JP2000031531A - Light emitter - Google Patents

Light emitter

Info

Publication number
JP2000031531A
JP2000031531A JP19900298A JP19900298A JP2000031531A JP 2000031531 A JP2000031531 A JP 2000031531A JP 19900298 A JP19900298 A JP 19900298A JP 19900298 A JP19900298 A JP 19900298A JP 2000031531 A JP2000031531 A JP 2000031531A
Authority
JP
Japan
Prior art keywords
light
wavelength
phosphor
light emitting
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19900298A
Other languages
Japanese (ja)
Other versions
JP3645422B2 (en
Inventor
Nobuhiro Suzuki
木 伸 洋 鈴
Hideto Sugawara
原 秀 人 菅
Chisato Furukawa
川 千 里 古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP19900298A priority Critical patent/JP3645422B2/en
Publication of JP2000031531A publication Critical patent/JP2000031531A/en
Application granted granted Critical
Publication of JP3645422B2 publication Critical patent/JP3645422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light emitter which has stable light emission property by putting the mixture ratio of light surely and easily in desired balance. SOLUTION: This light emitter is equipped with a light emitting element 11 which emits the primary light of first wavelength, and a first phosphor 17 which absorbs the primary light and emits the secondary light of second wavelength, a second phosphor 18 which absorbs the secondary light of the second wavelength and emits the secondary light of the third wavelength. Then, the second phosphor 18 stabilizes the balance of an obtained light spectrum by being constituted as one which is low in absorptivity to the first wavelength and substantially does not converts the wavelength, and even if the wavelength of the primary light emitted from the light emitting element or the intensity change, the obtained light spectrum does not change.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は発光装置に関し、特
に半導体発光素子などの発光素子と蛍光体などの波長変
換手段とを組み合わせた発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device, and more particularly to a light emitting device in which a light emitting device such as a semiconductor light emitting device and a wavelength conversion means such as a phosphor are combined.

【0002】[0002]

【従来の技術】LED(light emitting diode:発光ダ
イオード)などの半導体発光素子と蛍光体とを組み合わ
せた発光装置は、安価で長寿命な発光装置として注目さ
れ、広く用いられつつある。特に、白色の発光装置は、
蛍光灯に変わる発光装置として、あるいは表示装置用の
光源としてさまざまな用途が期待されている。
2. Description of the Related Art Light-emitting devices in which a semiconductor light-emitting element such as an LED (light emitting diode) and a phosphor are combined are attracting attention as inexpensive and long-life light-emitting devices, and are being widely used. In particular, white light emitting devices
Various applications are expected as a light emitting device instead of a fluorescent lamp or as a light source for a display device.

【0003】図6は、従来の白色発光型の発光装置の概
念構成を表す概略断面図である。すなわち、従来の発光
装置は、リードフレーム116のカップ部に青色発光L
ED111がマウントされ、その周囲が樹脂112によ
りモールドされている。そして、LED111はワイア
114により、適宜配線されている。また、樹脂112
の上には蛍光体117が塗布されている。そして、さら
にその周囲が封止樹脂113により封止されている。
FIG. 6 is a schematic sectional view showing a conceptual configuration of a conventional white light emitting type light emitting device. That is, in the conventional light emitting device, the blue light emitting L
The ED 111 is mounted, and its periphery is molded with a resin 112. The LEDs 111 are appropriately wired by wires 114. In addition, resin 112
The phosphor 117 is applied on the substrate. Further, the periphery thereof is sealed with a sealing resin 113.

【0004】図6の発光装置においては、青色発光LE
D111から放出された1次光の青色光の一部が蛍光体
117に吸収され、2次光として黄色光が放出される。
つまり、LED111から放出される青色光と、蛍光体
117から放出される黄色光とにより、白色発光を生ず
る。
[0006] In the light emitting device of FIG.
A part of the primary light blue light emitted from D111 is absorbed by the phosphor 117, and yellow light is emitted as secondary light.
That is, white light is generated by the blue light emitted from the LED 111 and the yellow light emitted from the phosphor 117.

【0005】[0005]

【発明が解決しようとする課題】しかし、本発明者の試
作・評価の結果、図6のような従来の発光装置には、以
下に挙げる問題があることが判明した。すなわち、 (1)装置毎のホワイトバランスのばらつきが大きい。 (2)供給する電流値の変化によるホワイトバランスの
変化が大きい。 (3)周囲温度の変動によるホワイトバランスの変化が
大きい。 (4)LED111の経時変化によるホワイトバランス
の変化が大きい。
However, as a result of trial manufacture and evaluation by the present inventors, it has been found that the conventional light emitting device as shown in FIG. 6 has the following problems. That is, (1) the white balance varies greatly from device to device. (2) White balance changes greatly due to changes in the supplied current value. (3) White balance changes significantly due to fluctuations in ambient temperature. (4) The change in white balance due to the aging of the LED 111 is large.

【0006】これらの問題は、いずれも、半導体発光素
子として用いている青色発光LED111が有する本質
的な特性に起因している。すなわち、青色発光LED1
11の発光層として用いられている窒化インジウム・ガ
リウム(InGaN)は、その組成の厳密な制御が難し
く、成長ウェーハ毎に発光波長が変動する傾向がある。
また、LEDに供給する電流や温度によって発光波長が
比較的大きく変動するという特性を有する。さらに、電
流を供給して発光動作を継続すると、発光波長が変動す
る傾向がみられる。
[0006] All of these problems result from the essential characteristics of the blue light emitting LED 111 used as a semiconductor light emitting device. That is, the blue light emitting LED 1
It is difficult to control the composition of indium gallium nitride (InGaN) used as the eleventh light emitting layer strictly, and the emission wavelength tends to fluctuate for each growth wafer.
Further, it has a characteristic that the emission wavelength fluctuates relatively largely depending on the current and temperature supplied to the LED. Further, when the current is supplied and the light emitting operation is continued, the light emission wavelength tends to fluctuate.

【0007】このようにして、青色発光LED111か
ら放出される青色光の波長が変動すると、蛍光体17か
ら放出される黄色光との強度のバランスがくずれて色度
座標が大きくずれてしまう。その結果として、出力され
る白色光のホワイトバランスが大きく変化するという問
題が生ずることが判明した。
As described above, when the wavelength of the blue light emitted from the blue light emitting LED 111 fluctuates, the balance of the intensity with the yellow light emitted from the phosphor 17 is lost, and the chromaticity coordinates are greatly shifted. As a result, it has been found that a problem occurs in that the white balance of the output white light greatly changes.

【0008】この問題を解決する方法として、R(赤)
G(緑)B(青)の3色の発光を生ずる蛍光体を使う方
法もある。しかし、この場合には、3種類の蛍光体の配
合比の精密な調整が必要となり、所定のバランスで混合
することは容易ではないという欠点があった。また、蛍
光体を混合して塗布する場合に、それぞれの蛍光体粒子
の比重の違いに起因する分離の影響で、所望の均一な混
合形態を実現することが難しいという欠点もあった。
As a method for solving this problem, R (red)
There is also a method of using a phosphor that emits light of three colors of G (green) and B (blue). However, in this case, it is necessary to precisely adjust the mixing ratio of the three types of phosphors, and it is not easy to mix them in a predetermined balance. Further, when the phosphors are mixed and applied, there is a disadvantage that it is difficult to realize a desired uniform mixing form due to the influence of separation caused by the difference in specific gravity of each phosphor particle.

【0009】本発明は、かかる独自の課題の認識に基づ
いてなされたものである。すなわち、その目的は、光の
混合比を確実且つ容易に所望のバランスにし、安定した
発光特性を有する発光装置を提供することにある。
The present invention has been made based on the recognition of such a unique problem. That is, an object of the present invention is to provide a light-emitting device having a stable light-emitting characteristic by reliably and easily adjusting a mixing ratio of light to a desired balance.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の発光装置は、第1の波長の光を放出する発
光素子と、前記第1の波長の光を吸収して第2の波長の
光を放出する第1の波長変換手段と、前記第2の波長の
光を吸収して第3の波長の光を放出する第2の波長変換
手段と、を備えたことを特徴とし、発光素子から放出さ
れる第1の波長が変動しても、第2の波長の光と第3の
波長の光のバランスを安定させることができる。
In order to achieve the above object, a light emitting device according to the present invention comprises a light emitting element for emitting light of a first wavelength and a light emitting element for absorbing the light of the first wavelength. A first wavelength converting means for emitting light of a wavelength of the second wavelength, and a second wavelength converting means for absorbing light of the second wavelength and emitting a light of a third wavelength. Even if the first wavelength emitted from the light emitting element changes, the balance between the light of the second wavelength and the light of the third wavelength can be stabilized.

【0011】ここで、前記第2の波長は、前記第1の波
長よりも長く、前記第3の波長は、前記第2の波長より
も長く、前記第2の波長変換手段は、前記第1の波長の
光を実質的に吸収しないことを特徴とすることにより、
第2の波長の光と第3の波長の光のバランスを極めて安
定させることができる。
Here, the second wavelength is longer than the first wavelength, the third wavelength is longer than the second wavelength, and the second wavelength converting means includes By not substantially absorbing the light of the wavelength of
The balance between the light of the second wavelength and the light of the third wavelength can be extremely stabilized.

【0012】また、本発明の望ましい実施の態様として
は、前記第1の波長変換手段は、蛍光体であり、前記第
2の波長変換手段は、蛍光体であることを特徴とする。
In a preferred embodiment of the present invention, the first wavelength converting means is a fluorescent material, and the second wavelength converting means is a fluorescent material.

【0013】さらに、前記第1の波長の光は、紫外光で
あり、前記第2の波長の光は、青色光であり、前記第3
の波長の光は、黄色光であることを特徴とすることによ
り、ホワイトバランスが極めて安定した白色光を得るこ
とができる。
Further, the light of the first wavelength is ultraviolet light, the light of the second wavelength is blue light, and the light of the third wavelength is
Is characterized by being yellow light, white light with extremely stable white balance can be obtained.

