JP2006034787A - 化学センサおよびその製造方法 - Google Patents

化学センサおよびその製造方法 Download PDF

Info

Publication number
JP2006034787A
JP2006034787A JP2004222082A JP2004222082A JP2006034787A JP 2006034787 A JP2006034787 A JP 2006034787A JP 2004222082 A JP2004222082 A JP 2004222082A JP 2004222082 A JP2004222082 A JP 2004222082A JP 2006034787 A JP2006034787 A JP 2006034787A
Authority
JP
Japan
Prior art keywords
chemical sensor
needle
mold
resin
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004222082A
Other languages
English (en)
Inventor
Yoshihiro Hirata
嘉裕 平田
Yasuhiro Okuda
泰弘 奥田
Hiroshi Takada
博史 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004222082A priority Critical patent/JP2006034787A/ja
Publication of JP2006034787A publication Critical patent/JP2006034787A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】 廃棄する際に分別が容易であり、また、簡易にリサイクルすることができる安価な化学センサを提供する。
【解決手段】 本発明の化学センサは、体液を採取し、測定するセンサであって、体液を採取するための針と、採取した体液を測定するためのセンシング部とが接続し、針の先端が外方へ突出していることを特徴とする。体液を採取するための針は、化学センサの筐体と一体化している態様が好ましい。
【選択図】 図1

Description

本発明は、被検体から体液を採取して検査する医療機器に関し、特に人体から血液を採取して検査する化学センサに関する。
一般家庭で使用し、人体から血液を採取して検査する化学センサには、血糖値測定器などがある。この測定器は、新鮮な毛細血管から全血を採取し、血中グルコースを触媒で酸化し、酸化に際して発生する電子を検出し、その電流と時間から血糖値を換算する。毛細血管から新鮮な全血を採取するには、たとえば、つぎの方法がある(非特許文献1)。
シリコン製の針を形成したチップをスプリングにより皮膚に押し当て、針で突き刺し、皮膚に傷をつけて出血させてから、真空引きにより全血を吸引し、遠心分離のためのポリエチレンテレフタレート製チップを通した後、離れた位置にあるセンシング部にまで移動させ測定する。シリコン製の針を形成したチップは、シリコン基板の異方性エッチングにより形成される。
Shun Momose et al., "Painless Si Needle Array Chip Collecting Blood From Capillary Vessel And Combined Centrifugal Separation Chip" 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems October 5-9, 2003, Squaw Valley, California USA p211-214
従来の化学センサは、針で指先などに傷をつけて出血させ、全血を吸引して、センシング部に導入している。このため、目で見える程度に出血させる必要がある。しかし、化学センサを利用する患者は、主として高齢者であるため、少量の出血部分に化学センサの吸引部を押し当てる操作は困難を強いる操作である。また、この操作で針を刺す際には痛みを伴なうので、特に子供や老人にとって精神面でも苦痛を強いることになる。そのため、できるだけ細い針が望ましい。
微細な針で出血させ、全血をセンシング部に導入する従来の化学センサは、SUS製の注射針を樹脂製チップ上に植え付けた構造を有する。また、シリコン基板の異方性エッチングにより針を形成したチップを皮膚に押し当て、全血を吸引して検査する上述の化学センサなども研究されているが、いずれも採血チップが高価であり、使い捨て用の採血針として適切ではない。仮にリサイクルするとしても、SUS製の針のついたチップは取り扱いが困難である。
本発明の課題は、廃棄する際に分別が容易であり、また、簡易にリサイクルすることができる安価な化学センサを提供することにある。
本発明の化学センサは、体液を採取し、測定するセンサであって、体液を採取するための針と、採取した体液を測定するためのセンシング部とが接続され、針の先端が外方へ突出していることを特徴とする。体液を採取するための針は、化学センサの筐体と一体化している態様が好ましい。また、針は、高さが700μm以下で、中央部の幅が200μm以下であり、先端の最大幅が20μm以下である態様が好ましい。
この針は、表面に溝を有し、体液を採取するときに、被検体の細胞と溝との間で毛管構造が形成され、表面張力により毛管に沿って体液がセンシング部にまで移動する態様が好ましい。また、針は、突出方向に直交する平面で切断するときの断面が星型である態様が好ましく、化学センサは、吸引ポンプを備えるものが好適である。
本発明の化学センサの製造方法は、かかる化学センサを製造するための方法であって、化学センサにおける針をモールドにより製造することを特徴とする。モールドに使用する金型は、
光硬化樹脂に光を照射することにより樹脂型を形成する光造形工程と、
導電性基板上で、樹脂型に金属材料からなる層を電鋳により形成する工程と
を備える方法により製造する態様が好ましい。
モールドに使用する金型は、そのほか、
リソグラフィにより樹脂型を形成する工程と、
導電性基板上で、樹脂型に金属材料からなる層を電鋳により形成する工程とを備える方法により製造され、
リソグラフィは、段差形状のX線吸収体を有するX線マスクを介して、シンクロトロン放射によるX線を照射することにより行なう態様が好ましい。
本発明によれば、廃棄する際に分別が容易であり、また、簡易にリサイクルすることができる安価な化学センサを提供することができる。
(化学センサ)
本発明の化学センサは、体液を採取するための針と、採取した体液を測定するためのセンシング部とが接続し、針の先端が外方へ突出していることを特徴とする。この化学センサの典型的な例を、図1(c)および図2(c)に示す。
図1(c)の例では、体液を採取するための針1と、採取した体液を測定するためのセンシング部2とが、上部筐体6aを貫通する孔3を介して接続しているので、針1により採取した体液は、孔3を通って、センシング部2に至り、センシング部2において体液を測定することができる。したがって、この化学センサのみで体液の採取から測定までを一貫して行なうことができる。針1は、図1(c)に示すように、体液を採取するために外方へ突出している。化学センサの筐体6は、上部筐体6aと、下部筐体6cと、これらに挟持されるように形成されるスペーサ6bとからなる。図1(c)に示す例では、1の化学センサが単一の針1を有するが、体液を多く必要とするときは、1つの化学センサが複数の針を有する態様が好ましい。また、測定精度を高めるなど、必要に応じて複数の化学センサを並設することもできる。図2(c)に示す例においても同様である。
図2(c)の例では、体液を採取するための針21と、採取した体液を測定するためのセンシング部22とが、一体的に接続しているので、針21により採取した体液は、直接、センシング部22に至り、センシング部22において体液を測定することができる。したがって、この化学センサのみで体液の採取から測定までを一貫して行なうことができる。針1は、図2(c)に示すように、体液を採取するために外方へ突出している。化学センサの筐体26は、上部筐体26aと、下部筐体26cと、これらに挟持されるように形成されるスペーサ26bとからなる。
本発明の化学センサは、ヒトまたは動物などの被検体の体液を測定することができる。体液とは、血液、リンパ液および組織液などであり、検査の目的に応じてセンシング部を変更し、血糖値、pH、浸透圧などを測定することができる。また、本発明によれば、この化学センサのみで検査を完了することができ、従来のように、出血させた後、出血部位に吸引部を押し当てるなどの操作が全て不要であるため、高齢者や老眼の方でも、各家庭において自分で簡単に健康診断をすることができる。さらに、目視により出血部位を確認し、吸引部を押し当てる必要がなく、また目視できる程度以上の出血が不要であるため、出血しにくい高齢者に対してもやさしい検査を提供できる。また、この操作で針を刺す際には痛みを伴なうので、特に子供や老人にとっては、精神面でも苦痛を強いることになる。そのため、できるだけ細い針が望ましい。
