JP6121845B2 - Surface-treated silica powder, slurry composition and resin composition using the same - Google Patents

Surface-treated silica powder, slurry composition and resin composition using the same Download PDF

Info

Publication number
JP6121845B2
JP6121845B2 JP2013168327A JP2013168327A JP6121845B2 JP 6121845 B2 JP6121845 B2 JP 6121845B2 JP 2013168327 A JP2013168327 A JP 2013168327A JP 2013168327 A JP2013168327 A JP 2013168327A JP 6121845 B2 JP6121845 B2 JP 6121845B2
Authority
JP
Japan
Prior art keywords
silica powder
resin
resin composition
spherical silica
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013168327A
Other languages
Japanese (ja)
Other versions
JP2015036357A (en
Inventor
輝洋 相京
輝洋 相京
隆志 境
隆志 境
寿 江崎
寿 江崎
展明 阿部
展明 阿部
慶至 飯塚
慶至 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52686993&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6121845(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2013168327A priority Critical patent/JP6121845B2/en
Publication of JP2015036357A publication Critical patent/JP2015036357A/en
Application granted granted Critical
Publication of JP6121845B2 publication Critical patent/JP6121845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、シリカ粉末に関する。 The present invention relates to silica powder.

近年、電子機器の高速化、小型軽量化、高機能化に伴い、高密度実装・配線微細化に対応したプリント配線板が開発されている。多層ビルドアップ基板では、絶縁層と銅配線やICチップとの熱膨張率の違いによるクラック発生、製造時の耐熱性等の問題が生じ、微細配線の信頼性向上を目的として、従来にも増して、低熱膨張が要求されている。 In recent years, with the increase in speed, size, weight, and functionality of electronic devices, printed wiring boards that support high-density mounting and wiring miniaturization have been developed. Multilayer build-up boards have problems such as cracking due to differences in thermal expansion coefficient between insulating layers and copper wiring and IC chips, and heat resistance during manufacturing. Therefore, low thermal expansion is required.

基板の熱膨張率低減には、シリカ粉末などのフィラーをエポキシ樹脂等のマトリックス樹脂に高充填する方法、剛直な樹脂を利用する等の方法が知られている。しかし、フィラーを樹脂に高充填すると、流動性及び成形性が著しく低下する。更に、薄型化の場合、基板自体の剛性が低いため、絶縁信頼性が低下する問題があった。 In order to reduce the coefficient of thermal expansion of the substrate, there are known methods such as a method of highly filling a matrix resin such as an epoxy resin with a filler such as silica powder, and a method using a rigid resin. However, when the filler is highly filled in the resin, the fluidity and moldability are significantly reduced. Further, in the case of thinning, there is a problem that the insulation reliability is lowered because the rigidity of the substrate itself is low.

フィラーを樹脂に高充填かつ高流動させるために、粒度分布を調整して最密充填状態にすること、表面処理状態を制御することが有効である。特許文献1では、平均粒子径0.1μm以上5μm以下、かつ真球度0.8以上の球状シリカ粒子と平均粒子径1nm以上50nm以下のシリカナノ粒子とを有機溶媒に分散させてなるスラリー組成物、ワニス組成物が開示されている。この場合、粒度の適正化が不十分であり、最密充填状態の形成に伴う流動性の改善効果は乏しく、さらに、表面処理状態に関する記載がなく、問題解決までに至っていない。特許文献2では、平均粒子径D50、100%相当径D100が規定されているが、高流動性は実現されていない。 In order to cause the filler to be highly filled and flowable in the resin, it is effective to adjust the particle size distribution to obtain the closest packed state and to control the surface treatment state. In Patent Document 1, a slurry composition obtained by dispersing spherical silica particles having an average particle size of 0.1 μm to 5 μm and a sphericity of 0.8 or more and silica nanoparticles having an average particle size of 1 nm to 50 nm in an organic solvent. A varnish composition is disclosed. In this case, the optimization of the particle size is insufficient, the effect of improving the fluidity associated with the formation of the close-packed state is poor, and there is no description regarding the surface treatment state, and the problem has not been solved. In Patent Document 2, an average particle diameter D50 and a 100% equivalent diameter D100 are defined, but high fluidity is not realized.

シリカ粒子の粒子表面には反応サイトとして、シラノール基が存在しており、シランカップリング剤等の表面処理剤を用いた表面改質によって、樹脂に対する濡れ性が制御できることが知られている。すなわち、表面改質基量の制御が重要である。特許文献3では、シラザン類が特定量処理された塩基性シリカ粉体が開示されているが、処理量のみでは、不十分であった。 It is known that silanol groups exist as reaction sites on the particle surface of silica particles, and the wettability to the resin can be controlled by surface modification using a surface treatment agent such as a silane coupling agent. That is, it is important to control the amount of surface modifying groups. Patent Document 3 discloses a basic silica powder in which a specific amount of silazanes is treated, but the treatment amount alone is insufficient.

