JP2006032726A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2006032726A
JP2006032726A JP2004210602A JP2004210602A JP2006032726A JP 2006032726 A JP2006032726 A JP 2006032726A JP 2004210602 A JP2004210602 A JP 2004210602A JP 2004210602 A JP2004210602 A JP 2004210602A JP 2006032726 A JP2006032726 A JP 2006032726A
Authority
JP
Japan
Prior art keywords
light
phosphor
primary
fluorescence
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004210602A
Other languages
Japanese (ja)
Other versions
JP4546176B2 (en
Inventor
Kazuyuki Tadatomo
一行 只友
Mitsuo Yanagisawa
美津夫 柳澤
Kosuke Katabe
浩介 形部
Takashi Hase
尭 長谷
Toshihiko Shima
敏彦 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Kyocera Corp
Mitsubishi Cable Industries Ltd
Original Assignee
Kasei Optonix Ltd
Kyocera Corp
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd, Kyocera Corp, Mitsubishi Cable Industries Ltd filed Critical Kasei Optonix Ltd
Priority to JP2004210602A priority Critical patent/JP4546176B2/en
Publication of JP2006032726A publication Critical patent/JP2006032726A/en
Application granted granted Critical
Publication of JP4546176B2 publication Critical patent/JP4546176B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure capable of stabilizing the ratios of intensities at every main wavelength component contained in output beams at every product to a light emitting device constituted so as to conduct a cascade excitation by a GaN light emitting element and a phosphor. <P>SOLUTION: The light emitting device is constituted while having the GaN light emitting elements emitting an original excitation light L, a primary phosphor member 1, and a secondary phosphor member 2. The primary phosphor member 1 contains primary phosphors 10 being excited by the original excitation light and emitting a primary fluorescence L1. The secondary phosphor member 2 contains secondary phosphors 20 being excited by the primary fluorescence L1 and emitting a secondary fluorescence L2. The primary phosphor member 1 and the secondary phosphor member 2 are arranged as mutually other members, so that the primary phosphors 10 and the secondary phosphors 20 independently exist while being divided into mutually different space regions without being mutually mixed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、窒化物半導体発光素子(以下、「GaN系発光素子」とも呼ぶ)と、蛍光体とを組み合わせて構成される発光装置に関する。   The present invention relates to a light-emitting device configured by combining a nitride semiconductor light-emitting element (hereinafter also referred to as “GaN-based light-emitting element”) and a phosphor.

励起光源として波長380nm〜480nmの近紫外〜青色光を発するGaN系発光素子を用い、該素子から発せられる励起光によって蛍光体を発光させるよう構成された発光装置が知られている。
ここでいう蛍光体とは、蛍光を発し得る物質そのもの(有機または無機の化合物や、これに特定の元素が添加されたものなど)であって、実使用上では、蛍光体は微粒子状とされ、樹脂、低融点ガラス等の透明媒体中に分散させてなる蛍光体部材などとして用いられる場合が多い。一般に、蛍光体は、塊状よりも微粒子状として用いた方が、波長変換効率が向上する。
以下、黄色光を発する蛍光体を黄色蛍光体と呼び、同様に、他の色の蛍光を発する蛍光体についても、その蛍光の色の名を冠して、例えば、赤色蛍光体、緑色蛍光体、青色蛍光体などと呼んで、従来技術および本発明を説明する。
2. Description of the Related Art There is known a light emitting device configured to use a GaN-based light emitting element that emits near ultraviolet to blue light having a wavelength of 380 nm to 480 nm as an excitation light source, and to emit a phosphor with excitation light emitted from the element.
The phosphor as used herein refers to a substance that can emit fluorescence (an organic or inorganic compound, or a substance to which a specific element is added), and in actual use, the phosphor is in the form of fine particles. In many cases, it is used as a phosphor member dispersed in a transparent medium such as resin or low-melting glass. In general, the wavelength conversion efficiency is improved when the phosphor is used as a fine particle rather than a lump.
Hereinafter, a phosphor that emits yellow light is referred to as a yellow phosphor. Similarly, for phosphors that emit fluorescence of other colors, the names of the fluorescence colors are named, for example, a red phosphor and a green phosphor. The prior art and the present invention will be described by calling a blue phosphor.

特許文献1には、GaN系発光素子として青色LEDと黄色蛍光体とを組み合わせ、青色光(一部が黄色蛍光体を励起し、一部がそのまま出力光となる)と黄色光とからなる、2色の補色による白色光を発する発光装置が開示されている。以下、青色光と黄色光とからなるような2色の補色による白色光を、光の3原色光を含んだ白色光と区別するために、擬似白色光とも呼ぶ。
擬似白色光は、光の3原色が揃っていないために演色性が好ましくないので、電光掲示板やバックライトなど、白色光であること(デザイン上、白色に見えること)だけが求められる用途に用いられている。
In Patent Document 1, a blue LED and a yellow phosphor are combined as a GaN-based light emitting element, and consists of blue light (a part of which excites the yellow phosphor and a part of the light as it is) and a yellow light. A light emitting device that emits white light of two complementary colors is disclosed. Hereinafter, in order to distinguish white light by two complementary colors such as blue light and yellow light from white light including the three primary color lights, it is also referred to as pseudo white light.
Pseudo white light is not suitable for color rendering because the three primary colors of light are not aligned, so it is used for applications that require only white light (designed to appear white), such as electronic bulletin boards and backlights. It has been.

特許文献2には、GaN系発光素子と、RGB(赤色、緑色、青色)の3原色光をそれぞれに発する3種類の蛍光体とを組み合わせた白色発光装置が記載され、さらには、蛍光体として3原色光以外の色の光を発する蛍光体を追加し、白色光スペクトルの補強や修飾を行うことも記載されている。
このような3原色光またはそれ以上の色の光を含んだ白色光は、演色性が良好であり、照明用途として期待されている。
Patent Document 2 describes a white light-emitting device that combines a GaN-based light-emitting element and three types of phosphors that emit RGB (red, green, and blue) primary colors, respectively. It also describes that a phosphor emitting light of a color other than the three primary colors is added to reinforce or modify the white light spectrum.
Such white light containing light of three primary colors or more has good color rendering properties and is expected as a lighting application.

特許文献3には、GaN系発光ダイオード(GaN系LED)から発せられる紫外線(原励起光)によって第一次の蛍光体(一次蛍光体)を励起し、そこから発せられる一次蛍光によってさらに第二次の蛍光体(二次蛍光体)を励起し二次蛍光を発生させ、一次蛍光と二次蛍光とを合成して白色光を得る技術が開示されている。励起をこのように多段階的に行う構成は、「カスケード励起」などと呼ばれている。
半導体発光素子と一次蛍光体とによって構成された一段階励起の発光装置では、発光素子の発光波長が変動し易いために、一次蛍光の強度も大きく変動する。これに対して、蛍光体は、半導体発光素子と比べて発光波長が変動し難いという性質を有するので、カスケード励起では、一次蛍光が、強度の面で変動するとしても、波長の面での変動が小さいために、二次蛍光の強度の変動はより改善されるという利点がある。
In Patent Document 3, a primary phosphor (primary phosphor) is excited by ultraviolet rays (original excitation light) emitted from a GaN-based light emitting diode (GaN-based LED), and then further emitted by primary fluorescence emitted therefrom. A technique is disclosed in which the next phosphor (secondary phosphor) is excited to generate secondary fluorescence, and white light is obtained by synthesizing the primary fluorescence and the secondary fluorescence. Such a configuration in which excitation is performed in such a multistage manner is called “cascade excitation” or the like.
In a one-step excitation light emitting device constituted by a semiconductor light emitting element and a primary phosphor, since the emission wavelength of the light emitting element is likely to vary, the intensity of the primary fluorescence varies greatly. In contrast, phosphors have the property that the emission wavelength is less likely to fluctuate than semiconductor light-emitting devices, so in cascade excitation, even if the primary fluorescence fluctuates in terms of intensity, the fluctuation in terms of wavelength does not occur. Is small, there is an advantage that the fluctuation of the intensity of the secondary fluorescence is further improved.

図8は、上記特許文献1〜3などの従来の発光装置、特にカスケード励起を行っている発光装置において、発光素子と、一次蛍光体と、二次蛍光体とがどのような形態にて発光装置として組立てられているかを模式的に示した断面図である。
図8(a)の例では、近紫外光(原励起光)L10を発するGaN系LED(励起光源)110がステム100内に実装されており、蛍光体部材120は板状部材(波長変換板)として形成され、ステム100の開口を塞いでいる。
また、図8(b)の例では、GaN系LED110がステム100に実装されているが、蛍光体部材121は、板状ではなく、ステムのキャビティ内に充填された態様となっている。
FIG. 8 shows the light emitting elements, primary phosphors, and secondary phosphors emitting light in the conventional light emitting devices such as Patent Documents 1 to 3 described above, in particular, the light emitting devices performing cascade excitation. It is sectional drawing which showed typically whether it was assembled as an apparatus.
In the example of FIG. 8A, a GaN-based LED (excitation light source) 110 that emits near ultraviolet light (original excitation light) L10 is mounted in the stem 100, and the phosphor member 120 is a plate-like member (wavelength conversion plate). ) And closes the opening of the stem 100.
In the example of FIG. 8B, the GaN-based LED 110 is mounted on the stem 100, but the phosphor member 121 is not plate-shaped but is filled in the stem cavity.

図8(a)、(b)のいずれの態様でも、蛍光体部材を構成する透明基材中に、一次蛍光体としての青色蛍光体と、二次蛍光体として必要な色の数だけ異なる種類の蛍光体(例えば、赤色蛍光体、緑色蛍光体など)の粒子130が分散している。図ではこれらの蛍光体粒子を、黒点で模式的に示している。   8A and 8B, in the transparent substrate constituting the phosphor member, the blue phosphor as the primary phosphor and the types different from each other by the number of colors necessary as the secondary phosphor. Particles of phosphor (for example, red phosphor, green phosphor, etc.) are dispersed. In the figure, these phosphor particles are schematically indicated by black dots.

原励起光L10が蛍光体部材に照射されると、先ず、一次蛍光体(青色蛍光体)から一次蛍光(青色光)が発せられ、該青色光によって各二次蛍光体から赤色光、緑色光が発せられる。青色光は励起光としてだけでなく出力光としても利用され、これら青色、赤色、緑色の光によって白色光LWが出力される構成となっている。   When the original excitation light L10 is irradiated to the phosphor member, first, primary fluorescence (blue light) is emitted from the primary phosphor (blue phosphor), and red light and green light are emitted from each secondary phosphor by the blue light. Is emitted. Blue light is used not only as excitation light but also as output light, and white light LW is output by these blue, red, and green light.

しかしながら、上記のようなカスケード励起を行う発光装置の構成について、本発明者等が詳細に検討したところ、蛍光体部材の態様に次のような問題が存在していることがわかった。
該問題とは、蛍光体部材が、一次蛍光体、二次蛍光体を共に粒子状とし、これらを混合して1つの基材中に分散させた構成であることに起因する問題である。
微粒子状の蛍光体を樹脂などの基材中に分散させる場合、液状の基材原料に、あるいは加熱等によって流動性を有する状態とされた基材材料に、微粒子状の蛍光体を混ぜ合わせて分散させ、成形型やステムの所定の位置などに配置した状態で硬化させるという製造工程を経る。
しかし、基材が硬化するまでに蛍光体粒子が沈降し、基材中での分散は不均一となる。しかも、沈降の速度は、粒子の大きさ、形状および表面状態、蛍光体の種類毎での粒子と基材との比重差、硬化前の基材の粘度等により異なり、また、均一な粒径を持つ蛍光体粉末は一般に入手困難である。よって、基材中における一次蛍光体粒子と二次蛍光体粒子の空間的な分布の状態を制御することは困難である。
このために、次の(a)〜(c)の量が製品毎に常に一定とならず、出力光に含まれる一次蛍光の強さと二次蛍光の強さとの比率が安定しないために、製品毎に白色光の品質が異なるという問題が生じる。
(a)蛍光体部材中に入射した原励起光のうち、二次蛍光体によって吸収、散乱を受けながら、最終的に一次蛍光体に到達し得る原励起光の量。
(b)一次蛍光体から発せられた一次蛍光のうち、一次蛍光体自体によって散乱されながら、二次蛍光体に到達し得る一次蛍光の量、および外部に出射される一次蛍光の量。
(c)二次蛍光体から発せられた二次蛍光のうち、一次蛍光体および二次蛍光体によって散乱されながら、外部に出射される二次蛍光の量。
特開平7−99345号公報 特開2004−14942号公報 特開2003−147351号公報 特開2000−331947号公報 特開2002−280611号公報
However, when the present inventors examined in detail about the structure of the light-emitting device which performs the above cascade excitation, it turned out that the following problems exist in the aspect of a phosphor member.
The problem is caused by the fact that the phosphor member has a configuration in which both the primary phosphor and the secondary phosphor are in the form of particles, and these are mixed and dispersed in one base material.
When dispersing fine particle phosphors in a substrate such as a resin, mix the fine particle phosphors with a liquid substrate material or a substrate material that has been made fluid by heating or the like. A manufacturing process of dispersing and curing in a state where it is disposed at a predetermined position of a mold or a stem is performed.
However, the phosphor particles settle before the substrate is cured, and the dispersion in the substrate becomes non-uniform. Moreover, the speed of sedimentation varies depending on the size, shape and surface condition of the particles, the specific gravity difference between the particles and the substrate for each type of phosphor, the viscosity of the substrate before curing, and the uniform particle size. It is generally difficult to obtain phosphor powders having Therefore, it is difficult to control the state of spatial distribution of the primary phosphor particles and the secondary phosphor particles in the substrate.
For this reason, the amount of the following (a) to (c) is not always constant for each product, and the ratio between the intensity of primary fluorescence and the intensity of secondary fluorescence contained in the output light is not stable. There arises a problem that the quality of white light is different every time.
(A) The amount of the original excitation light that can finally reach the primary phosphor while being absorbed and scattered by the secondary phosphor among the original excitation light incident on the phosphor member.
(B) Of the primary fluorescence emitted from the primary phosphor, the amount of primary fluorescence that can reach the secondary phosphor while being scattered by the primary phosphor itself, and the amount of primary fluorescence emitted to the outside.
(C) Of the secondary fluorescence emitted from the secondary phosphor, the amount of secondary fluorescence emitted to the outside while being scattered by the primary phosphor and the secondary phosphor.
JP-A-7-99345 JP 2004-14942 A JP 2003-147351 A JP 2000-331947 A JP 2002-280611 A

本発明の課題は、上記問題を解決し、GaN系発光素子と蛍光体とによってカスケード励起を行うよう構成された発光装置に対して、出力光に含まれる主要波長成分毎の強度の比率を、製品毎に、より安定させ、該発光装置が白色発光装置である場合においては、白色光の品質のばらつきを抑制し得る構造を提供することにある。   An object of the present invention is to solve the above-mentioned problem, and for a light-emitting device configured to perform cascade excitation with a GaN-based light-emitting element and a phosphor, the intensity ratio for each main wavelength component included in the output light, An object of the present invention is to provide a structure that can be more stable for each product and can suppress variations in the quality of white light when the light-emitting device is a white light-emitting device.

本発明は、次の特徴を有するものである。
(1)原励起光を発する窒化物半導体発光素子と、一次蛍光体部材と、二次蛍光体部材とを有して構成される発光装置であって、
一次蛍光体部材は、原励起光によって励起されて一次蛍光を発する一次蛍光体を含んでおり、二次蛍光体部材は、前記一次蛍光によって励起されて二次蛍光を発する二次蛍光体を含んでおり、
一次蛍光体部材は原励起光が一次蛍光体に照射され得るように配置され、二次蛍光体部材は一次蛍光が二次蛍光体に照射され得るように配置され、かつ、
一次蛍光体と二次蛍光体とが互いに混合されることなく互いに異なる空間領域に分かれて独立的に存在するように、一次蛍光体部材と二次蛍光体部材とが、互いに別の部材として配置されていることを特徴とする、発光装置。
(2)原励起光が二次蛍光体に到達しないように構成されているか、または、二次蛍光体が原励起光によって励起されない性質を有するものである、上記(1)記載の発光装置。
(3)原励起光が二次蛍光体に到達しないように構成されており、その構成が、下記(a)および/または(b)の構成である、上記(2)記載の発光装置。
(a)一次蛍光体部材に照射された原励起光が実質的に全て一次蛍光に変換されるように一次蛍光体部材に含まれる一次蛍光体の量が選択されている構成。
(b)原励起光が二次蛍光体部材に照射されることを妨げるフィルターが設けられている構成。
(4)二次蛍光体部材が、一次蛍光体部材の表面に細分化されたパターンとして配置されている、上記(1)〜(3)のいずれかに記載の発光装置。
(5)二次蛍光体部材が、一次蛍光が照射され得る位置に配置された基板の被照射面上に細分化されたパターンとして配置されている、上記(1)〜(3)のいずれかに記載の発光装置。
(6)一次蛍光のうちの一部がそのまま二次蛍光と共に出力される構成であって、一次蛍光が青色光であり、二次蛍光が黄色光を少なくとも含んでおり、出力光が白色光となるように、これらの各蛍光の強度が調整されている、上記(1)〜(5)のいずれかに記載の発光装置。
(7)青色光を発する蛍光体が〔(M,Mg)10(POCl:Eu〕(MはCa,Sr,Baのうちの少なくとも1種)または〔BaMgAl1017:Eu〕であり、黄色光を発する蛍光体が〔(Y,Gd)(Al,Ga)12:Ce、SrAl:Eu〕である、上記(6)記載の発光装置。
(8)一次蛍光および/または二次蛍光が、さらに緑色光および赤色光を含んでおり、出力光が、青色光、黄色光、緑色光、赤色光を含んだ白色光となるように、これらの各蛍光の強度が調整されている、上記(7)記載の発光装置。
(9)一次蛍光のうちの一部がそのまま二次蛍光と共に出力される構成であって、一次蛍光が青色光であり、二次蛍光が緑色光と赤色光とを少なくとも含んでおり、出力光が白色光となるように、これらの各蛍光の強度が調整されている、上記(1)〜(5)のいずれかに記載の発光装置。
(10)青色光を発する蛍光体が〔(M,Mg)10(POCl:Eu〕(MはCa,Sr,Baのうちの少なくとも1種)または〔BaMgAl1017:Eu〕を含み、緑色光を発する蛍光体が〔BaMgAl1017:Eu,Mn〕、〔ZnS:Cu,Al〕または〔MGa:Eu〕(MはCa,Sr,Baのうちの少なくとも1種)を含み、赤色光を発する蛍光体が〔REuW〕(RはLi,Na,K,Rb,Csのうちの少なくとも1種)、〔MSi:Eu〕(MはCa,Sr,Baのうちの少なくとも1種)、〔(Ca,Sr)S:Eu〕、〔3.5MgO・0.5MgF・GeO:Mn〕または〔LaS:Eu〕を含んでいる、上記(8)または(9)記載の発光装置。
(11)緑色光を発する蛍光体が〔BaMgAl1017:Eu,Mn〕である、上記(8)または(9)記載の発光装置。
(12)原励起光が、波長360nm〜480nmの範囲に属する波長の光である、上記(1)記載の発光装置。
The present invention has the following features.
(1) A light-emitting device that includes a nitride semiconductor light-emitting element that emits original excitation light, a primary phosphor member, and a secondary phosphor member,
The primary phosphor member includes a primary phosphor that emits primary fluorescence when excited by the original excitation light, and the secondary phosphor member includes a secondary phosphor that emits secondary fluorescence when excited by the primary fluorescence. And
The primary phosphor member is arranged so that the primary excitation light can be irradiated to the primary phosphor, the secondary phosphor member is arranged so that the primary fluorescence can be irradiated to the secondary phosphor, and
The primary phosphor member and the secondary phosphor member are arranged as separate members so that the primary phosphor and the secondary phosphor are separated and exist independently in different spatial regions without being mixed with each other. A light-emitting device,
(2) The light-emitting device according to (1) above, which is configured so that the original excitation light does not reach the secondary phosphor, or has a property that the secondary phosphor is not excited by the original excitation light.
(3) The light-emitting device according to (2), wherein the original excitation light is configured not to reach the secondary phosphor, and the configuration is the following configuration (a) and / or (b).
(A) A configuration in which the amount of primary phosphor contained in the primary phosphor member is selected so that substantially all of the original excitation light irradiated to the primary phosphor member is converted into primary fluorescence.
(B) A configuration in which a filter is provided that prevents the secondary phosphor member from being irradiated with the original excitation light.
(4) The light emitting device according to any one of (1) to (3), wherein the secondary phosphor member is arranged as a subdivided pattern on the surface of the primary phosphor member.
(5) Any of (1) to (3) above, wherein the secondary phosphor member is arranged as a subdivided pattern on the irradiated surface of the substrate arranged at a position where the primary fluorescence can be irradiated. The light emitting device according to 1.
(6) A part of the primary fluorescence is output as it is together with the secondary fluorescence, the primary fluorescence is blue light, the secondary fluorescence includes at least yellow light, and the output light is white light. The light-emitting device according to any one of (1) to (5), wherein the intensity of each of these fluorescences is adjusted.
(7) A phosphor emitting blue light is [(M, Mg) 10 (PO 4 ) 6 Cl 2 : Eu] (M is at least one of Ca, Sr, and Ba) or [BaMgAl 10 O 17 : Eu. The light emitting device according to (6), wherein the phosphor that emits yellow light is [(Y, Gd) 3 (Al, Ga) 5 O 12 : Ce, SrAl 2 O 4 : Eu].
(8) The primary fluorescence and / or the secondary fluorescence further includes green light and red light, and the output light is white light including blue light, yellow light, green light, and red light. The light-emitting device according to (7), wherein the intensity of each fluorescence is adjusted.
(9) A part of the primary fluorescence is output as it is together with the secondary fluorescence, the primary fluorescence is blue light, the secondary fluorescence includes at least green light and red light, and the output light The light emitting device according to any one of the above (1) to (5), wherein the intensity of each of these fluorescences is adjusted so that becomes white light.
(10) A phosphor emitting blue light is [(M, Mg) 10 (PO 4 ) 6 Cl 2 : Eu] (M is at least one of Ca, Sr and Ba) or [BaMgAl 10 O 17 : Eu. And a phosphor emitting green light is [BaMgAl 10 O 17 : Eu, Mn], [ZnS: Cu, Al] or [MGa 2 S 4 : Eu] (M is at least one of Ca, Sr and Ba) And phosphors emitting red light are [REuW 2 O 8 ] (R is at least one of Li, Na, K, Rb, and Cs), [M 2 Si 5 N 8 : Eu] ( M is at least one of Ca, Sr, and Ba), [(Ca, Sr) S: Eu], [3.5MgO.0.5MgF 2 .GeO 2 : Mn], or [La 2 O 2 S: Eu]. ] (8) or (9) The light-emitting device of description.
(11) The light emitting device according to (8) or (9), wherein the phosphor emitting green light is [BaMgAl 10 O 17 : Eu, Mn].
(12) The light emitting device according to (1), wherein the original excitation light is light having a wavelength belonging to a wavelength range of 360 nm to 480 nm.

背景技術の説明で述べたとおり、従来のカスケード励起で用いられる蛍光体部材の態様は、図8に示したように、一次蛍光体、二次蛍光体を共に粒子状とし、1つの基材中に両方を混合したものであった。
しかし、このような分散のさせ方であっても、従来では、十分に均等な分散が、常に再現性良く得られていると考えられており、出力光に含まれる一次蛍光と二次蛍光との比率についても常に同程度となるとされて、何らの問題点も提起されることはなかった。
As described in the description of the background art, the phosphor member used in the conventional cascade excitation is such that, as shown in FIG. 8, both the primary phosphor and the secondary phosphor are in the form of particles in one substrate. Both were mixed.
However, even with this kind of dispersion, it is conventionally considered that sufficiently uniform dispersion is always obtained with good reproducibility, and the primary fluorescence and secondary fluorescence included in the output light The ratio was always the same, and no problems were raised.

これに対して、本発明では、図1に例示するように、一次蛍光体と二次蛍光体とを1つの基材中に混ぜ合わせることはせず、互いに異なる空間領域に分かれて独立的に存在するように、一次蛍光体は一次蛍光体部材に含め、二次蛍光体は二次蛍光体部材に含めて、これら一次蛍光体部材と二次蛍光体部材とを互いに独立した別の部材として配置している。   On the other hand, in the present invention, as illustrated in FIG. 1, the primary phosphor and the secondary phosphor are not mixed in one base material, but are divided into different spatial regions independently. As shown, the primary phosphor is included in the primary phosphor member, the secondary phosphor is included in the secondary phosphor member, and the primary phosphor member and the secondary phosphor member are separated from each other. It is arranged.

一次蛍光体部材と二次蛍光体部材とが、互いに独立した別の部材であるとは、それぞれの部材が独立した1つの部品として別々に取り扱うことができる態様だけでなく、一次蛍光体部材と二次蛍光体部材とが互いに積層された状態のように、取り扱い上は不可分であっても、一次蛍光体と二次蛍光体とが、互いに異なる空間領域に分かれて集合し、互いに混ざり合うことなく存在し得る態様であればよい。   The primary phosphor member and the secondary phosphor member are separate members independent from each other, not only in a mode in which each member can be handled separately as one independent component, but also with the primary phosphor member Even if it is inseparable in handling, such as a state in which the secondary phosphor members are stacked on each other, the primary phosphor and the secondary phosphor are assembled in different spatial areas and mixed together. Any mode that can exist without any problem is acceptable.

本発明の構成によって、一次蛍光体と二次蛍光体とが、確実に所望の異なる空間位置へと分けられるので、原励起光が二次蛍光体による吸収や散乱をうけることなく一次蛍光体に到達し得る。よって、一次蛍光体に到達する原励起光の量を制御し易くなる。
同様に、二次蛍光体に到達する一次蛍光の量も、外部に出射される一次蛍光と二次蛍光の割合も制御し易くなり、製品毎の出力光の品質のばらつきは少なくなる。
With the configuration of the present invention, the primary phosphor and the secondary phosphor are surely separated into different desired spatial positions, so that the primary excitation light is not absorbed or scattered by the secondary phosphor. Can reach. Therefore, it becomes easy to control the amount of the original excitation light that reaches the primary phosphor.
Similarly, the amount of primary fluorescence that reaches the secondary phosphor and the ratio of primary fluorescence and secondary fluorescence emitted to the outside can be easily controlled, and variations in the quality of output light from product to product are reduced.

また、蛍光体粒子を基材中に分散させる場合、各蛍光体の種類毎の最適分散条件は一般的にみて同じではないため、同時に基材中に分散させる蛍光体の種類が多くなるほど、最適な製造条件が狭くなる。
本発明のように、一次蛍光体部材と二次蛍光体部材とを互いに独立した別の部材として分けることによって、蛍光体粒子を基材中に好ましく分散させるための製造条件が狭くなるという問題を避けることができる。
Also, when dispersing phosphor particles in a substrate, the optimum dispersion conditions for each phosphor type are generally not the same, so the more types of phosphors to be simultaneously dispersed in the substrate, the more optimal Manufacturing conditions are narrowed.
As in the present invention, by separating the primary phosphor member and the secondary phosphor member as separate members that are independent from each other, the manufacturing conditions for preferably dispersing the phosphor particles in the substrate are reduced. Can be avoided.

本発明による発光装置は、図1(a)、(b)に構成の一例を模式的に示すように、原励起光Lを発するGaN系発光素子Sと、一次蛍光体部材1と、二次蛍光体部材2とを少なくとも有して構成される。
一次蛍光体部材1は、一次蛍光体10を含んでいる。該蛍光体10は、原励起光Lによって励起され一次蛍光L1を発する物質である。一次蛍光体部材1は、原励起光Lが一次蛍光体10に十分に照射され、十分な一次蛍光L1を発し得るように、原励起光Lに対して、位置、姿勢などを選択されて配置されている。
また、二次蛍光体部材2は、二次蛍光体20を含んでいる。該蛍光体20は、一次蛍光L1によって励起されて二次蛍光L2を発する物質である。二次蛍光体部材2は、一次蛍光L1が二次蛍光体に十分に照射され、十分な二次蛍光L2を発し得るように、一次蛍光L1に対して、位置、姿勢などを選択されて配置されている。
ここで重要な点は、上記発明の効果で述べたとおり、一次蛍光体粒子と、二次蛍光体粒子とが、互いに混合されることなく、互いに異なる空間領域に分かれて独立的に位置していること、即ち、両蛍光体粒子が、互いに独立した別の部材中に存在している点にある。この構成によって、発明の効果で述べた作用効果が得られる。
The light emitting device according to the present invention includes a GaN-based light emitting element S that emits original excitation light L, a primary phosphor member 1, a secondary light, as schematically shown in FIGS. 1 (a) and 1 (b). And at least a phosphor member 2.
The primary phosphor member 1 includes a primary phosphor 10. The phosphor 10 is a substance that emits primary fluorescence L1 when excited by the original excitation light L. The primary phosphor member 1 is arranged with its position, orientation, etc. selected with respect to the original excitation light L so that the primary excitation light L is sufficiently irradiated to the primary phosphor 10 and can emit sufficient primary fluorescence L1. Has been.
The secondary phosphor member 2 includes a secondary phosphor 20. The phosphor 20 is a substance that emits secondary fluorescence L2 when excited by the primary fluorescence L1. The secondary phosphor member 2 is arranged with a selected position, orientation, etc. with respect to the primary fluorescence L1, so that the primary fluorescence L1 can be sufficiently irradiated to the secondary phosphor and emit sufficient secondary fluorescence L2. Has been.
The important point here is that, as described in the effect of the present invention, the primary phosphor particles and the secondary phosphor particles are separated from each other in different spatial regions without being mixed with each other. That is, both phosphor particles are present in separate members independent of each other. With this configuration, the effects described in the effect of the invention can be obtained.

励起光源であるGaN系発光素子は、LED、LD(半導体レーザ)など、発光部の材料に窒化物半導体が用いられた種々の発光素子であればよいが、一般的な照明装置、表示装置を構成するための励起光源としてはGaN系LEDが好ましい。
窒化物半導体とは、InGaAlN(0≦A≦1、0≦B≦1、0≦C≦1、A+B+C=1)で示される化合物半導体であって、例えば、AlN、GaN、AlGaN、InGaNなどが重要な化合物として挙げられる。
The GaN-based light-emitting element that is an excitation light source may be various light-emitting elements such as LEDs and LDs (semiconductor lasers) in which a nitride semiconductor is used as a material of the light-emitting portion. A GaN-based LED is preferable as an excitation light source for the configuration.
The nitride semiconductor is a compound semiconductor represented by In A Ga B Al C N ( 0 ≦ A ≦ 1,0 ≦ B ≦ 1,0 ≦ C ≦ 1, A + B + C = 1), for example, AlN, GaN AlGaN, InGaN, etc. are mentioned as important compounds.

GaN系発光素子の発光波長に限定はないが、原励起光として種々の色の蛍光体を励起するためには、より高いエネルギーを持つ光であることが好ましく、青色から紫外に至る短い波長、即ち、360nm〜480nmの範囲内に属する波長が好ましい。
特に、このような発光波長となるように組成比を決定されたInGa1−ANを発光層に用いたGaN系発光素子は、高い発光効率を有するために、高出力となり、励起光源として好ましい。また、そのようなInGa1−ANを井戸層とする、単一量子井戸(SQW)または多重量子井戸(MQW)構造の発光層を用いたものは、更に高効率となり、好ましい。この場合の量子井戸構造中の障壁層の材料としては、GaNなどが挙げられる。
There is no limitation on the emission wavelength of the GaN-based light emitting device, but in order to excite various color phosphors as the original excitation light, it is preferably light having higher energy, a short wavelength from blue to ultraviolet, That is, a wavelength belonging to the range of 360 nm to 480 nm is preferable.
In particular, a GaN-based light emitting device using In A Ga 1- AN having a composition ratio determined so as to have such a light emission wavelength as a light emitting layer has a high light emission efficiency, and thus has a high output and an excitation light source. As preferred. In addition, a light emitting layer having a single quantum well (SQW) or multiple quantum well (MQW) structure using In A Ga 1-A N as a well layer is more preferable because it is more efficient. In this case, examples of the material for the barrier layer in the quantum well structure include GaN.

出力光を白色光とし、その白色光を作り出すための少なくとも3原色光(RGB3波長光)を全て蛍光体によって作り出す構成とするならば、GaN系発光素子の発光波長は、410nm以下の近紫外線とすることが好ましく、380nm〜410nmがより好ましい。これは、前記の通り、InGa1−ANからなる発光層を有する高効率、高出力のGaN系発光素子を励起光源として使用できるとともに、380nm〜410nmという波長域において高い励起効率を示すRGBの蛍光体が入手可能であるからである。
また、励起光を青紫光〜青色光(波長400nm〜480nm)などとし、出力光の一部として、一次蛍光や二次蛍光とともに出射されるように発光装置を構成してもよい。
If the output light is white light and at least three primary color lights (RGB three-wavelength light) for producing the white light are all made of a phosphor, the emission wavelength of the GaN-based light emitting element is 410 nm or less. Preferably, 380 nm to 410 nm is more preferable. As described above, a high-efficiency, high-power GaN-based light-emitting element having a light-emitting layer made of In A Ga 1-A N can be used as an excitation light source and exhibits high excitation efficiency in a wavelength range of 380 nm to 410 nm. This is because RGB phosphors are available.
Alternatively, the light-emitting device may be configured so that the excitation light is blue-violet light to blue light (wavelength 400 nm to 480 nm) or the like and is emitted together with primary fluorescence and secondary fluorescence as part of output light.