体液を採取するための針は、化学センサの筐体と一体化している態様が好ましい。従来の化学センサのように、別途製造したSUS製の注射針を後で接着する態様と比較して、針の化学センサにおける位置精度を高めることができる。また、針と筐体とを別々に製造した後、組み立てるよりも、一体形成する方法が製造コストを低減することができる。さらに、針と筐体とが同一の材料で構成されるから、リサイクルしやすく、廃棄する場合にも分別が容易になる。
針の大きさは、採取しようとする体液により異なる。たとえば、ヒトの全血を毛細血管から採取しようとするときは、皮膚の表皮の厚さが200μm以下であり、内皮の深さが2000μm以上であるため、針の高さは200μm〜2000μmの範囲に設定する。一方、本発明の化学センサでは、検査に必要な血液量が従来の化学センサより少なくて済むから針は小さくすることができる。また、被検体の苦痛をやわらげる点から、針は小さいほど好ましい。したがって、針の高さは、700μm以下が好ましく、500μm以下がより好ましい。また、針の中央部の幅は、200μm以下が好ましく、100μm以下がより好ましい。さらに、針の先端の最大幅は、20μm以下が好ましく、15μm以下がより好ましい。
針は、採取した体液をセンシング部へ導入する流路を有するものが好ましい。針の内部の管路を流路として利用し、表面張力により体液をセンシング部へ移動する態様とすることができる。また、針が、表面に溝を有し、体液を採取するときに、被検体の細胞と溝との間で毛管構造が形成され、毛管に沿って表面張力により体液をセンシング部に移動する態様とすることができる。この溝構造は、流路が針の内部の管路である場合と比較して製造が容易である点で、より好ましい。
針の形状は、突出方向に直交する平面で切断するときの断面が三角形、四角形または多角形とすることができる。図1および図2には、断面が四角形の例を示す。また、図4に示すように、矢印で示す突出方向に直交する面で切断するときの断面が星型である態様とすることもできる。断面が星型であるときは、被検体の皮膚に進入しやすく、針の表面に溝が多いため、採取した体液のセンシング部への移動を助ける上で効果的である。
化学センサは、吸引ポンプを有する態様が好ましい。吸引ポンプを備えると、体液の採取力および移動力を高めることができる。図3には、吸引口37を介して、センシング部32から矢印の方向に真空吸引する例を示す。吸引する場合には、エア抜きの部分は不要であり、密閉した構造とする。その他の点は、図1に示すような吸引ポンプを有しない態様と同様である。
(化学センサの製造方法)
本発明の化学センサの製造方法は、化学センサに備える針をモールドにより製造することを特徴とする。射出成型、反応性成型またはエンボス成型などのモールドにより、同一の型を用いて、同一の針を大量かつ安価に製造することができる。また、かかる針は、化学センサの筐体とともに、モールドにより一体成型する態様が好ましい。本発明の化学センサに使用する微細な針と、筐体とを別個に製造し、組み立てる方法に比べて、針と筐体との位置が一定となり、化学センサにおける針の位置精度を高めることができるためである。
モールドに使用する金型は、光硬化樹脂に光を照射することにより樹脂型を形成する光造形工程と、導電性基板上で、樹脂型に金属材料からなる層を電鋳により形成する工程とを備える方法により製造する態様が好ましい。化学センサの針が、表面に複雑で微細な溝構造を有する態様、または図4に示すような星形状を有する態様であるときは、ムービングマスク法などの従来のSRリソグラフィ法または機械加工による方法では形成することが困難である。しかし、光造形法を採用する本発明の方法によれば、微細な溝構造または星形状を有する針であっても容易に形成することができる。
本発明の化学センサの製造方法の典型的な例を図5および図1に示す。まず、図5(a)に示すように、上下に移動するステージ52を備えるタンク50内に光硬化樹脂51を充填する。ステージ52上には導電性基板55を設置する。タンク50は、ガラス板53で蓋をし、ガラス板53上から、光硬化樹脂を露光するための光54を照射する。光54は、ガラス板53の下面に焦点を有するように調整する。
光造形法は、光硬化樹脂に光を照射し、露光部分のみを硬化することにより、成形する方法であり、光は、指向性が強い点で、レーザが好適であり、たとえばUVレーザを使用することができる。一方、光硬化樹脂には、光硬化剤を配合するエポキシ系樹脂またはアクリル系樹脂などを使用し、耐熱性および精度がよい点で、たとえば、シーメット社製のTSR−920などが好ましい。
準備が終わると、図5(b)に示すように、光54の照射を開始する。光54を2次元的にスキャンし、ステージ52を下げながら上部筐体に相当する第1層目の構造体56を、導電性基板55上に形成する。つづいて、図5(c)に示すように、ステージ52をさらに下げながら光54をスキャンし、針に相当する第2層目の構造体57を形成する。
所望の形状の樹脂型が得られると、ステージ52から樹脂型を取出して、図5(d)に示すように、電鋳を行ない、樹脂型上に金属材料58を堆積する。電鋳とは、金属イオン溶液を用いて導電性基板55上に金属材料からなる層を形成することをいう。導電性基板をメッキ電極として電鋳を行なうことにより、樹脂型に金属材料を堆積することができる。ここでは、金型を形成するため、電鋳は、樹脂型の高さを越え、樹脂型上にも金属材料からなる層が形成されるまで行なう。金属材料には、ニッケル、銅、またはそれらの合金などを用い、ニッケルまたはニッケル−マンガンを用いると、耐摩耗性の大きい金型を得ることができる。
電鋳後、研磨または研削により所定の厚さに揃えてから、ウェットエッチングまたはプラズマアッシングにより樹脂型を除去し、つづいて酸もしくはアルカリによるウェットエッチングまたは機械的に加工して導電性基板55を除去すると、図5(e)に示すような金型が得られる。つぎに、この金型を用いて、樹脂モールドを行なうことにより、図5(f)に示すような、針57aと上部筐体56aとが一体化した樹脂成形体が得られる。樹脂材料には、ポリメタクリル酸メチルなどのアクリル樹脂、ポリウレタン樹脂、ポリオキシメチレン、ポリサルフォン、ポリイミド、ポリエーテルサルファン、ポリエーテルイミド、ポリ乳酸またはポリカーボネートなどを用いる。
モールドに使用する金型は、リソグラフィにより樹脂型を形成する工程と、導電性基板上で、樹脂型に金属材料からなる層を電鋳により形成する工程とを備える方法により製造し、リソグラフィは、段差形状のX線吸収体を有するX線マスクを介して、シンクロトロン放射によるX線を照射することにより行なう態様が好ましい。かかる方法により、微細な溝構造または星型形状を有する針であっても容易に形成することができる。
使用する段差形状のX線吸収体を有するX線マスクは、図6に示す方法により製造することができる。まず、図6(a)に示すようなX線マスクのメンブレンを形成する。このメンブレンは、たとえば、シリコン基板61上にSiN層62、63をCVD法により形成して得ることができる。
つぎに、図6(b)に示すように、W層64とAl層65を形成する。つづいて、図6(c)に示すように、リソグラフィにより樹脂層66を形成してから、Al層65をエッチングし、さらにW層64をエッチングした後、樹脂層66を除去する(図6(d))。
Al層65aを除去してから(図6(e))、リソグラフィにより樹脂層66aを直接、マスク上に形成する(図6(f))。つぎに、W層64aをエッチングしてW層64bを形成する。同様にして、樹脂層66aを除去してから(図6(g))、リソグラフィにより樹脂層66bを直接、マスク上に形成する(図6(h))。つぎに、W層64bをエッチングすると、図6(i)に示すような段差形状のX線吸収体を有するX線マスクを得ることができる。
このX線マスクの平面図を図7に例示する。図7に示すマスクは、SiN層72上にX線吸収体71が形成され、X線吸収体71は、3層のX線吸収体層71a、71b、71cにより構成される。図7(a)には、底面が四角形のマスクを例示する。また、図7(b)には、底面が星型のマスクを例示する。
このマスクを使用して金型を製造する方法を図9に示す。まず、通常のマスクを使用して、X線などによるリソグラフィを行ない、図9(a)に示すように、導電性基板91上に樹脂層92を形成する。つぎに、電鋳を行ない、金属層93を形成し、必要に応じて研磨または研削により所定の厚さに調整し(図9(b))、つづいて、樹脂層92aを形成する(図9(c))。