【0014】また、前記発光素子は、窒化物半導体から
なる半導体発光素子であることを特徴とすることによ
り、高輝度の発光装置を実現することができる。
Further, the light-emitting element is a semiconductor light-emitting element made of a nitride semiconductor, so that a high-luminance light-emitting device can be realized.

【0015】[0015]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は、本発明の実施の
形態にかかる発光装置の概念構成を表す断面図である。
すなわち、同図の発光装置は、一般に「縦形LED」と
呼ばれるものであり、リードフレーム16のカップ部に
発光素子11がマウントされ、その周囲が樹脂12によ
りモールドされている。樹脂12は、発光素子11から
放出される光の吸収の少ない材料により構成することが
望ましい。発光素子11はワイア14により、適宜配線
されている。また、樹脂12の上には第1の波長変換手
段18と第2の波長変換手段17とが設けられている。
そして、さらにその周囲が封止樹脂13により封止され
ている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view illustrating a conceptual configuration of a light emitting device according to an embodiment of the present invention.
That is, the light emitting device shown in FIG. 1 is generally called a “vertical LED”, in which a light emitting element 11 is mounted on a cup portion of a lead frame 16, and the periphery thereof is molded with a resin 12. It is desirable that the resin 12 is made of a material that absorbs less light emitted from the light emitting element 11. The light emitting elements 11 are appropriately wired by wires 14. In addition, a first wavelength conversion unit 18 and a second wavelength conversion unit 17 are provided on the resin 12.
Further, the periphery thereof is sealed with a sealing resin 13.

【0016】ここで、第1の波長変換手段18は、発光
素子11から放出される第1の波長の光を吸収してそれ
よりも長い第2の波長の光に変換する。例えば、発光素
子11として紫外光を放出するLEDを用いた場合に
は、その紫外光により励起されて青色の2次光を放出す
る蛍光体とすることができる。
Here, the first wavelength converting means 18 absorbs the light of the first wavelength emitted from the light emitting element 11 and converts it into light of the second wavelength longer than that. For example, when an LED that emits ultraviolet light is used as the light emitting element 11, a phosphor that emits blue secondary light when excited by the ultraviolet light can be used.

【0017】一方、第2の波長変換手段17は、第1の
波長変換手段18から放出された第2の波長を有する2
次光を吸収してそれよりも長い第3の波長の2次光に変
換する。第2の波長変換手段17としては、例えば、蛍
光体18から放出される青色光により励起されて黄色の
2次光を放出する蛍光体とすることができる。ここで、
蛍光体17は、発光素子11から放出される第1の波長
の光に対する吸収率は低いことを特徴とする。つまり、
蛍光体17は、蛍光体18から放出される2次光の波長
領域において吸収率のピークを有するものであることが
望ましい。
On the other hand, the second wavelength conversion means 17 has a second wavelength having the second wavelength emitted from the first wavelength conversion means 18.
The secondary light is absorbed and converted into secondary light having a longer third wavelength. As the second wavelength conversion means 17, for example, a phosphor that is excited by blue light emitted from the phosphor 18 and emits yellow secondary light can be used. here,
The phosphor 17 has a low absorptance for light of the first wavelength emitted from the light emitting element 11. That is,
It is desirable that the phosphor 17 has a peak of absorptance in the wavelength region of the secondary light emitted from the phosphor 18.

【0018】上述の具体例に沿って説明すれば、本発明
の発光装置においては、紫外線発光LED11から放出
された1次光の紫外光が蛍光体17に吸収され、2次光
として青色光が放出される。そして、その青色光の一部
が蛍光体17に吸収されて2次光として黄色光が放出さ
れる。蛍光体17は、LED11から放出される紫外光
に対しては、吸収率が低く、実質的に波長変換を生じな
い。そして、蛍光体18から放出される青色光と、蛍光
体17から放出される黄色光とにより、白色発光を生ず
る。
According to the above-described specific example, in the light emitting device of the present invention, the ultraviolet light of the primary light emitted from the ultraviolet light emitting LED 11 is absorbed by the phosphor 17 and the blue light is emitted as the secondary light. Released. Then, part of the blue light is absorbed by the phosphor 17 and yellow light is emitted as secondary light. The phosphor 17 has a low absorptivity to ultraviolet light emitted from the LED 11, and does not substantially cause wavelength conversion. Then, white light is generated by the blue light emitted from the phosphor 18 and the yellow light emitted from the phosphor 17.

【0019】本発明において用いることができる蛍光体
の例としては、紫外光により励起される青色発光蛍光体
18としては、例えば東芝製型式801EJがある。な
お、801EJの比重は4.2である。一方、青色光に
より励起される黄色発光蛍光体17としては、YAG
(Ce)すなわち(Y1-aGda3(Al1-bGab5
12:Ceがある。なお、YAG(Ce)の比重も約4.
2である。
As an example of the phosphor that can be used in the present invention, as the blue light-emitting phosphor 18 excited by ultraviolet light, there is, for example, a model 801EJ manufactured by Toshiba. The specific gravity of 801EJ is 4.2. On the other hand, as the yellow light-emitting phosphor 17 excited by blue light, YAG
(Ce), that is, (Y 1-a Gd a ) 3 (Al 1-b G ab ) 5 O
12 : Ce is present. The specific gravity of YAG (Ce) is also about 4.
2.

【0020】蛍光体17、18の層の作り方の一例とし
ては、以下の方法を挙げることができる。 (1)801EJをキャスティングする。すなわち、溶
媒に蛍光体を分散させ、樹脂12の表面に塗布して加熱
することによりキュアして硬化させる。このようにして
青色蛍光体18の層を形成することができる。次に、同
様にして、その上にYAG(Ce)をキャスティングす
る。この一連の方法は蛍光体の比重の大小関係に無関係
に用いることができる。 (2)801EJを溶かした溶媒と、YAG(Ce)を
溶かした溶媒とを樹脂12の表面に滴下する。この際
に、蛍光体粒子の比重や、溶媒の粘性と硬化速度などを
考慮して、相分離により801EJがYAG(Ce)よ
りも下の層になるように設計する。本発明によれば、L
ED11から放出された1次光は蛍光体18のみにより
波長変換され、青色光に変換される。蛍光体17は、L
ED11から放出される紫外光を実質的に波長変換しな
い。この特徴により、極めて安定したホワイトバランス
を得ることができる。
As an example of the method of forming the layers of the phosphors 17 and 18, the following method can be mentioned. (1) Cast 801EJ. That is, the phosphor is dispersed in a solvent, applied to the surface of the resin 12, heated, cured and cured. Thus, the layer of the blue phosphor 18 can be formed. Next, similarly, YAG (Ce) is cast thereon. This series of methods can be used irrespective of the magnitude of the specific gravity of the phosphor. (2) A solvent in which 801EJ is dissolved and a solvent in which YAG (Ce) is dissolved are dropped on the surface of the resin 12. At this time, in consideration of the specific gravity of the phosphor particles, the viscosity and the curing speed of the solvent, etc., the 801EJ is designed to be a layer below YAG (Ce) by phase separation. According to the present invention, L
The primary light emitted from the ED 11 is wavelength-converted only by the phosphor 18 and converted into blue light. The phosphor 17 is L
The wavelength of ultraviolet light emitted from the ED 11 is not substantially converted. With this feature, an extremely stable white balance can be obtained.

【0021】ここで、仮に、蛍光体17と蛍光体18の
両方がLED11から放出される紫外光をそれぞれ波長
変換する場合を想定する。このような場合には、図6に
関して前述したように、LED11の発光波長が変動し
た場合に、ホワイトバランスが変動するという問題を生
ずる。何故ならば、蛍光体17と蛍光体18の吸収率の
波長依存性を同一とすることは技術的に不可能に近い。
両者の吸収スペクトルが異なる結果として、LED11
から放出される1次光の波長が変動した場合には、蛍光
体17と蛍光体18にそれぞれ吸収される光成分のバラ
ンスが変化し、変換されて放出される2次光のバランス
も変化するからである。
Here, it is assumed that both the phosphor 17 and the phosphor 18 convert the wavelength of the ultraviolet light emitted from the LED 11, respectively. In such a case, as described above with reference to FIG. 6, when the emission wavelength of the LED 11 changes, there arises a problem that the white balance changes. This is because it is almost impossible technically to make the wavelength dependences of the absorption rates of the phosphor 17 and the phosphor 18 the same.
As a result of the difference between the two absorption spectra, LED 11
When the wavelength of the primary light emitted from the light source varies, the balance of the light components absorbed by the phosphors 17 and 18 changes, and the balance of the converted and emitted secondary light also changes. Because.

【0022】これに対して、本発明によれば、LED1
1から放出された1次光は蛍光体18のみにより波長変
換され、青色光に変換される。蛍光体17は、LED1
1から放出される紫外光を実質的に波長変換しない。図
6に関して前述したような種々の要因によりLED11
の発光波長が変動しても、蛍光体18から放出される青
色光の波長が変動することはない。そして、その青色光
の一部が蛍光体17により黄色光に変換される。つま
り、本発明によれば、発光装置から外部に放出される青
色光と黄色光のバランスは、蛍光体17と蛍光体18と
の混合比のみに依存し、LED11の発光波長や発光強
度には依存せず、極めて安定している。
On the other hand, according to the present invention, the LED 1
The primary light emitted from 1 is converted in wavelength only by the phosphor 18 and converted into blue light. Phosphor 17 is LED1
The wavelength of the ultraviolet light emitted from 1 is not substantially converted. Due to various factors as described above with reference to FIG.
Does not change even if the emission wavelength of the blue light changes. Then, part of the blue light is converted into yellow light by the phosphor 17. That is, according to the present invention, the balance between the blue light and the yellow light emitted from the light emitting device to the outside depends only on the mixing ratio of the phosphor 17 and the phosphor 18, and the emission wavelength and emission intensity of the LED 11 It is extremely stable without dependence.

【0023】このように、本発明によれば、外部に取り
出される青色光と黄色光とは、いずれも極めて安定した
波長スペクトルを有し、その結果として得られる白色光
のホワイトバランスも極めて安定する。
As described above, according to the present invention, both the blue light and the yellow light extracted outside have extremely stable wavelength spectra, and the white balance of the resulting white light is also extremely stable. .