GaN系発光素子の素子構造に限定はなく、公知のどのようなGaN系発光素子を用いてもよいが、同じ電流でより高い出力が得られるものが好ましい。
図2は、GaN系LEDの好ましい素子構造の一例を示す模式図であって、結晶基板(サファイア基板など)30上に、GaN系低温成長バッファ層30bを介して、順に、n型コンタクト層31、発光部35(n型クラッド層32/MQW発光層(詳細な積層構造は図示せず)33/p型クラッド層34)、p型コンタクト層(複数層の構造とされる場合があるが詳細には図示せず)36が気相成長によって積層され、各コンタクト層に、n電極P1、p電極P2が設けられている。
同図の例では、説明のために結晶基板30を下側として描いているが、p電極P2を実装用基板側に向けて回路に直接接続し結晶基板30を上にする実装(所謂フリップチップ実装)を行って基板裏面から光を取り出し、その光を蛍光体部へ照射する構成であってもよい。
There is no limitation on the element structure of the GaN-based light-emitting element, and any known GaN-based light-emitting element may be used, but it is preferable to obtain a higher output with the same current.
FIG. 2 is a schematic diagram showing an example of a preferable element structure of a GaN-based LED. An n-type contact layer 31 is sequentially formed on a crystal substrate (such as a sapphire substrate) 30 via a GaN-based low-temperature growth buffer layer 30b. , Light emitting portion 35 (n-type cladding layer 32 / MQW light emitting layer (detailed laminated structure not shown) 33 / p-type cladding layer 34), p-type contact layer (multiple layer structure may be used) (Not shown) are stacked by vapor deposition, and an n-electrode P1 and a p-electrode P2 are provided in each contact layer.
In the example shown in the figure, the crystal substrate 30 is drawn on the lower side for the sake of explanation. However, the p-electrode P2 is directly connected to the circuit with the p-electrode P2 facing the mounting substrate side (so-called flip chip) The configuration may be such that light is extracted from the back surface of the substrate by performing mounting) and the phosphor portion is irradiated with the light.

図2の例では、結晶基板30の上面(GaN系結晶層が成長する面)には、好ましい態様として凹凸40が加工されている。この凹凸によってGaN系結晶層の転位密度が低減され、発光部における発光効率がより高められる(内部量子効率の向上)。また、この凹凸は、素子内で発生した光を閉じ込めたままにせず、より多く外界に出す作用を示す(外部量子効率の向上)。これらの作用があいまって、高出力のGaN系LEDが得られる。このような素子構造とする場合、該凹凸面を通してより多くの光を外界に取り出す点からは、前記のフリップチップ実装用の素子とするのが好ましい態様である。   In the example of FIG. 2, the unevenness 40 is processed on the upper surface of the crystal substrate 30 (the surface on which the GaN-based crystal layer grows) as a preferred embodiment. This unevenness reduces the dislocation density of the GaN-based crystal layer and further increases the light emission efficiency in the light emitting part (improves internal quantum efficiency). Moreover, this unevenness does not keep the light generated in the element confined, but shows an effect of emitting more to the outside (improvement of external quantum efficiency). Combined with these actions, a high-power GaN-based LED can be obtained. In the case of such an element structure, the above-described element for flip chip mounting is a preferable aspect from the viewpoint of extracting more light to the outside through the uneven surface.

GaN系発光素子を構成するための結晶基板、バッファ層、基板上への結晶成長技術、発光素子構造、実装技術などについては、従来公知の技術を参照すればよい(特許文献4、5)。   For the crystal substrate, the buffer layer, the crystal growth technique on the substrate, the light emitting element structure, the mounting technique, and the like for constituting the GaN-based light emitting element, conventionally known techniques may be referred to (Patent Documents 4 and 5).

一次蛍光体部材1、二次蛍光体部材2は、図1(a)の態様では、それぞれ板状の部材として形成されており、これらが2層の状態になって、GaN系LEDが実装されたステム50の開口を塞いでいる。
また、図1(b)の態様では、一次蛍光体部材1、二次蛍光体部材2は、ドーム形の樹脂モールドとして形成され、GaN系LEDとステム50を2重に被覆している。
これらの態様では、一次、二次のいずれの蛍光体部材も、透明樹脂製の基材中に、微粒子状とされた蛍光体が分散した構成となっている。
また、一次蛍光体部材が励起光源側、二次蛍光体部材が外界側(出射側)となるように積層されており、原励起光の光が二次蛍光体による吸収・散乱を受けることなく、先ず一次蛍光体に到達するため、変換効率が良い。
GaN系発光素子がフリップチップ実装型の素子である場合、一次蛍光体部材、二次蛍光体部材を発光素子の結晶基板の裏面に直接的にカスケード励起可能に2層に配置してもよい。
一次蛍光体部材、二次蛍光体部材をそれぞれどのように形成するかは限定されず、モールドタイプ、板状タイプ、反射面や透明基材の上へコーティングしたものなどを、自由に組み合わせて構成すればよい。本発明の発光装置は、GaN系半導体素子を複数並べて実装したものを励起光源とすることで、大型化することができるが、このように大型化する場合には、一次蛍光体部材や二次蛍光体部材を板状タイプまたは、透明基材にコーティングしたものとすることが好ましい。
In the embodiment of FIG. 1A, the primary phosphor member 1 and the secondary phosphor member 2 are each formed as a plate-shaped member, and these are in a two-layer state, and a GaN-based LED is mounted. The opening of the stem 50 is closed.
Further, in the embodiment of FIG. 1B, the primary phosphor member 1 and the secondary phosphor member 2 are formed as a dome-shaped resin mold and cover the GaN-based LED and the stem 50 in a double manner.
In these embodiments, both the primary and secondary phosphor members have a structure in which fine particles of phosphor are dispersed in a transparent resin base material.
In addition, the primary phosphor member is laminated on the excitation light source side and the secondary phosphor member is on the outside (exit side), so that the light of the original excitation light is not absorbed or scattered by the secondary phosphor. First, since it reaches the primary phosphor, the conversion efficiency is good.
When the GaN-based light emitting device is a flip chip mounting type device, the primary phosphor member and the secondary phosphor member may be arranged in two layers on the back surface of the crystal substrate of the light emitting device so as to be directly cascade-excited.
There is no limitation on how the primary phosphor member and secondary phosphor member are formed, and any combination of mold type, plate type, reflective surface, and coating on a transparent substrate is possible. do it. The light-emitting device of the present invention can be increased in size by using a plurality of GaN-based semiconductor elements mounted side by side as an excitation light source. In the case of increasing the size in this way, the primary phosphor member or secondary It is preferable that the phosphor member be a plate type or a transparent substrate coated.

また、本発明の発光装置は、励起光源であるGaN系発光素子からの光を板状、棒状、ファイバ状等の導光体を介して蛍光体部材に導く構成としてもよく、また、一次蛍光体部材から出る一次蛍光を、かかる導光体によって二次蛍光体部材に導く構成としてもよい。   The light-emitting device of the present invention may be configured to guide light from a GaN-based light-emitting element that is an excitation light source to a phosphor member via a light guide such as a plate, rod, or fiber. The primary fluorescence emitted from the body member may be guided to the secondary phosphor member by such a light guide.

二次蛍光体が一次蛍光のみならず原励起光によっても励起され二次蛍光を発するような態様は、次の点で好ましくない。
即ち、二次蛍光体が原励起光によっても励起され得る場合、二次蛍光体に原励起光と一次蛍光の両方が到達したとき、その割合によって、二次蛍光体が発生する蛍光(原励起光により励起されて発生する蛍光と、一次蛍光により励起されて発生する蛍光の総和)の強度が変わるため、二次蛍光体の発光強度が一次蛍光体の空間分布に大きく影響を受けることになり、出力光の成分を安定させるための制御が困難となるからである。
A mode in which the secondary phosphor is excited not only by the primary fluorescence but also by the original excitation light to emit the secondary fluorescence is not preferable in the following points.
That is, when the secondary phosphor can be excited even by the original excitation light, when both the original excitation light and the primary fluorescence reach the secondary phosphor, the fluorescence generated by the secondary phosphor depending on the ratio (original excitation). Since the intensity of the fluorescence generated by excitation by light and the intensity of the fluorescence generated by excitation by the primary fluorescence change, the emission intensity of the secondary phosphor is greatly affected by the spatial distribution of the primary phosphor. This is because control for stabilizing the component of the output light becomes difficult.

二次蛍光体が原励起光によって励起されて発光することのないように構成するには、(あ)二次蛍光体に原励起光が殆ど到達しないようにすることや、(い)二次蛍光体自体を、原励起光によって励起されない材料とすることなどが挙げられる。
上記(あ)を達成するための構成としては、次の(a)および/または(b)の構成が例示される。
(a)励起光源と二次蛍光体部材との間に一次蛍光体部材を配置し、原励起光が該一次蛍光体部材において実質的に全て一次蛍光に変換されるように、一次蛍光体部材に含まれる一次蛍光体の量を調節する構成。
(b)一次蛍光体部材と二次蛍光体部材との間に、一次蛍光は透過するが、原励起光は吸収または反射するフィルタ層を配置する構成。
In order to prevent the secondary phosphor from being emitted by being excited by the original excitation light, (a) the primary excitation light hardly reaches the secondary phosphor, or (ii) the secondary phosphor. For example, the phosphor itself may be a material that is not excited by the original excitation light.
Examples of the configuration for achieving the above (a) include the following configurations (a) and / or (b).
(A) A primary phosphor member is disposed between an excitation light source and a secondary phosphor member so that substantially all of the original excitation light is converted into primary fluorescence in the primary phosphor member. The structure which adjusts the quantity of the primary fluorescent substance contained in.
(B) A configuration in which a filter layer that transmits primary fluorescence but absorbs or reflects original excitation light is disposed between the primary phosphor member and the secondary phosphor member.

図3は、GaN系LEDが実装されたステムに対して、一次蛍光体部材、二次蛍光体部材を配置する際の他の構成例を示す模式図である。
図3(a)の例では、図1(a)の態様と同様に、板状の一次蛍光体部材1、二次蛍光体部材2が2層の状態になって、ステム50の開口を塞いでいるが、一次蛍光体部材1、二次蛍光体部材2の積層順序が、図1(a)の態様とは逆になっている。原励起光Lは、いったん二次蛍光体部材2を通過して一次蛍光体部材1に入り、そこで発生した一次蛍光の一部は外界へ出力され、一部は二次蛍光体部材2に入り、そこで二次蛍光L2が発せられる。
このような構成では、二次蛍光体として、原励起光によって励起されない性質を有する物質を用いることが好ましく、これによって、より多くの量の原励起光を外側の一次蛍光体部材に入射させることができる。
FIG. 3 is a schematic diagram illustrating another configuration example when the primary phosphor member and the secondary phosphor member are disposed on the stem on which the GaN-based LED is mounted.
In the example of FIG. 3A, the plate-like primary phosphor member 1 and the secondary phosphor member 2 are in a two-layer state to close the opening of the stem 50, as in the embodiment of FIG. However, the stacking order of the primary phosphor member 1 and the secondary phosphor member 2 is opposite to that shown in FIG. The original excitation light L once passes through the secondary phosphor member 2 and enters the primary phosphor member 1, a part of the primary fluorescence generated there is output to the outside world, and a part enters the secondary phosphor member 2. Then, secondary fluorescence L2 is emitted.
In such a configuration, it is preferable to use, as the secondary phosphor, a substance having a property that is not excited by the original excitation light, thereby allowing a larger amount of the original excitation light to enter the outer primary phosphor member. Can do.

図3(b)の例では、一次蛍光体部材1a、二次蛍光体部材2aが板状を呈しかつ積層された状態となっているが、透明基板3の一方の主面に一次蛍光体1a、二次蛍光体2aが薄くコーティングされた構成となっている。
図3(c)の例では、透明基板3の内側の主面に一次蛍光体部材層1aがコーティングされ、外側の主面に二次蛍光体部材層2aがコーティングされている。
これら図3(b)、(c)の構成は、図1に対する図3(a)のように、一次蛍光体部材層と二次蛍光体部材層の積層順または位置が逆であってもよい。
In the example of FIG. 3B, the primary phosphor member 1 a and the secondary phosphor member 2 a have a plate shape and are stacked, but the primary phosphor 1 a is formed on one main surface of the transparent substrate 3. The secondary phosphor 2a is thinly coated.
In the example of FIG. 3C, the primary phosphor member layer 1a is coated on the inner main surface of the transparent substrate 3, and the secondary phosphor member layer 2a is coated on the outer main surface.
3 (b) and 3 (c), the stacking order or position of the primary phosphor member layer and the secondary phosphor member layer may be reversed as shown in FIG. 3 (a) with respect to FIG. .

図4(a)の例では、一次蛍光体部材1は、図1(a)の例と同様に、基材中に一次蛍光体を分散させた板状物であるが、その板面に複数の細かい凹部が形成され、その内部に二次蛍光体部材2が充填された態様となっている。この態様は、二次蛍光体部材層が、上記凹部が形作るパターンとして配置されたものということができる。
このように二次蛍光体部材層を細分化されたパターンとして配置する態様は、板状の蛍光体部材において、意図した面内分布パターン(均等なパターン、偏ったパターン)にて二次蛍光体を自在に分布させることができ、また、複数の二次蛍光体を分散させる場合の、各二次蛍光体の量的比率も面内で自在に制御することができるなど、特別な作用効果を有する。この態様については、より詳しく、後述する。
In the example of FIG. 4 (a), the primary phosphor member 1 is a plate-like material in which the primary phosphor is dispersed in the base material as in the example of FIG. 1 (a). Are formed, and the secondary phosphor member 2 is filled therein. In this aspect, it can be said that the secondary phosphor member layer is arranged as a pattern formed by the concave portion.
Thus, the aspect which arrange | positions a secondary fluorescent substance member layer as a subdivided pattern is a secondary fluorescent substance with the intended in-plane distribution pattern (an equal pattern, a biased pattern) in a plate-shaped fluorescent substance member. Special functions and effects such as the ability to freely control the quantitative ratio of each secondary phosphor in a plane when a plurality of secondary phosphors are dispersed. Have. This aspect will be described in detail later.

図4(b)の例では、一次蛍光体部材1は、図1(b)の例と同様にドーム形の樹脂モールドとして形成され、GaN系LEDとステム50を被覆している。一方、二次蛍光体部材2は、図1(a)の例と同様に板状の部材として形成されており、GaN系LEDが実装されたステム50の開口を塞いでいる。   In the example of FIG. 4B, the primary phosphor member 1 is formed as a dome-shaped resin mold as in the example of FIG. 1B, and covers the GaN-based LED and the stem 50. On the other hand, the secondary phosphor member 2 is formed as a plate-like member as in the example of FIG. 1A, and closes the opening of the stem 50 on which the GaN-based LED is mounted.

図4(c)の例では、一次蛍光体部材1は、ステムの漏斗状(パラボラ状)の反射面上にコーティングされており、そこで発生した一次蛍光L1は上方へと向かう構成となっている。二次蛍光体部材2は、図4(b)の例と同様に板状の部材として形成されており、GaN系LEDが実装されたステム50の開口を塞いでいる。
一次蛍光体部材1と二次蛍光体2とは、互いに入れ替えてもよい。
In the example of FIG. 4C, the primary phosphor member 1 is coated on the funnel-shaped (parabolic) reflecting surface of the stem, and the primary fluorescence L1 generated there is directed upward. . The secondary phosphor member 2 is formed as a plate-like member as in the example of FIG. 4B, and closes the opening of the stem 50 on which the GaN-based LED is mounted.
The primary phosphor member 1 and the secondary phosphor 2 may be interchanged with each other.

図5の例では、一次蛍光体部材1は、図4(c)の例と同様にステムの反射面上にコーティングされているが、さらにその下層側に二次蛍光体部材2がコーティングされている。また、一次蛍光体部材1は、図4(b)の例と同様に板状の部材としても形成され、ステム50の開口を塞いでいる。原励起光Lのうち上方へ向かった光は、ステム開口において板状の一次蛍光体部材1によって一次蛍光L1へと変換される。また、原励起光Lのうちステムの反射面へ向かった光は、先ず一次蛍光体によって一次蛍光L1へと変換され、さらに下層側(内部)へと進んだ一次蛍光L1は二次蛍光L2へと変換され、その二次蛍光L2が表層の一次蛍光体部材1を透過し、上方へと向かう。   In the example of FIG. 5, the primary phosphor member 1 is coated on the reflecting surface of the stem as in the example of FIG. 4C, but the secondary phosphor member 2 is further coated on the lower layer side. Yes. The primary phosphor member 1 is also formed as a plate-like member as in the example of FIG. 4B, and closes the opening of the stem 50. Of the original excitation light L, the light directed upward is converted into primary fluorescence L1 by the plate-like primary phosphor member 1 at the stem opening. In addition, the light of the original excitation light L toward the reflecting surface of the stem is first converted into primary fluorescence L1 by the primary phosphor, and further the primary fluorescence L1 that has proceeded to the lower layer side (inside) becomes secondary fluorescence L2. The secondary fluorescence L2 passes through the primary phosphor member 1 on the surface layer and travels upward.

本発明では、一次蛍光体部材と二次蛍光体部材とによってカスケード励起を行っているが、原励起光、一次蛍光を、出力光として用いるかどうかは用途に応じて自由に選択してよい。
原励起光を紫外光として、これを出力光としては用いないようにする一方、一次蛍光を青色光として、これを出力光としかつ二次蛍光体の励起光とする組み合わせが好ましい態様として挙げられる。この場合、二次蛍光体として、赤色蛍光体と緑色蛍光体とを少なくとも用いれば、白色光を出力することができる。
また、二次蛍光体として黄色蛍光体を用い、青色光(一次蛍光)と黄色光(二次蛍光)とによる擬似白色光を出力する構成としてもよい。擬似白色光に赤色蛍光体や緑色蛍光体をさらに加えて演色性を向上させる場合には、これら赤色蛍光体や緑色蛍光体などは、一次蛍光体および二次蛍光体のいずれに含めてもよい。
本発明の発光装置において、一次蛍光体は、必ずしも1種類である必要はなく、二次蛍光体の励起に関係しない蛍光を発する蛍光体が含まれていてもよい。
In the present invention, cascade excitation is performed by the primary phosphor member and the secondary phosphor member, but whether to use the original excitation light and the primary fluorescence as the output light may be freely selected according to the application.
A preferred embodiment is a combination in which the original excitation light is used as ultraviolet light and is not used as output light, while the primary fluorescence is used as blue light, which is used as output light and the excitation light of the secondary phosphor. . In this case, if at least a red phosphor and a green phosphor are used as the secondary phosphor, white light can be output.
Alternatively, a yellow phosphor may be used as the secondary phosphor, and pseudo white light generated by blue light (primary fluorescence) and yellow light (secondary fluorescence) may be output. When the color rendering property is improved by further adding a red phosphor or a green phosphor to the pseudo white light, the red phosphor or the green phosphor may be included in either the primary phosphor or the secondary phosphor. .
In the light emitting device of the present invention, the primary phosphor is not necessarily one type, and may include a phosphor that emits fluorescence not related to the excitation of the secondary phosphor.

図4(a)の例で概略的に説明した、二次蛍光体部材層を細分化されたパターンとして配置する態様について、より詳しく説明する。
図6(a)は、図4(a)の態様を上方から見たときの斜視図であって、二次蛍光体部材層2が板状の一次蛍光体部材1の表面に、細かい方形状領域が離間的に並んだパターンとして配置されている。換言すれば、一次蛍光体部材1の表面は複数の小領域に区分され、該小領域毎に、二次蛍光体20の配置の有無が選択されている。ここで、小領域毎に二次蛍光体20の種類が選択されてもよい。これによって、二次蛍光体部材層2は、一次蛍光体部材1の表面に細分化されたパターンとして配置された構成となっている。
The aspect which arrange | positions the secondary phosphor member layer as a subdivided pattern schematically demonstrated in the example of Fig.4 (a) is demonstrated in detail.
6 (a) is a perspective view of the embodiment of FIG. 4 (a) as viewed from above, in which the secondary phosphor member layer 2 has a fine rectangular shape on the surface of the plate-like primary phosphor member 1. FIG. The regions are arranged as a pattern in which the regions are spaced apart. In other words, the surface of the primary phosphor member 1 is divided into a plurality of small areas, and the presence or absence of the secondary phosphor 20 is selected for each small area. Here, the type of secondary phosphor 20 may be selected for each small region. As a result, the secondary phosphor member layer 2 is arranged as a subdivided pattern on the surface of the primary phosphor member 1.

また、図6(b)の例では、二次蛍光体部材層2は、一次蛍光体部材1とは独立した基板21の主面にコーティングされている。該基板21は一次蛍光が照射され得る位置に配置される。二次蛍光体部材層2は、基板21の基板面のうち、一次蛍光が照射され得る被照射面上に、細かい方形状領域が離間的に並んだパターンとして配置されている。同図の例は、被照射面に対して基板21を通して一次蛍光が照射される構成であって、基板21は一次蛍光が透過できるよう透明である。
以下、図6(a)の例においても、一次蛍光体部材の表面のうち、一次蛍光が照射されかつ二次蛍光体部材層を配置する面を「被照射面」と呼ぶ。
In the example of FIG. 6B, the secondary phosphor member layer 2 is coated on the main surface of the substrate 21 independent of the primary phosphor member 1. The substrate 21 is disposed at a position where primary fluorescence can be irradiated. The secondary phosphor member layer 2 is arranged as a pattern in which fine rectangular regions are spaced apart from each other on the irradiated surface of the substrate 21 where primary fluorescence can be irradiated. The example in the figure is configured such that the primary fluorescence is irradiated to the irradiated surface through the substrate 21, and the substrate 21 is transparent so that the primary fluorescence can be transmitted.
Hereinafter, also in the example of FIG. 6A, the surface of the surface of the primary phosphor member that is irradiated with the primary fluorescence and on which the secondary phosphor member layer is disposed is referred to as an “irradiated surface”.

二次蛍光体部材層を細分化されたパターンとして配置する態様(以下、「蛍光体細分化配置」と略す)は、次の作用効果を示す。
例えば、図1の態様のように、二次蛍光体部材が粒子状の蛍光体を樹脂基材中に分散させた一つの塊状物である場合、二次蛍光体部材に一次蛍光が入射した後、二次蛍光体部材から一次蛍光と二次蛍光とがどのような比率で出てくるかは、主として樹脂基材中の二次蛍光体微粒子の空間的な分布(前述の通り、これらは二次蛍光体微粒子の粒度、樹脂基材に対する配合比率などに影響される)で制御されることになる。
これに対して、図6(a)、(b)に例示するように、二次蛍光体部材層を細分化されたパターンとして配置することによって、次の作用効果が得られる。
(a)二次蛍光体の種類が複数種あっても、各二次蛍光体を含む二次蛍光体部材層が被照射面内において形成するパターンを制御することで、被照射面内における、各二次蛍光体の分布(均等な分布、偏在する分布)や、各二次蛍光体の量的比率(均等な比率、異なる比率)を制御することができる。同様に、二次蛍光体が一種類だけの場合でも、前記のように、被照射面内におけるその分布のしかたを自在に制御することができる。
(b)二次蛍光体部材層が形成された領域同士の間に、二次蛍光体部材層が存在しない隙間領域が形成されるので、この隙間領域を、確実に、被照射面内に二次蛍光体が存在しない領域(励起光や一次蛍光が二次蛍光体の影響を実質的に受けることなく通過し得る領域)とすることができる。このような作用効果は、被照射面に入射する原励起光や一次蛍光の一部を通過させて出力光とする場合に顕著に有用となる。
An aspect in which the secondary phosphor member layer is arranged as a subdivided pattern (hereinafter abbreviated as “phosphor subdivision arrangement”) exhibits the following effects.
For example, as in the embodiment of FIG. 1, when the secondary phosphor member is a single block in which a particulate phosphor is dispersed in a resin base material, the primary fluorescence is incident on the secondary phosphor member. The ratio of the primary fluorescence and the secondary fluorescence emitted from the secondary phosphor member is mainly determined by the spatial distribution of the secondary phosphor fine particles in the resin substrate (as described above, these are the secondary fluorescence). It is controlled by the particle size of the next phosphor fine particles, the blending ratio with respect to the resin base material, etc.
On the other hand, as illustrated in FIGS. 6A and 6B, the following effects can be obtained by arranging the secondary phosphor member layer as a subdivided pattern.
(A) Even if there are a plurality of types of secondary phosphors, by controlling the pattern formed in the irradiated surface by the secondary phosphor member layer including each secondary phosphor, in the irradiated surface, The distribution of each secondary phosphor (uniform distribution, uneven distribution) and the quantitative ratio (equal ratio, different ratio) of each secondary phosphor can be controlled. Similarly, even when there is only one kind of secondary phosphor, the manner of distribution in the irradiated surface can be freely controlled as described above.
(B) Since a gap region where the secondary phosphor member layer does not exist is formed between the regions where the secondary phosphor member layer is formed, the gap region is surely formed within the irradiated surface. A region where the secondary phosphor does not exist (a region where excitation light or primary fluorescence can pass without being substantially affected by the secondary phosphor) can be used. Such an effect is remarkably useful when the original excitation light or the primary fluorescence incident on the irradiated surface is allowed to pass through to be output light.

蛍光体細分化配置では、二次蛍光体部材が、励起光源から見て一次蛍光体部材の手前側/背後側のどちらに配置してもよい。図6(a)、(b)の例では、二次蛍光体部材2は励起光源Sから見て一次蛍光体部材1の背後側に配置されている。また例えば図6(b)の例において、透明基板21を裏返し、二次蛍光体部材2を励起光源Sから見て一次蛍光体部材1の手前側に配置してもよい。
前記の位置関係に加えて、蛍光体部材に対する原励起光の入射方向と、蛍光体部材から出る出力光の取り出し方向との関係についても限定はない。図6(a)、(b)の例において、少なくとも二次蛍光を含む出力光を、二次蛍光体部材層2が形成された面の側から取り出すように発光装置を構成してもよいし、あるいは励起光源Sに面した側の面から取り出す構成であってもよい。後者の場合、反射手段によって、励起光源Sから遠ざかる方向に向かう出力光を、積極的に、励起光源Sの側に向けるようにしてもよい。
In the phosphor subdivision arrangement, the secondary phosphor member may be arranged on either the front side or the rear side of the primary phosphor member as viewed from the excitation light source. In the example of FIGS. 6A and 6B, the secondary phosphor member 2 is disposed behind the primary phosphor member 1 when viewed from the excitation light source S. Further, for example, in the example of FIG. 6B, the transparent substrate 21 may be turned over and the secondary phosphor member 2 may be disposed on the front side of the primary phosphor member 1 when viewed from the excitation light source S.
In addition to the positional relationship described above, there is no limitation on the relationship between the incident direction of the original excitation light with respect to the phosphor member and the extraction direction of output light emitted from the phosphor member. In the example of FIGS. 6A and 6B, the light emitting device may be configured to extract output light including at least secondary fluorescence from the side of the surface on which the secondary phosphor member layer 2 is formed. Alternatively, it may be configured to be taken out from the surface facing the excitation light source S. In the latter case, the output light traveling in the direction away from the excitation light source S may be positively directed toward the excitation light source S by the reflecting means.

二次蛍光体部材層を配置すべき被照射面は、当該発光装置の用途に応じて、平面であっても、任意の曲面であってもよい。被照射面が単純な凹状、凸状曲面の場合、被照射面が励起光の進行方向に向かって凸状であっても、凹状であってもよい。前記単純な凹状、凸状曲面は、球状面であっても円柱の側面などであってもよい。   The irradiated surface on which the secondary phosphor member layer is to be disposed may be a flat surface or an arbitrary curved surface depending on the use of the light emitting device. When the irradiated surface is a simple concave shape or a convex curved surface, the irradiated surface may be convex toward the traveling direction of the excitation light or may be concave. The simple concave or convex curved surface may be a spherical surface or a cylindrical side surface.

二次蛍光体部材層を細分化されたパターンとして配置する際の、細分化の度合は、発光装置から出射される二次蛍光、一次蛍光および/または原励起光が十分に混色され、出力光に感知し得る色ムラが存在しなくなる段階まで細かくすることが好ましい。どの程度までの細分化が適当であるかは、当該発光装置の規模、細分化パターンの形成技術、当該発光装置に含まれるレンズ等の光学部品や光学系の構成・特性、コスト、作用効果などを考慮して決定すればよい。   When the secondary phosphor member layer is arranged as a subdivided pattern, the degree of subdivision is such that secondary fluorescence, primary fluorescence and / or original excitation light emitted from the light emitting device is sufficiently mixed and output light It is preferable to make it fine until a color unevenness that can be detected does not exist. To what extent subdivision is appropriate depends on the scale of the light emitting device, the technology for forming the subdivision pattern, the configuration and characteristics of the optical components such as lenses and the optical system included in the light emitting device, cost, effects, etc. It may be determined in consideration of.

細分化パターンの代表的なタイプとして、単発的なドット状の領域が多数、規則的または不規則的に並んだパターン、細長く延伸する帯状の領域が多数、一定間隔または不定間隔で並んだパターン、樹枝状、格子状、網目状等のパターン、これらが折衷または混合されたパターンなどが挙げられる。蛍光体毎に、領域の大きさ(ドット状領域の径、帯状領域の幅、格子状・網目状を構成する線状領域の幅等)や存在数(ドット状領域の分散密度、帯状領域の間隔、格子状・網目状の細かさ等)を選択することによって、出力光に含まれる各色の光の強度のバランスを細かく設定することが容易になる。   Typical types of subdivision patterns include a large number of single dot-like areas, regularly or irregularly arranged patterns, a long and elongated strip-like area, a pattern arranged at regular or irregular intervals, Examples thereof include dendritic patterns, lattice patterns, mesh patterns, and the like. For each phosphor, the size of the region (the diameter of the dot-like region, the width of the belt-like region, the width of the linear region constituting the lattice / mesh shape, etc.) and the number of existence (dispersion density of the dot-like region, By selecting an interval, a grid-like / mesh-like fineness, etc., it becomes easy to finely set the balance of the light intensity of each color included in the output light.

ドット状領域の形状の代表的なものとしては、円形の他、三角形、四角形、六角形、ひし形、多角形、不定形、その他任意の形状であってよい。
これらドット状領域の配置パターンは、細密的なもの、正方行列的なもの、特定の規則にしたがって繰り返すもの、ランダムなものなど、用途に応じて選択すればよい。
Typical shapes of the dot-like regions may be a circle, a triangle, a rectangle, a hexagon, a rhombus, a polygon, an indeterminate shape, or any other shape.
The arrangement pattern of these dot-like regions may be selected according to the use, such as a fine pattern, a square matrix pattern, a pattern repeated according to a specific rule, or a random pattern.

二次蛍光体部材層の形成密度は、用途に応じて意図的に偏在させてもよい。例えば、基板面に円形ドット状の二次蛍光体部材層を配置するに際し、特定の部位(図の中心部。例えば、励起光源の直上部位など)に局所的に高密度で配置し、周囲に広がるに従って配置の密度を低くするなどである。このような偏在的な配置によって、二次蛍光体の濃度に変化を持たせた構成と同じ作用効果(例えば、発光装置からの出力光を見る方向・角度によって光の色が変わるという問題の是正)を得ることができ、しかも、二次蛍光体部材層の配置パターンや面積の大小を変えるだけで、容易にかつ自在に、被照射面内の二次蛍光体の分布密度を制御することが可能になる。   The formation density of the secondary phosphor member layer may be intentionally unevenly distributed depending on the application. For example, when arranging a circular dot-shaped secondary phosphor member layer on the substrate surface, it is arranged locally at a high density in a specific part (the central part of the figure, for example, the part directly above the excitation light source) For example, the density of the arrangement is lowered as it expands. Such an uneven arrangement has the same effect as the configuration in which the concentration of the secondary phosphor is changed (for example, correction of the problem that the color of the light changes depending on the direction and angle of viewing the output light from the light emitting device). In addition, the distribution density of the secondary phosphor in the irradiated surface can be controlled easily and freely simply by changing the arrangement pattern and the size of the secondary phosphor member layer. It becomes possible.

帯状領域の代表的な配置パターンとしては、平行ストライプ状の配置が挙げられるほか、多重の同心円状、多条の渦巻き状、蛇行状、放射状などが挙げられ、いずれも局所的には縞状である。このような帯状領域は、途中で分岐したパターンであってもよい。   Typical examples of the arrangement pattern of the band-like regions include parallel stripes, multiple concentric circles, multiple spirals, meanders, radials, etc., all of which are locally striped. is there. Such a belt-like region may be a pattern branched in the middle.

二次蛍光体部材層をドット状に形成する場合、ドットの大きさは、装置全体の規模や照射対象物との間の遠近によっても異なるが、例えば、素子外形0.35mm×0.35mm程度のGaN系発光素子1個を励起光源とし、これに1つの蛍光体部を対応させて発光装置を構成し、その蛍光体部の被照射面を1辺5mm程度の正方形状の平面とし、二次蛍光体部材層からなる正方形のドットと、同じ大きさで二次蛍光体を含まない正方形の隙間領域とを、交互に、正方行列状に隙間無く配置する場合、該正方形の一辺の長さは0.01mm〜1mm程度が好ましく、特に0.1mm〜0.5mmがより好ましい寸法の例である。この場合、被照射面の全領域は5×5個〜500×500個程度の区画(半数は二次蛍光体を含む区画、半数は二次蛍光体を含まない区画)に分割されることになる。
ドットの形状が円形や異形の場合でも、上記の正方形と等価な大きさとすればよい。
また、二次蛍光体部材層を帯状に形成する場合には、個々の帯幅は0.01mm〜1mm程度、特に0.1mm〜0.5mmが好ましい寸法である。
なお、発光装置の用途において問題となる色ムラが生じなければ、前記正方形状のドットの1辺の長さや、帯状領域の帯幅は特に制限されるものではなく、例えば大型の投光装置等の用途であれば、10mm程度またはそれ以上に大きくしてもよい。
When the secondary phosphor member layer is formed in a dot shape, the size of the dot varies depending on the overall scale of the apparatus and the distance to the irradiation target, but for example, an element outer shape of about 0.35 mm × 0.35 mm One GaN-based light emitting element is used as an excitation light source, and a single phosphor part is associated with this to form a light emitting device. The illuminated surface of the phosphor part is a square plane having a side of about 5 mm, In the case where square dots formed of the secondary phosphor member layer and square gap regions having the same size and not including the secondary phosphor are alternately arranged in a square matrix without gaps, the length of one side of the square Is preferably about 0.01 mm to 1 mm, and more preferably 0.1 mm to 0.5 mm. In this case, the entire area of the irradiated surface is divided into 5 × 5 to 500 × 500 sections (half are sections including secondary phosphors, and half are sections not including secondary phosphors). Become.
Even when the dot shape is circular or irregular, the size may be equivalent to the above square.
When the secondary phosphor member layer is formed in a band shape, the individual band width is preferably about 0.01 mm to 1 mm, particularly preferably 0.1 mm to 0.5 mm.
Note that the length of one side of the square dots and the width of the band-shaped region are not particularly limited as long as color unevenness that is a problem in the use of the light-emitting device does not occur. If it is the use of this, you may enlarge to about 10 mm or more.

配置すべき二次蛍光体の種類が複数である場合、各二次蛍光体を含む二次蛍光体部材層をそれぞれどのような細分化パターンとして配置し、各二次蛍光体部材層が占める面積をどのようにするかは、出力光に含まれる各色の光の強度のバランスを考慮して、自由に選択してよい。   When there are multiple types of secondary phosphors to be arranged, the secondary phosphor member layer including each secondary phosphor is arranged as any subdivision pattern, and the area occupied by each secondary phosphor member layer The method of selecting the light source may be freely selected in consideration of the balance of the light intensity of each color included in the output light.

上記に例示した、二次蛍光体部材層を形成しない隙間領域を設けた構成では、一次蛍光が隙間領域を通過し二次蛍光と共に出力光に含まれることになる。この態様によって、二次蛍光体部材層からなるドットや帯状領域の形状、サイズ、分散密度をデザインするだけで、出射光に含まれる一次蛍光と二次蛍光の混合比率を簡単かつ正確に制御することができる。   In the above-described configuration in which the gap region where the secondary phosphor member layer is not formed is provided, the primary fluorescence passes through the gap region and is included in the output light together with the secondary fluorescence. By this design, the mixing ratio of the primary fluorescence and the secondary fluorescence contained in the emitted light can be controlled easily and accurately simply by designing the shape, size, and dispersion density of the dots and band-like regions made up of the secondary phosphor member layer. be able to.

二次蛍光体部材層を細分化されたパターンとして配置する方法としては、二次蛍光体微粒子を分散した塗料組成物を作製し、所定面上に、オフセット印刷、スクリーン印刷、インクジェット印刷などで所定のパターンとして印刷する方法や、フォトリソグラフィ技術を用いたマスクプロセスによって、所定形状にパターニングされた蛍光体薄膜を所定面上に形成する方法が挙げられる。   As a method of arranging the secondary phosphor member layer as a subdivided pattern, a coating composition in which secondary phosphor fine particles are dispersed is prepared, and predetermined printing is performed on a predetermined surface by offset printing, screen printing, ink jet printing, or the like. And a method of forming a phosphor thin film patterned in a predetermined shape on a predetermined surface by a mask process using a photolithography technique.

上記では二次蛍光体部材層を細分化パターンとして配置する例を説明したが、他方、複数の一次蛍光体を用いる場合に、異なる一次蛍光体を含む一次蛍光体部材を相互に独立した部材として形成し、その一部または全部を、原励起光の照射を受ける面内に細分化パターンとして形成された層状体として配置してもよい。この場合、二次蛍光体部材の形状や配置は特に限定されるものではないが、細分化パターンとして配置された一次蛍光体部材層のうち、カスケード励起に関与する一次蛍光体部材を含む層の上または下に、該一次蛍光体部材層と同一のパターンとして二次蛍光体部材層を積層配置すると、カスケード励起の効率が良好となり、好ましい。   In the above, the example in which the secondary phosphor member layer is arranged as a subdivided pattern has been described. On the other hand, when a plurality of primary phosphors are used, primary phosphor members including different primary phosphors are used as independent members. It may be formed, and a part or all of it may be arranged as a layered body formed as a subdivided pattern in the surface that receives the irradiation of the original excitation light. In this case, the shape and arrangement of the secondary phosphor member are not particularly limited. Of the primary phosphor member layers arranged as a subdivided pattern, the layer including the primary phosphor member involved in cascade excitation. It is preferable to arrange a secondary phosphor member layer in the same pattern as the primary phosphor member layer on or below, because the efficiency of cascade excitation is improved.

一次蛍光体部材、二次蛍光体部材は、粒子状の蛍光体を透明媒体中に分散させた配合物で形成された部材であってもよいし、粒子状の蛍光体が基材上に付着されてなる部材であってもよく、また、単体で部材を構成し得る蛍光体の場合は、蛍光体だけで形成された部材であってもよい。単体で部材を構成し得る蛍光体とは、例えば、化学気相成長法、スパッタリング法、真空蒸着法等の気相製膜法や、溶剤キャスティング法、ゾル−ゲル法などによって(薄)膜状に形成し得る蛍光体、溶融成形や粉末成形によって成形体とし得る蛍光体である。
基板上に蛍光体部材層を配置する場合、蛍光体を板面から盛り上がる様に配置してもよいし、図4(a)に示すように、基板(この場合は一次蛍光体部材が基板となっている)の板面に凹部を形成し、該凹部に二次蛍光体部材を充填する態様などが挙げられる。
基板の材料は、原励起光や一次蛍光が該基板を通過する装置構成とするならば、当該光が透過し得る材料を用いるべきであり、例えば、シリコーン樹脂、エポキシ樹脂、ポリカーボネート、フッ素樹脂、各種の無機ガラスなどが好ましい材料として挙げられる。
The primary phosphor member and the secondary phosphor member may be a member formed of a compound in which particulate phosphor is dispersed in a transparent medium, or the particulate phosphor adheres to the substrate. In the case of a phosphor that can constitute a member by itself, it may be a member formed only of the phosphor. The phosphor that can constitute a member by itself is, for example, a (thin) film shape by a vapor deposition method such as a chemical vapor deposition method, a sputtering method, or a vacuum deposition method, a solvent casting method, a sol-gel method, etc. And a phosphor that can be formed into a molded body by melt molding or powder molding.
When the phosphor member layer is arranged on the substrate, the phosphor may be arranged so as to rise from the plate surface, or as shown in FIG. 4A, the substrate (in this case, the primary phosphor member is connected to the substrate). A recess is formed on the plate surface, and the recess is filled with a secondary phosphor member.
If the material of the substrate is a device configuration in which the original excitation light and primary fluorescence pass through the substrate, a material that can transmit the light should be used. For example, a silicone resin, an epoxy resin, a polycarbonate, a fluororesin, Various inorganic glasses and the like can be mentioned as preferable materials.

青色蛍光体としては、例えば、〔(M,Mg)10(POCl:Eu〕、〔(Ba,Sr)MgAl1017:Eu〕、〔CaCl:Eu〕、〔MMgSi:Eu〕、〔MMgSi:Eu〕、〔CaMgSi:Eu〕、〔SrCl(PO:Eu〕および〔ZnS:Ag〕(但し、MはCa,Sr,Baの少なくとも1種である)から選ばれる1種類以上の蛍光体が挙げられる。 Examples of the blue phosphor include [(M, Mg) 10 (PO 4 ) 6 Cl 2 : Eu], [(Ba, Sr) MgAl 10 O 17 : Eu], and [Ca 2 B 5 O 9 Cl: Eu]. ], [M 3 MgSi 2 O 8 : Eu], [M 2 MgSi 2 O 7 : Eu], [CaMgSi 2 O 6 : Eu], [Sr 5 Cl (PO 4 ) 3 : Eu] and [ZnS: Ag (Wherein M is at least one of Ca, Sr, and Ba).

二次蛍光体としては、出力光として必要な種類の色を発する蛍光体であり、かつ一次蛍光によって励起される性質を有するものを選択すればよい。
例えば、青色蛍光体によって励起され得る赤色蛍光体としては、〔LnS:Eu(Ln=Y,La,Gd,Lu)〕、〔(ZnCd1−a)S:Ag,Cl、(0.5>a>0.2)〕、〔REuW〕、〔MSi:Eu〕、〔3.5MgO・0.5MgF・GeO:Mn〕、及び〔(Ca,Sr)S:Eu〕(但し、MはCa,Sr,Baのうちの少なくとも1種であり、RはLi,Na,K,Rb,Csのうちの少なくとも1種である)から選ばれる1種類以上の蛍光体が挙げられる。
As the secondary phosphor, a phosphor that emits a necessary type of color as output light and that has the property of being excited by primary fluorescence may be selected.
For example, red phosphors that can be excited by blue phosphors include [Ln 2 O 2 S: Eu (Ln = Y, La, Gd, Lu)], [(Zn a Cd 1-a ) S: Ag, Cl. , (0.5>a> 0.2)], [REuW 2 O 8 ], [M 2 Si 5 N 8 : Eu], [3.5MgO · 0.5MgF 2 · GeO 2 : Mn], and [ (Ca, Sr) S: Eu] (where M is at least one of Ca, Sr, and Ba, and R is at least one of Li, Na, K, Rb, and Cs). One or more types of phosphors.

また、青色蛍光体によって励起され得る緑色蛍光体としては、〔(ZnCd1−a)S:Cu,Al、(1≧a>0.6)〕、〔(ZnCd1−a)S:Au,Al、(1≧a>0.6)〕、〔(ZnCd1−a)S:Ag,Cl、(1≧a>0.6)〕、〔(Ba,Sr)MgAl1017:Eu,Mn〕、〔SrAl:Eu〕、〔SrAl1425:Eu〕および〔MGa:Eu〕(但し、MはCa,Sr,Baのうちの少なくとも1種である)から選ばれる1種類以上の蛍光体が挙げられる。 The green phosphor that can be excited by the blue phosphor includes [(Zn a Cd 1-a ) S: Cu, Al, (1 ≧ a> 0.6)], [(Zn a Cd 1-a ). S: Au, Al, (1 ≧ a> 0.6)], [(Zn a Cd 1-a ) S: Ag, Cl, (1 ≧ a> 0.6)], [(Ba, Sr) MgAl 10 O 17 : Eu, Mn], [SrAl 2 O 4 : Eu], [Sr 4 Al 14 O 25 : Eu] and [MGa 2 S 4 : Eu] (where M is one of Ca, Sr, and Ba) One or more phosphors selected from (at least one).

本発明者等の研究によれば、ZnCd1−aSを母材とした緑色蛍光体(ZnS系蛍光体)は、空気中の水分と、発光素子からの短波長光との相乗作用によって黒く変色するという問題を有している。
この変色のため、ZnS系蛍光体を用いた白色発光装置は、経時的に緑色光の成分が低下し、演色性や輝度が低下することがわかった。
この問題を解消し、経時的に安定した信頼性ある緑色蛍光体を用いることを検討したところ、経時的な安定性については、〔(Ba,Sr)MgAl1017:Eu,Mn〕などの酸化物系蛍光体がより好ましいことがわかった。
ところが、該酸化物系蛍光体は、材料の安定性(信頼性)の面ではZnS系蛍光体よりも優れているが、その発光特性(発光スペクトル)を調べたところ、発光スペクトルの半値巾が狭い為、長い波長側の成分である540nm付近〜650nmの成分が、黒変する前のZnS系蛍光体と比べて欠落していることがわかった。
According to studies by the present inventors, a green phosphor (ZnS phosphor) based on Zn a Cd 1-a S has a synergistic effect between moisture in the air and short wavelength light from the light emitting element. Has the problem of changing to black.
Due to this discoloration, it was found that a white light emitting device using a ZnS-based phosphor has a decrease in color rendering properties and luminance due to a decrease in the green light component over time.
When this problem was solved and the use of a reliable green phosphor that was stable over time was examined, the stability over time, such as [(Ba, Sr) MgAl 10 O 17 : Eu, Mn], was used. It has been found that an oxide-based phosphor is more preferable.
However, the oxide phosphor is superior to the ZnS phosphor in terms of the stability (reliability) of the material. However, when the emission characteristic (emission spectrum) is examined, the half width of the emission spectrum is Since it is narrow, it has been found that the component at around 540 nm to 650 nm, which is the component on the long wavelength side, is missing compared to the ZnS-based phosphor before blackening.

そこで、本発明では、緑色蛍光体として上記〔(Ba,Sr)MgAl1017:Eu,Mn〕などの酸化物系蛍光体を用い、これに黄色蛍光体を追加する構成を推奨する。
これによって、緑色光において欠落する長い波長側の成分を黄色光によって補うことができ、優れた安定性(信頼性)と、優れた演色性とが両立した、好ましい白色発光装置が得られる。
Therefore, in the present invention, a configuration in which an oxide phosphor such as the above [(Ba, Sr) MgAl 10 O 17 : Eu, Mn] is used as the green phosphor and a yellow phosphor is added to this is recommended.
Thereby, a long wavelength component missing in green light can be supplemented by yellow light, and a preferable white light emitting device having both excellent stability (reliability) and excellent color rendering properties can be obtained.

黄色光とは、波長420nm付近〜750nm付近の範囲内に発光分布をもつ光である。
黄色蛍光体は、一次蛍光体(青色蛍光体)から発せられる光によって励起される材料であることが好ましい。そのような蛍光体材料としては、〔(Y、Gd)(Al、Ga)12:Ce〕、〔SrAl:Eu〕、〔(Y、Gd、Sc)−Al−O−N:(Eu、Ce)〕から選ばれる1種類以上の蛍光体が挙げられる。
黄色蛍光体として〔(Y、Gd)(Al、Ga)12:Ce〕を用いる場合、該材料は波長 400nm〜550nmの発光分布を持つ青色光によって励起されるので、青色蛍光体として〔(Ba,Sr)MgAl1017:Eu〕を用いることが好ましい組み合せとなる。
Yellow light is light having an emission distribution within a wavelength range of about 420 nm to about 750 nm.
The yellow phosphor is preferably a material that is excited by light emitted from the primary phosphor (blue phosphor). Such phosphor materials include [(Y, Gd) 3 (Al, Ga) 5 O 12 : Ce], [SrAl 2 O 4 : Eu], [(Y, Gd, Sc) -Al—O—. N: (Eu, Ce)] is one or more types of phosphors.
When [(Y, Gd) 3 (Al, Ga) 5 O 12 : Ce] is used as the yellow phosphor, the material is excited by blue light having an emission distribution with a wavelength of 400 nm to 550 nm. It is a preferable combination to use [(Ba, Sr) MgAl 10 O 17 : Eu].

図7のグラフは、GaN系発光素子の主発光波長を395nmとし、一次蛍光体として青色蛍光体〔(Ca,Sr,Ba,Mg)10(POCl:Eu〕を用い、二次蛍光体として、赤色蛍光体〔LiEuW〕、緑色蛍光体〔BaMgAl1017:Eu,Mn〕、黄色蛍光体〔(Y、Gd)Al12:Ce〕を用いた場合の、白色光出力(青色光、赤色光、緑色光、黄色光)のスペクトルを示すグラフ図である。
同図のグラフから明らかなとおり、緑色光において欠落した長波長側の成分が黄色光によって補われており、好ましい白色光となる。
In the graph of FIG. 7, the main emission wavelength of the GaN-based light emitting element is 395 nm, and blue phosphor [(Ca, Sr, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu] is used as the primary phosphor. When a red phosphor [LiEuW 2 O 8 ], a green phosphor [BaMgAl 10 O 17 : Eu, Mn], and a yellow phosphor [(Y, Gd) 3 Al 5 O 12 : Ce] are used as the next phosphor It is a graph which shows the spectrum of white light output (blue light, red light, green light, yellow light).
As is apparent from the graph of FIG. 6, the long wavelength component missing in the green light is supplemented by the yellow light, which is a preferable white light.

蛍光体層は、蛍光体の微粒子を透明媒体(樹脂、低融点ガラス等)に分散した層としてもよいし、化学気相成長法、スパッタリング法、真空蒸着法等により薄膜として形成してもよい。これらの組み合わせであってもよい。   The phosphor layer may be a layer in which phosphor fine particles are dispersed in a transparent medium (resin, low-melting glass, etc.), or may be formed as a thin film by chemical vapor deposition, sputtering, vacuum evaporation, or the like. . A combination of these may also be used.

カスケード励起に係わる一次蛍光体と二次蛍光体は各一種類に限定されない。例えば、(1つの一次蛍光体と、複数の二次蛍光体とによるカスケード励起)、(複数の一次蛍光体と、1つの二次蛍光体とによるカスケード励起)、(複数の一次蛍光体と、複数の二次蛍光体とによるカスケード励起)などが挙げられる。制御性の面からはより単純な系とする方が好ましい。   The primary phosphor and the secondary phosphor involved in cascade excitation are not limited to one type. For example, (cascade excitation by one primary phosphor and a plurality of secondary phosphors), (cascade excitation by a plurality of primary phosphors and one secondary phosphor), (a plurality of primary phosphors, Cascade excitation with a plurality of secondary phosphors). From the viewpoint of controllability, a simpler system is preferable.

1つの発光装置内に、互いに異なるカスケード励起系が2つ以上存在してもよい。例えば、青色蛍光体(一次)と黄色蛍光体(二次)とによるカスケード励起系と、緑色蛍光体(一次)と赤色蛍光体(二次)とによるカスケード励起系を同時に有する等である。   Two or more different cascade excitation systems may exist in one light emitting device. For example, a cascade excitation system with a blue phosphor (primary) and a yellow phosphor (secondary) and a cascade excitation system with a green phosphor (primary) and a red phosphor (secondary) are simultaneously provided.

カスケード励起に関与しない蛍光体(原励起光により励起される蛍光体で、他の蛍光体を励起する一次蛍光を発生しないもの)は、原励起光が到達する蛍光体部材に添加すればよく、その場合、カスケード励起に関係する一次蛍光体部材、二次蛍光体部材とは別体となった蛍光体部材に添加してもよい。   Phosphors that do not participate in cascade excitation (phosphors that are excited by the original excitation light and do not generate primary fluorescence that excites other phosphors) may be added to the phosphor member that the original excitation light reaches, In that case, you may add to the phosphor member used as the separate body from the primary phosphor member and secondary phosphor member which are related to cascade excitation.

実施例1
本実施例では、図1(a)に類する構造にて、励起光源としてInGaNを発光部材料とした近紫外LEDと、青色蛍光体を含んだ一次蛍光体部材と、赤色蛍光体、緑色蛍光体を含んだ二次蛍光体部材とを組み合わせ、白色光を出力する発光装置を実際に製作し、その性能を評価した。
Example 1
In the present embodiment, a near-ultraviolet LED using InGaN as a light emitting part material as an excitation light source, a primary phosphor member including a blue phosphor, a red phosphor, and a green phosphor with a structure similar to FIG. In combination with a secondary phosphor member containing, a light emitting device that outputs white light was actually manufactured and its performance was evaluated.

〔近紫外LEDの主な仕様〕
発光波長ピーク:382nm。
発光部の構造:InGaN井戸層/GaN障壁層を6ペア積層したMQW構造。
転位密度低減化の手法:サファイア基板上にストライプ状の凹凸を加工し、各凹部底面・凸部上面にGaN系結晶をファセット成長させたのち、横方向成長を優勢にさせて平坦化する、所謂ファセットLEPS法。
ベアチップの外形:350μm×350μm方形。
実装方式:フリップチップ
ベアチップ状態での発光出力:通電電流20mAにおいて6.5mW
[Main specifications of near-ultraviolet LED]
Emission wavelength peak: 382 nm.
Structure of light emitting part: MQW structure in which 6 pairs of InGaN well layers / GaN barrier layers are stacked.
Dislocation density reduction method: Striped irregularities are processed on a sapphire substrate, and GaN-based crystals are facet grown on the bottom and top surfaces of each concave portion, and then flattened by making lateral growth dominant. Facet LEPS method.
Bare chip outline: 350 μm × 350 μm square.
Mounting method: Flip chip Light emission output in bare chip state: 6.5 mW at a current of 20 mA

〔蛍光体の主な仕様〕
青色蛍光体:(Sr,Ca,Ba,Mg)10(POCl:Eu
赤色蛍光体:LaS:Eu
緑色蛍光体:BaMgAl1017:Eu,Mn
[Main specifications of phosphor]
Blue phosphor: (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu
Red phosphor: La 2 O 2 S: Eu
Green phosphor: BaMgAl 10 O 17 : Eu, Mn

〔発光装置の作製工程の概要〕
近紫外LEDを配置するための配線パターンが形成された絶縁性基体と、近紫外LEDを取り囲む枠状の反射部材とを有する筐体を用意した。
該筐体内の配線パターンに、Agペースト等の導電性接着剤を介して、近紫外LEDを実装した。
筐体内にシリコーン樹脂を充填して(図1(a)には充填樹脂は特に示していない)、近紫外LEDを被覆し、さらに加熱することによって該樹脂を硬化させ、内部層を形成した。
[Outline of manufacturing process of light-emitting device]
A housing having an insulating substrate on which a wiring pattern for arranging near-ultraviolet LEDs was formed and a frame-like reflecting member surrounding the near-ultraviolet LED was prepared.
Near-ultraviolet LEDs were mounted on the wiring pattern in the housing via a conductive adhesive such as Ag paste.
The case was filled with a silicone resin (the filled resin is not specifically shown in FIG. 1A), the near-ultraviolet LED was covered, and the resin was further cured by heating to form an inner layer.

次に、青色蛍光体を含有するシリコーン樹脂(上記内部層と同じ材料からなる樹脂)を平滑な基板上に厚膜状に形成し、加熱して硬化させた後、基板上から剥がしてフィルム状の一次蛍光体部材とした。
内部層のシリコーン樹脂と同じ材料樹脂を接着剤として介在させて、前記一次蛍光体部材を、内部層の上面に取り付けた。
Next, a silicone resin containing blue phosphor (resin made of the same material as the inner layer) is formed in a thick film on a smooth substrate, heated and cured, and then peeled off from the substrate to form a film. Primary phosphor member.
The primary phosphor member was attached to the upper surface of the inner layer with the same material resin as the silicone resin of the inner layer interposed as an adhesive.

一次蛍光体部材の形成法と同様に、赤色蛍光体と緑色蛍光体とを含有するシリコーン樹脂を、平滑な基板上に厚膜状に形成し、加熱してフィルム状に形成し、二次蛍光体部材とした。
内部層と同一のシリコーン樹脂と同じ材料樹脂を接着剤として介在させて、図1(a)に示すように、二次蛍光体部材2を一次蛍光体部材1の上面に取り付け、本実施例の発光装置を得た。評価は、後述する。
Similar to the method for forming the primary phosphor member, a silicone resin containing a red phosphor and a green phosphor is formed in a thick film on a smooth substrate, heated to form a film, and a secondary phosphor. A body member was obtained.
As shown in FIG. 1A, the secondary phosphor member 2 is attached to the upper surface of the primary phosphor member 1 by interposing the same silicone resin as the inner layer and the same material resin as the adhesive. A light emitting device was obtained. Evaluation will be described later.

比較例1
従来の発光装置として、図8(a)に示す発光装置を製作し比較例1として、上記実施例1と同様に性能を評価した。
〔比較例品の仕様〕
筐体、近紫外LED、蛍光体は、上記実施例1と同様のものを用いた。
筐体内の配線パターンに、導電性接着剤(Agペースト)を介して、近紫外LEDを実装した。
硬化前の液状のシリコーン樹脂に、上記実施例1で用いた青色蛍光体、赤色蛍光体、緑色蛍光体を含有させ攪拌し、均一に分散させた。
ディスペンサーを用いて、前記3種類の蛍光体を含有したシリコーン樹脂を、筐体内に充填して、近紫外LEDを被覆し、150℃、10分間の加熱によって硬化させ、比較例1の発光装置を得た。
Comparative Example 1
A light emitting device shown in FIG. 8A was manufactured as a conventional light emitting device, and the performance was evaluated as Comparative Example 1 in the same manner as in Example 1.
[Specification specifications]
The same housing, near-ultraviolet LED, and phosphor as those in Example 1 were used.
Near-ultraviolet LEDs were mounted on the wiring pattern in the housing via a conductive adhesive (Ag paste).
The blue phosphor, red phosphor, and green phosphor used in Example 1 above were added to the liquid silicone resin before curing, and the mixture was stirred and dispersed uniformly.
Using a dispenser, the silicone resin containing the three types of phosphors is filled in a housing, covered with a near-ultraviolet LED, and cured by heating at 150 ° C. for 10 minutes, whereby the light emitting device of Comparative Example 1 is obtained. Obtained.

〔評価〕
本実施例1の発光装置と、比較例1の発光装置とを、それぞれ11個ずつ作製し、出力光の色温度のバラツキについて評価した。
それぞれのサンプルについての出力光の色温度の測定結果を表1に示す。
[Evaluation]
Eleven light emitting devices of Example 1 and Comparative Example 1 were produced, and the variations in color temperature of the output light were evaluated.
Table 1 shows the measurement results of the color temperature of the output light for each sample.

Figure 2006032726
Figure 2006032726

上記表1から明らかなとおり、比較例1の発光装置における色温度のバラツキは±300〔K〕であったが、実施例1の発光装置における色温度のバラツキは±50〔K〕であった。
即ち、本発明の発光装置は、一次蛍光体部材と二次蛍光体部材とが互いに異なる空間領域に分かれて独立的に存在するように、互いに別の部材として配置されているので、発光装置の出力光に含まれる主要波長成分毎の強度の比率をより安定させることができ、出力光の色温度のバラツキを有効に抑制できていることがわかった。
As is clear from Table 1, the color temperature variation in the light emitting device of Comparative Example 1 was ± 300 [K], but the color temperature variation in the light emitting device of Example 1 was ± 50 [K]. .
That is, the light-emitting device of the present invention is arranged as a separate member so that the primary phosphor member and the secondary phosphor member exist separately in different spatial regions, so that It was found that the intensity ratio of each major wavelength component contained in the output light can be further stabilized, and the variation in the color temperature of the output light can be effectively suppressed.

実施例2
本実施例では、図1(a)に示した構造にて、青色蛍光体、赤色蛍光体、緑色蛍光体とを含んだ一次蛍光体部材と、黄色蛍光体を含んだ二次蛍光体部材とを組み合わせ、色特性と演色性に優れる白色光を出力する発光装置を実際に製作した。
シリコーン樹脂中に、青色蛍光体、赤色蛍光体、緑色蛍光体を分散させて一次蛍光体部材としたこと、および、シリコーン樹脂中に黄色蛍光体を分散させて二次蛍光体部材としたこと以外は、筐体、近紫外LED、青色蛍光体、赤色蛍光体、緑色蛍光体など、各材料、各部の構成、製作工程は、全て上記実施例1と同様である。また、黄色蛍光体は〔YAl12:Ce〕である。
評価は、後述する。
Example 2
In this embodiment, in the structure shown in FIG. 1A, a primary phosphor member including a blue phosphor, a red phosphor, and a green phosphor, and a secondary phosphor member including a yellow phosphor, A light-emitting device that outputs white light with excellent color characteristics and color rendering is actually manufactured.
Other than the blue phosphor, red phosphor, and green phosphor dispersed in the silicone resin as the primary phosphor member, and the yellow phosphor dispersed in the silicone resin as the secondary phosphor member In the case, each material, the configuration of each part, the manufacturing process, etc., such as the housing, near-ultraviolet LED, blue phosphor, red phosphor, and green phosphor, are all the same as in the first embodiment. The yellow phosphor is [Y 3 Al 5 O 12 : Ce].
Evaluation will be described later.

比較例2
実施例2に対する従来の発光装置として、図8(a)に示す発光装置を製作し、当該発光装置の性能を評価した。
筐体、近紫外LED、蛍光体は、上記実施例1と同様のものを用いた。
筐体内の配線パターンに、導電性接着剤(Agペースト)を介して、近紫外LEDを実装した。
硬化前の液状のシリコーン樹脂に、上記実施例1で用いた青色蛍光体、赤色蛍光体、緑色蛍光体と、上記実施例2で用いた黄色蛍光体とを含有させ攪拌し、均一に分散させた。
ディスペンサーを用いて、前記4種類の蛍光体を含有したシリコーン樹脂を、筐体内に充填して、近紫外LEDを被覆し、150℃、10分間の加熱によって硬化させ、比較例2の発光装置を得た。
Comparative Example 2
A light emitting device shown in FIG. 8A was manufactured as a conventional light emitting device for Example 2, and the performance of the light emitting device was evaluated.
The same housing, near-ultraviolet LED, and phosphor as those in Example 1 were used.
Near-ultraviolet LEDs were mounted on the wiring pattern in the housing via a conductive adhesive (Ag paste).
The liquid silicone resin before curing contains the blue phosphor, red phosphor, and green phosphor used in Example 1 above, and the yellow phosphor used in Example 2 above, and is stirred and dispersed uniformly. It was.
Using a dispenser, the silicone resin containing the four types of phosphors is filled in a housing, covered with a near-ultraviolet LED, and cured by heating at 150 ° C. for 10 minutes, whereby the light emitting device of Comparative Example 2 is obtained. Obtained.

〔評価〕
実施例2の発光装置と、比較例2の発光装置とを、それぞれ11個ずつ作製し、出力光の色温度のバラツキについて評価した。
それぞれのサンプルについての出力光の色温度の測定結果を表2に示す。
[Evaluation]
Eleven light-emitting devices of Example 2 and Comparative Example 2 were produced, and the variations in color temperature of the output light were evaluated.
Table 2 shows the measurement results of the color temperature of the output light for each sample.

Figure 2006032726
Figure 2006032726

上記表2から明らかなとおり、比較例2の発光装置における色温度のバラツキは±500〔K〕であったが、実施例2の発光装置における色温度のバラツキは±100〔K〕であった。
比較例2では、シリコーン樹脂内における、青色蛍光体、緑色蛍光体、赤色蛍光体と、黄色蛍光体(青色蛍光体の蛍光により励起され発光する)との分散状態により、発光装置の出力光に含まれる主要波長成分毎の強度の比率が不安定となり、色温度にバラツキが生じている。即ち、青色蛍光体、緑色蛍光体、赤色蛍光体は、近紫外LEDからの光によって励起され蛍光を出力する。一方、黄色蛍光体は、シリコーン樹脂内部に分散した青色蛍光体からの蛍光によって励起され蛍光を出力する。この為、シリコーン樹脂内における青色蛍光体と黄色蛍光体の分散状態や配置状態によって、青色蛍光体と黄色蛍光体の光出力が大きく異なり、その結果、光強度にバラツキが生じたと考えられる。
これに対し実施例2の発光装置では、一次蛍光体部材内の青色蛍光体の蛍光により励起される、緑色蛍光体、赤色蛍光体の発光強度は小さく、従って、一次蛍光体部材から出力される青色蛍光体の発光強度は安定している。その結果、発光強度の安定した青色蛍光を、二次蛍光体部材に入力できることから、該青色蛍光により励起される黄色蛍光体の光出力も安定している。即ち、実施例2の発光装置では、青色蛍光体と黄色蛍光体とが互いに異なる空間領域に分かれて独立的に存在するように、互いに別の部材として配置されているので、一次蛍光体部材から出力される青色蛍光の強度を安定させることができるとともに、青色蛍光により励起される黄色蛍光体の発光出力も安定させることができる。従って、発光装置の出力光に含まれる主要波長成分毎の強度の比率をより安定させることができ、出力光の色温度のバラツキを有効に抑制できたと考えられる。
さらに、本実施例2の発光装置の演色性について平均演色指数Raを測定した結果、Raが90以上であることを確認した。
以上の結果から、本発明の発光装置は、出力光の色温度のバラツキがより安定しているとともに、照明装置や医療用光源として最適な演色性に優れる発光装置となっていることがわかった。
As is clear from Table 2 above, the variation in color temperature in the light emitting device of Comparative Example 2 was ± 500 [K], but the variation in color temperature in the light emitting device of Example 2 was ± 100 [K]. .
In Comparative Example 2, the dispersion state of the blue phosphor, the green phosphor, the red phosphor, and the yellow phosphor (excited and emitted by the fluorescence of the blue phosphor) in the silicone resin causes the light emitted from the light emitting device to be output. The intensity ratio of each included main wavelength component becomes unstable, and the color temperature varies. That is, the blue phosphor, the green phosphor, and the red phosphor are excited by light from the near-ultraviolet LED and output fluorescence. On the other hand, the yellow phosphor is excited by fluorescence from the blue phosphor dispersed inside the silicone resin and outputs fluorescence. For this reason, it is considered that the light output of the blue phosphor and the yellow phosphor varies greatly depending on the dispersion state and arrangement state of the blue phosphor and the yellow phosphor in the silicone resin, and as a result, the light intensity varies.
On the other hand, in the light emitting device of Example 2, the emission intensity of the green phosphor and the red phosphor, which are excited by the fluorescence of the blue phosphor in the primary phosphor member, is small, and therefore output from the primary phosphor member. The emission intensity of the blue phosphor is stable. As a result, blue fluorescence with stable emission intensity can be input to the secondary phosphor member, so that the light output of the yellow phosphor excited by the blue fluorescence is also stable. That is, in the light emitting device of Example 2, since the blue phosphor and the yellow phosphor are arranged as separate members so as to exist separately in different spatial regions, the primary phosphor member The intensity of the output blue fluorescence can be stabilized, and the emission output of the yellow phosphor excited by the blue fluorescence can also be stabilized. Therefore, it is considered that the intensity ratio for each main wavelength component contained in the output light of the light emitting device can be further stabilized, and variation in the color temperature of the output light can be effectively suppressed.
Furthermore, as a result of measuring the average color rendering index Ra for the color rendering properties of the light emitting device of Example 2, it was confirmed that Ra was 90 or more.
From the above results, it was found that the light-emitting device of the present invention is a light-emitting device that is more stable in color temperature variation of output light and has excellent color rendering properties that is optimal as a lighting device or a medical light source. .

実施例3
上記実施例2において、黄色蛍光体を分散させた蛍光体部材をフィルム状として形成する代わりに、インクジェット印刷法により、黄色蛍光体を含む層を、細かいドット状領域が多数分散したパターンとして形成した(詳細なパターン形成工程自体については、例えば、特開2004−80058号公報に記載されたとおりである)。
インクジェット印刷のパターンを変化させることにより、ドット状領域の分布密度を変化させたところ、得られた発光装置から出力される光の色温度が5500K〜6500Kの範囲で変化した。
これは、黄色蛍光体の分布が変わったことによって、出力光に含まれる一次蛍光と二次蛍光の比率が変化したためである。
これによって、ドットの分布密度を、印刷パターンの変更として変えることで、容易に出力光の色調を制御できることがわかった。
Example 3
In Example 2 above, instead of forming the phosphor member in which the yellow phosphor was dispersed as a film, the layer containing the yellow phosphor was formed as a pattern in which a large number of fine dot-like regions were dispersed by the inkjet printing method. (Detailed pattern formation process itself is as described in, for example, Japanese Patent Application Laid-Open No. 2004-80058).
When the distribution density of the dot-like regions was changed by changing the pattern of inkjet printing, the color temperature of the light output from the obtained light emitting device changed in the range of 5500K to 6500K.
This is because the ratio between the primary fluorescence and the secondary fluorescence included in the output light is changed by changing the distribution of the yellow phosphor.
Thus, it has been found that the color tone of the output light can be easily controlled by changing the dot distribution density as a change in the printing pattern.

本発明による発光装置の構成によって、カスケード励起を行うよう蛍光体を配置した構成でありながら、出力光に含まれる主要波長成分毎の強度の比率を、製品毎に、より安定させることが可能になった。   With the configuration of the light emitting device according to the present invention, it is possible to further stabilize the intensity ratio of each major wavelength component included in the output light for each product even though the phosphor is arranged to perform cascade excitation. became.

本発明による発光装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the light-emitting device by this invention. 本発明による発光装置を構成するために用いられるGaN系発光素子の素子構造の一例を示す模式図である。It is a schematic diagram which shows an example of the element structure of the GaN-type light emitting element used in order to comprise the light-emitting device by this invention. 本発明による発光装置の他の構成例を示す図であって、GaN系LEDが実装されたステムに対して、一次蛍光体部材、二次蛍光体部材を配置する際の他の構成例を模式的に示している。It is a figure which shows the other structural example of the light-emitting device by this invention, Comprising: Another structural example at the time of arrange | positioning a primary fluorescent material member and a secondary fluorescent material member with respect to the stem by which GaN-type LED was mounted is typical. Is shown. 本発明による発光装置のその他の構成例を示す図である。It is a figure which shows the other structural example of the light-emitting device by this invention. 本発明による発光装置のその他の構成例を示す図である。It is a figure which shows the other structural example of the light-emitting device by this invention. 図4(a)の態様を上方から見たときの斜視図であって、二次蛍光体部材が板状の一次蛍光体部材の表面に細分化されたパターンとして配置されている状態を見せている。It is a perspective view when the aspect of Fig.4 (a) is seen from upper direction, Comprising: The state which the secondary fluorescent member is arrange | positioned as the subdivided pattern on the surface of the plate-shaped primary fluorescent member is shown Yes. 本発明による発光装置の一構成例として、赤色蛍光体、緑色蛍光体、青色蛍光体、黄色蛍光体を用いて作り出した白色光のスペクトルを示すグラフである。It is a graph which shows the spectrum of the white light produced using the red fluorescent substance, the green fluorescent substance, the blue fluorescent substance, and the yellow fluorescent substance as one structural example of the light-emitting device by this invention. 従来の発光装置、特にカスケード励起を行っている発光装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the conventional light-emitting device, especially the light-emitting device which is performing cascade excitation.

符号の説明Explanation of symbols

S 窒化物半導体発光素子
L 励起光
1 一次蛍光体部材
10 一次蛍光体
L1 一次蛍光
2 二次蛍光体部材
20 二次蛍光体
L2 二次蛍光
S Nitride semiconductor light emitting element L Excitation light 1 Primary phosphor member 10 Primary phosphor L1 Primary fluorescence 2 Secondary phosphor member 20 Secondary phosphor L2 Secondary fluorescence

Claims (12)

原励起光を発する窒化物半導体発光素子と、一次蛍光体部材と、二次蛍光体部材とを有して構成される発光装置であって、
一次蛍光体部材は、原励起光によって励起されて一次蛍光を発する一次蛍光体を含んでおり、二次蛍光体部材は、前記一次蛍光によって励起されて二次蛍光を発する二次蛍光体を含んでおり、
一次蛍光体部材は原励起光が一次蛍光体に照射され得るように配置され、二次蛍光体部材は一次蛍光が二次蛍光体に照射され得るように配置され、かつ、
一次蛍光体と二次蛍光体とが互いに混合されることなく互いに異なる空間領域に分かれて独立的に存在するように、一次蛍光体部材と二次蛍光体部材とが、互いに別の部材として配置されていることを特徴とする、発光装置。
A light-emitting device that includes a nitride semiconductor light-emitting element that emits original excitation light, a primary phosphor member, and a secondary phosphor member,
The primary phosphor member includes a primary phosphor that emits primary fluorescence when excited by the original excitation light, and the secondary phosphor member includes a secondary phosphor that emits secondary fluorescence when excited by the primary fluorescence. And
The primary phosphor member is arranged so that the primary excitation light can be irradiated to the primary phosphor, the secondary phosphor member is arranged so that the primary fluorescence can be irradiated to the secondary phosphor, and
The primary phosphor member and the secondary phosphor member are arranged as separate members so that the primary phosphor and the secondary phosphor are separated and exist independently in different spatial regions without being mixed with each other. A light-emitting device,
原励起光が二次蛍光体に到達しないように構成されているか、または、二次蛍光体が原励起光によって励起されない性質を有するものである、請求項1記載の発光装置。   The light-emitting device according to claim 1, wherein the light-emitting device is configured such that the original excitation light does not reach the secondary phosphor, or has a property that the secondary phosphor is not excited by the original excitation light. 原励起光が二次蛍光体に到達しないように構成されており、その構成が、下記(a)および/または(b)の構成である、請求項2記載の発光装置。
(a)一次蛍光体部材に照射された原励起光が実質的に全て一次蛍光に変換されるように一次蛍光体部材に含まれる一次蛍光体の量が選択されている構成。
(b)原励起光が二次蛍光体部材に照射されることを妨げるフィルターが設けられている構成。
The light-emitting device according to claim 2, configured so that the original excitation light does not reach the secondary phosphor, and the configuration is the following configuration (a) and / or (b):
(A) A configuration in which the amount of primary phosphor contained in the primary phosphor member is selected so that substantially all of the original excitation light irradiated to the primary phosphor member is converted into primary fluorescence.
(B) A configuration in which a filter is provided that prevents the secondary phosphor member from being irradiated with the original excitation light.
二次蛍光体部材が、一次蛍光体部材の表面に細分化されたパターンとして配置されている、請求項1〜3のいずれかに記載の発光装置。   The light-emitting device according to claim 1, wherein the secondary phosphor member is arranged as a subdivided pattern on the surface of the primary phosphor member. 二次蛍光体部材が、一次蛍光が照射され得る位置に配置された基板の被照射面上に細分化されたパターンとして配置されている、請求項1〜3のいずれかに記載の発光装置。   The light-emitting device according to any one of claims 1 to 3, wherein the secondary phosphor member is arranged as a subdivided pattern on the irradiated surface of the substrate arranged at a position where the primary fluorescence can be irradiated. 一次蛍光のうちの一部がそのまま二次蛍光と共に出力される構成であって、一次蛍光が青色光であり、二次蛍光が黄色光を少なくとも含んでおり、出力光が白色光となるように、これらの各蛍光の強度が調整されている、請求項1〜5のいずれかに記載の発光装置。   A configuration in which a part of the primary fluorescence is output as it is together with the secondary fluorescence so that the primary fluorescence is blue light, the secondary fluorescence includes at least yellow light, and the output light becomes white light. The light-emitting device according to claim 1, wherein the intensity of each of these fluorescences is adjusted. 青色光を発する蛍光体が〔(M,Mg)10(POCl:Eu〕(MはCa,Sr,Baのうちの少なくとも1種)または〔BaMgAl1017:Eu〕であり、
黄色光を発する蛍光体が〔(Y,Gd)(Al,Ga)12:Ce、SrAl:Eu〕である、請求項6記載の発光装置。
The phosphor emitting blue light is [(M, Mg) 10 (PO 4 ) 6 Cl 2 : Eu] (M is at least one of Ca, Sr and Ba) or [BaMgAl 10 O 17 : Eu]. ,
The light-emitting device according to claim 6, wherein the phosphor emitting yellow light is [(Y, Gd) 3 (Al, Ga) 5 O 12 : Ce, SrAl 2 O 4 : Eu].
一次蛍光および/または二次蛍光が、さらに緑色光および赤色光を含んでおり、出力光が、青色光、黄色光、緑色光、赤色光を含んだ白色光となるように、これらの各蛍光の強度が調整されている、請求項7に記載の発光装置。   Each of these fluorescences is such that the primary fluorescence and / or the secondary fluorescence further includes green light and red light, and the output light is white light including blue light, yellow light, green light, and red light. The light emitting device according to claim 7, wherein the intensity of the light emitting device is adjusted. 一次蛍光のうちの一部がそのまま二次蛍光と共に出力される構成であって、一次蛍光が青色光であり、二次蛍光が緑色光と赤色光とを少なくとも含んでおり、出力光が白色光となるように、これらの各蛍光の強度が調整されている、請求項1〜5のいずれかに記載の発光装置。   A part of the primary fluorescence is output as it is together with the secondary fluorescence. The primary fluorescence is blue light, the secondary fluorescence includes at least green light and red light, and the output light is white light. The light-emitting device according to claim 1, wherein the intensity of each of these fluorescences is adjusted so that 青色光を発する蛍光体が〔(M,Mg)10(POCl:Eu〕(MはCa,Sr,Baのうちの少なくとも1種)または〔BaMgAl1017:Eu〕を含み、
緑色光を発する蛍光体が〔BaMgAl1017:Eu,Mn〕、〔ZnS:Cu,Al〕または〔MGa:Eu〕(MはCa,Sr,Baのうちの少なくとも1種)を含み、
赤色光を発する蛍光体が〔REuW〕(RはLi,Na,K,Rb,Csのうちの少なくとも1種)、〔MSi:Eu〕(MはCa,Sr,Baのうちの少なくとも1種)、〔(Ca,Sr)S:Eu〕、〔3.5MgO・0.5MgF・GeO:Mn〕または〔LaS:Eu〕を含んでいる、
請求項8または9記載の発光装置。
The phosphor emitting blue light contains [(M, Mg) 10 (PO 4 ) 6 Cl 2 : Eu] (M is at least one of Ca, Sr and Ba) or [BaMgAl 10 O 17 : Eu]. ,
The phosphor emitting green light is [BaMgAl 10 O 17 : Eu, Mn], [ZnS: Cu, Al] or [MGa 2 S 4 : Eu] (M is at least one of Ca, Sr, and Ba). Including
A phosphor emitting red light is [REuW 2 O 8 ] (R is at least one of Li, Na, K, Rb, and Cs), [M 2 Si 5 N 8 : Eu] (M is Ca, Sr, At least one of Ba), [(Ca, Sr) S: Eu], [3.5MgO.0.5MgF 2 .GeO 2 : Mn] or [La 2 O 2 S: Eu],
The light emitting device according to claim 8 or 9.
緑色光を発する蛍光体が〔BaMgAl1017:Eu,Mn〕である、請求項8または9記載の発光装置。 The light emitting device according to claim 8 or 9, wherein the phosphor emitting green light is [BaMgAl 10 O 17 : Eu, Mn]. 原励起光が、波長360nm〜480nmの範囲に属する波長の光である、請求項1記載の発光装置。   The light-emitting device according to claim 1, wherein the original excitation light is light having a wavelength belonging to a wavelength range of 360 nm to 480 nm.
JP2004210602A 2004-07-16 2004-07-16 Light emitting device Expired - Fee Related JP4546176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210602A JP4546176B2 (en) 2004-07-16 2004-07-16 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210602A JP4546176B2 (en) 2004-07-16 2004-07-16 Light emitting device

Publications (2)

Publication Number Publication Date
JP2006032726A true JP2006032726A (en) 2006-02-02
JP4546176B2 JP4546176B2 (en) 2010-09-15

Family

ID=35898692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210602A Expired - Fee Related JP4546176B2 (en) 2004-07-16 2004-07-16 Light emitting device

Country Status (1)

Country Link
JP (1) JP4546176B2 (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313829A (en) * 2005-05-09 2006-11-16 Konica Minolta Opto Inc White light emitting diode and its manufacturing method
JP2007221044A (en) * 2006-02-20 2007-08-30 Kyocera Corp Light emitting device
JP2007273562A (en) * 2006-03-30 2007-10-18 Toshiba Corp Semiconductor light-emitting device
JP2008004419A (en) * 2006-06-23 2008-01-10 Nichia Chem Ind Ltd Light emitting device
JP2008041605A (en) * 2006-08-10 2008-02-21 Matsushita Electric Ind Co Ltd Luminaire and refrigerator equipped with it
JP2008060166A (en) * 2006-08-29 2008-03-13 Nichia Chem Ind Ltd Semiconductor device, and its manufacturing method
JP2008071806A (en) * 2006-09-12 2008-03-27 C I Kasei Co Ltd Light emitting device
KR100837847B1 (en) * 2006-06-29 2008-06-13 한국광기술원 Wavelength-converted Light Emitting Diode Using Phosphor And Manufacturing Method Of The Same
JP2008159936A (en) * 2006-12-25 2008-07-10 Kyocera Corp Light emitting device
WO2008087918A1 (en) * 2007-01-15 2008-07-24 Sanyo Electric Co., Ltd. Semiconductor light emitting device
JP2008198997A (en) * 2007-01-15 2008-08-28 Sanyo Electric Co Ltd Semiconductor light-emitting apparatus
JP2008227458A (en) * 2007-03-13 2008-09-25 Samsung Electro-Mechanics Co Ltd Manufacturing method of light-emitting diode package
JP2009530837A (en) * 2006-03-20 2009-08-27 テヘニース ウニフェルシテイト アイントホーフェン Device for converting electromagnetic radiant energy into electrical energy and method for manufacturing the device
JP2009534863A (en) * 2006-04-25 2009-09-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Fluorescent lighting that produces white light
JP2009537996A (en) * 2006-05-23 2009-10-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor device having wavelength converting substance, optoelectronic semiconductor component having semiconductor device, and method of manufacturing optoelectronic semiconductor device
JP2010050438A (en) * 2008-08-22 2010-03-04 National Taiwan Univ Of Science & Technology White light-emitting diode
JP2010512014A (en) * 2006-12-05 2010-04-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device, in particular lighting device with luminescent ceramic
JP2010130000A (en) * 2008-11-27 2010-06-10 Lighthouse Technology Co Ltd Optical film
JP2010186968A (en) * 2009-02-13 2010-08-26 Sharp Corp Light-emitting device and method of manufacturing the same
KR100982994B1 (en) 2008-10-15 2010-09-17 삼성엘이디 주식회사 Led package module
WO2010131402A1 (en) * 2009-05-15 2010-11-18 株式会社小糸製作所 Light-emitting module, method of producing light-emitting module, and lighting fixture unit
JP2011035420A (en) * 2007-05-02 2011-02-17 Cree Inc Multi-chip light-emitting device lamp for providing high-cri warm white light and lighting fixture including the same
JP2011114097A (en) * 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd Illuminator
JP2011142356A (en) * 2006-10-12 2011-07-21 Panasonic Corp Light emitting device
JP2012009639A (en) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd Light-emitting device
WO2012008325A1 (en) * 2010-07-12 2012-01-19 国立大学法人名古屋大学 Broadband infrared light emitting device
JP2012015558A (en) * 2008-03-12 2012-01-19 Samsung Led Co Ltd Light emitting diode package and method of manufacturing the same
JP2012501529A (en) * 2008-09-01 2012-01-19 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic parts
JP2012502455A (en) * 2008-09-04 2012-01-26 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Conversion film and method for producing the same
KR101153194B1 (en) * 2010-07-30 2012-06-18 한국과학기술원 Novel yellow-emitting phosphors and white light emitting diodes using the same thereof
JP2012521086A (en) * 2009-03-19 2012-09-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device using remote luminescent material
JP5083205B2 (en) * 2006-03-10 2012-11-28 日亜化学工業株式会社 Light emitting device
JP2012244085A (en) * 2011-05-24 2012-12-10 Panasonic Corp Lighting apparatus
JP2012243618A (en) * 2011-05-20 2012-12-10 Stanley Electric Co Ltd Light source device and lighting device
JP2013516075A (en) * 2009-12-31 2013-05-09 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド White light emitting device using purple LED
US8513873B2 (en) 2005-01-10 2013-08-20 Cree, Inc. Light emission device
CN103855288A (en) * 2012-12-04 2014-06-11 有研稀土新材料股份有限公司 Light emitting component and light emitting device composed of light emitting component
WO2014091539A1 (en) * 2012-12-10 2014-06-19 株式会社エルム Light emitting apparatus, led illumination apparatus, and method for manufacturing phosphor-containing film piece used in light-emitting apparatus
JP2014521206A (en) * 2011-07-05 2014-08-25 オスラム ゲーエムベーハー Conversion element manufacturing method and conversion element
CN104221172A (en) * 2012-04-13 2014-12-17 皇家飞利浦有限公司 A light conversion assembly, a lamp and a luminaire
CN104272014A (en) * 2011-12-30 2015-01-07 科学生产商业公司爱达尔股份有限公司 Light-emitting diode white-light source with a combined remote photoluminescent converter
JP2015062190A (en) * 2008-11-21 2015-04-02 シカト・インコーポレイテッド Light emitting diode module with three part color matching
WO2015063077A1 (en) * 2013-10-29 2015-05-07 Osram Opto Semiconductors Gmbh Wavelength conversion element, method of making, and light-emitting semiconductor component having same
KR101518459B1 (en) * 2008-12-31 2015-05-11 서울반도체 주식회사 Light emitting diode package
US9140429B2 (en) 2010-10-14 2015-09-22 Cree, Inc. Optical element edge treatment for lighting device
WO2016051857A1 (en) * 2014-09-30 2016-04-07 シャープ株式会社 Nitride semiconductor light emitting device
JP2016099520A (en) * 2014-11-21 2016-05-30 日亜化学工業株式会社 Wavelength conversion member and projector including the wavelength conversion member
EP2736086A3 (en) * 2012-11-26 2016-11-09 LG Electronics, Inc. Light emitting device package
KR20170003248A (en) * 2015-06-30 2017-01-09 서울반도체 주식회사 Light emitting device
US9587790B2 (en) 2013-03-15 2017-03-07 Cree, Inc. Remote lumiphor solid state lighting devices with enhanced light extraction
WO2017203782A1 (en) * 2016-05-24 2017-11-30 ソニー株式会社 Light source device and projection display device
EP3285000A4 (en) * 2015-04-17 2019-05-01 Koito Manufacturing Co., Ltd. Vehicle lamp and light-emitting device
JP2019179920A (en) * 2015-10-28 2019-10-17 パナソニックIpマネジメント株式会社 Light emitting device
JP2020188044A (en) * 2019-05-10 2020-11-19 国立研究開発法人物質・材料研究機構 Light-emitting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721007A (en) * 2012-06-18 2012-10-10 南京汉德森科技股份有限公司 Remote phosphor structure applicable to LED lighting and production method thereof
KR102314610B1 (en) * 2019-12-26 2021-10-20 경희대학교 산학협력단 White light emitting package and manufacturing method by the same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031531A (en) * 1998-07-14 2000-01-28 Toshiba Electronic Engineering Corp Light emitter
JP2000031532A (en) * 1998-07-14 2000-01-28 Toshiba Electronic Engineering Corp Semiconductor light emitting device
JP2000183408A (en) * 1998-12-16 2000-06-30 Toshiba Electronic Engineering Corp Semiconductor light-emitting device
JP2001144331A (en) * 1999-09-02 2001-05-25 Toyoda Gosei Co Ltd Light-emitting device
JP2002042525A (en) * 2000-07-26 2002-02-08 Toyoda Gosei Co Ltd Planar light source
JP2002223008A (en) * 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv Light emitting element
JP2002226846A (en) * 2001-02-06 2002-08-14 Matsushita Electric Ind Co Ltd Illuminating fluorescent substance, light-emitting diode using the same illuminating fluorescent substance and method for coating fluorescent substance
JP2002531956A (en) * 1998-11-30 2002-09-24 ゼネラル・エレクトリック・カンパニイ Light emitting device having phosphor composition
JP2003046134A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Method of manufacturing light emitting device
JP2003332631A (en) * 2002-05-15 2003-11-21 Sumitomo Electric Ind Ltd White light emitting element
JP2004014942A (en) * 2002-06-10 2004-01-15 Taiwan Lite On Electronics Inc Manufacturing method of white photoluminescence diode
JP2004505470A (en) * 2000-07-28 2004-02-19 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング Illumination unit with at least one LED as light source
JP2004115633A (en) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd Silicate phosphor and light-emitting unit therewith
JP2004161871A (en) * 2002-11-12 2004-06-10 Nichia Chem Ind Ltd Sintered phosphor layer
JP2005093985A (en) * 2003-09-17 2005-04-07 Nan Ya Plast Corp Method of generating white light by secondary excitation system and its white light emitting device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031532A (en) * 1998-07-14 2000-01-28 Toshiba Electronic Engineering Corp Semiconductor light emitting device
JP2000031531A (en) * 1998-07-14 2000-01-28 Toshiba Electronic Engineering Corp Light emitter
JP2002531956A (en) * 1998-11-30 2002-09-24 ゼネラル・エレクトリック・カンパニイ Light emitting device having phosphor composition
JP2000183408A (en) * 1998-12-16 2000-06-30 Toshiba Electronic Engineering Corp Semiconductor light-emitting device
JP2001144331A (en) * 1999-09-02 2001-05-25 Toyoda Gosei Co Ltd Light-emitting device
JP2002042525A (en) * 2000-07-26 2002-02-08 Toyoda Gosei Co Ltd Planar light source
JP2004505470A (en) * 2000-07-28 2004-02-19 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング Illumination unit with at least one LED as light source
JP2002223008A (en) * 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv Light emitting element
JP2002226846A (en) * 2001-02-06 2002-08-14 Matsushita Electric Ind Co Ltd Illuminating fluorescent substance, light-emitting diode using the same illuminating fluorescent substance and method for coating fluorescent substance
JP2003046134A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Method of manufacturing light emitting device
JP2003332631A (en) * 2002-05-15 2003-11-21 Sumitomo Electric Ind Ltd White light emitting element
JP2004014942A (en) * 2002-06-10 2004-01-15 Taiwan Lite On Electronics Inc Manufacturing method of white photoluminescence diode
JP2004115633A (en) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd Silicate phosphor and light-emitting unit therewith
JP2004161871A (en) * 2002-11-12 2004-06-10 Nichia Chem Ind Ltd Sintered phosphor layer
JP2005093985A (en) * 2003-09-17 2005-04-07 Nan Ya Plast Corp Method of generating white light by secondary excitation system and its white light emitting device

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847478B2 (en) 2005-01-10 2014-09-30 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US8513873B2 (en) 2005-01-10 2013-08-20 Cree, Inc. Light emission device
US8410680B2 (en) 2005-01-10 2013-04-02 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
JP2006313829A (en) * 2005-05-09 2006-11-16 Konica Minolta Opto Inc White light emitting diode and its manufacturing method
JP2007221044A (en) * 2006-02-20 2007-08-30 Kyocera Corp Light emitting device
US8872203B2 (en) 2006-03-10 2014-10-28 Nichia Corporation Light-emitting device
JP5083205B2 (en) * 2006-03-10 2012-11-28 日亜化学工業株式会社 Light emitting device
JP2009530837A (en) * 2006-03-20 2009-08-27 テヘニース ウニフェルシテイト アイントホーフェン Device for converting electromagnetic radiant energy into electrical energy and method for manufacturing the device
JP2007273562A (en) * 2006-03-30 2007-10-18 Toshiba Corp Semiconductor light-emitting device
US8294165B2 (en) 2006-03-30 2012-10-23 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
EP2013918B1 (en) * 2006-04-25 2015-02-11 Philips Intellectual Property & Standards GmbH Fluorescent lighting creating white light
JP2009534863A (en) * 2006-04-25 2009-09-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Fluorescent lighting that produces white light
JP2009537996A (en) * 2006-05-23 2009-10-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor device having wavelength converting substance, optoelectronic semiconductor component having semiconductor device, and method of manufacturing optoelectronic semiconductor device
JP2008004419A (en) * 2006-06-23 2008-01-10 Nichia Chem Ind Ltd Light emitting device
KR100837847B1 (en) * 2006-06-29 2008-06-13 한국광기술원 Wavelength-converted Light Emitting Diode Using Phosphor And Manufacturing Method Of The Same
JP2008041605A (en) * 2006-08-10 2008-02-21 Matsushita Electric Ind Co Ltd Luminaire and refrigerator equipped with it
JP2008060166A (en) * 2006-08-29 2008-03-13 Nichia Chem Ind Ltd Semiconductor device, and its manufacturing method
JP2008071806A (en) * 2006-09-12 2008-03-27 C I Kasei Co Ltd Light emitting device
JP2011142356A (en) * 2006-10-12 2011-07-21 Panasonic Corp Light emitting device
JP2010512014A (en) * 2006-12-05 2010-04-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device, in particular lighting device with luminescent ceramic
KR101423475B1 (en) * 2006-12-05 2014-07-28 코닌클리케 필립스 엔.브이. Illumination device, particularly with luminescent ceramics
JP2008159936A (en) * 2006-12-25 2008-07-10 Kyocera Corp Light emitting device
US8384101B2 (en) 2007-01-15 2013-02-26 Sanyo Electric Co., Ltd. Semiconductor light-emitting device
WO2008087918A1 (en) * 2007-01-15 2008-07-24 Sanyo Electric Co., Ltd. Semiconductor light emitting device
JP2008198997A (en) * 2007-01-15 2008-08-28 Sanyo Electric Co Ltd Semiconductor light-emitting apparatus
JP2008227458A (en) * 2007-03-13 2008-09-25 Samsung Electro-Mechanics Co Ltd Manufacturing method of light-emitting diode package
JP2011035420A (en) * 2007-05-02 2011-02-17 Cree Inc Multi-chip light-emitting device lamp for providing high-cri warm white light and lighting fixture including the same
JP2012015558A (en) * 2008-03-12 2012-01-19 Samsung Led Co Ltd Light emitting diode package and method of manufacturing the same
JP2010050438A (en) * 2008-08-22 2010-03-04 National Taiwan Univ Of Science & Technology White light-emitting diode
JP2012501529A (en) * 2008-09-01 2012-01-19 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic parts
US8785951B2 (en) 2008-09-01 2014-07-22 Osram Opto Semiconductors Gmbh Optoelectric component
JP2012502455A (en) * 2008-09-04 2012-01-26 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Conversion film and method for producing the same
KR100982994B1 (en) 2008-10-15 2010-09-17 삼성엘이디 주식회사 Led package module
JP2015062190A (en) * 2008-11-21 2015-04-02 シカト・インコーポレイテッド Light emitting diode module with three part color matching
US9261245B2 (en) 2008-11-21 2016-02-16 Xicato, Inc. Light emitting diode module with three part color matching
US9557017B2 (en) 2008-11-21 2017-01-31 Xicato, Inc. Light emitting diode module with three part color matching
JP2010130000A (en) * 2008-11-27 2010-06-10 Lighthouse Technology Co Ltd Optical film
KR101518459B1 (en) * 2008-12-31 2015-05-11 서울반도체 주식회사 Light emitting diode package
US8736160B2 (en) 2009-02-13 2014-05-27 Sharp Kabushiki Kaisha Light-emitting apparatus and method for manufacturing same
JP2010186968A (en) * 2009-02-13 2010-08-26 Sharp Corp Light-emitting device and method of manufacturing the same
US9175818B2 (en) 2009-02-13 2015-11-03 Sharp Kabushiki Kaisha Light-emitting apparatus and method for manufacturing same
JP2012521086A (en) * 2009-03-19 2012-09-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device using remote luminescent material
US9349924B2 (en) 2009-03-19 2016-05-24 Koninklijke Phililps N.V. Illumination device with remote luminescent material
WO2010131402A1 (en) * 2009-05-15 2010-11-18 株式会社小糸製作所 Light-emitting module, method of producing light-emitting module, and lighting fixture unit
JP5487204B2 (en) * 2009-05-15 2014-05-07 株式会社小糸製作所 Light emitting module, method for manufacturing light emitting module, and lamp unit
JP2011114097A (en) * 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd Illuminator
JP2013516075A (en) * 2009-12-31 2013-05-09 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド White light emitting device using purple LED
JP2012009639A (en) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd Light-emitting device
WO2012008325A1 (en) * 2010-07-12 2012-01-19 国立大学法人名古屋大学 Broadband infrared light emitting device
JP5000028B2 (en) * 2010-07-12 2012-08-15 国立大学法人名古屋大学 Broadband infrared radiation equipment
US9062853B2 (en) 2010-07-12 2015-06-23 National University Corporation Nagoya University Broadband infrared light emitting device
KR101153194B1 (en) * 2010-07-30 2012-06-18 한국과학기술원 Novel yellow-emitting phosphors and white light emitting diodes using the same thereof
US9140429B2 (en) 2010-10-14 2015-09-22 Cree, Inc. Optical element edge treatment for lighting device
US9335029B2 (en) 2010-10-14 2016-05-10 Cree, Inc. Lighting device with remote lumiphor and non-planar optical element
JP2012243618A (en) * 2011-05-20 2012-12-10 Stanley Electric Co Ltd Light source device and lighting device
JP2012244085A (en) * 2011-05-24 2012-12-10 Panasonic Corp Lighting apparatus
JP2014521206A (en) * 2011-07-05 2014-08-25 オスラム ゲーエムベーハー Conversion element manufacturing method and conversion element
CN104272014A (en) * 2011-12-30 2015-01-07 科学生产商业公司爱达尔股份有限公司 Light-emitting diode white-light source with a combined remote photoluminescent converter
JP2015508572A (en) * 2011-12-30 2015-03-19 ザクリトエ アクツィオネルノエ オブシェストヴォ ”ナウチノ−プロイズヴォドストヴェナヤ コメルチェスカヤ フィルマ ”エルタン リミテッド” White LED light source combined with remote photoluminescence converter
CN104221172A (en) * 2012-04-13 2014-12-17 皇家飞利浦有限公司 A light conversion assembly, a lamp and a luminaire
JP2015520476A (en) * 2012-04-13 2015-07-16 コーニンクレッカ フィリップス エヌ ヴェ Light conversion assembly, lamp and luminaire
KR102030538B1 (en) * 2012-04-13 2019-10-10 루미리즈 홀딩 비.브이. A light conversion assembly, a lamp and a luminaire
TWI617058B (en) * 2012-04-13 2018-03-01 Koninklijke Philips Electronics N.V. A light conversion assembly, a lamp and a luminaire
KR20150006441A (en) * 2012-04-13 2015-01-16 코닌클리케 필립스 엔.브이. A light conversion assembly, a lamp and a luminaire
US9541243B2 (en) 2012-04-13 2017-01-10 Koninklijke Philips N.V. Light conversion assembly, a lamp and a luminaire
EP2736086A3 (en) * 2012-11-26 2016-11-09 LG Electronics, Inc. Light emitting device package
CN103855288A (en) * 2012-12-04 2014-06-11 有研稀土新材料股份有限公司 Light emitting component and light emitting device composed of light emitting component
WO2014091539A1 (en) * 2012-12-10 2014-06-19 株式会社エルム Light emitting apparatus, led illumination apparatus, and method for manufacturing phosphor-containing film piece used in light-emitting apparatus
US9587790B2 (en) 2013-03-15 2017-03-07 Cree, Inc. Remote lumiphor solid state lighting devices with enhanced light extraction
WO2015063077A1 (en) * 2013-10-29 2015-05-07 Osram Opto Semiconductors Gmbh Wavelength conversion element, method of making, and light-emitting semiconductor component having same
WO2016051857A1 (en) * 2014-09-30 2016-04-07 シャープ株式会社 Nitride semiconductor light emitting device
JP2016099520A (en) * 2014-11-21 2016-05-30 日亜化学工業株式会社 Wavelength conversion member and projector including the wavelength conversion member
EP3285000A4 (en) * 2015-04-17 2019-05-01 Koito Manufacturing Co., Ltd. Vehicle lamp and light-emitting device
KR20170003248A (en) * 2015-06-30 2017-01-09 서울반도체 주식회사 Light emitting device
KR102453026B1 (en) * 2015-06-30 2022-10-12 서울반도체 주식회사 Light emitting device
JP2019179920A (en) * 2015-10-28 2019-10-17 パナソニックIpマネジメント株式会社 Light emitting device
JPWO2017203782A1 (en) * 2016-05-24 2019-03-22 ソニー株式会社 Light source device and projection display device
WO2017203782A1 (en) * 2016-05-24 2017-11-30 ソニー株式会社 Light source device and projection display device
US11156907B2 (en) 2016-05-24 2021-10-26 Sony Corporation Light source apparatus and projection display apparatus
JP2020188044A (en) * 2019-05-10 2020-11-19 国立研究開発法人物質・材料研究機構 Light-emitting device
JP7226789B2 (en) 2019-05-10 2023-02-21 国立研究開発法人物質・材料研究機構 light emitting device

Also Published As

Publication number Publication date
JP4546176B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4546176B2 (en) Light emitting device
US10964854B2 (en) Semiconductor light-emitting device
KR100946015B1 (en) White led device and light source module for lcd backlight using the same
KR100658970B1 (en) LED device generating light with multi-wavelengths
US8039850B2 (en) White light emitting device
JP5575737B2 (en) Wavelength conversion type semiconductor light emitting device
KR100723233B1 (en) White light emitting device
JP5193586B2 (en) Semiconductor light emitting device
JP5369486B2 (en) Light emitting device
US6933535B2 (en) Light emitting devices with enhanced luminous efficiency
JP2007273562A (en) Semiconductor light-emitting device
JP2005298817A (en) Phosphor, method for producing the same and light emission device using the same
KR20100044726A (en) Semiconductor light emitting device
JP2011082568A (en) Emitter package comprising saturated conversion material
JP2006073202A (en) Light emitting device
JP2005228996A (en) Light-emitting device
JP2013527605A (en) Optoelectronic device and manufacturing method of optoelectronic device
JP2006108673A (en) Multiplex light emitting diode device
US20070194693A1 (en) Light-Emitting Device
JP2008270781A (en) Light-emitting device
JP2005109289A (en) Light-emitting device
JP2005285800A (en) Light-emitting device
JP2011249856A (en) Semiconductor light-emitting device
JP2010199629A (en) Semiconductor light emitting device
US20230261154A1 (en) Light-emitting diode packages with selectively placed light-altering materials and related methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees