族ポリアミン、ポリアミドポリアミン、脂環族ポリアミン、芳香族ポリアミン等のアミン系硬化剤、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の無水物系硬化剤、ο−クレゾール、p−クレゾール、t−ブチルフェノール、クミルフェノール等のフェノール系硬化剤等が挙げられる。硬化触媒には、既に公知の硬化触媒を用いればよく、例えば、三級アミン、四級アンモニウム塩、イミゾダール化合物、ホウ素化合物、有機金属錯塩等が挙げられる。さらにまた、必要に応じて、カーボンブラック、ベンガラ等の着色剤、天然ワックス、合成ワックス等の離型剤、シリコーンオイル、イオン補足剤、難燃剤、反応性希釈剤、ゴム等の低応力添加剤等の種々の添加剤を配合してもよい。   The resin composition of the present invention desirably has an embodiment containing a curing agent and a curing catalyst in addition to spherical silica particles, silica nanoparticles, and a resin. As the curing agent, a known curing agent may be used. For example, amine curing agents such as aliphatic polyamine, polyamide polyamine, alicyclic polyamine, aromatic polyamine, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl Examples thereof include anhydride-based curing agents such as hexahydrophthalic anhydride, and phenol-based curing agents such as o-cresol, p-cresol, t-butylphenol, and cumylphenol. As the curing catalyst, a known curing catalyst may be used, and examples thereof include tertiary amines, quaternary ammonium salts, imizodal compounds, boron compounds, and organometallic complex salts. Furthermore, if necessary, colorants such as carbon black and bengara, mold release agents such as natural wax and synthetic wax, silicone oil, ion scavenger, flame retardant, reactive diluent, low stress additives such as rubber You may mix | blend various additives, such as.

上記実施形態に基づいて、本発明の樹脂組成物を調製した。また、比較のため、シリカナノ粒子を含まない樹脂組成物をも調製した。以下、実施例と比較例と対比しながら説明する。   Based on the above embodiment, the resin composition of the present invention was prepared. For comparison, a resin composition not containing silica nanoparticles was also prepared. Hereinafter, description will be made while comparing the Examples and the Comparative Examples.

(1)実施例1
まず、シリカ粉体(日本アエロジル株式会社製「AEROSIL−50」、比表面積50m2/g、平均粒子径30nm)に表面処理を施して、シリカナノ粒子の粉体とした。表面処理は、シランカップリング剤のエポキシシラン(信越化学工業株式会社製「KBM−403」、以下同様。)を用いて行った。使用したエポキシシラン量は、シリカ粉体の5重量%とした。
(1) Example 1
First, silica powder (“AEROSIL-50” manufactured by Nippon Aerosil Co., Ltd., specific surface area 50 m 2 / g, average particle diameter 30 nm) was subjected to surface treatment to obtain silica nanoparticle powder. The surface treatment was performed using an epoxy silane (“KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd., hereinafter the same) as a silane coupling agent. The amount of epoxysilane used was 5% by weight of the silica powder.

次に、得られたシリカナノ粒子の粉体をMEKに分散させて、シリカナノ粒子の固形分が10重量%のスラリーを調製した。調製したスラリーを連続式ミルで攪拌し、シリカナノ粒子を一次粒子の状態に分散させた。このスラリー100重量部に、液状エポキシ樹脂(東都化成株式会社製「ZX−1059」)10重量部を加えた。そして、攪拌しながら120℃に加熱し、真空引きすることによりMEKを除去し、シリカナノ粒子の固形分が50重量%の液状組成物を得た。   Next, the obtained silica nanoparticle powder was dispersed in MEK to prepare a slurry having a silica nanoparticle solid content of 10 wt%. The prepared slurry was stirred with a continuous mill to disperse silica nanoparticles in a primary particle state. 10 parts by weight of a liquid epoxy resin (“ZX-1059” manufactured by Toto Kasei Co., Ltd.) was added to 100 parts by weight of the slurry. And it heated at 120 degreeC, stirring, MEK was removed by evacuating, and the liquid composition whose solid content of a silica nanoparticle is 50 weight% was obtained.