特開2006−36916号公報JP 2006-36916 A 特開2003−13002号公報JP 2003-13002 A 特開2004−161900号公報JP 2004-161900 A

本発明の目的は、球状シリカ粉末を樹脂へ高充填した際に、分散が良好で、硬化前の樹脂組成物の流動性が極めて高く、硬化後の樹脂組成物の基板強度が高い、球状シリカ粉末を提供することである。 It is an object of the present invention to provide a spherical silica powder that has good dispersion when the spherical silica powder is highly filled into the resin, the fluidity of the resin composition before curing is extremely high, and the substrate strength of the resin composition after curing is high. To provide powder.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)体積平均粒径が0.80〜1.3μm、粒度分布における累積体積10%値(D10)と累積体積50%値(D50)の比(D10/D50)=0.20〜0.50、BET比表面積値が3.5〜5.5m/g、疎水化度が1.0〜5.0%である球状シリカ粉末。
(2)前記(1)に記載の球状シリカ粉末を含有してなるスラリー組成物。
(3)前記(2)に記載のスラリー組成物を用いた樹脂組成物。
The present invention employs the following means in order to solve the above problems.
(1) The volume average particle diameter is 0.80 to 1.3 μm, and the ratio (D10 / D50) of the cumulative volume 10% value (D10) to the cumulative volume 50% value (D50) in the particle size distribution = 0.20 to 0.00. 50, spherical silica powder having a BET specific surface area value of 3.5 to 5.5 m 2 / g and a degree of hydrophobicity of 1.0 to 5.0%.
(2) A slurry composition comprising the spherical silica powder according to (1).
(3) A resin composition using the slurry composition according to (2).

本発明の球状シリカ粉末を用いることにより、樹脂へ高充填した際に、硬化前の樹脂組成物の流動性を極めて高くし、硬化後の樹脂組成物の基板強度を高くすることができる。 By using the spherical silica powder of the present invention, when the resin is highly filled, the fluidity of the resin composition before curing can be extremely increased, and the substrate strength of the resin composition after curing can be increased.

本発明は、体積平均粒径が0.80〜1.3μm、粒度分布における累積体積10%値(D10)と累積体積50%値(D50)の比(D10/D50)=0.20〜0.50、BET比表面積値が3.5〜5.5m/g、疎水化度が1.0〜5.0%である球状シリカ粉末である。
球状シリカ粉末の体積平均粒径は0.80〜1.3μmであって、1.3μmを超えると、シリカ凝集物が発生し、成型性が不良になり、0.80μm未満では、高い流動性が得られない。好ましい範囲は0.90〜1.2μmである。
In the present invention, the volume average particle size is 0.80 to 1.3 μm, and the ratio (D 10 / D 50 ) = 0 of the cumulative volume 10% value (D 10 ) and the cumulative volume 50% value (D 50 ) in the particle size distribution = 0. Spherical silica powder having a BET specific surface area value of 3.5 to 5.5 m 2 / g and a degree of hydrophobicity of 1.0 to 5.0%.
The volume average particle diameter of the spherical silica powder is 0.80 to 1.3 μm, and if it exceeds 1.3 μm, silica agglomerates are generated, resulting in poor moldability, and if it is less than 0.80 μm, high fluidity is obtained. Cannot be obtained. A preferred range is 0.90 to 1.2 μm.

球状シリカ粉末の粒度分布における累積体積10%値(D10)と累積体積50%値(D50)の比である(D10/D50)は0.20〜0.50である。(D10/D50)=0.50を超えると、球状シリカ粉末の最大充填率増加に伴う高い流動性が得られない。(D10/D50)=0.20未満であると、比表面積の増加に伴い系が熱力学的に不安定状態となるため、粒子同士が凝集し、流動性が損なわれる。好ましい、(D10/D50)の範囲は0.28〜0.42である。 The ratio (D 10 / D 50 ) of the cumulative volume 10% value (D 10 ) and the cumulative volume 50% value (D 50 ) in the particle size distribution of the spherical silica powder is 0.20 to 0.50. When (D 10 / D 50 ) = 0.50 is exceeded, high fluidity accompanying an increase in the maximum filling rate of the spherical silica powder cannot be obtained. When (D 10 / D 50 ) = 0.20 or less, the system becomes thermodynamically unstable with an increase in specific surface area, so that the particles aggregate and fluidity is impaired. A preferable range of (D 10 / D 50 ) is 0.28 to 0.42.