つぎに、樹脂層92a上にマスクを配置し、マスクを介して紫外線またはX線などを照射し、リソグラフィを行ない、樹脂層92bからなる樹脂型を形成する(図9(d))。この樹脂型により金型が形成され、この金型を使用して本発明の化学センサにおける針が製造される。したがって、高く、鋭利な針を得る点から、本発明の製造方法においては、紫外線(波長200nm)より短波長であるX線(波長0.4nm)を使用するのが好ましい。また、X線の中でも指向性の高いシンクロトロン放射のX線(以下、「SR」という。)を使用する態様が好ましい。SRを使用することにより、ディープなリソグラフィが可能となり、高さ数百μm、幅200μm程度の針をミクロンオーダの高精度で容易に製造することができる。
使用するマスクは、段差形状の吸収体を有する態様が好ましい。吸収体が段差形状を有することにより、厚さの厚い領域では吸収体を透過する光量を少なくし、厚さの薄い領域では吸収体を透過する光量を多くすることができる。したがって、かかるマスクを使用することにより、図8に示すような樹脂型を容易に得ることができため、同様の形状を有する針が容易に得られる。図8に示す例では、各段のエッジが斜めになっているが、これは樹脂型が現像液に曝されることにより生じるものである。図8に示すように、この樹脂型には、溝81aが形成されている。
樹脂型形成後、導電性基板93上で、樹脂型に金属材料からなる層94を電鋳により形成し(図9(e))、必要に応じて研磨または研削により厚さを揃える。その後は前述と同様にして、導電性基板93を除去し、樹脂型を除去すると、図9(f)に示すような金型が得られ、この金型により樹脂モールドを行なうと、図9(g)に示すような樹脂成形体が得られる。
図1(a)は、得られる樹脂成形体の平面図である。図1(a)に示すように、この樹脂成形体は、上部筐体6a上に針1を有し、針1は、溝1aを備える。また、上部筐体6aは、厚さ方向に貫通する孔3を有する。一方、図1(b)に下部筐体6cの平面図を示す。図1(b)に示すように、下部筐体6c上には、採取した体液を測定するためのセンシング部2と、センシング部2からの信号を外部に連絡する電極4を有する。図1(b)に示す下部筐体6cと、図1(a)に示す上部筐体6aとを、スペーサ6bを挟んで接着すると、図1(c)に示すような本発明の化学センサが得られる。
図2(c)に示す化学センサでは、針21と下部筐体26cとが一体化しているため、針21と下部筐体26とが、図5に示すように一体形成される。その後、図2(b)に示すように、下部筐体26c上にセンシング部22と、センシング部22からの電極24を形成する。図2(b)に示す例では、針21の表面には溝21aが形成されている。一方、図2(a)に上部筐体26aの平面図を示す。上部筐体26aは、上部筐体を厚さ方向に貫通する孔25を有する。図2(b)に示す下部筐体26cと、図2(a)に示す上部筐体26aとを、スペーサ26bを挟んで接着すると、図2(c)に示すような本発明の化学センサが得られる。
実施例1
まず、図5(a)に示すように、上下に移動するステージ52を備えるタンク50内に光硬化樹脂51を充填した。光硬化樹脂にはシーメット社製のTSR−920を用いた。つぎに、ステージ52上に、導電性基板55を設置した。導電性基板には、チタンをスパッタリングしたシリコン基板を用いた。タンク50を、ガラス板53で蓋をし、ガラス板53上から、光54としてUVレーザを照射し、ガラス板53の下面に焦点が合わせるように調整した。
つぎに、図5(b)に示すように、光54の照射を開始した。光54を2次元的にスキャンし、ステージ52を下げながら上部筐体に相当する厚さ300μmの第1層目の構造体56を、導電性基板55上に形成した。つづいて、図5(c)に示すように、ステージを52をさらに下げながら光54をスキャンしながら照射し、針に相当する第2層目の構造体57を形成した。
構造体56と構造体57とからなる樹脂型が得られると、ステージ52から樹脂型を取出して、図5(d)に示すように、電鋳を行ない、樹脂型上に金属材料58としてニッケルを堆積した。電鋳後、研削により所定の厚さに揃えてから、プラズマアッシングにより樹脂型を除去し、つづいてKOH水溶液によるウェットエッチングをし、導電性基板55を除去すると、図5(e)に示すような金型が得られた。つぎに、この金型を用いて、樹脂モールドを行なうことにより、図5(f)に示すような、針57aと上部筐体56aとが一体化した樹脂成形体が得られた。樹脂材料には、ポリメタクリル酸メチルを用いた。上部筐体56aの厚さは、300μmであった。