次に、VMC法で製造されたシリカ粉体(株式会社アドマテックス製「アドマファインSC6200−SEB」、平均粒子径2μm、真球度0.95)に表面処理を施して、第一の球状シリカ粒子の粉体とした。また、VMC法で製造されたシリカ粉体(株式会社アドマテックス製「アドマファインSC1050−SEP」、平均粒子径0.2μm、真球度0.95)に表面処理を施して、第二の球状シリカ粒子の粉体とした。表面処理は、いずれもエポキシシランを用いて行った。使用したエポキシシラン量は、第一の粉体ではシリカ粉体の0.2重量%、第二の粉体ではシリカ粉体の1.6重量%とした。   Next, the silica powder produced by the VMC method (“Admafine SC6200-SEB” manufactured by Admatechs Co., Ltd., average particle diameter 2 μm, sphericity 0.95) is subjected to surface treatment to obtain the first spherical silica. Particle powder was obtained. In addition, a silica powder (“Admafine SC1050-SEP” manufactured by Admatechs Co., Ltd., average particle size 0.2 μm, sphericity 0.95) manufactured by the VMC method is subjected to a surface treatment to obtain a second spherical shape. A powder of silica particles was obtained. All surface treatments were performed using epoxy silane. The amount of epoxysilane used was 0.2% by weight of silica powder for the first powder and 1.6% by weight of silica powder for the second powder.

そして、得られた上記液状組成物100重量部に、第一の球状シリカ粒子の粉体328重量部と、第二の球状シリカ粒子の粉体72重量部と、硬化触媒の2−PHZ(2−フェニル−4,5−ジヒドロキシメチルイミダゾール)2.5重量部とを混合し、60℃に加熱して、三本ロールで分散させた。すると、流動性のある樹脂組成物が得られた。得られた樹脂組成物の灰分測定を行ったところ、シリカフィラー固形分は89.2重量%であった。シリカフィラー中、シリカナノ粒子の配合量は、球状シリカ粒子の配合量の11.9重量%である。この樹脂組成物を120℃で3時間、さらに150℃で1時間保持すると硬化し、樹脂成形物が得られた。   Then, to 100 parts by weight of the obtained liquid composition, 328 parts by weight of powder of first spherical silica particles, 72 parts by weight of powder of second spherical silica particles, and 2-PHZ (2 of curing catalyst) -Phenyl-4,5-dihydroxymethylimidazole) 2.5 parts by weight was mixed, heated to 60 ° C., and dispersed with a three-roll. As a result, a fluid resin composition was obtained. When the ash content of the obtained resin composition was measured, the silica filler solid content was 89.2% by weight. In the silica filler, the compounding amount of the silica nanoparticles is 11.9% by weight of the compounding amount of the spherical silica particles. When this resin composition was held at 120 ° C. for 3 hours and further at 150 ° C. for 1 hour, it cured and a resin molded product was obtained.

(2)比較例1
実施例1で使用した液状エポキシ樹脂(東都化成株式会社製「ZX−1059」)100重量部と、第一の球状シリカ粒子の粉体601重量部と、第二の球状シリカ粒子の粉体132重量部と、硬化触媒の2−PHZ5重量部とを混合し、60℃に加熱して、三本ロールで分散させた。しかし、ロールは全く通らず、樹脂組成物を得ることはできなかった。本比較例1におけるシリカフィラー配合量は87.5重量%である。
(2) Comparative Example 1
100 parts by weight of a liquid epoxy resin (“ZX-1059” manufactured by Toto Kasei Co., Ltd.) used in Example 1, 601 parts by weight of powder of the first spherical silica particles, and powder 132 of the second spherical silica particles Part by weight and 5 parts by weight of 2-PHZ as a curing catalyst were mixed, heated to 60 ° C., and dispersed with a three roll. However, the roll did not pass at all, and a resin composition could not be obtained. The silica filler compounding amount in Comparative Example 1 is 87.5% by weight.