球状シリカ粉末の粒度分布、累積体積10%値(D10)、累積体積50%値(D50)は、レーザー回折光散乱法による粒度測定に基づく値であり、粒度分布測定機としては、例えば「モデルLS−230」(ベックマン・コールター社製) にて測定することができる。測定に際しては、溶媒には使用する有機溶剤を用い、前処理として、20秒間、超音波ホモジナイザーを用いて200Wの出力をかけて分散処理させる。また、PIDS(PolarizationIntensity Differential Scattering)濃度を45〜55質量%になるように調製した。なお、屈折率には、用いる溶剤の屈折率を用い、粉末の屈折率については粉末の材質の屈折率を考慮した。たとえば、非晶質シリカについては屈折率を1.50として測定した。なお、測定した粒度分布は、粒子径チャンネルがlog(μm)=0.04の幅になるよう変換した。 The particle size distribution, the cumulative volume 10% value (D 10 ), and the cumulative volume 50% value (D 50 ) of the spherical silica powder are values based on the particle size measurement by the laser diffraction light scattering method. It can be measured by “Model LS-230” (manufactured by Beckman Coulter). In the measurement, an organic solvent to be used is used as a solvent, and as a pretreatment, dispersion treatment is performed by applying an output of 200 W using an ultrasonic homogenizer for 20 seconds. Moreover, it prepared so that PIDS (PolarizationIntensity Differential Scattering) density | concentration might be 45-55 mass%. In addition, the refractive index of the solvent to be used was used for the refractive index, and the refractive index of the powder material was taken into consideration for the refractive index of the powder. For example, amorphous silica was measured with a refractive index of 1.50. The measured particle size distribution was converted so that the particle diameter channel had a width of log (μm) = 0.04.

球状シリカ粉末の比表面積は、BET法に基づく値であり、比表面積測定機としては、「Macsorb HM model−1208」(MACSORB社製)を用いて測定することができる。 The specific surface area of the spherical silica powder is a value based on the BET method, and can be measured using “Macsorb HM model-1208” (manufactured by MACSORB) as a specific surface area measuring machine.

球状シリカ粉末のBET比表面積値は、3.5〜5.5m/gである。3.5m/g未満では、粗大粒子の存在により成型性が不良になり、5.5m/gを超えると、シリカ凝集物が発生し、成型性が不良になる。 The BET specific surface area value of the spherical silica powder is 3.5 to 5.5 m 2 / g. If it is less than 3.5 m 2 / g, the moldability becomes poor due to the presence of coarse particles, and if it exceeds 5.5 m 2 / g, silica aggregates are generated and the moldability becomes poor.

本発明の球状シリカ粉末の疎水化度は、1.0〜5.0%である。5.0を超えると、スラリー組成物製造時に使用される表面処理剤との反応量が低下し、基板強度が低下することがある。1.0未満では、樹脂組成物の高い流動性、分散性が得られない。 The degree of hydrophobicity of the spherical silica powder of the present invention is 1.0 to 5.0%. When it exceeds 5.0, the reaction amount with the surface treating agent used at the time of slurry composition manufacture may fall, and board | substrate intensity | strength may fall. If it is less than 1.0, high fluidity and dispersibility of the resin composition cannot be obtained.

本発明を構成する球状シリカ粉末の製造方法は、例えば、金属粉末スラリーを製造炉で可燃性ガスと助燃性ガスとからなる高温火炎中に供給し、該火炎中で該金属粉末を気化、酸化させることにより得られる。 The method for producing the spherical silica powder constituting the present invention includes, for example, supplying a metal powder slurry into a high-temperature flame composed of a combustible gas and an auxiliary combustible gas in a production furnace, and vaporizing and oxidizing the metal powder in the flame. Is obtained.

前記球状シリカをスラリー組成物として使用する前にシランカップリング剤による表面処理を行う。表面処理を予め施し、表面状態に起因する疎水化度を1.0〜5.0%にすることが好ましい。これにより、シリカ粒子が有機溶媒中への分散性を向上した状態で、湿式表面処理を行うことで、更に、樹脂組成物中にシリカ粒子を良好に分散させることができる。シランカップリング剤として、N−フェニルアミノプロピルトリメトキシシラン等のアミノシラン、ビニルトリメトキシシラン等のビニルシラン、アクリロキシトリメトキシシラン等のアクリルシラン等が例示される。 A surface treatment with a silane coupling agent is performed before using the spherical silica as a slurry composition. It is preferable to perform a surface treatment in advance so that the degree of hydrophobicity resulting from the surface state is 1.0 to 5.0%. Thereby, a silica particle can be further disperse | distributed favorably in a resin composition by performing wet surface treatment in the state which the dispersibility to the organic solvent improved the silica particle. Examples of the silane coupling agent include aminosilanes such as N-phenylaminopropyltrimethoxysilane, vinylsilanes such as vinyltrimethoxysilane, and acrylic silanes such as acryloxytrimethoxysilane.

超音波噴霧器は、特に限定されず、公知のものを使用すれば良い。超音波噴霧時の噴霧サイズは、超音波振動の周波数に依存し、周波数が高くなればなるほど、噴霧サイズを小さくすることができる。好ましい噴霧サイズは1μm以下である。   An ultrasonic atomizer is not specifically limited, What is necessary is just to use a well-known thing. The spray size during ultrasonic spraying depends on the frequency of ultrasonic vibration, and the higher the frequency, the smaller the spray size. A preferred spray size is 1 μm or less.

超音波噴霧器を用いて、シリカ粒子表面に予め表面処理剤を吸着させた後、オートクレーブを用いた加圧処理を行う。処理温度は120−180℃、処理圧力は1−2atm、処理時間は1−3hrが好ましい。これにより、表面シラノール基と表面処理剤を均一に反応させることができる。 A surface treatment agent is adsorbed on the surface of silica particles in advance using an ultrasonic atomizer, and then pressure treatment using an autoclave is performed. The treatment temperature is preferably 120-180 ° C., the treatment pressure is 1-2 atm, and the treatment time is 1-3 hr. Thereby, a surface silanol group and a surface treating agent can be made to react uniformly.

スラリー組成物について、説明する。
球状シリカ粉末は、水、有機溶媒に分散させたスラリー組成物として、好適に使用することができる。シリカ粒子を分散させる有機溶媒としては、その種類が特に限定されるものではない。樹脂に応じて選択すればよい。例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル等の極性溶媒が用いられる。
その中でも特に、メチルエチルケトンが好ましい。
The slurry composition will be described.
The spherical silica powder can be suitably used as a slurry composition dispersed in water or an organic solvent. The type of the organic solvent in which the silica particles are dispersed is not particularly limited. What is necessary is just to select according to resin. For example, polar solvents such as methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, and ethyl acetate are used.
Of these, methyl ethyl ketone is particularly preferable.

スラリー組成物に含まれる球状シリカ粉末の含有量は、樹脂組成物の成形性の観点から72.0〜75.0質量%である。75.0質量%を超えると、分散処理ができない。72.0質量%未満の場合、樹脂ワニス粘度が低くなるため、成型性が低下する。   Content of the spherical silica powder contained in a slurry composition is 72.0-75.0 mass% from a viewpoint of the moldability of a resin composition. When it exceeds 75.0 mass%, a dispersion process cannot be performed. When the content is less than 72.0% by mass, the resin varnish viscosity becomes low, and the moldability deteriorates.

本発明のスラリー組成物は、CASSON粘度式における降伏値が0.4〜1.9Pa、見かけの粘性係数が、0.01〜0.05の範囲にあることが好ましい。 The slurry composition of the present invention preferably has a yield value in the CASSON viscosity formula of 0.4 to 1.9 Pa and an apparent viscosity coefficient of 0.01 to 0.05.

樹脂組成物について、説明する。
スラリー組成物を用いて、パッケージ用基板や層間絶縁フィルム等の樹脂基板を製造する場合には、樹脂としてエポキシ樹脂を採用することが好ましい。
The resin composition will be described.
When manufacturing a resin substrate such as a package substrate or an interlayer insulating film using the slurry composition, it is preferable to employ an epoxy resin as the resin.

樹脂組成物に用いるエポキシ樹脂は、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノキシ型エポキシ樹脂等が挙げられる。これらの中の1種類を単独で用いることもできるし、異なる重要分子量を有する2種類以上を併用もでき、1種類または2種類以上することもできる。
これらエポキシ樹脂中でも特にビスフェノールA型エポキシ樹脂が好ましい。
The epoxy resin used in the resin composition is not particularly limited, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, and phenoxy type epoxy resin. Can be mentioned. One of these can be used alone, two or more having different important molecular weights can be used in combination, and one or two or more can be used.
Among these epoxy resins, bisphenol A type epoxy resins are particularly preferable.

本発明の樹脂組成物は、公知の硬化剤を用いればよいが、フェノール系硬化剤を使用することができる。フェノール系硬化剤としてはフェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ポリビニルフェノール類などを単独あるいは2種以上組み合わせて使用することができる。   Although the resin composition of this invention should just use a well-known hardening | curing agent, a phenol type hardening | curing agent can be used. As the phenolic curing agent, a phenol novolac resin, an alkylphenol novolac resin, polyvinylphenols and the like can be used alone or in combination of two or more.

前記フェノール硬化剤の配合量は、エポキシ樹脂との当量比(フェノール性水酸基当量/エポキシ基当量)が1.0未満、0.1以上が好ましい。これにより、未反応のフェノール硬化剤の残留がなくなり、吸湿耐熱性が向上する。   As for the compounding quantity of the said phenol hardening | curing agent, the equivalent ratio (phenolic hydroxyl group equivalent / epoxy group equivalent) with an epoxy resin is less than 1.0, and 0.1 or more are preferable. As a result, there remains no unreacted phenol curing agent, and the moisture absorption heat resistance is improved.

樹脂組成物に配合される球状シリカ粉末の量は、耐熱性、熱膨張率の観点から、多いことが好ましい。樹脂組成物の全体質量に対して、80質量%以上であることが望ましい。 The amount of spherical silica powder blended in the resin composition is preferably large from the viewpoints of heat resistance and coefficient of thermal expansion. It is desirable that it is 80 mass% or more with respect to the whole mass of a resin composition.

実施例1〜10 比較例1〜10
(1)球状シリカ粉末の製造
最外部より、可燃性ガス供給管、助燃性ガス供給管、金属粉末スラリー供給管の順に組まれた三重巻管構造のバーナーを製造炉の頂部に設置する一方、製造炉の下部を捕集系(生成粉末をブロワーで吸引しバッグフィルターにて捕集)に接続されてなる装置を用い、金属酸化物粉末を製造した。なお、バーナーの外周には外周火炎を形成させる外周バーナーが更に3本設置されている。可燃性ガス供給管からLPGを10Nm3/hr、助燃性ガス供給管から酸素を15 Nm3/hr供給して、製造炉内に高温火炎を形成した。金属シリコン粉末をメチルアルコールに分散させて調製した濃度55質量%のスラリーを、スラリーポンプを用いて、金属粉末スラリー供給管から供給し、球状シリカ粉末をバグフィルターにて捕集した。
(2)シリカ含有スラリーの製造
金属粉末スラリー法で製造された球状シリカ粉末に超音波噴霧器を用いて、噴霧量2.5L/min、周波数1.6MHz、N圧力0.04MPaの条件にて、シリカ粉末に表面処理剤を噴霧した。その後、オートクレーブにシリカ粉末を充填し、2atm、180℃下で2hr処理し、表面処理球状シリカ粉末とした。表面処理剤は、N−フェニルトリメトキシシラン「KBM−573」(信越化学工業株式会社製、分子量255.4)を用いた。次いで、得られたシリカ粉末をメチルエチルケトン(MEK)溶媒に分散させて、固形分濃度が75質量%のスラリーを調製した。
(3)樹脂硬化物の作製
エポキシ樹脂としてビスフェノールA型エポキシ樹脂「EPICLON−850」(DIC株式会社製、エポキシ当量186g/eq)10.0質量部、硬化剤としてノボラック型フェノール樹脂「PSM−4261」(群栄化学工業株式会社製、水酸基当量106g/eq、軟化点80℃)5.9質量部、硬化促進剤として2−フェニルイミダゾール(2PZ)「四国化成工業株式会社製」0.2質量部、表面処理剤(SC剤)としてビニルトリメトキシシラン「KBM−1003」(信越化学工業株式会社製、分子量148.2)0.28質量部を得られたスラリー組成物100質量部に溶解し、樹脂組成物(エポキシ樹脂ワニス)を調製した。この樹脂組成物を基材にアプリケーターを用いて塗布し、50℃下で真空脱泡後、温度150℃、2時間乾燥し、樹脂硬化物を得た。得られた樹脂組成物の流動性、分散性及び樹脂硬化物の成型性を以下に示す方法に従って評価した。それらの評価結果を表1〜2に示す。
(4)実施例9
実施例1の表面処理において、ビニルトリメトキシシラン「KBM−1003」(信越化学工業株式会社製、分子量148.2)を用いた以外は実施例1と同様にして、樹脂硬化物を得た。
(5)実施例10
実施例1の表面処理において、メチルトリメトキシシラン「KBM−13」(信越化学工業株式会社製、分子量136.2)を用いた以外は実施例1と同様にして、樹脂硬化物を得た。
(6)比較例9
実施例1の表面処理において、超音波噴霧器を用いた表面処理のみを行い、オートクレーブによる処理を行わなかった以外は実施例1と同様にして、樹脂硬化物を得た。
(7)比較例10
実施例1の表面処理において、超音波噴霧器の代わりにスプレーを用いて表面処理を行った以外は、実施例1と同様にして、樹脂硬化物を得た。
Examples 1-10 Comparative Examples 1-10
(1) From the outermost part of the production of spherical silica powder, a burner having a triple-winding tube structure assembled in the order of a combustible gas supply pipe, an auxiliary combustible gas supply pipe, and a metal powder slurry supply pipe is installed at the top of the production furnace, A metal oxide powder was produced using an apparatus in which the lower part of the production furnace was connected to a collection system (product powder was sucked with a blower and collected with a bag filter). In addition, three outer peripheral burners for forming an outer peripheral flame are installed on the outer periphery of the burner. LPG was supplied at 10 Nm 3 / hr from the combustible gas supply pipe, and oxygen was supplied at 15 Nm 3 / hr from the auxiliary combustible gas supply pipe to form a high-temperature flame in the production furnace. A slurry having a concentration of 55% by mass prepared by dispersing metal silicon powder in methyl alcohol was supplied from a metal powder slurry supply pipe using a slurry pump, and spherical silica powder was collected by a bag filter.
(2) Manufacture of silica-containing slurry Using an ultrasonic sprayer on spherical silica powder manufactured by the metal powder slurry method, the spray amount is 2.5 L / min, the frequency is 1.6 MHz, and the N 2 pressure is 0.04 MPa. The surface treatment agent was sprayed on the silica powder. Thereafter, the autoclave was filled with silica powder and treated at 2 atm and 180 ° C. for 2 hr to obtain a surface-treated spherical silica powder. As the surface treating agent, N-phenyltrimethoxysilane “KBM-573” (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 255.4) was used. Next, the obtained silica powder was dispersed in a methyl ethyl ketone (MEK) solvent to prepare a slurry having a solid content concentration of 75% by mass.
(3) Production of cured resin: 10.0 parts by mass of bisphenol A type epoxy resin “EPICLON-850” (manufactured by DIC Corporation, epoxy equivalent 186 g / eq) as an epoxy resin, novolak type phenolic resin “PSM-4261 as a curing agent ”5.9 parts by mass (manufactured by Gunei Chemical Industry Co., Ltd., hydroxyl group equivalent 106 g / eq, softening point 80 ° C.), 2-phenylimidazole (2PZ)“ manufactured by Shikoku Kasei Kogyo Co., Ltd. ”0.2 mass as a curing accelerator Parts, vinyltrimethoxysilane “KBM-1003” (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 148.2) as a surface treating agent (SC agent) was dissolved in 100 parts by mass of the resulting slurry composition. A resin composition (epoxy resin varnish) was prepared. This resin composition was applied to a substrate using an applicator, vacuum degassed at 50 ° C., and then dried at a temperature of 150 ° C. for 2 hours to obtain a cured resin. The fluidity and dispersibility of the obtained resin composition and the moldability of the cured resin were evaluated according to the methods shown below. The evaluation results are shown in Tables 1-2.
(4) Example 9
In the surface treatment of Example 1, a cured resin was obtained in the same manner as in Example 1 except that vinyltrimethoxysilane “KBM-1003” (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 148.2) was used.
(5) Example 10
A cured resin was obtained in the same manner as in Example 1 except that methyltrimethoxysilane “KBM-13” (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 136.2) was used in the surface treatment of Example 1.
(6) Comparative Example 9
In the surface treatment of Example 1, only a surface treatment using an ultrasonic sprayer was performed, and a cured resin was obtained in the same manner as in Example 1 except that the treatment with an autoclave was not performed.
(7) Comparative Example 10
In the surface treatment of Example 1, a cured resin was obtained in the same manner as in Example 1 except that the surface treatment was performed using a spray instead of the ultrasonic atomizer.