【0024】また、3色の蛍光体を用いる場合には、配
合比の精密な調整が必要とされ、ホワイトバランスを再
現することが容易でないが、本発明によれば、2色の蛍
光体のみを用いる点で、蛍光体の配合比の調整がはるか
に容易である。
When three color phosphors are used, precise adjustment of the blending ratio is required, and it is not easy to reproduce the white balance. However, according to the present invention, only two color phosphors are used. In that case, the adjustment of the mixing ratio of the phosphor is much easier.

【0025】本発明において用いることができる紫外発
光LED11としては、窒化インジウム・アルミニウム
・ガリウムInxAlyGa1-x-yN(0≦x<1、0≦y
<1)を活性層とした窒化物半導体発光素子を挙げるこ
とができる。
As the ultraviolet light emitting LED 11 that can be used in the present invention, indium aluminum gallium nitride In x Al y Ga 1-xy N (0 ≦ x <1, 0 ≦ y
A nitride semiconductor light-emitting device having <1) as an active layer can be mentioned.

【0026】なお、本願において「窒化物半導体」と
は、BxInyAlzGa(1-x-y-z)N(O≦x≦1、O≦
y≦1、O≦z≦1)のIII−V族化合物半導体を含
み、さらに、V族元素としては、Nに加えてリン(P)
や砒素(As)などを含有する混晶も含むものとする。
[0026] Note that the term "nitride semiconductor" in the present application, B x In y Al z Ga (1-xyz) N (O ≦ x ≦ 1, O ≦
y ≦ 1, O ≦ z ≦ 1) including a III-V compound semiconductor, and as a V-group element, phosphorus (P) in addition to N
It also includes mixed crystals containing arsenic (As) or arsenic.

【0027】図2は、この半導体発光素子の概念構成を
表す概略断面図である。同図の発光素子の積層構造は以
下の通りである。なおドーピング材料、膜厚等は必要に
応じて適宜変化させても良い。 (1)サファイア基板131 (2)GaNバッファ層132 (3)膜厚4μmのn型GaNコンタクト層133 (4)膜厚200μmのn型AlGaNクラッド層13
4 (5)膜厚50μmのInGaN活性層135。なおこ
こで活性層にドーピングを行ったり、あるいは活性層を
多重量子井戸(MQW)などの多層膜にしても良い。 (6)膜厚200μmのp型AlGaNクラッド層13
6 (7)膜厚50μmのp型GaNコンタクト層137 以上説明した積層構造は、同図に示すようにその一部が
表面からn型コンタクト層133にまでエッチングさ
れ、n側電極141が設けられている。また、p型コン
タクト層137の上に透過性を有するp側電極143が
設けられている。さらに、それぞれの電極にはボンディ
ングパッド142及び144が接続され、素子の表面は
保護膜145及び146で覆われている。
FIG. 2 is a schematic sectional view showing a conceptual configuration of the semiconductor light emitting device. The laminated structure of the light emitting device of FIG. Note that the doping material, the film thickness, and the like may be appropriately changed as needed. (1) Sapphire substrate 131 (2) GaN buffer layer 132 (3) n-type GaN contact layer 133 having a thickness of 4 μm (4) n-type AlGaN cladding layer 13 having a thickness of 200 μm
4 (5) InGaN active layer 135 having a thickness of 50 μm. Here, the active layer may be doped, or the active layer may be a multilayer film such as a multiple quantum well (MQW). (6) 200 μm-thick p-type AlGaN cladding layer 13
6 (7) 50 μm-thick p-type GaN contact layer 137 The above-described laminated structure is partially etched from the surface to the n-type contact layer 133 as shown in FIG. ing. Further, a p-side electrode 143 having transparency is provided on the p-type contact layer 137. Further, bonding pads 142 and 144 are connected to the respective electrodes, and the surface of the element is covered with protective films 145 and 146.

【0028】なお、基板131の材料は、サファイアに
限定されず、その他にも、例えば、スピネル、MgO、
ScAlMgO4、LaSrGaO4、(LaSr)(A
lTa)O3などの絶縁性基板や、SiC、Si、Ga
As、GaNなどの導電性基板も同様に用いてそれぞれ
の効果を得ることができる。ここで、ScAlMgO4
基板の場合には、(0001)面、(LaSr)(Al
Ta)O3基板の場合には(111)面を用いることが
望ましい。
The material of the substrate 131 is not limited to sapphire, and may be, for example, spinel, MgO,
ScAlMgO 4 , LaSrGaO 4 , (LaSr) (A
lTa) Insulating substrate such as O 3 , SiC, Si, Ga
Each effect can be obtained by using a conductive substrate such as As or GaN in the same manner. Here, ScAlMgO 4
In the case of a substrate, the (0001) plane, (LaSr) (Al
Ta) In the case of an O 3 substrate, it is desirable to use the (111) plane.

【0029】図2に例示したLED11は、活性層13
5のインジウム(In)のIII族元素の中で占める組成
を2〜3%程度にすると、波長約370〜375nm程
度の紫外光を高い発光強度で放出する。このようなLE
Dと、紫外光により励起される青色発光蛍光体と、青色
光により励起される黄色発光蛍光体とを組み合わせた白
色発光装置は、ホワイトバランスの均一性、安定性に極
めて優れる。すなわち、蛍光体の発光波長は蛍光体を励
起させる光の強度・波長によらず一定であるため、半導
体発光素子の特性にばらつきがあっても、発光装置の波
長は一定になる。このため、素子によるホワイトバラン
スのばらつき、電流・温度によるホワイトバランスのば
らつき、または素子の劣化によるホワイトバランスの変
化が起らない。
The LED 11 illustrated in FIG.
When the composition of indium (In) 5 in the group III element is about 2 to 3%, ultraviolet light having a wavelength of about 370 to 375 nm is emitted with high emission intensity. LE like this
A white light emitting device combining D, a blue light emitting phosphor excited by ultraviolet light, and a yellow light emitting phosphor excited by blue light is extremely excellent in uniformity and stability of white balance. That is, since the emission wavelength of the phosphor is constant regardless of the intensity and wavelength of the light that excites the phosphor, the wavelength of the light emitting device is constant even if the characteristics of the semiconductor light emitting elements vary. Therefore, variations in white balance due to elements, variations in white balance due to current and temperature, and changes in white balance due to deterioration of elements do not occur.

【0030】ここで、図1に例示した発光装置において
は、発光素子11から放出される紫外線の外部への漏洩
を防止するために、封止樹脂13を紫外線に対して高い
吸収率を有する材料により構成することが望ましい。
Here, in the light emitting device illustrated in FIG. 1, in order to prevent the ultraviolet light emitted from the light emitting element 11 from leaking outside, the sealing resin 13 is made of a material having a high absorptivity to the ultraviolet light. It is desirable to be constituted by.

【0031】本実施形態においては、白色発光装置とし
て、紫外発光半導体発光素子と、紫外光により励起され
る青色発光蛍光体と、青色光により励起される黄色発光
蛍光体とを用いたものを具体例として挙げたが、本発明
はこれに限定されるものではない。すなわち、本発明
は、発光素子と、その発光素子からの光により励起され
て発光する第1の蛍光体と、第1の蛍光体からの光によ
り励起されて発光する第2の蛍光体と、を有するすべて
の発光装置に適用して同様の効果が得られる。
In this embodiment, a white light emitting device using an ultraviolet light emitting semiconductor light emitting element, a blue light emitting phosphor excited by ultraviolet light, and a yellow light emitting phosphor excited by blue light is specifically described. Although given as an example, the present invention is not limited to this. That is, the present invention provides a light-emitting element, a first phosphor that emits light when excited by light from the light-emitting element, a second phosphor that emits light when excited by light from the first phosphor, The same effect can be obtained by applying to all light emitting devices having

【0032】例えば、発光素子として紫色の波長帯の光
を放出する発光半導体発光素子、第1の蛍光体として紫
色光により励起される青緑色発光蛍光体、第2の蛍光体
として青緑色光により励起される赤色発光蛍光体、をそ
れぞれ用いた発光装置においても、極めて均一且つ安定
した白色光を得ることができる。また、本発明において
用いる発光素子は必ずしも半導体発光素子である必要は
ない。すなわち、LEDや半導体レーザなどの半導体発
光素子の他にも、EL(electro-luminescent)素子や
その他の種々の発光素子を用いても良い。
For example, a light-emitting semiconductor light-emitting element that emits light in a violet wavelength band as a light-emitting element, a blue-green light-emitting phosphor excited by purple light as a first phosphor, and blue-green light as a second phosphor In a light emitting device using each of the excited red light emitting phosphors, extremely uniform and stable white light can be obtained. Further, the light emitting element used in the present invention does not necessarily need to be a semiconductor light emitting element. That is, in addition to a semiconductor light emitting element such as an LED or a semiconductor laser, an EL (electro-luminescent) element or other various light emitting elements may be used.

【0033】さらに、白色以外の光を放出する発光装置
についても同様に適用して同様の硬化を得ることができ
る。すなわち、発光素子からの光により励起されて発光
する第1の蛍光体と、第1の蛍光体からの光により励起
されて発光する第2の蛍光体を用いて色度座標の変化の
ない発光装置を実現できる。
Furthermore, the same curing can be obtained by applying the same method to a light emitting device that emits light other than white light. That is, the first phosphor that emits light when excited by light from the light emitting element and the second phosphor that emits light when excited by light from the first phosphor emits light with no change in chromaticity coordinates. The device can be realized.

【0034】次に、本発明の第2の実施の形態について
説明する。図3は、本発明の第2の実施の形態にかかる
発光装置を表す概略断面図である。すなわち、同図の発
光装置は、一般にSMD(Surface Mounted Device:面
実装用デバイス)ランプと呼ばれるものである。すなわ
ち、実装基板25の表面には、配線パターン26が形成
され、その上に半導体発光素子11がマウントされてい
る。発光素子11は、ワイア24により適宜配線パター
ン26に接続されている。半導体発光素子11は、紫外
線領域の光を放出する発光素子である。
Next, a second embodiment of the present invention will be described. FIG. 3 is a schematic sectional view illustrating a light emitting device according to the second embodiment of the present invention. That is, the light emitting device shown in FIG. 1 is generally called an SMD (Surface Mounted Device) lamp. That is, the wiring pattern 26 is formed on the surface of the mounting substrate 25, and the semiconductor light emitting element 11 is mounted thereon. The light emitting element 11 is appropriately connected to a wiring pattern 26 by a wire 24. The semiconductor light emitting device 11 is a light emitting device that emits light in the ultraviolet region.

【0035】本実施形態において用いる蛍光体も、紫外
光により励起される青色発光蛍光体28と、青色光によ
り励起される黄色発光蛍光体27である。図中の22は
樹脂で、青色光により励起される黄色発光蛍光体27は
この樹脂の上に塗布されており、さらにこの上に紫外光
により励起される青色発光蛍光体28が塗布されてい
る。また、その周囲は、封止樹脂23により封止されて
いる。内側の樹脂22は、紫外光の吸収の少ない材料に
より形成する。
The phosphors used in this embodiment are a blue light emitting phosphor 28 excited by ultraviolet light and a yellow light emitting phosphor 27 excited by blue light. In the figure, reference numeral 22 denotes a resin, a yellow light emitting phosphor 27 excited by blue light is applied on the resin, and a blue light emitting phosphor 28 excited by ultraviolet light is further applied thereon. . Further, the periphery thereof is sealed with a sealing resin 23. The inner resin 22 is formed of a material that absorbs less ultraviolet light.

【0036】本実施形態においては、青色発光蛍光体2
8よりも黄色発光蛍光体27のほうが発光素子11に近
くに設けられている。このような配置の場合において
は、発光素子11から放出された紫外光は、黄色発光蛍
光体27には吸収されずに透過して青色発光蛍光体28
に到達して吸収され、青色光に変換される。そして、こ
の青色光のうちで、発光装置の内側に向かって放出され
た成分は、黄色発光蛍光体27に吸収されて黄色光に変
換される。つまり、本実施形態においても、青色光と黄
色光とからなる白色光を外部において取り出すことがで
きる。また、そのホワイトバランスは、第1実施形態に
おいて前述したものと同様に、蛍光体27と28との比
率のみに依存し、発光素子11の発光波長や発光強度の
変動に左右されることはない。その結果として、極めて
安定し均一な白色光を得ることができる。
In this embodiment, the blue light emitting phosphor 2
The yellow light emitting phosphor 27 is provided closer to the light emitting element 11 than the light emitting element 8. In such an arrangement, the ultraviolet light emitted from the light emitting element 11 is transmitted through the blue light emitting phosphor 28 without being absorbed by the yellow light emitting phosphor 27.
And is absorbed and converted into blue light. Then, of the blue light, the component emitted toward the inside of the light emitting device is absorbed by the yellow light emitting phosphor 27 and converted into yellow light. That is, also in the present embodiment, white light composed of blue light and yellow light can be extracted outside. Further, the white balance depends only on the ratio between the phosphors 27 and 28 and is not influenced by the fluctuation of the emission wavelength or the emission intensity of the light emitting element 11, as described in the first embodiment. . As a result, extremely stable and uniform white light can be obtained.

【0037】本実施形態において使用することができる
蛍光体27、28の例としては、第1実施形態に関して
前述したものと同様のものを挙げることができる。すな
わち、紫外光により励起される青色発光蛍光体28とし
ては、前述した東芝製型式801EJがある。なお、8
01EJの比重は4.2である。また、青色光により励
起される黄色発光蛍光体27としては、YAG(Ce)
すなわち(Y1-aGda3(Al1-bGab512:Ce
がある。ここで、YAG(Ce)は、その吸収率のピー
クが青色光の波長領域にある。つまり、青色光に対する
吸収率が極めて高い反面、発光素子11から放出される
紫外線領域の光に対する吸収率は極めて低い。従って、
発光素子11から放出される1次光は、黄色蛍光体27
には実質的に吸収されず、透過して青色蛍光体28に到
達する。
As examples of the phosphors 27 and 28 that can be used in the present embodiment, those similar to those described above with reference to the first embodiment can be given. That is, as the blue light emitting phosphor 28 excited by ultraviolet light, there is the aforementioned model 801EJ manufactured by Toshiba. In addition, 8
The specific gravity of 01EJ is 4.2. The yellow light-emitting phosphor 27 excited by blue light is YAG (Ce).
That is, (Y 1-a Gd a ) 3 (Al 1-b G ab ) 5 O 12 : Ce
There is. Here, YAG (Ce) has an absorptance peak in the wavelength region of blue light. That is, while the absorptance for blue light is extremely high, the absorptance for light in the ultraviolet region emitted from the light emitting element 11 is extremely low. Therefore,
The primary light emitted from the light emitting element 11 is a yellow phosphor 27
Are not substantially absorbed, but pass through to reach the blue phosphor 28.

【0038】これらの蛍光体27、28の塗布の方法に
ついても第1実施形態に関して前述したものと同様とす
ることができる。すなわち: (1)YAG(Ce)をキャスティングする。すなわ
ち、溶媒に蛍光体を分散させ、樹脂22の表面に塗布し
て加熱することによりキュアして硬化させる。このよう
にして青色蛍光体27の層を形成することができる。次
に、同様にして、その上に801EJをキャスティング
する。この一連の方法は蛍光体の比重の大小関係に無関
係に用いることができる。 (2)801EJを溶かした溶媒と、YAG(Ce)を
溶かした溶媒とを樹脂12の表面に滴下する。この際
に、蛍光体粒子の比重や、溶媒の粘性と硬化速度などを
考慮して、相分離によりYAG(Ce)が801EJよ
りも下の層になるように設計する。
The method of applying these phosphors 27 and 28 can be the same as that described in the first embodiment. That is: (1) Cast YAG (Ce). That is, the phosphor is dispersed in a solvent, applied to the surface of the resin 22, heated, cured and cured. Thus, a layer of the blue phosphor 27 can be formed. Next, similarly, 801EJ is cast thereon. This series of methods can be used irrespective of the magnitude of the specific gravity of the phosphor. (2) A solvent in which 801EJ is dissolved and a solvent in which YAG (Ce) is dissolved are dropped on the surface of the resin 12. At this time, in consideration of the specific gravity of the phosphor particles, the viscosity and the curing speed of the solvent, the layer is designed so that YAG (Ce) becomes a layer lower than 801EJ by phase separation.

【0039】次に、本発明の第3の実施の形態について
説明する。図4は、本発明の第3の実施の形態にかかる
発光装置を表す概略断面図である。同図の発光装置も
「縦型LED」と呼ばれるものである。本実施形態にお
いては、発光素子11の表面に蛍光体が塗布されている
点に特徴を有する。
Next, a third embodiment of the present invention will be described. FIG. 4 is a schematic sectional view illustrating a light emitting device according to a third embodiment of the present invention. The light emitting device shown in the figure is also called a “vertical LED”. The present embodiment is characterized in that a phosphor is applied to the surface of the light emitting element 11.

【0040】すなわち、紫外線発光素子11は、リード
フレーム36のカップ部に接着剤30によってマウント
されている。発光素子11の表面には、紫外光により励
起される青色発光蛍光体38が塗布され、さらに、その
上には、青色光により励起される黄色発光蛍光体37が
塗布されている。
That is, the ultraviolet light emitting element 11 is mounted on the cup portion of the lead frame 36 by the adhesive 30. On the surface of the light emitting element 11, a blue light emitting phosphor 38 excited by ultraviolet light is applied, and further thereon, a yellow light emitting phosphor 37 excited by blue light is applied.

【0041】本実施形態においても、発光素子11から
放出される紫外光により青色発光蛍光体28が励起され
て青色光が放出され、この青色光の一部が黄色発光蛍光
体27に吸収されて黄色光に変換される。そして、青色
光と黄色光とからなる白色光を取り出すことができる。
Also in this embodiment, the blue light emitting phosphor 28 is excited by the ultraviolet light emitted from the light emitting element 11 to emit blue light, and a part of the blue light is absorbed by the yellow light emitting phosphor 27. Converted to yellow light. Then, white light composed of blue light and yellow light can be extracted.

【0042】本実施形態においては、蛍光体37、38
を発光素子11の表面に直接塗布することによって発光
素子11のごく近傍において波長を変換し、高い発光輝
度の白色光を得ることができる。さらに、この白色光の
放出源を点光源に近づけることができるために、光学的
手段により、所定の放射形状の光を容易に得ることがで
きる。例えば、樹脂33をレンズ状に形成することによ
り、平行光線を容易に形成することができる。
In this embodiment, the phosphors 37 and 38 are used.
Is applied directly to the surface of the light emitting element 11, the wavelength can be converted in the vicinity of the light emitting element 11, and white light with high emission luminance can be obtained. Further, since the emission source of the white light can be made closer to the point light source, light having a predetermined radiation shape can be easily obtained by optical means. For example, by forming the resin 33 into a lens shape, parallel rays can be easily formed.

【0043】また、本実施形態においては、発光素子1
1と蛍光体37、38との間に樹脂が存在しないので、
そのような樹脂による紫外光の吸収ロスを解消すること
もできる。なお、蛍光体は、一般に絶縁性を有するもの
が多いので、本実施形態のように発光素子11の表面に
直接塗布しても電気的に短絡するような心配はない。な
お、本実施形態において用いる青色蛍光体38や黄色蛍
光体37の材料やその塗布方法は、前述した各実施形態
と同様とすることができるので、詳細な説明は省略す
る。
In the present embodiment, the light emitting element 1
Since there is no resin between 1 and the phosphors 37 and 38,
The absorption loss of ultraviolet light by such a resin can be eliminated. In addition, since many phosphors generally have an insulating property, there is no fear that an electrical short circuit occurs even when the phosphor is directly applied to the surface of the light emitting element 11 as in the present embodiment. The materials of the blue phosphor 38 and the yellow phosphor 37 used in the present embodiment and the method of applying the same can be the same as those in the above-described embodiments, and thus detailed description is omitted.