(3)実施例2
VMC法で製造されたシリカ粉体(株式会社アドマテックス製「アドマファインSC2500−SEF」、平均粒子径0.5μm、真球度0.95)に表面処理を施して、第三の球状シリカ粒子の粉体とした。表面処理は、エポキシシランを用いて行った。使用したエポキシシラン量は、シリカ粉体の0.6重量%とした。
(3) Example 2
Silica powder produced by the VMC method (“Admafine SC2500-SEF” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm, sphericity 0.95) is subjected to surface treatment to obtain third spherical silica particles. Of powder. The surface treatment was performed using epoxysilane. The amount of epoxysilane used was 0.6% by weight of the silica powder.

実施例1で調製したシリカナノ粒子を50重量%含む液状組成物100重量部に、第三の球状シリカ粒子の粉体358重量部と、硬化触媒の2−PHZ5重量部とを混合し、60℃に加熱して、三本ロールで分散させた。すると、流動性のある樹脂組成物が得られた。得られた樹脂組成物の灰分測定を行ったところ、シリカフィラー固形分は87.8重量%であった。シリカフィラー中、シリカナノ粒子の配合量は、球状シリカ粒子の配合量の13.3重量%である。この樹脂組成物を120℃で3時間、さらに150℃で1時間保持すると硬化し、樹脂成形物が得られた。   To 100 parts by weight of a liquid composition containing 50% by weight of silica nanoparticles prepared in Example 1, 358 parts by weight of powder of third spherical silica particles and 5 parts by weight of 2-PHZ as a curing catalyst were mixed, and 60 ° C. And dispersed with three rolls. As a result, a fluid resin composition was obtained. When the ash content of the obtained resin composition was measured, the silica filler solid content was 87.8% by weight. In the silica filler, the compounding amount of the silica nanoparticles is 13.3% by weight of the compounding amount of the spherical silica particles. When this resin composition was held at 120 ° C. for 3 hours and further at 150 ° C. for 1 hour, it cured and a resin molded product was obtained.

(4)比較例2
実施例1で使用した液状エポキシ樹脂(東都化成株式会社製「ZX−1059」)100重量部と、実施例2で使用した第三の球状シリカ粒子の粉体614重量部と、硬化触媒の2−PHZ5重量部とを混合し、60℃に加熱して、三本ロールで分散させた。しかし、ロールは全く通らず、樹脂組成物を得ることはできなかった。本比較例2におけるシリカフィラー配合量は85.4重量%である。
(4) Comparative Example 2
100 parts by weight of a liquid epoxy resin (“ZX-1059” manufactured by Toto Kasei Co., Ltd.) used in Example 1, 614 parts by weight of powder of third spherical silica particles used in Example 2, and 2 of the curing catalyst -5 parts by weight of PHZ was mixed, heated to 60 ° C, and dispersed with three rolls. However, the roll did not pass at all, and a resin composition could not be obtained. The amount of silica filler compounded in Comparative Example 2 is 85.4% by weight.

(5)実施例3
湿式法で得られたシリカゾルを溶媒置換し、さらにその溶媒をエポキシ樹脂で置換した液状組成物(hanse chenie社製「NANOPOX XP 0525」、シリカナノ粒子の固形分40重量%)100重量部に、実施例1で使用した第一の球状シリカ粒子の粉体328重量部と、第二の球状シリカ粒子の粉体72重量部と、硬化触媒の2−PHZ2.5重量部とを混合し、60℃に加熱して、三本ロールで分散させた。すると、流動性のある樹脂組成物が得られた。得られた樹脂組成物の灰分測定を行ったところ、シリカフィラー固形分は87.2重量%であった。シリカフィラー中、シリカナノ粒子の配合量は、球状シリカ粒子の配合量の10.0重量%である。この樹脂組成物を120℃で3時間、さらに150℃で1時間保持すると硬化し、樹脂成形物が得られた。
(5) Example 3
Into 100 parts by weight of a liquid composition (“NANOPOX XP 0525” manufactured by Hanse Chenie, solid content of silica nanoparticles 40% by weight) in which the silica sol obtained by the wet method was replaced with a solvent and the solvent was replaced with an epoxy resin. 328 parts by weight of the powder of the first spherical silica particles used in Example 1, 72 parts by weight of the powder of the second spherical silica particles, and 2.5 parts by weight of 2-PHZ of the curing catalyst were mixed, and 60 ° C. And dispersed with three rolls. As a result, a fluid resin composition was obtained. When the ash content of the obtained resin composition was measured, the silica filler solid content was 87.2% by weight. In the silica filler, the compounding amount of the silica nanoparticles is 10.0% by weight of the compounding amount of the spherical silica particles. When this resin composition was held at 120 ° C. for 3 hours and further at 150 ° C. for 1 hour, it cured and a resin molded product was obtained.