図1(a)は、得られた樹脂成形体の平面図である。図1(a)に示すように、この樹脂成形体は、上部筐体6a上に針1を有し、針1は、高さ500μm、中央の幅100μm、先端の最大幅20μmであり、溝1aを備えていた。溝1aは、深さ10μm、幅10μmであった。また、上部筐体6aは、厚さ方向に貫通する孔3を有していた。一方、図1(b)に下部筐体6cの平面図を示す。図1(c)に示すように、下部筐体6c上には、採取した体液を測定するためのセンシング部2と、センシング部2からの信号を外部に連絡する電極4を有し、厚さ300μmであった。図1(b)に示す下部筐体6cと、図1(a)に示す上部筐体6aとを、厚さ300μmのスペーサ6bを挟んで接着すると、図1(c)に示すような本発明の化学センサが得られた。この化学センサは、体液を採取するための針1と、採取した体液を測定するためのセンシング部2とが接続した構造を有し、針1の先端が外方へ突出していた。
実施例2
使用する段差形状のX線吸収体を有するX線マスクを、図6に示す方法により製造した。まず、図6(a)に示すように、シリコン基板61上に、厚さ2μmのSiN層62、63をCVD法により形成し、X線マスクのメンブレンとした。つぎに、図6(b)に示すように、厚さ2μmのW層64と、厚さ0.2μmのAl層65を形成し、図6(c)に示すように、リソグラフィにより樹脂層66を形成してから、塩素系のガスによりAl層65をエッチングし、さらにW層64を厚さ1μmエッチングして、W層64aを形成した(図6(d))。
樹脂層66を除去してから(図6(e))、リソグラフィにより樹脂層66aを直接、マスク上に形成し(図6(f))、W層64aを厚さ0.5μmエッチングしてW層64bを形成した。同様にして、樹脂層66aを除去してから(図6(g))、リソグラフィにより樹脂層66bを直接、マスク上に形成し(図6(h))、W層64bを厚さ0.5μmエッチングして、図6(i)に示すような段差形状のX線吸収体を有するX線マスクを得た。得られたX線マスクの平面図を図7(a)に示す。このマスクは、SiN層72上にX線吸収体71が形成され、X線吸収体71は、3層のX線吸収体層71a、71b、71cにより構成されていた。
つぎに、このマスクを使用し、図9に示す方法で金型を製造した。まず、通常のマスクを使用して、X線によるリソグラフィを行ない、図9(a)に示すように、導電性基板91上に樹脂層92を形成した。導電性基板91はシリコン基板上にチタンをスパッタリングしたものを使用し、樹脂層92はポリメタクリル酸メチルにより形成した。つぎに、電鋳を行ない、ニッケルからなる金属層93を形成した後、研磨し(図9(b))、つづいて、厚さ300μmの樹脂層92aを形成した(図9(c))。樹脂層92aはポリメタクリル酸メチルにより形成した。
つぎに、樹脂層92a上にマスクを配置し、マスクを介してSRを照射し、リソグラフィを行ない、樹脂層92bからなる樹脂型を形成した(図9(d))。マスクは、先に形成した段差形状の吸収体を有するものを使用したため、図8に示すような樹脂型を形成することができた。この樹脂型には、溝81aが形成されていた。SRの照射に際しては、基板とマスクの位置合せをし、針表面に形成される溝が上部筐体に形成される孔に繋がるように調整した。
樹脂型形成後、導電性基板93上で、樹脂型にニッケルからなる層94を電鋳により形成し(図9(e))、研磨した。その後は、実施例1と同様にして、導電性基板93を除去し、樹脂型を除去すると、図9(f)に示すような金型が得られ、この金型により樹脂モールドを行ない、図9(g)に示すような針と上部筐体とが一体化した樹脂成形体を得た。つぎに、下部筐体と上部筐体とを、スペーサを挟んで接着し、本発明の化学センサを得た。この化学センサは、体液を採取するための針と、採取した体液を測定するためのセンシング部とが接続した構造を有し、針の先端が外方へ突出していた。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明によれば、廃棄する際に分別が容易であり、また、簡易にリサイクルすることができる安価な化学センサを提供することができる。
本発明の化学センサの典型的な構造を示す模式図である。 本発明の化学センサの典型的な構造を示す模式図である。 本発明の化学センサの典型的な構造を示す模式図である。 本発明の化学センサに使用する針の斜視図である。 本発明の化学センサの製造方法を示す工程図である。 本発明において使用する段差形状のX線吸収体を有するX線マスクの製造方法を示す工程図である。 本発明において使用する段差形状のX線吸収体を有するX線マスクの平面図である。 本発明において使用する段差形状のX線吸収体を有するX線マスクにより形成される樹脂型の正面図である。 本発明の化学センサの製造方法を示す工程図である。
符号の説明
1 針、2 センシング部、3 孔、6 筐体、51 光硬化樹脂、54 光、55,93 導電性基板。

Claims (9)

  1. 体液を採取し、測定する化学センサであって、体液を採取するための針と、採取した体液を測定するためのセンシング部とが接続し、針の先端が外方へ突出していることを特徴とする化学センサ。
  2. 前記針が、化学センサの筐体と一体化している請求項1に記載の化学センサ。
  3. 前記針は、高さが700μm以下で、中央部の幅が200μm以下であり、先端の最大幅が20μm以下である請求項1または2に記載の化学センサ。
  4. 前記針は、表面に溝を有し、体液を採取するときに、被検体の細胞と前記溝との間で毛管構造が形成され、表面張力により毛管に沿って体液がセンシング部にまで移動する請求項1〜3のいずれかに記載の化学センサ。
  5. 前記針は、突出方向に直交する平面で切断するときの断面が星型である請求項1〜4に記載の化学センサ。
  6. 吸引ポンプを備える請求項1〜5のいずれかに記載の化学センサ。
  7. 請求項1〜6のいずれかに記載の化学センサの製造方法であって、化学センサにおける針をモールドにより製造することを特徴とする化学センサの製造方法。
  8. 前記モールドに使用する金型は、
    光硬化樹脂に光を照射することにより樹脂型を形成する光造形工程と、
    導電性基板上で、前記樹脂型に金属材料からなる層を電鋳により形成する工程と
    を備える方法により製造する請求項7に記載の化学センサの製造方法。
  9. 前記モールドに使用する金型は、
    リソグラフィにより樹脂型を形成する工程と、
    導電性基板上で、前記樹脂型に金属材料からなる層を電鋳により形成する工程とを備える方法により製造され、
    前記リソグラフィは、段差形状のX線吸収体を有するX線マスクを介して、シンクロトロン放射によるX線を照射することにより行なう請求項7に記載の化学センサの製造方法。
JP2004222082A 2004-07-29 2004-07-29 化学センサおよびその製造方法 Withdrawn JP2006034787A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222082A JP2006034787A (ja) 2004-07-29 2004-07-29 化学センサおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222082A JP2006034787A (ja) 2004-07-29 2004-07-29 化学センサおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2006034787A true JP2006034787A (ja) 2006-02-09

Family

ID=35900390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222082A Withdrawn JP2006034787A (ja) 2004-07-29 2004-07-29 化学センサおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2006034787A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229243A (ja) * 2008-03-24 2009-10-08 Panasonic Corp マイクロデバイス
WO2011122350A1 (ja) * 2010-03-30 2011-10-06 テルモ株式会社 穿刺針および穿刺具
CN103431869A (zh) * 2013-08-23 2013-12-11 苏州凯恩医药科技有限公司 新型采血针
JP2014092529A (ja) * 2012-11-07 2014-05-19 Techno Medica Co Ltd センサーカード

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229243A (ja) * 2008-03-24 2009-10-08 Panasonic Corp マイクロデバイス
WO2011122350A1 (ja) * 2010-03-30 2011-10-06 テルモ株式会社 穿刺針および穿刺具
CN102821689A (zh) * 2010-03-30 2012-12-12 泰尔茂株式会社 穿刺针和穿刺用具
JP5690813B2 (ja) * 2010-03-30 2015-03-25 テルモ株式会社 穿刺針および穿刺具
US9265454B2 (en) 2010-03-30 2016-02-23 Terumo Kabushiki Kaisha Puncture needle and puncture device
JP2014092529A (ja) * 2012-11-07 2014-05-19 Techno Medica Co Ltd センサーカード
CN103431869A (zh) * 2013-08-23 2013-12-11 苏州凯恩医药科技有限公司 新型采血针

Similar Documents

Publication Publication Date Title
JP6254545B2 (ja) 流体の急速送達および/また採取
KR101198054B1 (ko) 체액 샘플링 장치
KR101959184B1 (ko) 마이크로니들 및 칩
JP5826766B2 (ja) 試料採取デバイスインタフェース
US20120245445A1 (en) Glucose Monitoring System
US6315738B1 (en) Assembly having lancet and means for collecting and detecting body fluid
JP5504248B2 (ja) 血液検査装置
US6783502B2 (en) Integrated lancing and analytic device
JP2013517062A (ja) 流体の急速送達および/また採取
Xue et al. Blood sampling using microneedles as a minimally invasive platform for biomedical diagnostics
US20080214909A1 (en) Catheter With Microchannels For Monitoring The Concentration Of An Analyte In A Bodily Fluid
EP1843156A2 (en) Filter for separating blood cells
JP2009519045A (ja) 穿刺システム
JP2004354387A (ja) 流体試料中の分析対象物を収集し、検出するための診断試験片及び同試験片を使用する方法
WO2011053796A2 (en) Systems and methods for treating, sanitizing, and/or shielding the skin or devices applied to the skin
JP2718408B2 (ja) 浸出液吸引装置
JP2005246595A (ja) マイクロニードルアレイ及びその製造方法
JP2009512467A (ja) ランセットとテスト室とを備える分析補助手段
JP3659832B2 (ja) 体液成分測定装置
ZA200703981B (en) Method of determining the concentration of an analyte in a body fluid and system therefor
JP2006034787A (ja) 化学センサおよびその製造方法
US8636672B2 (en) Test strip with integrated lancet
JP4773004B2 (ja) マイクロニードルモジュール
KR101001182B1 (ko) 혈당측정장치에 사용하는 스트립
JP3648098B2 (ja) 体液成分測定具

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002