JP2012240900A - Spherical silica powder, slurry using the same and resin composition - Google Patents

Spherical silica powder, slurry using the same and resin composition Download PDF

Info

Publication number
JP2012240900A
JP2012240900A JP2011115510A JP2011115510A JP2012240900A JP 2012240900 A JP2012240900 A JP 2012240900A JP 2011115510 A JP2011115510 A JP 2011115510A JP 2011115510 A JP2011115510 A JP 2011115510A JP 2012240900 A JP2012240900 A JP 2012240900A
Authority
JP
Japan
Prior art keywords
spherical silica
silica powder
value
less
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011115510A
Other languages
Japanese (ja)
Other versions
JP5719690B2 (en
Inventor
Teruhiro Aikyo
輝洋 相京
Hisashi Ezaki
寿 江崎
Nobuaki Abe
展明 阿部
Yoshiyuki Iizuka
慶至 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2011115510A priority Critical patent/JP5719690B2/en
Publication of JP2012240900A publication Critical patent/JP2012240900A/en
Application granted granted Critical
Publication of JP5719690B2 publication Critical patent/JP5719690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a resin cured material which has extremely high flowability when being highly filled into a resin and in which spherical silica powder is properly dispersed by using the spherical silica powder having a particular particle size and a particular isolated silanol group.SOLUTION: The spherical silica powder satisfies following conditions: (α) the particle size distribution has two frequency maximum values A (μm) and B (μm) wherein the frequency maximum value A has a range of 0.40-1.5 μm and the maximum value B has a range of 0.03-0.07 μm, and the volume frequency value of A is 3.0-7.0% and the volume frequency value of B is 1.0-9.0%; and (β) the spherical silica powder having a particle size of less than 0.1 μm is 5-30 mass% and the concentration of the isolated silanol (isolated OH) group of the powder is less than 1.0/nm. It is preferable that the cumulative volume 10% value is 0.04-0.1 μm and the cumulative 90% value is 1.4-2.0 μm.

Description

本発明は、球状シリカ粉末に関する。 The present invention relates to spherical silica powder.

近年、電子機器の高速化、小型軽量化、高機能化に伴い、高密度実装・配線微細化に対応したプリント配線板が開発されている。高密度化された多層プリント配線板では、絶縁層と銅配線やICチップとの熱膨張率の違いによるクラック発生、製造時の耐熱性等の問題が生じやすくなるため、従来にも増して、低熱膨張率化等の熱特性の向上が求められている。この要求に対しては、シリカ等の無機フィラーをエポキシ樹脂等のマトリックス樹脂に高充填する方法、剛直な樹脂を利用する等の方法が知られている。しかし、フィラーを樹脂に高充填すると、流動性及び成形性が著しく低下する。そのため、ナノからサブミクロン領域において、異なる粒度分布を有するフィラーを用いた最密充填状態による流動性及び成形性の向上が提案されている。 In recent years, with the increase in speed, size, weight, and functionality of electronic devices, printed wiring boards that support high-density mounting and wiring miniaturization have been developed. In a multilayer printed wiring board with a high density, problems such as cracking due to the difference in thermal expansion coefficient between the insulating layer and the copper wiring or IC chip, heat resistance during manufacturing, etc. are likely to occur. There is a demand for improvement in thermal characteristics such as a low coefficient of thermal expansion. In response to this requirement, a method of highly filling an inorganic filler such as silica in a matrix resin such as an epoxy resin, or a method using a rigid resin is known. However, when the filler is highly filled in the resin, the fluidity and moldability are significantly reduced. Therefore, in the nano to submicron region, improvement of fluidity and moldability by close packing using fillers having different particle size distributions has been proposed.

例えば、特許文献1では、平均粒子径0.1μm以上5μm以下、かつ真球度0.8以上の球状シリカ粒子と平均粒子径1nm以上50nm以下のシリカナノ粒子とを有機溶媒に分散させてなるスラリー組成物、ワニス組成物が開示されている。この場合、数珠状に連なるヒュームドシリカの配合に伴う流動性低下及びゾルゲルシリカの残存シラノール基に伴うエポキシ樹脂の硬化不良が生じるため、最密充填状態の形成に伴う流動性の向上までには至っていない。特許文献2では、シリカ粉末の平均粒子径D50が2.0μm以下、100%相当径D100が5.0μm以下であり、実質的にストラクチャー構造を形成していないシリカ超微粉が、シラン化合物含有の有機溶剤中に20体積%以上分散させてなる高濃度シリカスラリーが開示されている。しかしながら、D50、D100の規定のみでは、流動性の改善効果は得られていなかった。 For example, in Patent Document 1, a slurry in which spherical silica particles having an average particle size of 0.1 μm to 5 μm and a sphericity of 0.8 or more and silica nanoparticles having an average particle size of 1 nm to 50 nm are dispersed in an organic solvent. Compositions and varnish compositions are disclosed. In this case, the fluidity decreases due to the blending of fumed silica that is arranged in a bead shape and the epoxy resin is poorly cured due to the residual silanol groups of the sol-gel silica. Not reached. In Patent Document 2, the silica powder has an average particle diameter D50 of 2.0 μm or less, a 100% equivalent diameter D100 of 5.0 μm or less, and a silica ultrafine powder that does not substantially form a structure structure contains a silane compound. A high-concentration silica slurry is disclosed that is dispersed in an organic solvent by 20% by volume or more. However, the fluidity improvement effect was not obtained only by the definition of D50 and D100.

特開2006−36916号公報JP 2006-36916 A 特開2003−54935号公報JP 2003-54935 A

本発明は、上記を鑑みてなされたものであり、特定の粒度分布と特定の孤立シラノール基を有する球状シリカ粉末を用いることにより、樹脂へ高充填した際に樹脂組成物の流動性が極めて高く、かつ球状シリカ粉末が良好に分散してなる樹脂硬化物を提供することを目的とする。 The present invention has been made in view of the above, and by using a spherical silica powder having a specific particle size distribution and a specific isolated silanol group, the fluidity of the resin composition is extremely high when the resin is highly filled. And it aims at providing the resin hardened | cured material which spherical silica powder disperses | distributes favorably.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)下記の条件を満たすことを特徴とする球状シリカ粉末。
(α)粒度分布に2ヵ所の頻度極大値A(μm)、B(μm)を有し、頻度極大値Aは0.40〜1.5μm、頻度極大値Bは0.03〜0.07μmの範囲であり、Aの体積頻度値が3.0〜7.0%、Bの体積頻度値が1.0〜9.0%。
(β)0.1μm未満の球状シリカ粉末が5〜30質量%であり、その粉末の孤立シラノール(孤立OH)基の濃度が1.0個/nm未満。
(2)累積体積10%値が0.04〜0.1μm、累積体積90%値が1.4〜2.0μmである前記(1)に記載の球状シリカ粉末。
(3)0.1〜4.0μmの球状シリカ粉末が70〜95質量%である前記(1)又は(2)に記載の球状シリカ粉末。
(4)前記(1)〜(3)のいずれか一項に記載の球状シリカ粉末と溶媒を含有してなるスラリー。
(5)前記(4)に記載のスラリーを用いた樹脂組成物。
The present invention employs the following means in order to solve the above problems.
(1) A spherical silica powder characterized by satisfying the following conditions.
(Α) The particle size distribution has two frequency maximum values A (μm) and B (μm), the frequency maximum value A is 0.40 to 1.5 μm, and the frequency maximum value B is 0.03 to 0.07 μm. The volume frequency value of A is 3.0 to 7.0%, and the volume frequency value of B is 1.0 to 9.0%.
(Β) The spherical silica powder of less than 0.1 μm is 5 to 30% by mass, and the concentration of isolated silanol (isolated OH) groups in the powder is less than 1.0 / nm 2 .
(2) The spherical silica powder according to (1), wherein the cumulative volume 10% value is 0.04 to 0.1 μm and the cumulative volume 90% value is 1.4 to 2.0 μm.
(3) The spherical silica powder according to (1) or (2), wherein the spherical silica powder of 0.1 to 4.0 μm is 70 to 95% by mass.
(4) A slurry comprising the spherical silica powder according to any one of (1) to (3) and a solvent.
(5) A resin composition using the slurry according to (4).

特定の粒度分布と特定の孤立シラノール基を有する球状シリカ粉末を用いることにより、樹脂へ高充填した際に樹脂組成物の流動性が極めて高く、かつ球状シリカ粉末が良好に分散してなる樹脂硬化物を提供することができる。 By using spherical silica powder having a specific particle size distribution and specific isolated silanol groups, the resin composition has extremely high fluidity when the resin is highly filled, and the spherical silica powder is well dispersed. Things can be provided.

本発明は、下記条件を満たすことを特徴とする球状シリカ粉末である。
(α)粒度分布に2ヵ所の頻度極大値A(μm)、B(μm)を有し、頻度極大値Aは0.40〜1.5μm、頻度極大値Bは0.03〜0.07μmの範囲であり、Aの体積頻度値が3.0〜7.0%、Bの体積頻度値が1.0〜9.0%。
(β)0.1μm未満の球状シリカ粉末が5〜30質量%であり、その粉末の孤立シラノール(孤立OH)基の濃度が1.0個/nm未満。
The present invention is a spherical silica powder characterized by satisfying the following conditions.
(Α) The particle size distribution has two frequency maximum values A (μm) and B (μm), the frequency maximum value A is 0.40 to 1.5 μm, and the frequency maximum value B is 0.03 to 0.07 μm. The volume frequency value of A is 3.0 to 7.0%, and the volume frequency value of B is 1.0 to 9.0%.
(Β) The spherical silica powder of less than 0.1 μm is 5 to 30% by mass, and the concentration of isolated silanol (isolated OH) groups in the powder is less than 1.0 / nm 2 .

球状シリカ粉末の頻度極大値Aは0.40〜1.5μmであり、1.5μmを超えると、シリカ凝集物が発生し、外観が不良になる可能性があり、0.4μm未満では、高い流動性が得られない可能性がある。好ましい範囲は0.6〜1.3μmである。頻度極大値Bは0.030〜0.070μmであり、0.070μmを超えると、最密充填形成に伴い発現する高い流動性が損なわれる可能性があり、0.030〜0.070μm未満であると、比表面積の増加に伴い分散系が不安定状態となるため、粒子同士が凝集し、流動性が損なわれる。好ましい範囲は0.040〜0.060μmである。
Aの体積頻度値が7.0%を超えた場合、Bの体積頻度値が1.0%未満の場合では、シリカの最大充填率増加に伴う高い流動性が得られない。また、Aの体積頻度値が3.0%未満の場合、Bの体積頻度値が9.0%を超えた場合では、比表面積の増加に伴い分散系が不安定状態となるため、粒子同士が凝集し、流動性が損なわれる。Aの体積頻度値の好ましい範囲は4.0〜6.0%、Bの体積頻度値の好ましい範囲は2.0〜6.0%である。
0.1μm未満の球状シリカ粉末の含有量は、流動性、分散性の観点より、5〜30質量%であり、好ましくは8〜20質量%である。0.1μm未満の球状シリカ粉末に存在する孤立シラノール(孤立OH)基の濃度が1.0個/nm未満である。0.1μm未満の球状シリカ粉末に存在する孤立シラノール(孤立OH)基の濃度が1.0個/nm以上では、表面処理後に残存した親水性である孤立シラノール基が樹脂硬化阻害を起こし、外観不良になる可能性がある。好ましい孤立シラノール基の濃度は0.5個/nm以下である。
The frequency maximum value A of the spherical silica powder is 0.40 to 1.5 μm. If it exceeds 1.5 μm, silica agglomerates may be generated and the appearance may be deteriorated, and if it is less than 0.4 μm, it is high. Fluidity may not be obtained. A preferred range is 0.6 to 1.3 μm. The frequency maximum value B is 0.030 to 0.070 μm, and if it exceeds 0.070 μm, the high fluidity that appears with the close-packed formation may be impaired, and it is less than 0.030 to 0.070 μm. If it exists, the dispersion system becomes unstable as the specific surface area increases, so that the particles aggregate to impair fluidity. A preferred range is 0.040 to 0.060 μm.
When the volume frequency value of A exceeds 7.0%, when the volume frequency value of B is less than 1.0%, high fluidity associated with an increase in the maximum filling rate of silica cannot be obtained. In addition, when the volume frequency value of A is less than 3.0%, and when the volume frequency value of B exceeds 9.0%, the dispersion system becomes unstable as the specific surface area increases. Flocculates and fluidity is impaired. A preferable range of the volume frequency value of A is 4.0 to 6.0%, and a preferable range of the volume frequency value of B is 2.0 to 6.0%.
The content of the spherical silica powder of less than 0.1 μm is 5 to 30% by mass, preferably 8 to 20% by mass, from the viewpoints of fluidity and dispersibility. The concentration of isolated silanol (isolated OH) groups present in the spherical silica powder of less than 0.1 μm is less than 1.0 / nm 2 . When the concentration of isolated silanol (isolated OH) groups present in the spherical silica powder of less than 0.1 μm is 1.0 / nm 2 or more, the hydrophilic isolated silanol groups remaining after the surface treatment cause resin curing inhibition, There is a possibility of appearance failure. The concentration of the isolated silanol group is preferably 0.5 / nm 2 or less.

球状シリカ粉末の粒度分布、累積体積10%値、累積体積90%値は、動的光散乱式粒度測定機に基づく値であり、粒度測定機として、例えば、(「UPA-EX150」日機装株式会社製)にて測定することができる。測定に際しては、粒度分布の解析は、0.003−6.5μmの径範囲を43分割して行った。   The particle size distribution, the accumulated volume 10% value, and the accumulated volume 90% value of the spherical silica powder are values based on a dynamic light scattering particle size measuring machine. For example, ("UPA-EX150" Nikkiso Co., Ltd.) Manufactured). In the measurement, the particle size distribution was analyzed by dividing the 0.003-6.5 μm diameter range into 43 parts.

0.1μm以下の表面処理球状シリカ粉末の捕集方法は、セルロース混合エステルタイプフィルター「2−3043−24」(ミリポア社製)、PTFEフィルター「J010A025A」(ADVANTEC社製)セルロース混合エステルタイプフィルター「A010A025A」(ADVANTEC社製)等の0.1μm径のメンブレンフィルターを用いられる。その中でも、特に、セルロース混合エステルタイプフィルター「A010A025A」(ADVANTEC社製)が好ましい。0.1μm以上の粒子が存在しないことの確認方法は捕集したシリカ粉末の粒度分布測定を行えばよい。 The method of collecting the surface-treated spherical silica powder of 0.1 μm or less is as follows. Cellulose mixed ester type filter “2-3043-24” (manufactured by Millipore), PTFE filter “J010A025A” (manufactured by ADVANTEC), cellulose mixed ester type filter “ A membrane filter having a diameter of 0.1 μm such as “A010A025A” (manufactured by ADVANTEC) is used. Among these, a cellulose mixed ester type filter “A010A025A” (manufactured by ADVANTEC) is particularly preferable. What is necessary is just to perform the particle size distribution measurement of the collected silica powder as the confirmation method that the particle | grains of 0.1 micrometer or more do not exist.

本発明における0.1μm未満の球状シリカ粉末に存在する孤立シラノール(孤立OH)基濃度の定量は、酸塩基滴定、赤外吸収分析(IR)、核磁気共鳴分析、カールフィッシャー電量滴定法等の既知の方法にて行われる。特に、FT−IR(拡散反射法)により、3740cm−1付近の孤立シラノール基由来の吸収ピークの大きさを測定し、シラノール基濃度が既知の標準物質の吸収ピークの大きさから0.1μm以下の粉末に存在する孤立シラノール基濃度を求める方法が好ましい。 The quantification of the isolated silanol (isolated OH) group concentration present in the spherical silica powder of less than 0.1 μm in the present invention includes acid-base titration, infrared absorption analysis (IR), nuclear magnetic resonance analysis, Karl Fischer coulometric titration method and the like. This is done by a known method. In particular, the size of an absorption peak derived from an isolated silanol group near 3740 cm −1 is measured by FT-IR (diffuse reflection method), and 0.1 μm or less from the size of the absorption peak of a standard substance having a known silanol group concentration. A method for determining the concentration of isolated silanol groups present in the powder is preferred.

本発明の球状シリカ粉末は、粒子を最密充填させる観点から、累積体積10%値(以下、D10という)が0.04〜0.1μm、累積体積90%値(以下、D90という)が1.4〜2.0μmの範囲であることが好ましい。D10が0.04μm未満であると、比表面積が増加するため、流動性が悪くなる可能性がある。D10が0.1μmを超えたり、D90が1.4μm未満であると、粒度分布の範囲が狭いため、最密充填に伴う高い流動性の効果が得られない場合がある。D90が2.0μmを超えると、球状シリカ粉末を用いた樹脂硬化物中にシリカ粒子の凝集に伴うツブ(塊)が生じる可能性がある。 Spherical silica powder of the present invention, from the viewpoint of close-packed particles, 10% cumulative volume value (hereinafter, referred to as D 10) is 0.04 to 0.1 [mu] m, the cumulative volume of 90% value (hereinafter, referred to as D 90) Is preferably in the range of 1.4 to 2.0 μm. When D 10 is less than 0.04 μm, the specific surface area increases, and thus the fluidity may be deteriorated. If D 10 exceeds 0.1 μm or D 90 is less than 1.4 μm, the range of the particle size distribution is narrow, so that the high fluidity effect associated with close-packing may not be obtained. If D 90 of greater than 2.0 .mu.m, there is a possibility that the grains due to aggregation of the silica particles in the resin cured product with a spherical silica powder (mass) occurs.

本発明の球状シリカ粉末は、表面処理が施されていることが望ましい。表面処理を予め施すことで、シリカ粒子の凝集を抑制することができ、樹脂組成物中に球状シリカ粉末を良好に分散させることができる。表面処理は、シラン系、チタネート系、アルミネート系の各種カップリング剤、エポキシ樹脂、シリコーンオイル、アルキルシラザン類等を用いて行うことができる。例えば、シランカップリング剤による表面処理は、球状シリカ粉末を処理容器内で浮遊層等を形成させた状態で気化させたシランカップリング剤と反応させればよい。アルキルシラザン類による表面処理は、シリカ粉末を処理容器内で浮遊層等を形成させた状態で気化させたアルキルシラザン類とシラノール基を反応させ、余剰分のアルキルシラザン類は加熱により揮発させればよい。 The spherical silica powder of the present invention is preferably subjected to a surface treatment. By performing the surface treatment in advance, aggregation of silica particles can be suppressed, and spherical silica powder can be favorably dispersed in the resin composition. The surface treatment can be carried out using various silane, titanate, and aluminate coupling agents, epoxy resins, silicone oils, alkylsilazanes and the like. For example, the surface treatment with the silane coupling agent may be performed by reacting the spherical silica powder with a silane coupling agent vaporized in a state where a floating layer or the like is formed in the treatment container. Surface treatment with alkylsilazanes can be carried out by reacting alkylsilazane vaporized in a state where a floating layer or the like is formed in a processing vessel with a silanol group, and surplus alkylsilazanes are volatilized by heating. Good.

球状シリカ粉末を表面処理するシランカップリング剤の量は、球状シリカ粉末とシランカップリング剤の合計量に対して、内割で0.1質量%以上7質量%以下であることが好ましい。さらに好ましくは、0.3質量%以上5質量%以下が好ましい。シランカップリング剤の使用量が前記の上限値を超えると、余剰のシランカップリング剤の影響で吸湿率が上昇する場合があり、前記の下限値未満であると、樹脂との密着性が損なわれる場合がある。   It is preferable that the amount of the silane coupling agent for surface-treating the spherical silica powder is 0.1% by mass or more and 7% by mass or less based on the total amount of the spherical silica powder and the silane coupling agent. More preferably, 0.3 mass% or more and 5 mass% or less are preferable. If the amount of silane coupling agent used exceeds the upper limit, moisture absorption may increase due to the influence of excess silane coupling agent, and if it is less than the lower limit, adhesion to the resin is impaired. May be.

本発明の球状シリカ粉末の製造方法は、特に限定しないが、例えば、金属粉末スラリーを製造炉で可燃性ガスと助燃性ガスとからなる高温火炎中に供給し、該火炎中で該金属粉末を酸化させることにより製造された粉末を分級処理して得られる。 The method for producing the spherical silica powder of the present invention is not particularly limited. For example, a metal powder slurry is supplied into a high-temperature flame composed of a combustible gas and an auxiliary combustion gas in a production furnace, and the metal powder is contained in the flame. It is obtained by classifying the powder produced by oxidation.

球状シリカ粉末含有スラリーについて説明する。
球状シリカ粉末は、水又は有機溶媒を用いたスラリーとして、好適に使用することができる。球状シリカ粉末を分散させる有機溶媒としては、その種類が特に限定されるものではない。樹脂に応じて選択すればよい。例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル等の極性溶媒が用いられる。
その中でも特に、メチルエチルケトンが好ましい。
The spherical silica powder-containing slurry will be described.
The spherical silica powder can be suitably used as a slurry using water or an organic solvent. The type of the organic solvent in which the spherical silica powder is dispersed is not particularly limited. What is necessary is just to select according to resin. For example, polar solvents such as methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, and ethyl acetate are used.
Of these, methyl ethyl ketone is particularly preferable.

球状シリカ粉末含有スラリーの分散処理は、ボールミル、超音波分散機、各種ミキサー、高圧ホモジナイザー等の機器を使用して行えばよい。尚、スラリーの変性を防ぐため、窒素雰囲気下等の非酸化性雰囲気下で製造を行うことが望ましい。 The dispersion treatment of the spherical silica powder-containing slurry may be performed using a device such as a ball mill, an ultrasonic disperser, various mixers, or a high-pressure homogenizer. In order to prevent the slurry from being modified, it is desirable to perform the production in a non-oxidizing atmosphere such as a nitrogen atmosphere.

スラリーに含まれる球状シリカ粉末の含有量は特に制限はないが、樹脂組成物の成形性の観点から50〜85質量%であることが好ましい。   Although content of the spherical silica powder contained in a slurry does not have a restriction | limiting in particular, It is preferable that it is 50-85 mass% from a viewpoint of the moldability of a resin composition.

樹脂組成物について説明する。
シリカ含有スラリーを用いて、半導体パッケージ基板や層間絶縁フィルム等の樹脂基板を製造する場合には、樹脂としてエポキシ樹脂を採用することが好ましい。
The resin composition will be described.
When manufacturing a resin substrate such as a semiconductor package substrate or an interlayer insulating film using the silica-containing slurry, it is preferable to employ an epoxy resin as the resin.

樹脂組成物に用いるエポキシ樹脂は、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノキシ型エポキシ樹脂等が挙げられる。これらの中の1種類を単独で用いることもできるし、異なる重要分子量を有する2種類以上を併用もでき、1種類または2種類以上することもできる。
これらエポキシ樹脂中でも特にビスフェノールF型エポキシ樹脂が好ましい。
The epoxy resin used in the resin composition is not particularly limited, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, and phenoxy type epoxy resin. Can be mentioned. One of these can be used alone, two or more having different important molecular weights can be used in combination, and one or two or more can be used.
Among these epoxy resins, bisphenol F type epoxy resin is particularly preferable.

本発明の樹脂組成物は、公知の硬化剤を用いればよいが、フェノール系硬化剤を使用することができる。フェノール系硬化剤としてはフェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ポリビニルフェノール類などを単独あるいは2種以上組み合わせて使用することができる。   Although the resin composition of this invention should just use a well-known hardening | curing agent, a phenol type hardening | curing agent can be used. As the phenolic curing agent, a phenol novolac resin, an alkylphenol novolac resin, polyvinylphenols and the like can be used alone or in combination of two or more.

前記フェノール硬化剤の配合量は、エポキシ樹脂との当量比(フェノール性水酸基当量/エポキシ基当量)が1.0未満、0.1以上が好ましい。これにより、未反応のフェノール硬化剤の残留がなくなり、吸湿耐熱性が向上する。   As for the compounding quantity of the said phenol hardening | curing agent, the equivalent ratio (phenolic hydroxyl group equivalent / epoxy group equivalent) with an epoxy resin is less than 1.0, and 0.1 or more are preferable. As a result, there remains no unreacted phenol curing agent, and the moisture absorption heat resistance is improved.

樹脂組成物に配合される球状シリカ粉末の量は、耐熱性、熱膨張率の観点から、樹脂組成物の全体質量に対して、80質量%以上であることが望ましい。 The amount of the spherical silica powder blended in the resin composition is desirably 80% by mass or more based on the total mass of the resin composition from the viewpoint of heat resistance and thermal expansion coefficient.

実施例1−21 比較例1−11
金属粉末スラリー法で製造された球状シリカ粉末(電気化学工業社製「SFP−30M」)を分級処理して得られた球状シリカ粉末に、表面処理を施して、表面処理球状シリカ粉末とした。表面処理には、シランカップリング剤の3−グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製「KBM−403」)を用いた。シランカップリング剤の使用量は、球状シリカ粉体とシランカップリング剤の合計量に対して、内割で0.5質量%とした。
同様に、金属粉末スラリー法で製造された球状ナノシリカ粉末(電気化学工業社製「UFP−30」)を分級処理して得られた球状ナノシリカ粉末に、表面処理を施して、表面改質された球状ナノシリカ粉末とした。表面処理は、シリル化剤のヘキサメチルジシラザン(信越化学工業株式会社製「HMDS」)を用いた。HMDSの使用量は、球状ナノシリカ粉末とHMDSの合計量に対して、内割で3質量%とした。次いで、得られた球状シリカ粉末と球状ナノシリカ粉末をメチルエチルケトン(MEK)に分散させて、固形分濃度が80質量%のスラリーを調製した。それらの配合量を表1〜3に示す。なお、球状シリカ粉末と球状ナノシリカ粉末の平均球形度については、すべて0.90以上であった。平均球形度は、実体顕微鏡(ニコン社製商品名「モデルSMZ−10型」)等にて撮影した粒子像を画像解析装置(マウンテック社製商品名「MacView」)に取り込み、写真から粒子の投影面積(A)と周囲長(PM)から測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとなるので、試料の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、個々の粒子の真円度は、真円度=A/B=A×4π/(PM)となる。このようにして得られた任意の粒子200個の真円度を求め、その平均値を二乗したものを平均球形度とした。
Example 1-21 Comparative Example 1-11
The spherical silica powder obtained by classifying the spherical silica powder produced by the metal powder slurry method (“SFP-30M” manufactured by Denki Kagaku Kogyo Co., Ltd.) was subjected to surface treatment to obtain a surface-treated spherical silica powder. For the surface treatment, 3-glycidoxypropyltrimethoxysilane (“KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent was used. The amount of the silane coupling agent used was 0.5% by mass with respect to the total amount of the spherical silica powder and the silane coupling agent.
Similarly, the spherical nanosilica powder obtained by classifying the spherical nanosilica powder produced by the metal powder slurry method (“UFP-30” manufactured by Denki Kagaku Kogyo Co., Ltd.) was subjected to surface treatment to be surface-modified. Spherical nanosilica powder was used. For the surface treatment, hexamethyldisilazane (“HMDS” manufactured by Shin-Etsu Chemical Co., Ltd.) as a silylating agent was used. The amount of HMDS used was 3% by mass with respect to the total amount of spherical nanosilica powder and HMDS. Subsequently, the obtained spherical silica powder and spherical nano silica powder were dispersed in methyl ethyl ketone (MEK) to prepare a slurry having a solid content concentration of 80% by mass. Their blending amounts are shown in Tables 1-3. The average sphericity of the spherical silica powder and the spherical nanosilica powder was all 0.90 or more. The average sphericity is obtained by capturing a particle image taken with a stereomicroscope (trade name “Model SMZ-10” manufactured by Nikon Corporation) into an image analyzer (trade name “MacView” manufactured by Mountech Co., Ltd.) and projecting the particles from the photograph. Measured from area (A) and perimeter (PM). If the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle is A / B, so a perfect circle having the same perimeter as the perimeter of the sample (PM) Assuming that PM = 2πr and B = πr 2 , B = π × (PM / 2π) 2 , and the roundness of each particle is roundness = A / B = A × 4π / (PM 2 ) The roundness of 200 arbitrary particles thus obtained was determined, and the average sphericity was obtained by squaring the average value.

エポキシ樹脂としてフェノールノボラック型エポキシ樹脂「EPICLON N−830」(大日本インキ化学工業株式会社製、エポキシ当量165g/eq)10質量%、硬化剤としてノボラック型フェノール樹脂「PSM−4261」(群栄化学工業株式会社製、水酸基当量106g/eq、軟化点80℃)5質量%、硬化促進剤として2−エチル−4−メチルイミダゾール0.2質量%を得られたシリカ含有スラリー組成物100質量%に溶解し、樹脂組成物(エポキシ樹脂ワニス)を調製した。この樹脂組成物を基材に塗布し、温度150℃、2時間乾燥してMEKを除去し、樹脂硬化物を得た。得られた樹脂組成物の流動性、分散性及び樹脂硬化物の外観を以下に示す方法に従って評価した。それらの評価結果を表1〜3に示す。   Phenol novolac type epoxy resin “EPICLON N-830” (manufactured by Dainippon Ink & Chemicals, Inc., epoxy equivalent 165 g / eq) 10% by mass as an epoxy resin, novolak type phenol resin “PSM-4261” (Gunei Chemical Co., Ltd.) as a curing agent To the 100% by mass of the silica-containing slurry composition obtained by 5% by mass, hydroxyl group equivalent 106 g / eq, softening point 80 ° C., manufactured by Kogyo Co., Ltd. and 0.2% by mass of 2-ethyl-4-methylimidazole as a curing accelerator. It melt | dissolved and the resin composition (epoxy resin varnish) was prepared. This resin composition was applied to a substrate and dried at a temperature of 150 ° C. for 2 hours to remove MEK to obtain a cured resin. The fluidity and dispersibility of the obtained resin composition and the appearance of the cured resin were evaluated according to the following methods. The evaluation results are shown in Tables 1-3.

次に、以下の方法にて、0.1μm未満の球状シリカ粉末を捕集した。3.0gの球状シリカ含有スラリーに対して、27gのメチルエチルケトン(MEK)を投入後、分散処理を行い、該スラリーを0.1μm径のセルロース混合エステルタイプメンブレンフィルター「A010A025A」(ADVANTEC社製)により0.1μm以下の粒子を濾別した。次に、濾別後のスラリーを乾燥後、粒度分布測定を行い、0.1μm以上の粒子がないことを確認した。その後、粉末中の炭素量をC/Sアナライザー(LECO社製)を用いて測定した。 Next, spherical silica powder of less than 0.1 μm was collected by the following method. After adding 27 g of methyl ethyl ketone (MEK) to 3.0 g of spherical silica-containing slurry, dispersion treatment was performed, and the slurry was subjected to a cellulose mixed ester type membrane filter “A010A025A” having a diameter of 0.1 μm (manufactured by ADVANTEC). Particles of 0.1 μm or less were filtered off. Next, after drying the slurry after filtration, particle size distribution measurement was performed, and it was confirmed that there were no particles of 0.1 μm or more. Thereafter, the amount of carbon in the powder was measured using a C / S analyzer (manufactured by LECO).

さらに、0.1μm未満の球状シリカ粉末に存在する孤立シラノール(孤立OH)基の濃度を赤外吸収スペクトル分析装置Perkin Elmer社製商品名「Spectrum One」を用いた。測定方法は、まず標準試料を用いたバックグラウンド測定を行った後、試料の充填されたセルをセットし、スキャン数32回、波数3740[cm−1]の吸収スペクトルを測定した。 Furthermore, the concentration of isolated silanol (isolated OH) groups present in spherical silica powder of less than 0.1 μm was used as a product name “Spectrum One” manufactured by Perkin Elmer, Inc., an infrared absorption spectrum analyzer. In the measurement method, first, a background measurement using a standard sample was performed, then a cell filled with the sample was set, and an absorption spectrum of wave number 3740 [cm −1 ] was measured 32 times.

樹脂組成物及び樹脂硬化物の評価方法を以下の(1)〜(3)に示す。
(1)流動性
得られた樹脂組成物をB型粘度計(東機産業株式会社製:TVB−10)にて2rpm時(測定温度25 ℃)の粘度を測定した。この際、2.0Pa・s以上を不良とした。
(2)分散性
樹脂組成物をJIS− K5101に準拠して、幅90mm、長さ240mm、最大深さ100μmのグラインドゲージを用いることにより、分散性として評価した。
各符号は以下の通りである。
◎:1cm以上の筋(線状痕)が3本発生した位置の目盛りが3μm未満
○:1cm以上の筋(線状痕)が3本発生した位置の目盛りが5μm未満
△:1cm以上の筋(線状痕)が3本発生した位置の目盛りが5μm以上
×:1cm以上の筋(線状痕)が3本発生した位置の目盛りが10μm以上
(3)成形性/シリカ粒子の凝集物
得られた樹脂硬化物の面積1cm中に存在する10μm以上のシリカ粒子の凝集物の個数を表面形状検査システムKURASURF−PH(倉敷紡績株式会社製)を用いて、縞パターンを照射し位相差シフトを行うことで表面形状の凹凸を検出し、次の基準で成形性として評価した。
各符号は以下の評価基準である。
◎:10μm未満の凝集物なし
○:10μm未満の凝集物5個未満
×:10μm以上の凝集物5個以上
The evaluation methods of the resin composition and the cured resin product are shown in the following (1) to (3).
(1) Flowability The viscosity of the obtained resin composition at 2 rpm (measurement temperature 25 ° C.) was measured with a B-type viscometer (manufactured by Toki Sangyo Co., Ltd .: TVB-10). At this time, 2.0 Pa · s or more was regarded as defective.
(2) The dispersible resin composition was evaluated as dispersibility by using a grind gauge having a width of 90 mm, a length of 240 mm, and a maximum depth of 100 μm in accordance with JIS-K5101.
Each code is as follows.
◎: The scale at the position where 3 streaks (linear traces) of 1 cm or more are generated is less than 3 μm. ○: The scale at the position of 3 streaks (linear traces) of 3 cm or more is less than 5 μm. The scale where the three (linear traces) are generated is 5 μm or more × 1 cm or more where the scale where the three lines (linear traces) are 10 μm or more. (3) Formability / silica particle aggregate The number of aggregates of silica particles of 10 μm or more present in an area of 1 cm 3 of the cured resin product is irradiated with a fringe pattern using a surface shape inspection system KURASURF-PH (manufactured by Kurashiki Boseki Co., Ltd.), and phase difference shift is performed. As a result, surface irregularities were detected and evaluated as moldability according to the following criteria.
Each code is the following evaluation criteria.
A: No aggregate less than 10 μm ○: Less than 5 aggregates less than 10 μm ×: 5 or more aggregates greater than 10 μm

Figure 2012240900
Figure 2012240900

Figure 2012240900
Figure 2012240900

Figure 2012240900
Figure 2012240900

表1〜3の実施例および比較例の対比から明らかなように、本発明の球状シリカ粉末をエポキシ樹脂に高充填した際、極めて流動性の高いスラリー及びシリカ粒子が良好に分散してなる樹脂硬化物を得ることができる。   As is clear from the comparison of the examples and comparative examples in Tables 1 to 3, when the spherical silica powder of the present invention is highly filled in an epoxy resin, a slurry having extremely high fluidity and silica particles are well dispersed. A cured product can be obtained.

本発明の球状シリカ粉末を用いたスラリー、樹脂組成物は、例えば、半導体パッケージ基板や層間絶縁フィルム等の電子機器分野において、プリント配線板に使用することができる。
The slurry and resin composition using the spherical silica powder of the present invention can be used for printed wiring boards in the field of electronic equipment such as semiconductor package substrates and interlayer insulating films.

Claims (5)

下記の条件を満たすことを特徴とする球状シリカ粉末。
(α)粒度分布に2ヵ所の頻度極大値A(μm)、B(μm)を有し、頻度極大値Aは0.40〜1.5μm、頻度極大値Bは0.03〜0.07μmの範囲であり、Aの体積頻度値が3.0〜7.0%、Bの体積頻度値が1.0〜9.0%。
(β)0.1μm未満の球状シリカ粉末が5〜30質量%であり、その粉末の孤立シラノール(孤立OH)基の濃度が1.0個/nm未満。
A spherical silica powder characterized by satisfying the following conditions.
(Α) The particle size distribution has two frequency maximum values A (μm) and B (μm), the frequency maximum value A is 0.40 to 1.5 μm, and the frequency maximum value B is 0.03 to 0.07 μm. The volume frequency value of A is 3.0 to 7.0%, and the volume frequency value of B is 1.0 to 9.0%.
(Β) The spherical silica powder of less than 0.1 μm is 5 to 30% by mass, and the concentration of isolated silanol (isolated OH) groups in the powder is less than 1.0 / nm 2 .
累積体積10%値が0.04〜0.1μm、累積体積90%値が1.4〜2.0μmである請求項1に記載の球状シリカ粉末。 2. The spherical silica powder according to claim 1, wherein the cumulative volume 10% value is 0.04 to 0.1 μm and the cumulative volume 90% value is 1.4 to 2.0 μm. 0.1〜4.0μmの球状シリカ粉末が70〜95質量%である請求項1又は2に記載の球状シリカ粉末。 The spherical silica powder according to claim 1 or 2, wherein the spherical silica powder having a size of 0.1 to 4.0 µm is 70 to 95% by mass. 請求項1〜3のいずれか一項に記載の球状シリカ粉末と溶媒を含有してなるスラリー。 A slurry comprising the spherical silica powder according to any one of claims 1 to 3 and a solvent. 請求項4に記載のスラリーを用いた樹脂組成物。 A resin composition using the slurry according to claim 4.
JP2011115510A 2011-05-24 2011-05-24 Spherical silica powder, slurry used therefor, and resin composition Active JP5719690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115510A JP5719690B2 (en) 2011-05-24 2011-05-24 Spherical silica powder, slurry used therefor, and resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115510A JP5719690B2 (en) 2011-05-24 2011-05-24 Spherical silica powder, slurry used therefor, and resin composition

Publications (2)

Publication Number Publication Date
JP2012240900A true JP2012240900A (en) 2012-12-10
JP5719690B2 JP5719690B2 (en) 2015-05-20

Family

ID=47462981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115510A Active JP5719690B2 (en) 2011-05-24 2011-05-24 Spherical silica powder, slurry used therefor, and resin composition

Country Status (1)

Country Link
JP (1) JP5719690B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094679A1 (en) * 2011-12-21 2013-06-27 富士電機株式会社 Nanocomposite resin composition
WO2015114956A1 (en) * 2014-01-29 2015-08-06 三菱マテリアル株式会社 Synthetic amorphous silica powder and process for manufacturing same
JP2019167260A (en) * 2018-03-22 2019-10-03 富士ゼロックス株式会社 Silica composite particles and method for producing silica composite particles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200139A (en) * 1999-11-11 2001-07-24 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for semiconductor sealing
JP2001220494A (en) * 2000-02-08 2001-08-14 Mitsubishi Rayon Co Ltd Liquid epoxy resin sealing material and semiconductor device
JP2003137529A (en) * 2001-10-25 2003-05-14 Denki Kagaku Kogyo Kk Spherical inorganic powder and its application
JP2003176122A (en) * 2001-09-13 2003-06-24 Wacker Chemie Gmbh Silica with low silanol group content
JP2004002159A (en) * 2002-04-08 2004-01-08 Konica Minolta Holdings Inc Silica powder, silica dispersion, production method for silica dispersion, ink-jet recording paper, and method for producing ink-jet recording paper
JP2005119929A (en) * 2003-10-20 2005-05-12 Denki Kagaku Kogyo Kk Spherical inorganic powder and liquid sealant
JP2005148448A (en) * 2003-11-17 2005-06-09 Denki Kagaku Kogyo Kk Silica fine powder, method for manufacturing the same, and use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200139A (en) * 1999-11-11 2001-07-24 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for semiconductor sealing
JP2001220494A (en) * 2000-02-08 2001-08-14 Mitsubishi Rayon Co Ltd Liquid epoxy resin sealing material and semiconductor device
JP2003176122A (en) * 2001-09-13 2003-06-24 Wacker Chemie Gmbh Silica with low silanol group content
JP2003137529A (en) * 2001-10-25 2003-05-14 Denki Kagaku Kogyo Kk Spherical inorganic powder and its application
JP2004002159A (en) * 2002-04-08 2004-01-08 Konica Minolta Holdings Inc Silica powder, silica dispersion, production method for silica dispersion, ink-jet recording paper, and method for producing ink-jet recording paper
JP2005119929A (en) * 2003-10-20 2005-05-12 Denki Kagaku Kogyo Kk Spherical inorganic powder and liquid sealant
JP2005148448A (en) * 2003-11-17 2005-06-09 Denki Kagaku Kogyo Kk Silica fine powder, method for manufacturing the same, and use

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094679A1 (en) * 2011-12-21 2013-06-27 富士電機株式会社 Nanocomposite resin composition
WO2015114956A1 (en) * 2014-01-29 2015-08-06 三菱マテリアル株式会社 Synthetic amorphous silica powder and process for manufacturing same
US20170008772A1 (en) * 2014-01-29 2017-01-12 Mitsubishi Materials Corporation Synthetic amorphous silica powder and process for manufacturing same
JPWO2015114956A1 (en) * 2014-01-29 2017-03-23 三菱マテリアル株式会社 Synthetic amorphous silica powder and method for producing the same
US9745201B2 (en) * 2014-01-29 2017-08-29 Mitsubishi Materials Corporation Synthetic amorphous silica powder and process for manufacturing same
JP2019167260A (en) * 2018-03-22 2019-10-03 富士ゼロックス株式会社 Silica composite particles and method for producing silica composite particles

Also Published As

Publication number Publication date
JP5719690B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP6343041B2 (en) Thermally conductive paste and use thereof
JP6121845B2 (en) Surface-treated silica powder, slurry composition and resin composition using the same
TWI751632B (en) Inorganic particle-dispersed resin composition and method for producing inorganic particle-dispersed resin composition
TWI543312B (en) Method for manufacturing parts for laminated bodies and power semiconductor modules
TWI745158B (en) Method for producing silicon-containing oxide-coated aluminum nitride particles and method for producing exothermic resin composition
JP5719690B2 (en) Spherical silica powder, slurry used therefor, and resin composition
TWI632207B (en) Nanoparticle ink compositions, process and applications
JP6763391B2 (en) Resin composition, cured product, sealing film and sealing structure
Alam et al. Anti-corrosive performance of epoxy coatings containing various nano-particles for splash zone applications
KR101945056B1 (en) Conductive paste and method for preparing conductive paste
JP2005171208A (en) Filler and resin composition
JP2019176023A (en) Semiconductor-sealing resin composition and semiconductor device
JP5937403B2 (en) Slurry composition and resin composition using the same
JP6038064B2 (en) Surface-modified silica powder, slurry composition and resin composition using the same
JP2012077123A (en) Adhesive resin composition, cured product of the same, and adhesive film
JP6347644B2 (en) Surface-modified silica powder and slurry composition
JP5449860B2 (en) Method for producing surface-treated silica particles, surface-treated silica particles, epoxy resin composition, and semiconductor device
JP5101860B2 (en) Epoxy resin composition and semiconductor device
JP2005171209A (en) Filler-containing resin composition and its production method
JP2001220495A (en) Liquid epoxy resin sealing material and semiconductor device
JP2005022915A (en) Surface-modified spherical silica, method of manufacturing the same and resin composition for sealing
WO2016059980A1 (en) Liquid epoxy resin composition
WO2021010209A1 (en) Sealing resin sheet
WO2023162252A1 (en) Underfill material, semiconductor package and method for producing semiconductor package
JP2004127537A (en) Conductive thermosetting resin composition for electrode formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R151 Written notification of patent or utility model registration

Ref document number: 5719690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250