【0044】また、蛍光体の塗布順序を図4に例示した
ものとは逆にして、まず、発光素子11の表面に黄色蛍
光体を塗布し、さらにその上に青色蛍光体を塗布しても
良い。
The order of applying the phosphors is reversed from that illustrated in FIG. 4. First, a yellow phosphor is applied to the surface of the light emitting element 11, and then a blue phosphor is applied thereon. good.

【0045】次に、本発明の第4の実施の形態について
説明する。図5は、本発明の第4の実施の形態にかかる
発光装置を表す概略断面図である。同図の発光装置は、
一般に「7セグメントディスプレイ」と称されるもので
ある。同図において、11は紫外発光半導体発光素子で
あり、基板45の上にマウントされている。紫外光によ
り励起される青色発光蛍光体48と青色光により励起さ
れる黄色発光蛍光体47は混合されてこの素子11の上
に塗布されている。49は、遮蔽部材であり、43は封
止樹脂である。本実施形態においては、樹脂43の紫外
光の吸収を考慮しなくても良いという利点がある。な
お、図5においては、配線のための電極パターンやワイ
アなどは便宜上省略した。
Next, a fourth embodiment of the present invention will be described. FIG. 5 is a schematic sectional view illustrating a light emitting device according to a fourth embodiment of the present invention. The light emitting device shown in FIG.
This is generally called a “seven-segment display”. In the figure, reference numeral 11 denotes an ultraviolet light emitting semiconductor light emitting device, which is mounted on a substrate 45. A blue light-emitting phosphor 48 excited by ultraviolet light and a yellow light-emitting phosphor 47 excited by blue light are mixed and applied on the element 11. 49 is a shielding member, and 43 is a sealing resin. In this embodiment, there is an advantage that it is not necessary to consider the absorption of ultraviolet light by the resin 43. In FIG. 5, electrode patterns and wires for wiring are omitted for convenience.

【0046】本実施形態のように青色発光蛍光体47と
黄色発光蛍光体48とを混ぜて用いても、前述した各実
施形態と同様の効果を得ることができる。従来の発光装
置のように3色の蛍光体を使用した場合には、蛍光体の
比重の違いで溶媒が硬化する際に分離が起こり、発色の
不均一などが生じてしまう。これに対して、本実施形態
のように2色の蛍光体のみを混ぜる場合は、溶媒が硬化
する際の分離が起りずらく、発色の不均一は生じにく
い。特に、蛍光体47と蛍光体48との比重が同じ場
合、例えば青色発光蛍光体48として801EJを用
い、黄色発光蛍光体47としてYAG(Ce)を用いた
場合などは、分離が抑制され、極めて均一な発色が容易
に得られる点で効果的である。
Even when the blue light-emitting phosphor 47 and the yellow light-emitting phosphor 48 are mixed and used as in this embodiment, the same effects as those of the above-described embodiments can be obtained. When phosphors of three colors are used as in a conventional light emitting device, separation occurs when the solvent is cured due to a difference in specific gravity of the phosphors, resulting in non-uniform coloring. On the other hand, when only two color phosphors are mixed as in the present embodiment, separation when the solvent is hardly occurs, and non-uniform coloring hardly occurs. In particular, when the specific gravity of the phosphor 47 is the same as that of the phosphor 48, for example, when 801EJ is used as the blue light-emitting phosphor 48 and YAG (Ce) is used as the yellow light-emitting phosphor 47, the separation is suppressed and extremely. This is effective in that uniform coloring can be easily obtained.

【0047】以上、具体例を参照しつつ本発明の実施の
形態について説明した。しかし、本発明のこれらの具体
例に限定されるものではない。すなわち、本発明は、発
光素子と、その発光素子から放出される光を波長変換す
る第1の蛍光体と、その発光素子からの光は実質的に吸
収せず、第1の蛍光体からの放出される2次光を波長変
換する第2の蛍光体と、を備えた発光装置であれば、同
様の作用効果を奏するものであり、それぞれの要素の具
体的な構成は、当業者が適宜選択して実施することがで
きる。
The embodiment of the invention has been described with reference to examples. However, the present invention is not limited to these specific examples. That is, the present invention provides a light-emitting element, a first phosphor that wavelength-converts light emitted from the light-emitting element, and light that does not substantially absorb light from the light-emitting element and emits light from the first phosphor. A light emitting device provided with a second phosphor that converts the emitted secondary light into a wavelength has the same function and effect, and the specific configuration of each element is appropriately determined by those skilled in the art. It can be selectively implemented.

【0048】さらに、前述した各具体例においては、2
種類の蛍光体を備えた場合について説明したが、これ以
外にも、3種類以上の蛍光体を用いても良い。例えば、
発光素子からの1次光を2次光に変換する第1の蛍光体
と、その2次光を波長変換してそれぞれ波長が異なる2
次光を放出する第2の蛍光体及び第3の蛍光体と、を具
備したものとしても良い。
Further, in each of the specific examples described above,
Although the description has been given of the case where the phosphors are provided, three or more phosphors may be used. For example,
A first phosphor that converts primary light from a light emitting element into secondary light, and a second phosphor that converts the wavelength of the secondary light to have different wavelengths.
A second phosphor and a third phosphor that emit the next light may be provided.

【0049】[0049]

【発明の効果】本発明は、以上説明した形態で実施さ
れ、以下に説明する効果を奏する。
The present invention is embodied in the form described above, and has the following effects.

【0050】すなわち、本発明によれば、第1の波長の
1次光を放出する発光素子と、その1次光を吸収して第
2の波長の2次光を放出する第1の蛍光体と、その第2
の波長の2次光を吸収して第3の波長の2次光を放出す
る第2の蛍光体と、を備え、第2の蛍光体は、第1の波
長に対する吸収率が低く、実質的に波長変換をしないも
のとして構成することにより、得られる光スペクトルの
バランスを極めて安定させ、発光素子から放出される1
次光の波長や強度が変化しても、得られる光スペクトル
が変化することが解消される。
That is, according to the present invention, a light emitting element that emits primary light of a first wavelength and a first phosphor that absorbs the primary light and emits secondary light of a second wavelength And the second
A second phosphor that absorbs secondary light having a wavelength of and emits secondary light having a third wavelength, wherein the second phosphor has a low absorptance for the first wavelength and is substantially By not configuring the wavelength conversion, the balance of the obtained optical spectrum is extremely stabilized,
Even if the wavelength or intensity of the next light changes, the change in the obtained light spectrum is eliminated.

【0051】例えば、紫外発光を有する半導体発光素子
と、紫外光により励起される青色発光蛍光体と、青色光
により励起される黄色発光蛍光体とを用いて白色の発光
を得る場合を例に挙げると、以下のようなメリットがあ
る。 (1)搭載する発光素子のばらつきすなわち個体差によ
るホワイトバランスのばらつきが解消される。 (2)電流の変化によるホワイトバランスの変化が解消
される。 (3)温度の変化によるホワイトバランスの変化が解消
される。 (4)搭載した発光素子の劣化によるホワイトバランス
の変化が解消される。
For example, a case where white light is obtained using a semiconductor light emitting element having ultraviolet light emission, a blue light emitting phosphor excited by ultraviolet light, and a yellow light emitting phosphor excited by blue light will be described as an example. Has the following advantages. (1) Variations in the mounted light emitting elements, that is, variations in white balance due to individual differences are eliminated. (2) A change in white balance due to a change in current is eliminated. (3) Changes in white balance due to changes in temperature are eliminated. (4) Changes in white balance due to deterioration of the mounted light emitting element are eliminated.

【0052】また、蛍光を用いて白色の発光を行う方法
として、2色のみを蛍光体を用いることにより、 (5)蛍光体の配合比の調整が容易にできる というメリットも得られる。
In addition, as a method of emitting white light using fluorescence, the use of only two colors of phosphors has the advantage that (5) the mixing ratio of the phosphors can be easily adjusted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態にかかる発光装置の概念構
成を表す断面図である。
FIG. 1 is a cross-sectional view illustrating a conceptual configuration of a light emitting device according to an embodiment of the present invention.

【図2】本発明の発光装置に用いる半導体発光素子の概
念構成を表す概略断面図である。
FIG. 2 is a schematic sectional view illustrating a conceptual configuration of a semiconductor light emitting element used in the light emitting device of the present invention.

【図3】本発明の第2の実施の形態にかかる発光装置を
表す概略断面図である。
FIG. 3 is a schematic sectional view illustrating a light emitting device according to a second embodiment of the present invention.

【図4】本発明の第3の実施の形態にかかる発光装置を
表す概略断面図である。
FIG. 4 is a schematic sectional view illustrating a light emitting device according to a third embodiment of the present invention.

【図5】本発明の第4の実施の形態にかかる発光装置を
表す概略断面図である。
FIG. 5 is a schematic sectional view illustrating a light emitting device according to a fourth embodiment of the present invention.

【図6】従来の白色発光型の発光装置の概念構成を表す
概略断面図である。
FIG. 6 is a schematic cross-sectional view illustrating a conceptual configuration of a conventional white light emitting type light emitting device.