(6)比較例3
実施例3で使用した液状組成物(hanse chenie社製「NANOPOX XP 0525」)と同等の液状エポキシ樹脂(東都化成株式会社製「YDF−8170C」、BisFタイプ)100重量部と、実施例1で使用した第一の球状シリカ粒子の粉体601重量部と、第二の球状シリカ粒子の粉体132重量部と、硬化触媒の2−PHZ5重量部とを混合し、60℃に加熱して、三本ロールで分散させた。しかし、ロールは全く通らず、樹脂組成物を得ることはできなかった。本比較例3におけるシリカフィラー配合量は87.5重量%である。
(6) Comparative Example 3
In Example 1, 100 parts by weight of a liquid epoxy resin (“YDF-8170C”, BisF type manufactured by Toto Kasei Co., Ltd.) equivalent to the liquid composition used in Example 3 (“NANOPOX XP 0525” manufactured by Hanse Chenie) 601 parts by weight of the powder of the first spherical silica particles used, 132 parts by weight of the powder of the second spherical silica particles, and 5 parts by weight of 2-PHZ of the curing catalyst were mixed and heated to 60 ° C., Dispersed with three rolls. However, the roll did not pass at all, and a resin composition could not be obtained. The amount of silica filler compounded in Comparative Example 3 is 87.5% by weight.

(7)実施例4
湿式法で得られたシリカゾルを溶媒置換し、さらにその溶媒をモノマー(メタクリル酸2−ヒドロキシエチル)で置換した液状組成物(hanse chenie社製「NANOPOX XP 0746」、シリカナノ粒子の固形分50重量%)100重量部に、実施例1で使用した第一の球状シリカ粒子の粉体328重量部と、第二の球状シリカ粒子の粉体72重量部とを混合し、60℃に加熱して、三本ロールで分散させた。すると、流動性のある樹脂組成物が得られた。得られた樹脂組成物の灰分測定を行ったところ、シリカフィラー固形分は89.6重量%であった。シリカフィラー中、シリカナノ粒子の配合量は、球状シリカ粒子の配合量の12.5重量%である。
(7) Example 4
A liquid composition (“NANOPOX XP 0746” manufactured by Hanse Chenie), in which the silica sol obtained by the wet method is substituted with a solvent and further substituted with a monomer (2-hydroxyethyl methacrylate), the solid content of silica nanoparticles is 50% by weight ) To 100 parts by weight, 328 parts by weight of the first spherical silica particle powder used in Example 1 and 72 parts by weight of the second spherical silica particle powder were mixed and heated to 60 ° C., Dispersed with three rolls. As a result, a fluid resin composition was obtained. When the ash content of the obtained resin composition was measured, the silica filler solid content was 89.6% by weight. In the silica filler, the compounding amount of the silica nanoparticles is 12.5% by weight of the compounding amount of the spherical silica particles.

(8)比較例4
メタクリル酸2−ヒドロキシエチル(関東化学株式会社製)100重量部と、実施例1で使用した第一の球状シリカ粒子の粉体601重量部と、第二の球状シリカ粒子の粉体132重量部とを混合し、60℃に加熱して、三本ロールで分散させた。しかし、ロールは全く通らず、樹脂組成物を得ることはできなかった。本比較例4におけるシリカフィラー配合量は88.0重量%である。
(8) Comparative Example 4
100 parts by weight of 2-hydroxyethyl methacrylate (manufactured by Kanto Chemical Co., Inc.), 601 parts by weight of powder of the first spherical silica particles used in Example 1, and 132 parts by weight of powder of the second spherical silica particles Were mixed, heated to 60 ° C., and dispersed with three rolls. However, the roll did not pass at all, and a resin composition could not be obtained. The amount of silica filler compounded in Comparative Example 4 is 88.0% by weight.

(9)まとめ
以上、実施例1〜4に示したように、本発明の樹脂組成物は、シリカフィラーを87重量%以上と多量に配合しても流動性を有し、かつ、良好な樹脂成形物を成形できることが確認された。一方、比較例1〜4に示したように、シリカナノ粒子を配合しない場合には、シリカフィラーを多量に配合した樹脂組成物を得ることができなかった。
(9) Summary As described above in Examples 1 to 4, the resin composition of the present invention has good fluidity even when the silica filler is blended in a large amount of 87% by weight or more, and is a good resin. It was confirmed that the molded product could be molded. On the other hand, as shown in Comparative Examples 1 to 4, when silica nanoparticles were not blended, a resin composition blended with a large amount of silica filler could not be obtained.

Claims (6)

平均粒子径0.1μm以上5μm以下、かつ、真球度0.8以上の球状シリカ粒子と、
平均粒子径1nm以上50nm以下のシリカナノ粒子と、
熱または光により硬化する硬化性樹脂、熱可塑性樹脂から選ばれる一種以上の樹脂と、
を含む樹脂組成物。
Spherical silica particles having an average particle size of 0.1 μm to 5 μm and a sphericity of 0.8 or more;
Silica nanoparticles having an average particle diameter of 1 nm to 50 nm,
One or more resins selected from a curable resin cured by heat or light, and a thermoplastic resin;
A resin composition comprising:
前記球状シリカ粒子は、シリコン粉末を燃焼して製造されたものである請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the spherical silica particles are produced by burning silicon powder. 前記球状シリカ粒子および前記シリカナノ粒子の合計配合量は、当該樹脂組成物の全体重量を100重量%とした場合の85重量%以上である請求項1に記載の樹脂組成物。   2. The resin composition according to claim 1, wherein the total amount of the spherical silica particles and the silica nanoparticles is 85 wt% or more when the total weight of the resin composition is 100 wt%. 前記シリカナノ粒子の配合量は、前記球状シリカ粒子の配合量の1重量%以上40重量%以下である請求項1に記載の樹脂組成物。   2. The resin composition according to claim 1, wherein the compounding amount of the silica nanoparticles is 1% by weight or more and 40% by weight or less of the compounding amount of the spherical silica particles. 前記樹脂は、エポキシ樹脂またはアクリル樹脂である請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the resin is an epoxy resin or an acrylic resin. さらに、硬化剤、硬化触媒を含む請求項1に記載の樹脂組成物。   The resin composition according to claim 1, further comprising a curing agent and a curing catalyst.
JP2004218703A 2004-07-27 2004-07-27 Method for producing resin composition Active JP4460968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004218703A JP4460968B2 (en) 2004-07-27 2004-07-27 Method for producing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004218703A JP4460968B2 (en) 2004-07-27 2004-07-27 Method for producing resin composition

Publications (2)

Publication Number Publication Date
JP2006036915A true JP2006036915A (en) 2006-02-09
JP4460968B2 JP4460968B2 (en) 2010-05-12

Family

ID=35902261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218703A Active JP4460968B2 (en) 2004-07-27 2004-07-27 Method for producing resin composition

Country Status (1)

Country Link
JP (1) JP4460968B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074970A (en) * 2006-09-21 2008-04-03 Admatechs Co Ltd Resin composition for optical diffusion
JP2009535818A (en) * 2006-06-30 2009-10-01 インテル・コーポレーション Application of smart polymer composite to integrated circuit packaging
WO2009136542A1 (en) * 2008-05-08 2009-11-12 富士高分子工業株式会社 Thermally conductive resin composition
JP2010513690A (en) * 2006-12-22 2010-04-30 スリーエム イノベイティブ プロパティズ カンパニー Method for producing dispersion
JP2011174035A (en) * 2009-12-21 2011-09-08 Sekisui Chem Co Ltd Resin composition and molding
JP2011178858A (en) * 2010-02-26 2011-09-15 Sekisui Chem Co Ltd Resin composition and formed article
JP2011178857A (en) * 2010-02-26 2011-09-15 Sekisui Chem Co Ltd Resin composition and molding
JP2012062422A (en) * 2010-09-17 2012-03-29 Sekisui Chem Co Ltd Resin composition and molded body
JP2012089750A (en) * 2010-10-21 2012-05-10 Hitachi Chem Co Ltd Thermosetting resin composition for sealing and filling semiconductor, and semiconductor device
JP2012206886A (en) * 2011-03-29 2012-10-25 Admatechs Co Ltd Inorganic powder mixture and filler-containing composition
EP2669717A1 (en) 2012-05-30 2013-12-04 Canon Kabushiki Kaisha Resin composition, formed article, and mirror
JP2014195106A (en) * 2006-11-15 2014-10-09 Hitachi Chemical Co Ltd Led device manufacturing method and led device
JP2015096611A (en) * 2006-11-15 2015-05-21 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element using the resin composition, and optical semiconductor device
JP2017503057A (en) * 2014-01-02 2017-01-26 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Film containing nanoparticle filler
JP2017066337A (en) * 2015-10-02 2017-04-06 京セラ株式会社 Epoxy resin composition for coil impregnation and mold coil
WO2018070237A1 (en) * 2016-10-14 2018-04-19 日立化成株式会社 Resin composition for sealing, electronic component device and method for producing electronic component device
WO2019245026A1 (en) * 2018-06-21 2019-12-26 日立化成株式会社 Thermosetting resin composition, prepreg, laminated sheet, printed-wiring board and semiconductor package, and method for producing thermosetting resin composition
JP2020066695A (en) * 2018-10-25 2020-04-30 日立化成株式会社 Liquid resin composition and electronic component device and method for producing the same
CN113930049A (en) * 2021-10-20 2022-01-14 河南大学 Spherical nano silicon dioxide epoxy resin slurry and preparation method thereof

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535818A (en) * 2006-06-30 2009-10-01 インテル・コーポレーション Application of smart polymer composite to integrated circuit packaging
JP2008074970A (en) * 2006-09-21 2008-04-03 Admatechs Co Ltd Resin composition for optical diffusion
US9387608B2 (en) 2006-11-15 2016-07-12 Hitachi Chemical Company, Ltd. Thermosetting resin composition for light reflection, method for manufacturing the resin composition and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP2015096611A (en) * 2006-11-15 2015-05-21 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element using the resin composition, and optical semiconductor device
JP2014195106A (en) * 2006-11-15 2014-10-09 Hitachi Chemical Co Ltd Led device manufacturing method and led device
US10381533B2 (en) 2006-11-15 2019-08-13 Hitachi Chemical Company, Ltd. Optical semiconductor element mounting substrate and optical semiconductor device using thermosetting resin composition for light reflection
JP2010513690A (en) * 2006-12-22 2010-04-30 スリーエム イノベイティブ プロパティズ カンパニー Method for producing dispersion
US8324313B2 (en) 2008-05-08 2012-12-04 Fuji Polymer Industries Co., Ltd. Thermally conductive resin composition
CN101981130B (en) * 2008-05-08 2013-04-17 富士高分子工业株式会社 Thermally conductive resin composition
JPWO2009136542A1 (en) * 2008-05-08 2011-09-08 富士高分子工業株式会社 Thermally conductive resin composition
WO2009136508A1 (en) * 2008-05-08 2009-11-12 富士高分子工業株式会社 Heat conductive resin composition
WO2009136542A1 (en) * 2008-05-08 2009-11-12 富士高分子工業株式会社 Thermally conductive resin composition
JP2011174035A (en) * 2009-12-21 2011-09-08 Sekisui Chem Co Ltd Resin composition and molding
JP2011178857A (en) * 2010-02-26 2011-09-15 Sekisui Chem Co Ltd Resin composition and molding
JP2011178858A (en) * 2010-02-26 2011-09-15 Sekisui Chem Co Ltd Resin composition and formed article
JP2012062422A (en) * 2010-09-17 2012-03-29 Sekisui Chem Co Ltd Resin composition and molded body
JP2012089750A (en) * 2010-10-21 2012-05-10 Hitachi Chem Co Ltd Thermosetting resin composition for sealing and filling semiconductor, and semiconductor device
US9431314B2 (en) 2010-10-21 2016-08-30 Hitachi Chemical Company, Ltd Thermosetting resin composition for sealing packing of semiconductor, and semiconductor device
JP2012206886A (en) * 2011-03-29 2012-10-25 Admatechs Co Ltd Inorganic powder mixture and filler-containing composition
CN103450616A (en) * 2012-05-30 2013-12-18 佳能株式会社 Resin composition, formed article, and mirror
US9335441B2 (en) 2012-05-30 2016-05-10 Canon Kabushiki Kaisha Resin composition, formed article, and mirror
US20130321942A1 (en) * 2012-05-30 2013-12-05 Canon Kabushiki Kaisha Resin composition, formed article, and mirror
EP2669717A1 (en) 2012-05-30 2013-12-04 Canon Kabushiki Kaisha Resin composition, formed article, and mirror
JP2017503057A (en) * 2014-01-02 2017-01-26 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Film containing nanoparticle filler
JP2017066337A (en) * 2015-10-02 2017-04-06 京セラ株式会社 Epoxy resin composition for coil impregnation and mold coil
WO2018070237A1 (en) * 2016-10-14 2018-04-19 日立化成株式会社 Resin composition for sealing, electronic component device and method for producing electronic component device
WO2019245026A1 (en) * 2018-06-21 2019-12-26 日立化成株式会社 Thermosetting resin composition, prepreg, laminated sheet, printed-wiring board and semiconductor package, and method for producing thermosetting resin composition
JPWO2019245026A1 (en) * 2018-06-21 2021-08-02 昭和電工マテリアルズ株式会社 Method for manufacturing thermosetting resin composition, prepreg, laminated board, printed wiring board and semiconductor package, and thermosetting resin composition
JP7420071B2 (en) 2018-06-21 2024-01-23 株式会社レゾナック Thermosetting resin composition, prepreg, laminate, printed wiring board, semiconductor package, and method for producing thermosetting resin composition
JP2020066695A (en) * 2018-10-25 2020-04-30 日立化成株式会社 Liquid resin composition and electronic component device and method for producing the same
JP7404620B2 (en) 2018-10-25 2023-12-26 株式会社レゾナック Liquid resin composition, electronic component device, and manufacturing method thereof
CN113930049A (en) * 2021-10-20 2022-01-14 河南大学 Spherical nano silicon dioxide epoxy resin slurry and preparation method thereof

Also Published As

Publication number Publication date
JP4460968B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
JP4460968B2 (en) Method for producing resin composition
JP4903989B2 (en) Composition for printed circuit boards
JPH0372570A (en) Resin composition
JP5553749B2 (en) Amorphous siliceous powder, production method and use thereof
JP4279521B2 (en) Metal oxide powder for epoxy resin composition for semiconductor encapsulation, its production method, and epoxy resin composition for semiconductor encapsulation
JP4053152B2 (en) Thermosetting resin composition and semiconductor device thereof
JP5112157B2 (en) Silica fine particles and silica fine particle-containing resin composition
JP2007197655A (en) Microparticle-containing composition and method for producing the composition
JP5259500B2 (en) Amorphous siliceous powder and its production method and application
JP2004161900A (en) Basic silica powder, its preparation method, and resin composition
JP3483817B2 (en) Spherical inorganic powder and its use
JP5526027B2 (en) Amorphous siliceous powder, method for producing the same, resin composition, and semiconductor sealing material
JP2017088468A (en) Spherical calcium fluoride
JP2004018803A (en) Epoxy resin composition and semiconductor device
JP5767863B2 (en) Spherical alumina powder, method for producing the same, and composition using the same
JP2006206722A (en) Lowly reactive silica powder, epoxy resin composition given by using the same, and epoxy resin molded product
JP6347644B2 (en) Surface-modified silica powder and slurry composition
JP2005171209A (en) Filler-containing resin composition and its production method
JP3721285B2 (en) Spherical inorganic powder and its use
JP2000319633A (en) Silica filter for epoxy resin sealing material
JP7257384B2 (en) Powder composed of organic-inorganic composite particles
JP4131620B2 (en) Silica powder and its use
JP2012240900A (en) Spherical silica powder, slurry using the same and resin composition
JP5265434B2 (en) Silica-containing organic composition and method for producing the same
JP3334336B2 (en) Molding resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4460968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250