表面処理シリカ、樹脂組成物及び樹脂硬化物の評価方法を以下の(1)〜(6)に示す。
(1)比表面積
球状シリカ粉末を1.0g計量し、測定用のセルに投入、前処理後、BET比表面積値を測定した。測定機は「Macsorb HM model−1208」(MACSORB社製)を使用した。以下の条件にて、前処理を行った。
脱気温度 :300℃
脱気時間 :18分
冷却時間 :4分
(2)疎水化度
イオン交換水50ml、試料となる表面処理シリカ粉末を0.2gビーカーに入れ、マグネティックスターラーで撹拌しながらビュレットからメタノールを滴下し、試料全量が沈んだ終点におけるメタノール水混合溶液中のメタノール質量分率を疎水化度とした。
(3)流動性
真空脱泡後の樹脂組成物をE型粘度計(東機産業株式会社製:TVE−10)にて20 rpm時(測定温度25 ℃)の粘度を測定した。この際、2.0Pa・s以上を不良とした。
(4)分散性
樹脂組成物をJIS− K5101に準拠して、幅90mm、長さ240mm、最大深さ100μmのグラインドゲージを用いることにより、分散性として評価した。
各符号は以下の通りである。
◎:1cm以上の筋(線状痕)が3本発生した位置の目盛りが5μm未満
○:1cm以上の筋(線状痕)が3本発生した位置の目盛りが8μm未満
△:1cm以上の筋(線状痕)が3本発生した位置の目盛りが8μm以上
×:1cm以上の筋(線状痕)が3本発生した位置の目盛りが10μm以上
(5)成形性/シリカ粒子の凝集物
得られた樹脂硬化物の面積1cm中に存在する10μm以上のシリカ粒子の凝集物の個数を表面形状検査システムKURASURF−PH(倉敷紡績株式会社製)を用いて、縞パターンを照射し位相差シフトを行うことで表面形状の凹凸を検出し、次の基準で成形性として評価した。
各符号は以下の評価基準である。
◎:10μm未満の凝集物なし
○:10μm未満の凝集物5個未満
×:10μm以上の凝集物5個以上
(6)曲げ強度
JIS規格C6481に基づき試験片(厚さ1.0mm×奥行25.0mm×幅75.0mm)を作製し、垂直方向の曲げ強度N/mmを評価した。
Evaluation methods for the surface-treated silica, the resin composition, and the cured resin are shown in the following (1) to (6).
(1) Specific surface area 1.0 g of spherical silica powder was weighed, put into a measurement cell, and after pretreatment, the BET specific surface area value was measured. The measuring machine used was “Macsorb HM model-1208” (manufactured by MACSORB). Pretreatment was performed under the following conditions.
Degassing temperature: 300 ° C
Degassing time: 18 minutes Cooling time: 4 minutes (2) Hydrophobic degree 50 ml of ion exchange water, surface-treated silica powder as a sample was put in a 0.2 g beaker, and methanol was added dropwise from a burette while stirring with a magnetic stirrer. The methanol mass fraction in the methanol water mixed solution at the end point where the total amount of the sample sank was defined as the degree of hydrophobicity.
(3) Fluidity The viscosity of the resin composition after vacuum defoaming was measured with an E-type viscometer (manufactured by Toki Sangyo Co., Ltd .: TVE-10) at 20 rpm (measurement temperature 25 ° C.). At this time, 2.0 Pa · s or more was regarded as defective.
(4) The dispersible resin composition was evaluated as dispersibility by using a grind gauge having a width of 90 mm, a length of 240 mm, and a maximum depth of 100 μm in accordance with JIS-K5101.
Each code is as follows.
◎: The scale where 3 streaks (linear traces) of 1 cm or more are generated is less than 5 μm. ○ The scale where 3 streaks (linear traces) of 3 cm or more are generated is less than 8 μm. The scale at the position where three (linear traces) are generated is 8 μm or more × 1 cm or more where the scale where three lines (linear traces) are generated is 10 μm or more. (5) Formability / silica particle aggregate obtained The number of aggregates of silica particles of 10 μm or more present in an area of 1 cm 3 of the cured resin product is irradiated with a fringe pattern using a surface shape inspection system KURASURF-PH (manufactured by Kurashiki Boseki Co., Ltd.), and phase difference shift is performed. As a result, surface irregularities were detected and evaluated as moldability according to the following criteria.
Each code is the following evaluation criteria.
A: No aggregate less than 10 μm B: Less than 5 aggregates less than 10 μm ×: 5 or more aggregates greater than 10 μm (6) Bending strength Specimen (thickness 1.0 mm × depth 25.25) according to JIS C6481. 0 mm × width 75.0 mm), and the bending strength N / mm 2 in the vertical direction was evaluated.

Figure 0006121845
Figure 0006121845

Figure 0006121845
Figure 0006121845

実施例および比較例の対比から明らかなように、本発明の球状シリカ粉末をエポキシ樹脂に高充填した際、極めて流動性の高いスラリー組成物及び球状シリカ粒子が良好に分散してなる樹脂組成物を得ることができる。   As is clear from the comparison between Examples and Comparative Examples, when the spherical silica powder of the present invention is highly filled in an epoxy resin, a slurry composition having extremely high fluidity and a resin composition in which spherical silica particles are well dispersed. Can be obtained.

本発明のスラリー組成物、樹脂組成物は、例えば、プリント配線板等の電子機器分野において、半導体パッケージ基板に使用することができる。
The slurry composition and resin composition of the present invention can be used for a semiconductor package substrate in the field of electronic equipment such as a printed wiring board.

Claims (3)

体積平均粒径が0.80〜1.3μm、粒度分布における累積体積10%値(D10)と累積体積50%値(D50)の比(D10/D50)=0.20〜0.50、BET比表面積値が3.5〜5.5m/g、疎水化度が1.0〜5.0%である球状シリカ粉末。 Volume average particle diameter is 0.80 to 1.3 μm, ratio of cumulative volume 10% value (D10) to cumulative volume 50% value (D50) in particle size distribution (D10 / D50) = 0.20 to 0.50, BET A spherical silica powder having a specific surface area value of 3.5 to 5.5 m 2 / g and a degree of hydrophobicity of 1.0 to 5.0%. 請求項1に記載の球状シリカ粉末を含有してなるスラリー組成物。 A slurry composition comprising the spherical silica powder according to claim 1. 請求項2に記載のスラリー組成物を用いた樹脂組成物。
A resin composition using the slurry composition according to claim 2.
JP2013168327A 2013-08-13 2013-08-13 Surface-treated silica powder, slurry composition and resin composition using the same Active JP6121845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013168327A JP6121845B2 (en) 2013-08-13 2013-08-13 Surface-treated silica powder, slurry composition and resin composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013168327A JP6121845B2 (en) 2013-08-13 2013-08-13 Surface-treated silica powder, slurry composition and resin composition using the same

Publications (2)

Publication Number Publication Date
JP2015036357A JP2015036357A (en) 2015-02-23
JP6121845B2 true JP6121845B2 (en) 2017-04-26

Family

ID=52686993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013168327A Active JP6121845B2 (en) 2013-08-13 2013-08-13 Surface-treated silica powder, slurry composition and resin composition using the same

Country Status (1)

Country Link
JP (1) JP6121845B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6516549B2 (en) * 2015-04-28 2019-05-22 株式会社トクヤマ Amorphous spherical silica powder
JP6976040B2 (en) * 2015-05-18 2021-12-01 株式会社アドマテックス Silica particle material, its production method, and resin composition
WO2022209768A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Silica powder and production method therefor
KR20240037979A (en) * 2021-07-28 2024-03-22 에이지씨 가부시키가이샤 Globular silica powder and method for producing spherical silica powder
WO2023199802A1 (en) * 2022-04-12 2023-10-19 Agc株式会社 Liquid composition, prepreg, resin-including metal substrate, wiring board, and silica particles
WO2023210545A1 (en) * 2022-04-28 2023-11-02 Agc株式会社 Liquid composition, prepreg, resin-coated metallic substrate, wiring board, and silica particles
WO2023218949A1 (en) * 2022-05-09 2023-11-16 Agc株式会社 Silica particle dispersion liquid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131620B2 (en) * 2001-06-11 2008-08-13 電気化学工業株式会社 Silica powder and its use
JP4092568B2 (en) * 2003-07-10 2008-05-28 信越化学工業株式会社 Method for producing fine powder silicon or silicon compound
JP2005306923A (en) * 2004-04-19 2005-11-04 Denki Kagaku Kogyo Kk Inorganic powder and composition containing the same
CN101743198B (en) * 2007-08-01 2012-12-12 电气化学工业株式会社 Silica powder, method for production of the same, and composition using the same
JP5838036B2 (en) * 2011-03-31 2015-12-24 大日本印刷株式会社 Inorganic nanoparticle dispersion

Also Published As

Publication number Publication date
JP2015036357A (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP6121845B2 (en) Surface-treated silica powder, slurry composition and resin composition using the same
Suihkonen et al. Performance of epoxy filled with nano-and micro-sized magnesium hydroxide
CN105246940B (en) Optical semiconductor sealing solidification compound
KR102607973B1 (en) Silica powder with excellent dispersibility, resin composition using the same, and method for producing the same
JP6687818B1 (en) Method for producing silicon-containing oxide-coated aluminum nitride particles and silicon-containing oxide-coated aluminum nitride particles
KR20160010556A (en) Silica sol and silica-containing epoxy resin composition
TWI745158B (en) Method for producing silicon-containing oxide-coated aluminum nitride particles and method for producing exothermic resin composition
CN104558688A (en) Filler composition and application thereof
JP5553749B2 (en) Amorphous siliceous powder, production method and use thereof
KR101868519B1 (en) Manufacturing method of silica particle surface modified haloysite nanotube and epoxy resin composition including the same
JP6763391B2 (en) Resin composition, cured product, sealing film and sealing structure
KR20230118810A (en) Hydrophobic aluminum nitride powder and manufacturing method thereof
JP2017132662A (en) Boron nitride nano tube material and thermosetting material
JP2005171208A (en) Filler and resin composition
JP5937403B2 (en) Slurry composition and resin composition using the same
JP2007051187A (en) Fine particle-containing composition
KR101394808B1 (en) Amorphous silica powder, method for production thereof, and semiconductor sealing material
JP6347644B2 (en) Surface-modified silica powder and slurry composition
JP2010070582A (en) Heat conductive paste composition for filling substrate hole, and printed wiring board
JP6038064B2 (en) Surface-modified silica powder, slurry composition and resin composition using the same
JP5719690B2 (en) Spherical silica powder, slurry used therefor, and resin composition
JP2005171206A (en) Powdery mixture for blending with resin, and resin composition
KR101530745B1 (en) Amorphous siliceous powder, process for production thereof, resin composition, and semiconductor encapsulation material
JP4428618B2 (en) Surface-modified spherical silica, method for producing the same, and sealing resin composition
JP2005171209A (en) Filler-containing resin composition and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170330

R150 Certificate of patent or registration of utility model

Ref document number: 6121845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250