【符号の説明】[Explanation of symbols]

11 発光素子 12、22 樹脂 13、23、33、43 封止樹脂 14、24、34 ワイア 15、36 リードフレーム 16、36 リードフレーム 17、27、37、47 青色発光で励起される黄色発
光蛍光体 18、28、38、48 青色蛍光体 25 基板 26 配線パターン 30 接着剤 22 樹脂 23 樹脂モールド 24 リードフレーム 25 メタルポスト 26 メタルステム 27 青色発光で励起される黄色発光蛍光体 28 紫外発光で励起される青色発光蛍光体 45 基板 49 遮光部材 111 発光素子 112 樹脂 113 封止樹脂 114 ワイア 115、116 リードフレーム 117 黄色蛍光体 131 サファイア基板 132 GaNバッファ層 133 n型GaN層 134 n型AlGaN層 135 活性層 136 p型AlGaN層 137 p型GaN層 141 n側電極 142 ボンディングパッド 143 p側電極 144 ボンディングパッド 145 SiO2 保護膜 146 SiO2 保護膜
Reference Signs List 11 light emitting element 12, 22 resin 13, 23, 33, 43 sealing resin 14, 24, 34 wire 15, 36 lead frame 16, 36 lead frame 17, 27, 37, 47 yellow light emitting phosphor excited by blue light emission 18, 28, 38, 48 Blue phosphor 25 Substrate 26 Wiring pattern 30 Adhesive 22 Resin 23 Resin mold 24 Lead frame 25 Metal post 26 Metal stem 27 Yellow light-emitting phosphor excited by blue light 28 Excited by ultraviolet light Blue light-emitting phosphor 45 Substrate 49 Light-blocking member 111 Light-emitting element 112 Resin 113 Sealing resin 114 Wire 115, 116 Lead frame 117 Yellow phosphor 131 Sapphire substrate 132 GaN buffer layer 133 n-type GaN layer 134 n-type AlGaN layer 135 Active layer 136 p-type AlGa Layer 137 p-type GaN layer 141 n-side electrode 142 bonding pad 143 p-side electrode 144 bonding pad 145 SiO 2 protective film 146 SiO 2 protective film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅 原 秀 人 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 古 川 千 里 神奈川県川崎市川崎区日進町7番地1 東 芝電子エンジニアリング株式会社内 Fターム(参考) 5F041 AA11 AA12 CA40 EE25  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideto Sugawara 72 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Pref. 7F-1 Toshiba Electronic Engineering Corporation F-term (reference) 5F041 AA11 AA12 CA40 EE25

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第1の波長の光を放出する発光素子と、 前記第1の波長の光を吸収して第2の波長の光を放出す
る第1の波長変換手段と、 前記第2の波長の光を吸収して第3の波長の光を放出す
る第2の波長変換手段と、 を備えたことを特徴とする発光装置。
A light-emitting element that emits light of a first wavelength; a first wavelength conversion means that absorbs light of the first wavelength and emits light of a second wavelength; A second wavelength conversion unit that absorbs light of a wavelength and emits light of a third wavelength.
【請求項2】前記第2の波長は、前記第1の波長よりも
長く、 前記第3の波長は、前記第2の波長よりも長く、 前記第2の波長変換手段は、前記第1の波長の光を実質
的に吸収しないことを特徴とする請求項1記載の発光装
置。
2. The second wavelength is longer than the first wavelength, the third wavelength is longer than the second wavelength, and the second wavelength converting means is a first wavelength converter. The light-emitting device according to claim 1, wherein the light-emitting device does not substantially absorb light having a wavelength.
【請求項3】前記第1の波長変換手段は、蛍光体であ
り、 前記第2の波長変換手段は、蛍光体であることを特徴と
する請求項1または2に記載の発光装置。
3. The light emitting device according to claim 1, wherein said first wavelength conversion means is a phosphor, and said second wavelength conversion means is a phosphor.
【請求項4】前記第1の波長の光は、紫外光であり、 前記第2の波長の光は、青色光であり、 前記第3の波長の光は、黄色光であることを特徴とする
請求項1〜3のいずれか1つに記載の発光装置。
4. The light of the first wavelength is ultraviolet light, the light of the second wavelength is blue light, and the light of the third wavelength is yellow light. The light emitting device according to claim 1.
【請求項5】前記発光素子は、窒化物半導体からなる半
導体発光素子であることを特徴とする請求項1〜4のい
ずれか1つに記載の発光装置。
5. The light emitting device according to claim 1, wherein said light emitting element is a semiconductor light emitting element made of a nitride semiconductor.
JP19900298A 1998-07-14 1998-07-14 Light emitting device Expired - Fee Related JP3645422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19900298A JP3645422B2 (en) 1998-07-14 1998-07-14 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19900298A JP3645422B2 (en) 1998-07-14 1998-07-14 Light emitting device

Publications (2)

Publication Number Publication Date
JP2000031531A true JP2000031531A (en) 2000-01-28
JP3645422B2 JP3645422B2 (en) 2005-05-11

Family

ID=16400476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19900298A Expired - Fee Related JP3645422B2 (en) 1998-07-14 1998-07-14 Light emitting device

Country Status (1)

Country Link
JP (1) JP3645422B2 (en)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185764A (en) * 1999-09-27 2001-07-06 Lumileds Lighting Us Llc Light emitting diode device that produces white light by performing phosphor conversion on all of primary radiation emitted by light emitting structure thereof
EP1116988A2 (en) * 2000-01-14 2001-07-18 Philips Patentverwaltung GmbH Liquid crystal display with fluorescent front panel
JP2001358370A (en) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd Wavelength conversion paste material and semiconductor light emitting device and its manufacturing method
JP2002222996A (en) * 2001-01-24 2002-08-09 Rohm Co Ltd Led device
JP2002241586A (en) * 2001-02-19 2002-08-28 Matsushita Electric Ind Co Ltd Wavelength conversion paste material, composite light- emitting element, semiconductor light-emitting device, and method for producing the same
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device
WO2003010832A1 (en) * 2001-07-26 2003-02-06 Matsushita Electric Works, Ltd. Light emitting device using led
JP2003051622A (en) * 2001-08-07 2003-02-21 Rohm Co Ltd White light emitting semiconductor device
JP2003147351A (en) * 2001-11-09 2003-05-21 Taiwan Lite On Electronics Inc Manufacturing method of white light source
WO2003071610A1 (en) * 2002-02-25 2003-08-28 Mitsubishi Cable Industries, Ltd. Light emitting device and lighting fixture using it
JP2003332631A (en) * 2002-05-15 2003-11-21 Sumitomo Electric Ind Ltd White light emitting element
JP2004071357A (en) * 2002-08-06 2004-03-04 Shigeo Fujita Lighting device
JP2004193581A (en) * 2002-11-25 2004-07-08 Matsushita Electric Ind Co Ltd Led illumination light source
JP2005093912A (en) * 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
JP2005093985A (en) * 2003-09-17 2005-04-07 Nan Ya Plast Corp Method of generating white light by secondary excitation system and its white light emitting device
JP2005093913A (en) * 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
EP1566848A2 (en) 2004-02-23 2005-08-24 LumiLeds Lighting U.S., LLC Wavelength converted semiconductor light emitting device
JP2005244076A (en) * 2004-02-27 2005-09-08 Matsushita Electric Works Ltd Light-emitting device
JP2005244075A (en) * 2004-02-27 2005-09-08 Matsushita Electric Works Ltd Light emitting device
JP2006032726A (en) * 2004-07-16 2006-02-02 Kyocera Corp Light emitting device
JP2006156604A (en) * 2004-11-26 2006-06-15 Kyocera Corp Light emitting device and lighting system
JP2006278490A (en) * 2005-03-28 2006-10-12 Toshiba Corp Lighting device, imaging apparatus and mobile terminal
JP2007035885A (en) * 2005-07-26 2007-02-08 Kyocera Corp Light emitting device and illumination device employing it
JP2007049114A (en) * 2005-05-30 2007-02-22 Sharp Corp Light emitting device and method of manufacturing the same
JP2007067183A (en) * 2005-08-31 2007-03-15 Showa Denko Kk Led package with compound semiconductor light emitting device
JP2007123927A (en) * 2006-12-18 2007-05-17 Mitsubishi Cable Ind Ltd Light emitting device and illuminator using it
JP2007273562A (en) * 2006-03-30 2007-10-18 Toshiba Corp Semiconductor light-emitting device
JP2007311663A (en) * 2006-05-19 2007-11-29 Sharp Corp Manufacturing method for light emitting device, light emitting device, and manufacturing apparatus for light emitting device
JP2008041739A (en) * 2006-08-02 2008-02-21 Tokai Kogaku Kk Fluorescent device
JP2008071806A (en) * 2006-09-12 2008-03-27 C I Kasei Co Ltd Light emitting device
JP2008159936A (en) * 2006-12-25 2008-07-10 Kyocera Corp Light emitting device
JP2008205511A (en) * 2001-10-12 2008-09-04 Nichia Chem Ind Ltd Light emitting device and its production process
JP2008258171A (en) * 2008-05-07 2008-10-23 Shizuo Fujita Planar light-emitting device
JP2008544541A (en) * 2005-06-24 2008-12-04 ソウル オプト デバイス カンパニー リミテッド Light emitting diode
JP2009071337A (en) * 2008-12-29 2009-04-02 Mitsubishi Chemicals Corp Light emitting device, and illuminating device using the same
US7539223B2 (en) 2005-09-22 2009-05-26 Sanyo Electric Co., Ltd. Light emitting device
JP2009206459A (en) * 2008-02-29 2009-09-10 Sharp Corp Color conversion member and light-emitting apparatus using the same
US7592639B2 (en) 2001-09-03 2009-09-22 Panasonic Corporation Light-emitting semiconductor device, light-emitting system and method for fabricating light-emitting semiconductor device
WO2009156856A2 (en) * 2008-06-25 2009-12-30 Wen-Huang Liu Led with improved external light extraction efficiency
JP2010004035A (en) * 2008-05-22 2010-01-07 Mitsubishi Chemicals Corp Semiconductor light-emitting apparatus, illuminator, and image display apparatus
JP2010004034A (en) * 2008-05-22 2010-01-07 Mitsubishi Chemicals Corp Semiconductor light-emitting apparatus, illuminator, and image display apparatus
JP2010050438A (en) * 2008-08-22 2010-03-04 National Taiwan Univ Of Science & Technology White light-emitting diode
JP2010157608A (en) * 2008-12-26 2010-07-15 Mitsubishi Chemicals Corp Semiconductor light emitting device
JP2010525512A (en) * 2007-04-17 2010-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system
US7855389B2 (en) 2007-03-29 2010-12-21 Sharp Kabushiki Kaisha Semiconductor light-emitting device
JP2010287680A (en) * 2009-06-10 2010-12-24 Mitsubishi Chemicals Corp Light-emitting device
JP2011114097A (en) * 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd Illuminator
US7960909B2 (en) 2006-03-14 2011-06-14 Kabushiki Kaisha Toshiba Light-emitting device, method for producing the same and fluorescent device
US7964113B2 (en) 2002-03-22 2011-06-21 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
US20110273079A1 (en) * 2006-01-20 2011-11-10 Paul Pickard Lighting Devices Having Remote Lumiphors that are Excited by Lumiphor-Converted Semiconductor Excitation Sources
JP2011228403A (en) * 2010-04-16 2011-11-10 Panasonic Electric Works Co Ltd Wavelength conversion member and lighting device using the same
JP2011249856A (en) * 2011-09-14 2011-12-08 Toshiba Corp Semiconductor light-emitting device
WO2012014847A1 (en) * 2010-07-26 2012-02-02 Tsujiuchi Yutaka Method for shielding ultraviolet radiation and intensifying visible light, and ultraviolet-radiation-shielding, visible-light-intensifying material capable of achieving said method
KR101157705B1 (en) * 2005-12-23 2012-06-20 엘지이노텍 주식회사 Light Emitting Device Having Fluorescent Substance Unit Isolated From Mold Unit
KR101180134B1 (en) * 2008-05-30 2012-09-05 도시바 마테리알 가부시키가이샤 White light led, and backlight and liquid crystal display device using the same
JP2012174968A (en) * 2011-02-23 2012-09-10 Mitsubishi Electric Corp Light-emitting device and light-emitting device group and manufacturing method
JP2012521086A (en) * 2009-03-19 2012-09-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device using remote luminescent material
DE10261428B8 (en) * 2002-12-30 2012-09-20 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component with multiple luminescence conversion elements
KR101202173B1 (en) * 2011-04-01 2012-11-20 서울반도체 주식회사 Light emitting device having plurality of light-converting material laters
TWI381044B (en) * 2004-02-23 2013-01-01 Philips Lumileds Lighting Co Phosphor converted light emitting device
KR101228849B1 (en) * 2004-06-03 2013-02-01 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Luminescent ceramic for a light emitting device
JP2013516075A (en) * 2009-12-31 2013-05-09 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド White light emitting device using purple LED
JP2013145927A (en) * 2013-04-26 2013-07-25 Toshiba Corp Semiconductor light-emitting device
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
JP2014026988A (en) * 2013-10-07 2014-02-06 Nichia Chem Ind Ltd Light emitting device
US8663498B2 (en) 2006-11-24 2014-03-04 Sharp Kabushiki Kaisha Phosphor, method of producing the same, and light emitting apparatus
US9491813B2 (en) 2005-12-16 2016-11-08 Nichia Corporation Light emitting device
JP2016535304A (en) * 2013-08-06 2016-11-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Enhanced radiation with plasmonic coupled emitters for solid-state lighting
JP2018507436A (en) * 2015-02-06 2018-03-15 エルジー・ケム・リミテッド Light conversion film, light conversion element including the same, and display device
US10378701B2 (en) 2015-10-28 2019-08-13 Panasonic Intellectual Property Management Co., Ltd. Light emitting device
EP3467584A4 (en) * 2016-05-24 2019-12-11 Sony Corporation Light source device and projection display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279627A (en) * 1995-04-07 1996-10-22 Showa Denko Kk Light emitting element
JPH09153645A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light-emitting device
WO1998005078A1 (en) * 1996-07-29 1998-02-05 Nichia Chemical Industries, Ltd. Light emitting device and display device
JP3048368U (en) * 1997-10-27 1998-05-06 興 陳 Light emitting diode
JPH10163535A (en) * 1996-11-27 1998-06-19 Kasei Optonix Co Ltd White light-emitting element
JPH1187778A (en) * 1997-09-02 1999-03-30 Toshiba Corp Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof
JP2001512287A (en) * 1997-07-14 2001-08-21 アジレント・テクノロジーズ・インク Light source and light source providing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279627A (en) * 1995-04-07 1996-10-22 Showa Denko Kk Light emitting element
JPH09153645A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light-emitting device
WO1998005078A1 (en) * 1996-07-29 1998-02-05 Nichia Chemical Industries, Ltd. Light emitting device and display device
JPH10163535A (en) * 1996-11-27 1998-06-19 Kasei Optonix Co Ltd White light-emitting element
JP2001512287A (en) * 1997-07-14 2001-08-21 アジレント・テクノロジーズ・インク Light source and light source providing method
JPH1187778A (en) * 1997-09-02 1999-03-30 Toshiba Corp Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof
JP3048368U (en) * 1997-10-27 1998-05-06 興 陳 Light emitting diode

Cited By (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185764A (en) * 1999-09-27 2001-07-06 Lumileds Lighting Us Llc Light emitting diode device that produces white light by performing phosphor conversion on all of primary radiation emitted by light emitting structure thereof
EP1116988A3 (en) * 2000-01-14 2003-06-04 Philips Intellectual Property & Standards GmbH Liquid crystal display with fluorescent front panel
EP1116988A2 (en) * 2000-01-14 2001-07-18 Philips Patentverwaltung GmbH Liquid crystal display with fluorescent front panel
JP2001358370A (en) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd Wavelength conversion paste material and semiconductor light emitting device and its manufacturing method
JP2002222996A (en) * 2001-01-24 2002-08-09 Rohm Co Ltd Led device
JP2002241586A (en) * 2001-02-19 2002-08-28 Matsushita Electric Ind Co Ltd Wavelength conversion paste material, composite light- emitting element, semiconductor light-emitting device, and method for producing the same
US7569989B2 (en) 2001-04-09 2009-08-04 Kabushiki Kaisha Toshiba Light emitting device
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device
WO2003010832A1 (en) * 2001-07-26 2003-02-06 Matsushita Electric Works, Ltd. Light emitting device using led
US7084435B2 (en) 2001-07-26 2006-08-01 Matsushita Electric Works, Ltd. Light emitting device using LED
JP2003051622A (en) * 2001-08-07 2003-02-21 Rohm Co Ltd White light emitting semiconductor device
USRE47453E1 (en) 2001-09-03 2019-06-25 Panasonic Corporation Luminescent layer and light-emitting semiconductor device
US7772769B2 (en) 2001-09-03 2010-08-10 Panasonic Corporation Light-emitting semiconductor device, light-emitting system and method for fabricating light-emitting semiconductor device
US7592639B2 (en) 2001-09-03 2009-09-22 Panasonic Corporation Light-emitting semiconductor device, light-emitting system and method for fabricating light-emitting semiconductor device
US7629620B2 (en) 2001-09-03 2009-12-08 Panasonic Corporation Light-emitting semiconductor device, light-emitting system and method for fabricating light-emitting semiconductor device
JP2010050490A (en) * 2001-09-03 2010-03-04 Panasonic Corp Light-emitting semiconductor device, and method for manufacturing light-emitting semiconductor device
JP2008205511A (en) * 2001-10-12 2008-09-04 Nichia Chem Ind Ltd Light emitting device and its production process
JP2003147351A (en) * 2001-11-09 2003-05-21 Taiwan Lite On Electronics Inc Manufacturing method of white light source
WO2003071610A1 (en) * 2002-02-25 2003-08-28 Mitsubishi Cable Industries, Ltd. Light emitting device and lighting fixture using it
JP2003249694A (en) * 2002-02-25 2003-09-05 Mitsubishi Cable Ind Ltd Light emitting device and illuminator using it
US8076847B2 (en) 2002-03-22 2011-12-13 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
US8058793B2 (en) 2002-03-22 2011-11-15 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
SG173925A1 (en) * 2002-03-22 2011-09-29 Nichia Corp Nitride phosphor and production process thereof, and light emitting device
US7964113B2 (en) 2002-03-22 2011-06-21 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
JP2003332631A (en) * 2002-05-15 2003-11-21 Sumitomo Electric Ind Ltd White light emitting element
JP2004071357A (en) * 2002-08-06 2004-03-04 Shigeo Fujita Lighting device
JP2004193581A (en) * 2002-11-25 2004-07-08 Matsushita Electric Ind Co Ltd Led illumination light source
JP4542329B2 (en) * 2002-11-25 2010-09-15 パナソニック株式会社 LED lighting source
DE10261428B8 (en) * 2002-12-30 2012-09-20 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component with multiple luminescence conversion elements
JP2005093985A (en) * 2003-09-17 2005-04-07 Nan Ya Plast Corp Method of generating white light by secondary excitation system and its white light emitting device
JP2005093912A (en) * 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
JP2005093913A (en) * 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
EP1566848A3 (en) * 2004-02-23 2010-04-07 Philips Lumileds Lighting Company LLC Wavelength converted semiconductor light emitting device
TWI381044B (en) * 2004-02-23 2013-01-01 Philips Lumileds Lighting Co Phosphor converted light emitting device
EP1566848A2 (en) 2004-02-23 2005-08-24 LumiLeds Lighting U.S., LLC Wavelength converted semiconductor light emitting device
JP2005244226A (en) * 2004-02-23 2005-09-08 Lumileds Lighting Us Llc Wavelength conversion type semiconductor light emitting device
JP2005244076A (en) * 2004-02-27 2005-09-08 Matsushita Electric Works Ltd Light-emitting device
JP2005244075A (en) * 2004-02-27 2005-09-08 Matsushita Electric Works Ltd Light emitting device
US9722148B2 (en) 2004-06-03 2017-08-01 Lumileds Llc Luminescent ceramic for a light emitting device
KR101228849B1 (en) * 2004-06-03 2013-02-01 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Luminescent ceramic for a light emitting device
US10290775B2 (en) 2004-06-03 2019-05-14 Lumileds Llc Luminescent ceramic for a light emitting device
US9359260B2 (en) 2004-06-03 2016-06-07 Lumileds Llc Luminescent ceramic for a light emitting device
JP2006032726A (en) * 2004-07-16 2006-02-02 Kyocera Corp Light emitting device
JP4546176B2 (en) * 2004-07-16 2010-09-15 京セラ株式会社 Light emitting device
JP2006156604A (en) * 2004-11-26 2006-06-15 Kyocera Corp Light emitting device and lighting system
US7611780B2 (en) * 2005-03-28 2009-11-03 Kabushiki Kaisha Toshiba Lighting device, image pickup apparatus and portable terminal unit
JP2006278490A (en) * 2005-03-28 2006-10-12 Toshiba Corp Lighting device, imaging apparatus and mobile terminal
US10008644B2 (en) 2005-05-30 2018-06-26 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US9722149B2 (en) 2005-05-30 2017-08-01 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US9281456B2 (en) 2005-05-30 2016-03-08 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
JP2007049114A (en) * 2005-05-30 2007-02-22 Sharp Corp Light emitting device and method of manufacturing the same
US8729788B2 (en) 2005-05-30 2014-05-20 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
US9024339B2 (en) 2005-06-24 2015-05-05 Seoul Viosys Co., Ltd. Light emitting diode
JP2008544541A (en) * 2005-06-24 2008-12-04 ソウル オプト デバイス カンパニー リミテッド Light emitting diode
JP2007035885A (en) * 2005-07-26 2007-02-08 Kyocera Corp Light emitting device and illumination device employing it
JP2007067183A (en) * 2005-08-31 2007-03-15 Showa Denko Kk Led package with compound semiconductor light emitting device
US7539223B2 (en) 2005-09-22 2009-05-26 Sanyo Electric Co., Ltd. Light emitting device
US9752734B2 (en) 2005-12-16 2017-09-05 Nichia Corporation Light emitting device
US11692677B2 (en) 2005-12-16 2023-07-04 Nichia Corporation Light emitting device
US9491813B2 (en) 2005-12-16 2016-11-08 Nichia Corporation Light emitting device
US10598317B2 (en) 2005-12-16 2020-03-24 Nichia Corporation Light emitting device
US10801676B2 (en) 2005-12-16 2020-10-13 Nichia Corporation Light emitting device
US10180213B2 (en) 2005-12-16 2019-01-15 Nichia Corporation Light emitting device
US11187385B2 (en) 2005-12-16 2021-11-30 Nichia Corporation Light emitting device
US11421829B2 (en) 2005-12-16 2022-08-23 Nichia Corporation Light emitting device
US9491812B2 (en) 2005-12-16 2016-11-08 Nichia Corporation Light emitting device
KR101157705B1 (en) * 2005-12-23 2012-06-20 엘지이노텍 주식회사 Light Emitting Device Having Fluorescent Substance Unit Isolated From Mold Unit
US8441179B2 (en) * 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
US9220149B2 (en) 2006-01-20 2015-12-22 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
US20110273079A1 (en) * 2006-01-20 2011-11-10 Paul Pickard Lighting Devices Having Remote Lumiphors that are Excited by Lumiphor-Converted Semiconductor Excitation Sources
US7960909B2 (en) 2006-03-14 2011-06-14 Kabushiki Kaisha Toshiba Light-emitting device, method for producing the same and fluorescent device
JP2007273562A (en) * 2006-03-30 2007-10-18 Toshiba Corp Semiconductor light-emitting device
US8294165B2 (en) 2006-03-30 2012-10-23 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
JP2007311663A (en) * 2006-05-19 2007-11-29 Sharp Corp Manufacturing method for light emitting device, light emitting device, and manufacturing apparatus for light emitting device
JP2008041739A (en) * 2006-08-02 2008-02-21 Tokai Kogaku Kk Fluorescent device
JP2008071806A (en) * 2006-09-12 2008-03-27 C I Kasei Co Ltd Light emitting device
US9624427B2 (en) 2006-11-24 2017-04-18 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US9884990B2 (en) 2006-11-24 2018-02-06 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US10259997B2 (en) 2006-11-24 2019-04-16 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US8663498B2 (en) 2006-11-24 2014-03-04 Sharp Kabushiki Kaisha Phosphor, method of producing the same, and light emitting apparatus
JP2007123927A (en) * 2006-12-18 2007-05-17 Mitsubishi Cable Ind Ltd Light emitting device and illuminator using it
JP2008159936A (en) * 2006-12-25 2008-07-10 Kyocera Corp Light emitting device
US7855389B2 (en) 2007-03-29 2010-12-21 Sharp Kabushiki Kaisha Semiconductor light-emitting device
JP2010525512A (en) * 2007-04-17 2010-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system
JP2009206459A (en) * 2008-02-29 2009-09-10 Sharp Corp Color conversion member and light-emitting apparatus using the same
JP2008258171A (en) * 2008-05-07 2008-10-23 Shizuo Fujita Planar light-emitting device
JP2010004035A (en) * 2008-05-22 2010-01-07 Mitsubishi Chemicals Corp Semiconductor light-emitting apparatus, illuminator, and image display apparatus
JP2010004034A (en) * 2008-05-22 2010-01-07 Mitsubishi Chemicals Corp Semiconductor light-emitting apparatus, illuminator, and image display apparatus
US8288937B2 (en) 2008-05-30 2012-10-16 Kabushiki Kaisha Toshiba White LED, and backlight and liquid crystal display device using the same
KR101180134B1 (en) * 2008-05-30 2012-09-05 도시바 마테리알 가부시키가이샤 White light led, and backlight and liquid crystal display device using the same
WO2009156856A3 (en) * 2008-06-25 2010-02-18 Wen-Huang Liu Led with improved external light extraction efficiency
WO2009156856A2 (en) * 2008-06-25 2009-12-30 Wen-Huang Liu Led with improved external light extraction efficiency
JP2010050438A (en) * 2008-08-22 2010-03-04 National Taiwan Univ Of Science & Technology White light-emitting diode
JP2010157608A (en) * 2008-12-26 2010-07-15 Mitsubishi Chemicals Corp Semiconductor light emitting device
JP2009071337A (en) * 2008-12-29 2009-04-02 Mitsubishi Chemicals Corp Light emitting device, and illuminating device using the same
JP2012521086A (en) * 2009-03-19 2012-09-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device using remote luminescent material
JP2010287680A (en) * 2009-06-10 2010-12-24 Mitsubishi Chemicals Corp Light-emitting device
JP2011114097A (en) * 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd Illuminator
JP2013516075A (en) * 2009-12-31 2013-05-09 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド White light emitting device using purple LED
JP2011228403A (en) * 2010-04-16 2011-11-10 Panasonic Electric Works Co Ltd Wavelength conversion member and lighting device using the same
US9140836B2 (en) 2010-07-26 2015-09-22 Yutaka Tsujiuchi Method of shielding ultraviolet light and increasing visible light, and ultraviolet-light-shielding and visible-light-increasing material which enables implementation of the method
WO2012014847A1 (en) * 2010-07-26 2012-02-02 Tsujiuchi Yutaka Method for shielding ultraviolet radiation and intensifying visible light, and ultraviolet-radiation-shielding, visible-light-intensifying material capable of achieving said method
JP2012025870A (en) * 2010-07-26 2012-02-09 Akita Univ Method for shielding ultraviolet radiation and intensifying visible light, and ultraviolet-radiation-shielding, visible-light-intensifying material capable of achieving the method
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
JP2012174968A (en) * 2011-02-23 2012-09-10 Mitsubishi Electric Corp Light-emitting device and light-emitting device group and manufacturing method
KR101202173B1 (en) * 2011-04-01 2012-11-20 서울반도체 주식회사 Light emitting device having plurality of light-converting material laters
JP2011249856A (en) * 2011-09-14 2011-12-08 Toshiba Corp Semiconductor light-emitting device
JP2013145927A (en) * 2013-04-26 2013-07-25 Toshiba Corp Semiconductor light-emitting device
JP2016535304A (en) * 2013-08-06 2016-11-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Enhanced radiation with plasmonic coupled emitters for solid-state lighting
EP3031086B1 (en) * 2013-08-06 2019-11-27 Lumileds Holding B.V. Enhanced emission from plasmonic coupled emitters for solid state lighting
JP2014026988A (en) * 2013-10-07 2014-02-06 Nichia Chem Ind Ltd Light emitting device
US10407614B2 (en) 2015-02-06 2019-09-10 Lg Chem, Ltd. Photoconversion film, and photoconversion element and display device comprising same
JP2018507436A (en) * 2015-02-06 2018-03-15 エルジー・ケム・リミテッド Light conversion film, light conversion element including the same, and display device
US10533713B2 (en) 2015-10-28 2020-01-14 Panasonic Intellectual Property Management Co., Ltd. Light emitting device
US10378701B2 (en) 2015-10-28 2019-08-13 Panasonic Intellectual Property Management Co., Ltd. Light emitting device
US11156907B2 (en) 2016-05-24 2021-10-26 Sony Corporation Light source apparatus and projection display apparatus
EP3467584A4 (en) * 2016-05-24 2019-12-11 Sony Corporation Light source device and projection display device

Also Published As

Publication number Publication date
JP3645422B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JP3645422B2 (en) Light emitting device
JP5951180B2 (en) Emitter package with saturation conversion material
US7329907B2 (en) Phosphor-converted LED devices having improved light distribution uniformity
US6933535B2 (en) Light emitting devices with enhanced luminous efficiency
JP4932078B2 (en) Light emitting device and manufacturing method thereof
KR101408508B1 (en) Light emitting device
WO2014041861A1 (en) Light-emitting device in which semiconductor is used and method for manufacturing said light-emitting device
US20140167601A1 (en) Enhanced Luminous Flux Semiconductor Light Emitting Devices Including Red Phosphors that Exhibit Good Color Rendering Properties and Related Red Phosphors
US9219202B2 (en) Semiconductor light emitting devices including red phosphors that exhibit good color rendering properties and related red phosphors
US20110316025A1 (en) Light emitting device
US9219201B1 (en) Blue light emitting devices that include phosphor-converted blue light emitting diodes
KR20010099729A (en) A light emitting diode device that emits white light
JP2010226088A (en) Ac-driven light emitting device
EP3120394B1 (en) Heavily phosphor loaded led package
CN110534631B (en) Wide color gamut backlight source for display of LED combined perovskite quantum dot glass ceramics
JP5606342B2 (en) Light emitting device
CA2942062A1 (en) Heavily phosphor loaded led packages
WO2015004711A1 (en) Light-emitting device using semiconductor
KR20040088418A (en) Tri-color white light emitted diode
KR100612962B1 (en) White light emitting diode based on the mixing of the tri-color phosphors
JP2002344021A (en) Light-emitting device
JP2016004981A (en) Light emission device
KR20100076655A (en) White light emitting device
KR100497339B1 (en) Light emitting diode device and illuminator, display, and back light using the same
KR20040088446A (en) White light emitted diode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees