JP2004161871A - Sintered phosphor layer - Google Patents

Sintered phosphor layer Download PDF

Info

Publication number
JP2004161871A
JP2004161871A JP2002328939A JP2002328939A JP2004161871A JP 2004161871 A JP2004161871 A JP 2004161871A JP 2002328939 A JP2002328939 A JP 2002328939A JP 2002328939 A JP2002328939 A JP 2002328939A JP 2004161871 A JP2004161871 A JP 2004161871A
Authority
JP
Japan
Prior art keywords
phosphor
binder resin
organic solvent
sintered
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002328939A
Other languages
Japanese (ja)
Inventor
Kunihiro Izuno
訓宏 泉野
Hiroto Tamaoki
寛人 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2002328939A priority Critical patent/JP2004161871A/en
Publication of JP2004161871A publication Critical patent/JP2004161871A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered phosphor layer made proof against deterioration caused because the organic solvent binder resin otherwise contained therein is deteriorated by light in a high-power short-wavelength region (blue to ultraviolet region) by removing the organic binder resin contained therein by sintering. <P>SOLUTION: A mixture containing a phosphor powder, an organic solvent binder resin, and an inorganic sintering aid is molded into any desired shape, and the organic binder resin which is the cause of deterioration of the phosphor layer is removed from the shaping by sintering. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機物フリーの燒結蛍光体層、詳しくは、蛍光体シートなどの蛍光体成形物を成形する際に、有機系溶剤バインダー樹脂分を焼却除去することによって、高出力な短波長領域(青色領域〜紫外線領域)の光に曝されても劣化しない有機物フリーの燒結蛍光体層およびそれを積層した構造に関する。
【0002】
尚、本明細書においては、LEDチップやLD素子そのものは「発光素子」または「半導体発光素子」と呼び、LEDチップ、該LEDチップ上に積層された蛍光体成形物、リード電極などを含む発光装置全体を「発光装置」と呼ぶことにする。
【0003】
【従来の技術】
蛍光体を用いて波長変換する発光装置においては、蛍光体粉末を発光素子の発光面をシールする有機系または無機系バインダー樹脂からなるモールド樹脂等に混合してモールドし、発光素子の発光を一部または全部を吸収して所期の波長変換を行なっている。
【0004】
しかしながら、発光ダイオード等の発光装置が有機系溶剤バインダー樹脂を含有する蛍光体層により構成されていると、有機バインダー樹脂自身が、高出力の短波長領域(紫外領域〜青色領域)の光によって劣化し、変色を引き起こすという問題がある。
【0005】
そこで、特に紫外線を発光するLEDでは現在、有機バインダーに代え、無機バインダーを使用することが推奨されるが、硬化後の無機質層が固いため、亀裂が入りやすく、また、有機溶剤に溶解して使用するアルキルシリケート系では有機分が残留して透明層を黒化するという問題が惹起されている。
【0006】
【発明が解決しようとする課題】
そこで、本発明の目的は、亀裂等の問題のある無機系バインダーを使用せず、そして劣化の問題のある有機系溶剤バインダー樹脂等の有機物を実質的に含まない、有機物フリーの、燒結蛍光体層を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、鋭意研究の結果、蛍光体粉末は無機系燒結助剤とともに有機系溶剤バインダー樹脂を使用し、所望の形状に成形した後、前記有機系溶剤バインダー樹脂分を焼却除去すると、蛍光体粉末は焼成収縮するが、無機系燒結助剤によって燒結保形され、蛍光体層として使用可能であることを見出して完成されたもので、少なくとも蛍光体粉末、有機系溶剤バインダー樹脂、及び無機系焼結助剤とからなる混合物を成形し、前記有機系溶剤バインダー樹脂分を焼却除去し、前記蛍光体粉末を無機系燒結助剤で燒結保形してなることを特徴とする燒結蛍光体層にある。
【0008】
本発明によれば、劣化の問題のある有機系バインダーを含むことのない蛍光体層を形成できるので、高出力の短波長領域(紫外領域〜青色領域)の光によって劣化し変色を引き起こすという問題がない。しかも蛍光体層は無機系燒結助剤により焼成収縮してその形状を保つことができるので、通常の蛍光体層と同様に使用することができる。
上記構成において、前記成形形状はシート状又はペレット状であってもよい。
【0009】
また、前記蛍光体はシリコンナイトライド蛍光体、もしくは、イットリウム・アルミニウム・ガーネット系蛍光体であってもよい。さらに、前記無機系焼結助剤として、酸化亜鉛、酸化アルミニウム、酸化チタン、酸化硼素、フッ化リチウム、フッ化ナトリウムを使用してもよい。特に、前記無機系焼結助剤は酸化硼素であることが好ましい。
【0010】
焼結による残留炭素量を少なくするため、有機系溶剤バインダー樹脂に燃焼性の高い樹脂を使うことが好ましい。前記有機系溶剤バインダー樹脂としては、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、メラミン樹脂、イミド樹脂、シリコーン樹脂、ユリア樹脂が挙げられるが、特にアクリル樹脂であることが好ましい。
【0011】
シリコンナイトライド系蛍光体と無機系焼結助剤との混合比は100:2〜100:10となるようにシリコンナイトライド系蛍光体と無機系焼結助剤を混合することが好ましい。また、前記有機系溶剤バインダー樹脂は、シリコンナイトライド系蛍光体と無機系焼結助剤の総量に対し20〜40重量%となるように有機系溶剤バインダー樹脂とシリコンナイトライド系蛍光体と無機系焼結助剤を混合することが好ましい。
【0012】
イットリウム・アルミニウム・ガーネット系蛍光体と無機系焼結助剤との混合比が100:2〜100:10となるように、イットリウム・アルミニウム・ガーネット系蛍光体と無機系焼結助剤を混合することが好ましい。また、前記有機系溶剤バインダー樹脂はイットリウム・アルミニウム・ガーネット系蛍光体と無機系焼結助剤の総量に対し5〜40重量%となるように、有機系溶剤バインダー樹脂とイットリウム・アルミニウム・ガーネット系蛍光体と無機系焼結助剤を混合することが好ましい。
【0013】
本発明によれば、所望の形状の有機物フリーの蛍光体積層構造を提供することができる。すなわち、少なくとも蛍光体粉末、有機系溶剤バインダー樹脂、及び無機系焼結助剤とからなる混合物をシート状に成形し、種類の異なる蛍光体粉末を含むシートを変換波長の大きさ順に複数枚圧縮積層し、前記有機系溶剤バインダー樹脂分を焼却除去し、各シートの前記蛍光体粉末が無機系燒結助剤で燒結保形され、積層されていることを特徴とする。
【0014】
これにより、シリコンナイトライド系蛍光体層とイットリウム・アルミニウム・ガーネット系蛍光体とを積層した有機物フリーの蛍光体積層構造を提供することができ、高出力青色発光素子の劣化のない蛍光体積層構造を提供することができる。また、紫外励起赤色発光蛍光体層と紫外励起緑色発光蛍光体層と紫外励起青色発光蛍光体層とを積層した有機物フリーの蛍光体積層構造を提供することができ、高出力の紫外発光素子の劣化のない蛍光体積層構造を提供することができる。
【0015】
【発明の実施の形態】
(蛍光体成形物の製造方法)
蛍光体粉末、及び無機系焼結助剤に溶剤、分散剤を加えて15時間分散させた後、有機系溶剤バインダー樹脂、可塑剤を加えて10時間混合してスラリーを調整する。
【0016】
発光素子が青色発光である場合は、前記蛍光体粉末は、L−M−N:Eu,Z、又は、L−M−O−N:Eu,Z(Lは、Be、Mg、Ca、Sr、Ba、ZnのII価からなる群より選ばれる少なくとも1種以上を含有する。Mは、C、Si、Ge、Sn、Ti、Zr、HfのIV価からなる群より選ばれる少なくとも1種以上を含有する。Nは、窒素である。Euは、ユウロピウムである。Zは、希土類元素である。)で表されるシリコンナイトライド系蛍光体、または、(Y1−a(Al1−b12:Z(ここで、AはLu、Sc、La、Gd、Tb、Eu、Smから選択された少なくとも1種以上を含有する。BはGa及びInから選択された1つの元素を含有する。aは0〜1で、bも0〜1であり、Zは賦活剤である。前記Zは、Ceであることが好ましい。)で表されるイットリウム・アルミニウム・ガーネット系蛍光体であることが好ましい。
【0017】
ここで、前記無機系焼結助剤は酸化亜鉛、酸化アルミニウム、酸化チタン、酸化硼素、フッ化リチウム、フッ化ナトリウムが挙げられるが、酸化硼素が好ましい。前記溶剤はトルエン/イソプロピルアルコール(IPA)、前記有機系溶剤バインダー樹脂はアクリル樹脂、前記可塑剤はジオクチルフタレートであることが好ましい。
【0018】
次に、得られたスラリーをドクターブレードでPETフィルム上に流出させて、80℃で乾燥させることにより厚さが50〜100μmの蛍光体グリーンシートを得る。
【0019】
前記蛍光体グリーンシートを、雰囲気を制御しながら加熱し、有機成分を焼結除去(脱脂)することにより、高出力な短波長領域(青色領域〜紫外線領域)の光で劣化しない無機物だけの燒結蛍光体シートを得ることができる。複数の蛍光体層を積層する場合は、上記グリーンシートを積層し、プレス等で圧縮し、同様に焼成する。グリーンシートの積層順序は変換波長の大きさ順で行なわれるのがよい。
【0020】
(他の蛍光体)
本発明に係る蛍光体は、平均粒径が3μm以上であり、かつ粒度分布測定で2μm以下の粒径の粒子が体積分布で10%以下である蛍光体粒子から構成されるのがよい。蛍光体は種々の蛍光体を用いることができる。上記蛍光体の他に、例えば、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行うBaMgAl1017:Euで表されるユウロピウム賦活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行う(Ca、Sr、Ba)(POCl:Euで表されるユウロピウム賦活ハロリン酸カルシウム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行う(Ca、Sr、Ba)Cl:Euで表されるユウロピウム賦活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行う(Sr、Ca、Ba)Al:Eu、または(Sr、Ca、Ba)Al1425:Euで表されるユウロピウム賦活アルカリ土類アルミネート系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行う(Mg、Ca、Sr、Ba)Si:Euで表されるユウロピウム賦活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行う(Ba、Ca、Sr)SiO:Euで表されるユウロピウム賦活アルカリ土類マグネシウムシリケート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、黄色領域の発光を行う(Y、Gd)(Al、Ga)12等で表される希土類アルミン酸塩であるYAG:Ce系蛍光体、破断面を有する破断粒子から構成され、赤色領域の発光を行う(Mg、Ca、Sr、Ba)Si:Euで表されるユウロピウム賦活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行う(Y、La、Gd、Lu)S:Euで表されるユウロピウム賦活希土類オキシカルユゲナイト系蛍光体等が挙げられる。
【0021】
(窒化物蛍光体)
蛍光体として、破断面を有し、Nを含み、Oを選択的に含み、かつBe、Mg、Ca、Sr、Ba、及びZnから選択された少なくとも一つの元素と、C、Si、Ge、Sn、Ti、Zr、及びHfから選択された少なくとも一つの元素とを含み、Eu及び/又は希土類元素で賦活された窒化物系蛍光体が好適に使用される。すなわち、簡易的にL−M−N:R、またはL−M−O−N:Rで構成元素が表される結晶質蛍光体である。結晶構造は、例えば、CaSiは単斜晶、SrSiは斜方晶、BaSiは単斜晶をとる。より詳細には、一般的にL(2/3X+4/3Y):R、またはL(2/3X+4/3Y−2/3Z):Rで表される。Lは、Be、Mg、Ca、Sr、Ba、Zn、Cd、HgのII価からなる群より選ばれる少なくとも1種以上を含有する。特に、Lは、Be、Mg、Ca、Sr、Baからなるアルカリ土類金属であることが好ましく、さらにアルカリ土類金属単体であることが好ましいが、2以上含有するものであってもよい。窒化物蛍光体のLは、イミド化合物、アミド化合物などを使用してもよい。
【0022】
Mは、C、Si、Ge、Sn、Ti、Zr、HfのIV価からなる群より選択された少なくとも1種以上を含有する。窒化物蛍光体のMは、イミド化合物、アミド化合物などを使用してもよい。Mとして、Si、Si、Si(NHなども使用してもよい。かつ、Nは窒素、Oは酸素であって、Rは希土類元素である。更に、前記蛍光体はMg、B、Mn、Cr、Ni等を含んでもよい。
更に本蛍光体は、その組成中60%以上、好ましくは80%以上が結晶質である。一般的にはx=2、y=5またはx=1、y=7であることが望ましいが、任意の値が使用できる。
微量の添加物中、Bなどは発光特性を減ずることなく結晶性を上げることが可能であり、またMn、Cuなども同様な効果を示す。またLa、Paなども発光特性を改良する効果がある。その他Mg、Cr、Niなどは残光を短くする効果があり、適宜使用される。その他、本明細書に示されていない元素であっても、10〜1000ppm輝度を著しく減ずることなく添加できる。
【0023】
本発明の他の実施形態において、窒化物蛍光体の基本構成元素L(2/3X+4/3Y):Rの賦活剤RはY、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Lu、Eu、Cr、Mn、Pb、Sb、Sm、Tmからなる群より選択された少なくとも一種以上を含有することが好ましいが、Sc、Sm、Tm、Ybが含有されていてもよい。これらの希土類元素は、単体の他、酸化物、窒化物、イミド化合物、アミド化合物の状態で原料中に混合する。希土類元素は、主に安定な3価の電子配置を有するが、Yb、Sm等は2価、Ce、Pr、Tb等は4価の電子配置も有する。酸化物の希土類元素を用いた場合、酸素の関与が蛍光体の発光特性に影響を及ぼす。つまり、酸素を含有することにより発光輝度の低下を生じる場合もある。その反面、残光を短くするなどの利点もある。ただし、Mnを用いた場合は、MnとOとのフラックス効果により粒径を大きくし、発光輝度の向上を図ることができる。発光中心として希土類元素であるユウロピウムEuを好適に用いる。ユウロピウムは、主に2価と3価のエネルギー準位を持つ。本発明の蛍光体は、母体のアルカリ土類金属系窒化ケイ素に対してEu2+を賦活剤として用いる。Eu2+は、酸化され易く、3価のEuの組成で通常使用されている。しかし、このEuでは、Oの関与が大きく、良好な蛍光体が得られにくい。そのため、EuからOを、系外へ除去したものを使用することがより好ましい。例えば、ユウロピウム単体、窒化ユウロピウムを用いることが好ましい。ただし、Mnを添加した場合、この限りではない。
【0024】
(YAG:Ce系蛍光体)
イットリウム・アルミニウム・ガーネット系蛍光体(YAG系蛍光体)の基本構成元素(Y1−a(Al1−b12:CeのAは、Lu、Sc、La、Gd、Tb、Eu、Smからなる群から選択された少なくとも1種以上の元素を含有する。本発明の他の実施の形態において、前記YAG系蛍光体の基本構成元素(Y1−a(Al1−b12:CeのBは、Ga及びInから選択された少なくとも1種以上の元素を含有する。特に、セリウムで賦活され組成の異なる2種類以上のイットリウム・アルミニウム酸化物系蛍光体を利用してもよい。
【0025】
発光装置はこの混色を起こさせるために蛍光体の粉体やバルクをエポキシ樹脂、アクリル樹脂或いはシリコーン樹脂などの各種樹脂や酸化珪素、酸化アルミニウムなどの無機物中に含有させることが好ましい。このように蛍光体が含有されたものは、発光素子からの光が透過する程度に薄く形成させたドット状のものや層状ものなど用途に応じて種々用いることができる。蛍光体と樹脂などとの比率や塗布、充填量を種々調整すること及び発光素子の発光波長を選択することにより白色を含め電球色など任意の色調を提供することができる。
【0026】
ガーネット構造を持ったYAG:Ce系蛍光体の組成の内、Alの一部をGaで置換することで発光スペクトルが短波長側にシフトし、また組成のYの一部をGd及び/又はLaで置換することで、発光スペクトルが長波長側へシフトする。Yの置換が2割未満では、緑色成分が大きく赤色成分が少なくなる。また、8割以上では、赤み成分が増えるものの輝度が急激に低下する。また、励起吸収スペクトルについても同様に、ガーネット構造を持ったYAG:Ce系蛍光体の組成の内、Alの一部をGaで置換することで励起吸収スペクトルが短波長側にシフトし、また組成のYの一部をGd及び/又はLaで置換することで、励起吸収スペクトルが長波長側へシフトする。YAG:Ce系蛍光体の励起吸収スペクトルのピーク波長は、半導体発光素子の発光スペクトルのピーク波長より短波長側にあることが好ましい。
【0027】
組成の異なる2種類以上のセリウムで賦活されたイットリウム・アルミニウム酸化物系蛍光体は、混合させて用いてもよいし、それぞれ独立して配置させてもよい。蛍光体をそれぞれ独立して配置させる場合、半導体発光素子から光をより短波長側で吸収発光しやすい蛍光体、それよりも長波長側で吸収発光しやすい蛍光体の順に配置させることが好ましい。これによって効率よく吸収及び発光させることができる。
【0028】
(混合)
粉末状の蛍光体の場合、蛍光体のバインダー樹脂及び/又は無機系焼結助剤に対する配合量比は、その上限は蛍光体層の成形性、燒結後の保形性を考慮して決定され、その下限は、蛍光体の配合量が少なくなると蛍光体が発する蛍光の光量が減少するので、蛍光体成形物としての機能を考慮して決定される。
【0029】
そこで、シリコンナイトライド系蛍光体と無機系焼結助剤を混合する際、シリコンナイトライド系蛍光体と無機系焼結助剤との混合比が100:2〜100:10となるように混合することが好ましい。また、有機系溶剤バインダー樹脂、シリコンナイトライド系蛍光体、及び無機系焼結助剤を混合する際、前記有機系溶剤バインダー樹脂がシリコンナイトライド系蛍光体と無機系焼結助剤の総量に対し、20〜40重量%となるように混合することが好ましい。
【0030】
イットリウム・アルミニウム・ガーネット系蛍光体と無機系焼結助剤とを混合する際、イットリウム・アルミニウム・ガーネット系蛍光体と無機系焼結助剤との混合比が100:2〜100:10となるように混合することが好ましい。また、有機系溶剤バインダー樹脂、イットリウム・アルミニウム・ガーネット系蛍光体、及び無機系焼結助剤を混合する際、前記有機系溶剤バインダー樹脂がイットリウム・アルミニウム・ガーネット系蛍光体と無機系焼結助剤の総量に対し、5〜40重量%となるように混合することが好ましい。
【0031】
(焼結助剤)
焼結温度が高くなると実用的な面でも好ましくないので、焼結温度を下げるように選択されてよい。前記焼結助剤は、酸化亜鉛、酸化アルミニウム、酸化チタン、酸化硼素、フッ化リチウム、フッ化ナトリウムが例示されるが、酸化硼素が好ましい。酸化珪素は、蛍光体が高温で空気中の酸素と接触して蛍光体表面が酸化し、発光輝度が低下することを防止する。なぜならば、酸化硼素は蛍光体の粒子表面に保護物質として被覆され、空気中の酸素によって蛍光体表面が酸化されるのを防止するためであると考えられる。
【0032】
(有機系溶剤バインダー樹脂)
前記有機系溶剤バインダー樹脂は、トルエン/イソプロピルアルコール(IPA)等の溶媒で希釈されたエポキシ樹脂、アクリル樹脂、ウレタン樹脂、メラミン樹脂、イミド樹脂、シリコーン樹脂、ユリア樹脂などの熱硬化性、耐候性に優れた透光性樹脂であることが好ましい。更に、短波長の光に対する耐性に優れるので、前記有機系溶剤バインダー樹脂はアクリル樹脂であることが好ましい。
【0033】
(溶剤)
前記溶剤は、適宜公知の有機溶剤を用いることができるが、トルエン/イソプロピルアルコール(IPA)を用いるのが好ましく、トルエン:IPAの配合量は、4:1であることが好ましい。
【0034】
(拡散剤)
拡散剤を含有していない蛍光体シートを積層した発光装置は、見る角度によって色調が異なるので、蛍光体シート中に拡散剤を混合してもよい。見る角度によって色調が異なるとは、例えば、発光装置を正面から見た場合青色光が蛍光体シートを通過する厚さは薄いため色調が青いのに対して、発光ダイオードを斜めから見た場合青色光が蛍光体シートを通過する厚さが厚くなるため色調が黄色に近くなるということである。拡散剤を混合することによって、蛍光体シート中の蛍光体の配合量を減らし、色調が均一で色むらのない蛍光体シートを得ることができる。また、蛍光体成形物中に拡散剤を混合することによって、発光装置の発光輝度を向上させることができる。それは、拡散剤を入れることによって半導体発光素子からの光が散乱されるようになり蛍光体を励起する光量が増加するためである。拡散剤としては、二酸化珪素、酸化チタン、酸化アルミニウム、炭酸カルシウム、酸化亜鉛、チタン酸バリウムなどの無機系拡散剤であってもよいし、エポキシ樹脂、フェノールホルマリン樹脂、ベンゾグアナミン樹脂、メラミン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、グアナミン樹脂などの有機系拡散剤であってもよい。なお、蛍光体層を積層する場合は、下層となる蛍光体層の拡散効果を高めるように下層の拡散材量、屈折率などを配慮するのがよい。
【0035】
【実施例】
(実施例1)
本実施例では、図1及び2に示す発光装置を作製する。
(1)LEDチップ作製
LEDチップは、洗浄させたサファイヤ基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジュウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化ガリウム系化合物半導体を成膜させることにより形成させた。ドーパントガスとしてSiHとCpMgと、を切り替えることによってN型導電性を有する窒化ガリウム系半導体とP型導電性を有する窒化ガリウム系半導体を形成しPN接合を形成させる。半導体発光素子として、N型導電性を有する窒化ガリウム半導体であるコンタクト層と、P型導電性を有する窒化ガリウムアルミニウム半導体であるクラッド層、P型導電性を有する窒化ガリウム半導体であるコンタクト層を形成させた。N型導電性を有するコンタクト層とP型導電性を有するクラッド層との間に厚さ約3nmであり、単一量子井戸構造とされるノンドープInGaNの活性層を形成させた。(なお、サファイア基板上には低温で窒化ガリウム半導体を形成させバッファ層とさせてある。また、P型導電性を有する半導体は、成膜後400℃以上でアニールさせてある。)
エッチングによりサファイア基板上のPN各半導体表面を露出させた後、スパッタリングにより各電極をそれぞれ形成させた。こうして出来上がった半導体ウエハーを、スクライブラインを引いた後、外力により分割させ発光素子として350μm角のLEDチップを形成させた。
(2)パッケージ作製
パッケージ105は金属からなり、中央部に凹部aを有する。また、前記凹部の周囲であるベース部bは、厚さ方向に貫通された貫通孔を2つ有し、それぞれの貫通孔は前記凹部を挟んで対向している。該貫通孔内には、絶縁部材である硬質ガラス103を介して正及び負のリード電極102がそれぞれ挿入されている。
(3)ダイボンド
凹部a内に収納されるLEDチップ101は、青色を発光する発光素子で、LEDチップ101と金属パッケージ105との接着は、Au−Snなどの共晶はんだ等を使用して行うこともできるが、本実施例では、Si、Al、Ga、Ti、Ge、P、B、Zr、Y及びアルカリ土類金属の1種又は2種以上を有する酸化物である無機物にてダイボンド(接着)する。
(4)ワイヤーボンド
LEDチップ101上に設けられた電極と正及び負のリード電極102とは、金線によりワイヤーボンディングされる。このとき、LEDチップ101の電極面は、約180℃に加熱される。
(5)コーティング層の作製
図2に示されるように、本実施例ではコーティング層を形成する。
コーティング層108は、所定の有機金属化合物と高沸点有機溶剤とを所定の割合で混合してなるゾル塗布液を調整して、該塗布液をパッケージ内にダイボンドされた後ワイヤーボンディングされた発光素子の全面を覆うようにスプレーコーティングした後、加熱して非晶質化させることにより形成される。
(6)封止
金属パッケージの主面側に透光性窓部107と金属部からなるリッド106を取り付け、金属部と金属パッケージ105との接触面を溶接することによって、窒素ガスとともにパッケージ内の発光素子等を気密封止する。
本実施例ではまず、上記透光性窓部107をAlによりCCA−Blue(化学式、Ca10(POClBr、付活材Mn、Eu)蛍光体がバインドされてなるコーティング層107aと、SiOによりイットリウム・アルミニウム・ガーネット系蛍光体がバインドされてなるコーティング層107bを積層してなる燒結蛍光体積層板で形成する。
このように構成すると、青色波長の光を含む光を発光する発光素子を使用しても、接着層およびコーティング層がそれらの光に対して劣化あるいは変色せず、また、高出力な光とそれに伴う高温に対して劣化あるいは変色しないため、信頼性の高い発光装置を提供できた。さらに、SiOにより蛍光体がバインドされてなるコーティング層の屈折率(約1.4)はAlにより蛍光体がバインドされてなるコーティング層の屈折率(約1.7)より小さく、Alにより蛍光体がバインドされてなるコーティング層の屈折率は窒化ガリウム系化合物半導体層の屈折率(約2.5)より小さいため、発光素子からの光の取り出し効率が高まり出力を向上させることができ、放熱性も向上するなどの効果がある。
(実施例2)
実施例1の発光素子として紫外線発光素子を、透光性窓部を、蛍光体として紫外励起赤色発光蛍光体(R蛍光体)を含む層107c、紫外励起緑色発光蛍光体(G蛍光体)を含む層107d、紫外励起青色発光蛍光体(B蛍光体)を含む層107eからなる燒結積層体を用いる。紫外励起赤色発光蛍光体としてYO:Eu、YVO:Eu、Gd:Eu、(Y,Gd)BO:EuまたはYBO:Euの少なくとも1種を用いることができる、紫外励起緑色発光蛍光体としてZnS:Cu,Ag 、ZnSiO:Mn、BaAl1219:MnまたはBaMgAl1626:Eu,Mnの少なくとも1種を用いることができる、紫外励起青色発光蛍光体としてBaMgAl1017:Eu、CaWO:Pb、YSiO:Ceの少なくとも1種を用いる。なお、拡散材としてはSiO,Alに代えてより屈折率の高いZrO,TiOなどを用いることができる。
【0036】
【発明の効果】
本発明は、光源としての半導体発光素子上に蛍光体を設置して、半導体発光素子からの発光と、該蛍光体で変換された光との混色によって発する発光装置において、発光素子からの高出力な短波長領域(青色領域から紫外領域)の光によって、該蛍光体層は劣化を起こさない。
また、所望の形状に加工することに優れており、曲率を持ったレンズ表面等の上に設置して用いることができる。また、多層張り合わせで燒結積層が容易であるので、所望色への色合わせが容易な蛍光体層を提供することができる。
【図面の簡単な説明】
【図1】発光装置の概略図
【図2】青色LEDを発光源とし、第1層をシリコンナイトライド蛍光体、第2層をセリウムで付活されたYAG蛍光体で構成した発光装置の断面図
【図3】紫外LEDを発光源とし、第1層を紫外励起赤色発光蛍光体、第2層を紫外励起緑色発光蛍光体、第3層を紫外励起青色発光蛍光体で構成した発光装置の断面図
【符号の説明】
101 発光素子
102 リード電極
103 絶縁封止材
104 導電性ワイヤ
105 パッケージ
106 リッド
107 窓部
108 コーティング部材
110 接着層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a high-output short-wavelength region by burning off an organic solvent binder resin when forming a phosphor-free sintered phosphor layer, more specifically, a phosphor molded article such as a phosphor sheet. The present invention relates to an organic substance-free sintered phosphor layer which does not deteriorate even when exposed to light in a blue region to an ultraviolet region, and a structure in which the phosphor layers are laminated.
[0002]
In this specification, the LED chip or the LD element itself is referred to as a “light emitting element” or “semiconductor light emitting element”, and includes an LED chip, a phosphor molded product laminated on the LED chip, a lead electrode, and the like. The entire device will be referred to as a “light emitting device”.
[0003]
[Prior art]
In a light emitting device that performs wavelength conversion using a phosphor, a phosphor powder is mixed with a mold resin or the like made of an organic or inorganic binder resin that seals a light emitting surface of the light emitting element and molded, and the light emission of the light emitting element is reduced. The desired wavelength conversion is performed by absorbing part or all.
[0004]
However, when a light emitting device such as a light emitting diode is composed of a phosphor layer containing an organic solvent binder resin, the organic binder resin itself is deteriorated by high-output light in a short wavelength region (ultraviolet region to blue region). And there is a problem of causing discoloration.
[0005]
Therefore, it is recommended to use an inorganic binder instead of an organic binder, especially for an LED that emits ultraviolet light.However, since the inorganic layer after curing is hard, cracks are likely to occur, and the organic layer is dissolved in an organic solvent. In the alkyl silicate system used, there is a problem that organic components remain and the transparent layer is blackened.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide an organic substance-free, sintered phosphor that does not use an inorganic binder having a problem such as a crack and substantially does not contain an organic material such as an organic solvent binder resin having a problem of deterioration. In providing layers.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, as a result of intensive research, the phosphor powder uses an organic solvent binder resin together with an inorganic sintering aid, and after molding into a desired shape, the organic solvent binder resin component is incinerated and removed. The phosphor powder shrinks during firing, but is sintered and protected by an inorganic sintering aid, and has been completed by finding that it can be used as a phosphor layer.At least the phosphor powder, an organic solvent binder resin, And forming a mixture comprising an inorganic sintering aid and the organic solvent binder resin by incineration, and sintering the phosphor powder with an inorganic sintering aid. In the phosphor layer.
[0008]
According to the present invention, it is possible to form a phosphor layer that does not contain an organic binder having a problem of deterioration, so that it is deteriorated by high-output light in a short wavelength region (ultraviolet region to blue region) and causes discoloration. There is no. In addition, the phosphor layer can be shrunk by the inorganic sintering aid to maintain its shape, so that it can be used in the same manner as a normal phosphor layer.
In the above configuration, the molded shape may be a sheet or a pellet.
[0009]
Further, the phosphor may be a silicon nitride phosphor or an yttrium aluminum garnet phosphor. Further, as the inorganic sintering aid, zinc oxide, aluminum oxide, titanium oxide, boron oxide, lithium fluoride, and sodium fluoride may be used. In particular, the inorganic sintering aid is preferably boron oxide.
[0010]
In order to reduce the amount of residual carbon due to sintering, it is preferable to use a highly flammable resin as the organic solvent binder resin. Examples of the organic solvent binder resin include an epoxy resin, an acrylic resin, a urethane resin, a melamine resin, an imide resin, a silicone resin, and a urea resin, and an acrylic resin is particularly preferable.
[0011]
It is preferable to mix the silicon nitride-based phosphor and the inorganic sintering aid such that the mixing ratio of the silicon nitride-based phosphor and the inorganic sintering aid is 100: 2 to 100: 10. Also, the organic solvent binder resin, the silicon nitride-based phosphor, and the inorganic solvent may be used in an amount of 20 to 40% by weight based on the total amount of the silicon nitride-based phosphor and the inorganic sintering aid. It is preferable to mix a system sintering aid.
[0012]
The yttrium-aluminum-garnet-based phosphor and the inorganic-based sintering aid are mixed such that the mixing ratio of the yttrium-aluminum-garnet-based phosphor to the inorganic-based sintering aid is 100: 2 to 100: 10. Is preferred. Further, the organic solvent binder resin and the yttrium aluminum garnet-based resin are contained in an amount of 5 to 40% by weight based on the total amount of the yttrium-aluminum-garnet-based phosphor and the inorganic sintering aid. It is preferable to mix a phosphor and an inorganic sintering aid.
[0013]
ADVANTAGE OF THE INVENTION According to this invention, the organic substance-free fluorescent substance laminated | stacked structure of a desired shape can be provided. That is, a mixture comprising at least a phosphor powder, an organic solvent binder resin, and an inorganic sintering aid is formed into a sheet, and a plurality of sheets containing different kinds of phosphor powders are compressed in the order of the conversion wavelength. The organic solvent binder resin component is incinerated and removed, and the phosphor powder of each sheet is sintered and shaped with an inorganic sintering aid and laminated.
[0014]
As a result, it is possible to provide an organic substance-free phosphor laminate structure in which a silicon nitride phosphor layer and an yttrium aluminum garnet phosphor are laminated, and a phosphor laminate structure without deterioration of a high-output blue light emitting element. Can be provided. Further, it is possible to provide an organic-free phosphor laminated structure in which an ultraviolet-excited red light-emitting phosphor layer, an ultraviolet-excited green light-emitting phosphor layer, and an ultraviolet-excited blue light-emitting phosphor layer are laminated, and a high-power ultraviolet light-emitting element can be provided. A phosphor laminated structure without deterioration can be provided.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
(Manufacturing method of phosphor molding)
After adding a solvent and a dispersant to the phosphor powder and the inorganic sintering aid and dispersing them for 15 hours, an organic solvent binder resin and a plasticizer are added and mixed for 10 hours to prepare a slurry.
[0016]
When the light emitting element emits blue light, the phosphor powder is LMN: Eu, Z or LMON: Eu, Z (L is Be, Mg, Ca, Sr , Ba, and Zn containing at least one member selected from the group consisting of II valences, and M represents at least one member selected from the group consisting of IV values of C, Si, Ge, Sn, Ti, Zr, and Hf. N is nitrogen, Eu is europium, and Z is a rare earth element), or (Y 1-a A a ) 3 (Al 1-b B b ) 5 O 12 : Z (where A contains at least one element selected from Lu, Sc, La, Gd, Tb, Eu, and Sm. B contains one element selected from Ga and In. A Is 0 to 1, b is also 0 to 1, and Z is an activator. Z is preferably Ce.) It is preferable that the phosphor is an yttrium aluminum garnet-based phosphor represented by the formula: .
[0017]
Here, examples of the inorganic sintering aid include zinc oxide, aluminum oxide, titanium oxide, boron oxide, lithium fluoride, and sodium fluoride, with boron oxide being preferred. Preferably, the solvent is toluene / isopropyl alcohol (IPA), the organic solvent binder resin is an acrylic resin, and the plasticizer is dioctyl phthalate.
[0018]
Next, the obtained slurry is discharged onto a PET film with a doctor blade, and dried at 80 ° C. to obtain a phosphor green sheet having a thickness of 50 to 100 μm.
[0019]
The phosphor green sheet is heated while controlling the atmosphere to sinter and remove (degrease) organic components, thereby sintering only inorganic substances that are not deteriorated by high-output light in a short wavelength region (blue region to ultraviolet region). A phosphor sheet can be obtained. When a plurality of phosphor layers are stacked, the green sheets are stacked, compressed by a press or the like, and fired similarly. The stacking order of the green sheets is preferably performed in the order of the size of the converted wavelength.
[0020]
(Other phosphors)
The phosphor according to the present invention is preferably composed of phosphor particles having an average particle diameter of 3 μm or more and particles having a particle diameter of 2 μm or less as measured by a particle size distribution measurement of 10% or less in a volume distribution. Various phosphors can be used as the phosphor. In addition to the above-described phosphor, for example, BaMgAl which is composed of grown particles having a substantially hexagonal shape as a regular crystal growth shape and emits light in a blue region 10 O 17 : Europium-activated barium magnesium aluminate phosphor represented by Eu, composed of growing particles having a substantially spherical shape as a regular crystal growth shape, and emitting light in a blue region (Ca, Sr, Ba) 5 (PO 4 ) 3 Cl: A europium-activated calcium halophosphate-based phosphor represented by Eu, composed of growth particles having a substantially cubic shape as a regular crystal growth shape, and emitting light in a blue region (Ca, Sr, Ba) 2 B 5 O 9 Cl: A europium-activated alkaline earth chloroborate-based phosphor represented by Eu, composed of fractured particles having a fracture surface and emitting light in a blue-green region (Sr, Ca, Ba) Al 2 O 4 : Eu or (Sr, Ca, Ba) 4 Al 14 O 25 : Europium-activated alkaline earth aluminate phosphor represented by Eu, composed of fractured particles having a fracture surface and emitting light in the green region (Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Europium-activated alkaline earth silicon oxynitride-based phosphor represented by Eu, composed of fractured particles having a fractured surface, emitting light in the green region (Ba, Ca, Sr) 2 SiO 4 : Europium-activated alkaline earth magnesium silicate-based phosphor represented by Eu, composed of growth particles having a substantially spherical shape as a regular crystal growth shape, and emitting light in a yellow region (Y, Gd) 3 (Al, Ga) 5 O 12 YAG: Ce-based phosphor, which is a rare earth aluminate represented by, for example, is composed of broken particles having a fractured surface, and emits light in the red region (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Europium-activated alkaline earth silicon nitride-based phosphor represented by Eu, composed of growth particles having a substantially spherical shape as a regular crystal growth shape, and emitting light in the red region (Y, La, Gd, Lu) ) 2 O 2 S: Europium-activated rare earth oxycarbugenite-based phosphor represented by Eu.
[0021]
(Nitride phosphor)
The phosphor has a fractured surface, contains N, selectively contains O, and at least one element selected from Be, Mg, Ca, Sr, Ba, and Zn, and C, Si, Ge, A nitride-based phosphor containing at least one element selected from Sn, Ti, Zr, and Hf and activated with Eu and / or a rare earth element is preferably used. That is, it is a crystalline phosphor whose constituent elements are simply represented by LMN: R or LMON: R. The crystal structure is, for example, Ca 2 Si 5 N 8 Is monoclinic, Sr 2 Si 5 N 8 Is orthorhombic, Ba 2 Si 5 N 8 Is monoclinic. More specifically, generally L X M Y N (2 / 3X + 4 / 3Y) : R or L X M Y O Z N (2 / 3X + 4 / 3Y-2 / 3Z) : Represented by R. L contains at least one member selected from the group consisting of Be, Mg, Ca, Sr, Ba, Zn, Cd and Hg. In particular, L is preferably an alkaline earth metal composed of Be, Mg, Ca, Sr, and Ba, and more preferably a simple alkaline earth metal, but may contain two or more. As L of the nitride phosphor, an imide compound, an amide compound, or the like may be used.
[0022]
M contains at least one or more selected from the group consisting of C, Si, Ge, Sn, Ti, Zr, and Hf. As M of the nitride phosphor, an imide compound, an amide compound, or the like may be used. M, Si, Si 3 N 4 , Si (NH 2 ) 2 Etc. may also be used. N is nitrogen, O is oxygen, and R is a rare earth element. Further, the phosphor may include Mg, B, Mn, Cr, Ni, and the like.
Further, in the present phosphor, 60% or more, preferably 80% or more of the composition is crystalline. Generally, it is desirable that x = 2, y = 5 or x = 1, y = 7, but any value can be used.
Among a small amount of additives, B and the like can increase the crystallinity without reducing the light emission characteristics, and Mn, Cu, and the like exhibit the same effect. La and Pa also have the effect of improving the light emission characteristics. In addition, Mg, Cr, Ni and the like have an effect of shortening the afterglow, and are appropriately used. In addition, even elements not shown in the present specification can be added without significantly reducing the luminance of 10 to 1000 ppm.
[0023]
In another embodiment of the present invention, the basic constituent element L of the nitride phosphor X M Y N (2 / 3X + 4 / 3Y) : The activator R of R is at least selected from the group consisting of Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Lu, Eu, Cr, Mn, Pb, Sb, Sm, and Tm. Although it is preferable to contain at least one kind, Sc, Sm, Tm, and Yb may be contained. These rare earth elements are mixed with the raw materials in the form of oxides, nitrides, imide compounds, and amide compounds in addition to simple substances. Rare earth elements mainly have a stable trivalent electron configuration, but Yb, Sm, and the like also have divalent, and Ce, Pr, Tb, and the like also have a tetravalent electron configuration. When a rare earth element of an oxide is used, the participation of oxygen affects the emission characteristics of the phosphor. That is, the emission luminance may be reduced by containing oxygen in some cases. On the other hand, there are also advantages such as shortening the afterglow. However, when Mn is used, the particle size can be increased by the flux effect of Mn and O, and the emission luminance can be improved. Europium Eu, which is a rare earth element, is preferably used as a luminescent center. Europium has mainly divalent and trivalent energy levels. The phosphor of the present invention is based on the alkaline earth metal based silicon nitride of Eu. 2+ Is used as an activator. Eu 2+ Is easily oxidized and is trivalent Eu 2 O 3 Is commonly used. However, this Eu 2 O 3 In this case, O is greatly involved and it is difficult to obtain a good phosphor. Therefore, Eu 2 O 3 It is more preferable to use one obtained by removing O from the system. For example, it is preferable to use europium alone or europium nitride. However, this is not the case when Mn is added.
[0024]
(YAG: Ce phosphor)
Basic constituent element (Y) of yttrium aluminum garnet phosphor (YAG phosphor) 1-a A a ) 3 (Al 1-b B b ) 5 O 12 A: Ce contains at least one element selected from the group consisting of Lu, Sc, La, Gd, Tb, Eu, and Sm. In another embodiment of the present invention, the basic constituent element (Y 1-a A a ) 3 (Al 1-b B b ) 5 O 12 : B of Ce contains at least one or more elements selected from Ga and In. In particular, two or more kinds of yttrium / aluminum oxide-based phosphors activated by cerium and having different compositions may be used.
[0025]
In order to cause the color mixture, the light emitting device preferably contains the powder or bulk of the phosphor in various resins such as epoxy resin, acrylic resin or silicone resin, or inorganic substances such as silicon oxide and aluminum oxide. The phosphor-containing material can be variously used depending on the use, such as a dot-like material or a layer-like material formed thin enough to transmit light from the light-emitting element. By variously adjusting the ratio of the phosphor to the resin, the application and the filling amount, and selecting the emission wavelength of the light emitting element, it is possible to provide an arbitrary color tone such as a light bulb color including white.
[0026]
In the composition of the YAG: Ce-based phosphor having the garnet structure, the emission spectrum is shifted to the short wavelength side by substituting a part of Al with Ga, and a part of Y in the composition is Gd and / or La. , The emission spectrum is shifted to the longer wavelength side. If the substitution of Y is less than 20%, the green component is large and the red component is small. If it is 80% or more, the redness component increases, but the luminance sharply decreases. Similarly, the excitation absorption spectrum of the YAG: Ce-based phosphor having a garnet structure is shifted to the shorter wavelength side by substituting a part of Al for Ga in the composition of the garnet-structured YAG: Ce phosphor. By substituting a part of Y in Gd and / or La, the excitation absorption spectrum is shifted to the longer wavelength side. The peak wavelength of the excitation absorption spectrum of the YAG: Ce-based phosphor is preferably shorter than the peak wavelength of the emission spectrum of the semiconductor light emitting device.
[0027]
The yttrium / aluminum oxide-based phosphors activated by two or more kinds of ceriums having different compositions may be used as a mixture or may be independently arranged. When the phosphors are arranged independently of each other, it is preferable to arrange the phosphor from the semiconductor light emitting element in the order of absorbing and emitting light on a shorter wavelength side, and then on the longer wavelength side. This allows efficient absorption and emission.
[0028]
(mixture)
In the case of a powdery phosphor, the upper limit of the compounding ratio of the phosphor to the binder resin and / or the inorganic sintering aid is determined in consideration of the formability of the phosphor layer and the shape retention after sintering. The lower limit is determined in consideration of the function as a molded phosphor, since the amount of the fluorescent light emitted by the phosphor decreases as the blending amount of the phosphor decreases.
[0029]
Therefore, when mixing the silicon nitride-based phosphor and the inorganic sintering aid, the mixture ratio of the silicon nitride-based phosphor and the inorganic sintering aid is 100: 2 to 100: 10. Is preferred. When mixing the organic solvent binder resin, the silicon nitride-based phosphor, and the inorganic sintering aid, the organic solvent binder resin is added to the total amount of the silicon nitride-based phosphor and the inorganic sintering aid. On the other hand, it is preferable to mix so as to be 20 to 40% by weight.
[0030]
When mixing the yttrium / aluminum / garnet-based phosphor and the inorganic sintering aid, the mixing ratio of the yttrium / aluminum / garnet-based phosphor and the inorganic sintering aid is 100: 2 to 100: 10. It is preferable to mix as follows. When mixing the organic solvent binder resin, the yttrium aluminum garnet phosphor, and the inorganic sintering aid, the organic solvent binder resin is mixed with the yttrium aluminum garnet phosphor and the inorganic sintering aid. It is preferable to mix them so as to be 5 to 40% by weight based on the total amount of the agents.
[0031]
(Sintering aid)
If the sintering temperature is high, it is not preferable from a practical point of view. Therefore, the sintering temperature may be selected to be low. Examples of the sintering aid include zinc oxide, aluminum oxide, titanium oxide, boron oxide, lithium fluoride, and sodium fluoride, with boron oxide being preferred. The silicon oxide prevents the phosphor surface from being oxidized by the phosphor coming into contact with oxygen in the air at a high temperature, thereby reducing the emission luminance. It is considered that the reason is that boron oxide is coated as a protective substance on the particle surface of the phosphor to prevent the phosphor surface from being oxidized by oxygen in the air.
[0032]
(Organic solvent binder resin)
The organic solvent binder resin is a thermosetting and weather-resistant resin such as an epoxy resin, an acrylic resin, a urethane resin, a melamine resin, an imide resin, a silicone resin, and a urea resin diluted with a solvent such as toluene / isopropyl alcohol (IPA). It is preferable that the light-transmitting resin is excellent. Further, the organic solvent binder resin is preferably an acrylic resin because of its excellent resistance to short-wavelength light.
[0033]
(solvent)
As the solvent, a known organic solvent can be used as appropriate, but toluene / isopropyl alcohol (IPA) is preferably used, and the blending amount of toluene: IPA is preferably 4: 1.
[0034]
(Diffusing agent)
A light emitting device in which a phosphor sheet containing no diffusing agent is laminated has a different color tone depending on the viewing angle. Therefore, a diffusing agent may be mixed in the phosphor sheet. The difference in the color tone depending on the viewing angle means that, for example, when the light emitting device is viewed from the front, the color is blue because the thickness of the blue light passing through the phosphor sheet is thin, whereas when the light emitting diode is viewed obliquely, This means that the color tone approaches yellow because the thickness of light passing through the phosphor sheet increases. By mixing the diffusing agent, the amount of the phosphor in the phosphor sheet can be reduced, and a phosphor sheet having a uniform color tone and no color unevenness can be obtained. Further, by mixing a diffusing agent into the phosphor molded article, the light emission luminance of the light emitting device can be improved. This is because the light from the semiconductor light emitting element is scattered by adding the diffusing agent, and the amount of light for exciting the phosphor increases. The diffusing agent may be an inorganic diffusing agent such as silicon dioxide, titanium oxide, aluminum oxide, calcium carbonate, zinc oxide, barium titanate, or epoxy resin, phenol formalin resin, benzoguanamine resin, melamine resin, acrylic Organic diffusing agents such as resins, polycarbonate resins, polyethylene resins, polypropylene resins, and guanamine resins may be used. When the phosphor layers are stacked, it is preferable to consider the amount of the diffusing material and the refractive index of the lower layer so as to enhance the diffusion effect of the lower phosphor layer.
[0035]
【Example】
(Example 1)
In this embodiment, the light emitting device shown in FIGS. 1 and 2 is manufactured.
(1) LED chip fabrication
For the LED chip, a TMG (trimethyl gallium) gas, a TMI (trimethyl indium) gas, a nitrogen gas and a dopant gas are flowed together with a carrier gas on a cleaned sapphire substrate, and a gallium nitride-based compound semiconductor is formed by MOCVD. Formed. SiH as dopant gas 4 And Cp 2 By switching between Mg and GaN, a gallium nitride-based semiconductor having N-type conductivity and a gallium nitride-based semiconductor having P-type conductivity are formed to form a PN junction. As a semiconductor light emitting device, a contact layer made of a gallium nitride semiconductor having N-type conductivity, a clad layer made of a gallium aluminum nitride semiconductor having P-type conductivity, and a contact layer made of a gallium nitride semiconductor having P-type conductivity are formed. I let it. A non-doped InGaN active layer having a thickness of about 3 nm and a single quantum well structure was formed between a contact layer having N-type conductivity and a cladding layer having P-type conductivity. (Note that a gallium nitride semiconductor is formed at a low temperature on a sapphire substrate to serve as a buffer layer. A semiconductor having P-type conductivity is annealed at 400 ° C. or more after film formation.)
After exposing the surface of each PN semiconductor on the sapphire substrate by etching, each electrode was formed by sputtering. After a scribe line was drawn on the semiconductor wafer thus completed, the wafer was divided by external force to form LED chips of 350 μm square as light emitting elements.
(2) Package production
The package 105 is made of metal and has a recess a at the center. Further, the base portion b around the concave portion has two through holes penetrating in the thickness direction, and the respective through holes are opposed to each other with the concave portion interposed therebetween. Positive and negative lead electrodes 102 are inserted into the through holes via hard glass 103 which is an insulating member.
(3) Die bond
The LED chip 101 housed in the recess a is a light emitting element that emits blue light, and the bonding between the LED chip 101 and the metal package 105 can be performed using a eutectic solder such as Au-Sn. In this embodiment, die bonding (adhesion) is performed using an inorganic material that is an oxide containing one or more of Si, Al, Ga, Ti, Ge, P, B, Zr, Y and an alkaline earth metal.
(4) Wire bond
The electrodes provided on the LED chip 101 and the positive and negative lead electrodes 102 are wire-bonded with gold wires. At this time, the electrode surface of the LED chip 101 is heated to about 180 ° C.
(5) Preparation of coating layer
As shown in FIG. 2, in this embodiment, a coating layer is formed.
The coating layer 108 is prepared by mixing a predetermined organometallic compound and a high-boiling organic solvent in a predetermined ratio to prepare a sol coating solution, die-bonding the coating solution in a package, and then wire-bonding the light emitting device. Is formed by spray coating so as to cover the entire surface of the substrate, and then heating it to make it amorphous.
(6) Sealing
A light-transmitting window 107 and a lid 106 made of a metal part are attached to the main surface side of the metal package, and the contact surface between the metal part and the metal package 105 is welded, so that the light emitting element and the like in the package are cleaned together with the nitrogen gas. Seal tightly.
In this embodiment, first, the translucent window 107 is made of Al. 2 O 3 To CCA-Blue (chemical formula, Ca 10 (PO 4 ) 6 ClBr, activator Mn, Eu) a coating layer 107a in which a phosphor is bound; 2 To form a sintered phosphor laminate obtained by laminating a coating layer 107b in which an yttrium / aluminum / garnet phosphor is bound.
With this configuration, even when a light-emitting element that emits light including blue wavelength light is used, the adhesive layer and the coating layer do not deteriorate or discolor to the light, and a high-output light and Since it does not deteriorate or discolor due to the accompanying high temperature, a highly reliable light emitting device can be provided. Furthermore, SiO 2 The refractive index (about 1.4) of the coating layer formed by binding the phosphor is Al 2 O 3 Is smaller than the refractive index (approximately 1.7) of the coating layer in which the phosphor is bound by Al. 2 O 3 Since the refractive index of the coating layer in which the phosphor is bound is smaller than the refractive index (about 2.5) of the gallium nitride-based compound semiconductor layer, the efficiency of extracting light from the light emitting element is increased, and the output can be improved. This has the effect of improving heat dissipation.
(Example 2)
An ultraviolet light emitting element as the light emitting element of Example 1, a translucent window portion, a layer 107c containing an ultraviolet excited red light emitting phosphor (R phosphor) as a phosphor, and an ultraviolet excited green light emitting phosphor (G phosphor) were used. A sintered laminate including a layer 107d including a layer 107d and a layer 107e including an ultraviolet-excited blue light-emitting phosphor (B phosphor) is used. YO as an ultraviolet-excited red light-emitting phosphor 2 S 2 : Eu, YVO 4 : Eu, Gd 2 O 3 : Eu, (Y, Gd) BO 3 : Eu or YBO 3 : At least one kind of Eu can be used, and ZnS: Cu, Ag, Zn is used as an ultraviolet-excited green light-emitting phosphor. 2 SiO 4 : Mn, BaAl 12 O 19 : Mn or BaMgAl 16 O 26 : BaMgAl as an ultraviolet-excited blue light-emitting phosphor that can use at least one of Eu and Mn 10 O 17 : Eu, CaWO 4 : Pb, Y 2 SiO 5 : At least one of Ce is used. Note that SiO. 2 , Al 2 O 3 Instead of ZrO with a higher refractive index 2 , TiO 2 Etc. can be used.
[0036]
【The invention's effect】
The present invention provides a light emitting device in which a phosphor is provided on a semiconductor light emitting element as a light source and emits light by mixing light emitted from the semiconductor light emitting element with light converted by the phosphor, and a high output from the light emitting element. The phosphor layer does not deteriorate due to light in a short wavelength region (from a blue region to an ultraviolet region).
Further, it is excellent in processing into a desired shape, and can be used by being installed on a lens surface having a curvature or the like. In addition, since sintering and lamination are easy with multi-layer lamination, it is possible to provide a phosphor layer in which color matching to a desired color is easy.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a light emitting device.
FIG. 2 is a cross-sectional view of a light-emitting device in which a blue LED is used as a light-emitting source, a first layer is made of a silicon nitride phosphor, and a second layer is made of a YAG phosphor activated with cerium.
FIG. 3 is a cross-sectional view of a light-emitting device in which an ultraviolet LED is used as a light-emitting source, a first layer is made of an ultraviolet-excited red light-emitting phosphor, a second layer is made of an ultraviolet-excited green light-emitting phosphor, and a third layer is made of an ultraviolet-excited blue light-emitting phosphor. Figure
[Explanation of symbols]
101 light emitting element
102 Lead electrode
103 Insulation sealing material
104 conductive wire
105 packages
106 lid
107 Window
108 Coating material
110 Adhesive layer

Claims (10)

少なくとも蛍光体粉末、有機系溶剤バインダー樹脂、及び無機系焼結助剤とからなる混合物を成形し、前記有機系溶剤バインダー樹脂分を焼却除去し、前記蛍光体粉末を無機系燒結助剤で燒結保形してなることを特徴とする燒結蛍光体層。A mixture comprising at least a phosphor powder, an organic solvent binder resin, and an inorganic sintering aid is molded, the organic solvent binder resin is removed by incineration, and the phosphor powder is sintered with an inorganic sintering aid. A sintered phosphor layer characterized by shape retention. 無機系焼結助剤が、酸化亜鉛、酸化アルミニウム、酸化チタン、酸化硼素、フッ化リチウム、フッ化ナトリウムの群から選択される少なくとも1種以上を含有することを特徴とする請求項1記載の燒結蛍光体層。The inorganic sintering aid contains at least one selected from the group consisting of zinc oxide, aluminum oxide, titanium oxide, boron oxide, lithium fluoride, and sodium fluoride. Sintered phosphor layer. 前記有機系溶剤バインダー樹脂が、エポキシ樹脂、アクリル樹脂、イミド樹脂、シリコーン樹脂、ユリア樹脂の群からなる高粘度樹脂から選択される少なくとも1種以上を含有することを特徴とする請求項1記載の燒結蛍光体層。2. The organic solvent binder resin according to claim 1, wherein the organic solvent binder resin contains at least one selected from the group consisting of epoxy resin, acrylic resin, imide resin, silicone resin, and urea resin. Sintered phosphor layer. 蛍光体がシリコンナイトライド系蛍光体であることを特徴とする請求項1記載の燒結蛍光体層。2. The sintered phosphor layer according to claim 1, wherein the phosphor is a silicon nitride phosphor. 蛍光体がイットリウム・アルミニウム・ガーネット系蛍光体であることを特徴とする請求項1に記載の燒結蛍光体層。The sintered phosphor layer according to claim 1, wherein the phosphor is an yttrium aluminum garnet phosphor. 前記シリコンナイトライド系蛍光体と前記無機系焼結剤との混合比が、100:2〜100:10であることを特徴とする請求項4記載の燒結蛍光体層。The sintered phosphor layer according to claim 4, wherein a mixing ratio of the silicon nitride-based phosphor and the inorganic sintering agent is 100: 2 to 100: 10. 前記有機系溶剤バインダー樹脂が、前記シリコンナイトライド系蛍光体と前記無機系焼結助剤の総量に対し、20〜40重量%であることを特徴とする請求項6記載の燒結蛍光体層。7. The sintered phosphor layer according to claim 6, wherein the organic solvent binder resin accounts for 20 to 40% by weight based on the total amount of the silicon nitride phosphor and the inorganic sintering aid. 前記イットリウム・アルミニウム・ガーネット系蛍光体と前記無機系焼結助剤との混合比が、100:2〜100:10であることを特徴とする請求項5記載の燒結蛍光体層。The sintered phosphor layer according to claim 5, wherein a mixing ratio of the yttrium / aluminum / garnet phosphor and the inorganic sintering aid is from 100: 2 to 100: 10. 前記有機系溶剤バインダー樹脂が、前記イットリウム・アルミニウム・ガーネット系蛍光体と前記無機系焼結助剤の総量に対し、5〜40重量%であることを特徴とする請求項8記載の燒結蛍光体層。9. The sintered phosphor according to claim 8, wherein the organic solvent binder resin is 5 to 40% by weight based on the total amount of the yttrium aluminum garnet phosphor and the inorganic sintering aid. layer. 少なくとも蛍光体粉末、有機系溶剤バインダー樹脂、及び無機系焼結助剤とからなる混合物をシート状に成形し、異なる種類の蛍光体粉末を含むシートを変換波長の大きさ順で複数枚圧縮積層し、前記有機系溶剤バインダー樹脂分を焼却除去し、各シートの前記蛍光体粉末が無機系燒結助剤で燒結保形され、積層されていることを特徴とする燒結蛍光体積層構造。A mixture comprising at least a phosphor powder, an organic solvent binder resin, and an inorganic sintering aid is formed into a sheet, and a plurality of sheets containing different types of phosphor powders are compressed and laminated in the order of the conversion wavelength. The sintered phosphor laminate structure, wherein the organic solvent binder resin is incinerated and removed, and the phosphor powder of each sheet is sintered with an inorganic sintering aid and laminated.
JP2002328939A 2002-11-12 2002-11-12 Sintered phosphor layer Pending JP2004161871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002328939A JP2004161871A (en) 2002-11-12 2002-11-12 Sintered phosphor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328939A JP2004161871A (en) 2002-11-12 2002-11-12 Sintered phosphor layer

Publications (1)

Publication Number Publication Date
JP2004161871A true JP2004161871A (en) 2004-06-10

Family

ID=32807072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328939A Pending JP2004161871A (en) 2002-11-12 2002-11-12 Sintered phosphor layer

Country Status (1)

Country Link
JP (1) JP2004161871A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001297A1 (en) * 2004-06-23 2006-01-05 Rohm Co., Ltd. White light-emitting device and method for producing same
JP2006032726A (en) * 2004-07-16 2006-02-02 Kyocera Corp Light emitting device
JP2006156604A (en) * 2004-11-26 2006-06-15 Kyocera Corp Light emitting device and lighting system
JP2007116138A (en) * 2005-09-22 2007-05-10 Lexedis Lighting Gmbh Light emitting device
JP2007201301A (en) * 2006-01-30 2007-08-09 Sumitomo Metal Electronics Devices Inc Light emitting device using white led
JP2008115332A (en) * 2006-11-07 2008-05-22 Mitsubishi Chemicals Corp Phosphor-containing composition, light-emitting device, lighting device, and image display device
JP2008527706A (en) * 2005-01-10 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination system with ceramic luminescence converter
JP2008533270A (en) * 2005-03-14 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Phosphor having a polycrystalline ceramic structure, and light emitting device having the phosphor
JP2008258413A (en) * 2007-04-05 2008-10-23 Rohm Co Ltd Semiconductor light-emitting device
JP2008538652A (en) * 2005-04-20 2008-10-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system including ceramic luminescence converter
JP2009094262A (en) * 2007-10-09 2009-04-30 Toyoda Gosei Co Ltd Method for manufacturing light-emitting device
WO2009072589A1 (en) * 2007-12-07 2009-06-11 Panasonic Electric Works Co., Ltd. Light emitting device
JP2010525092A (en) * 2007-04-17 2010-07-22 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Phosphors emitting red and light sources having this type of phosphor
JP2010171465A (en) * 2005-09-22 2010-08-05 Toshiba Lighting & Technology Corp Light emitting device
US7807071B2 (en) 2006-08-03 2010-10-05 Nichia Corporation Light emitting apparatus
US7811471B2 (en) 2006-08-03 2010-10-12 Nippon Electric Glass Co., Ltd. Wavelength-converting member
JP2011012215A (en) * 2009-07-03 2011-01-20 Covalent Materials Corp Ceramic composite
US8106584B2 (en) 2004-12-24 2012-01-31 Kyocera Corporation Light emitting device and illumination apparatus
JP2012138561A (en) * 2010-12-08 2012-07-19 Sharp Corp Light-emitting device and method for manufacturing the same
JP2013502710A (en) * 2009-08-17 2013-01-24 オスラム アクチエンゲゼルシャフト High efficiency conversion LED
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
JP5353694B2 (en) * 2007-03-22 2013-11-27 コニカミノルタ株式会社 Phosphor sheet manufacturing method and phosphor sheet manufacturing apparatus
JP2014525480A (en) * 2011-08-16 2014-09-29 日東電工株式会社 Phosphor composition and method for producing the same
JP2015534277A (en) * 2012-10-10 2015-11-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Ceramic conversion element, optoelectronic semiconductor device, and method of manufacturing ceramic conversion element
CN107207957A (en) * 2015-01-21 2017-09-26 三菱化学株式会社 Sinter fluorophor, light-emitting device, lighting device, vehicle head lamp and the manufacture method for sintering fluorophor
JP2018026550A (en) * 2016-07-27 2018-02-15 三菱ケミカル株式会社 Light-emitting device, illumination device, image display unit and vehicle indicating lamp
US10008644B2 (en) 2005-05-30 2018-06-26 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
JP2019008067A (en) * 2017-06-22 2019-01-17 スタンレー電気株式会社 Wavelength conversion member and manufacturing method thereof

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001297A1 (en) * 2004-06-23 2006-01-05 Rohm Co., Ltd. White light-emitting device and method for producing same
JP2006032726A (en) * 2004-07-16 2006-02-02 Kyocera Corp Light emitting device
JP4546176B2 (en) * 2004-07-16 2010-09-15 京セラ株式会社 Light emitting device
JP2006156604A (en) * 2004-11-26 2006-06-15 Kyocera Corp Light emitting device and lighting system
US8106584B2 (en) 2004-12-24 2012-01-31 Kyocera Corporation Light emitting device and illumination apparatus
JP2008527706A (en) * 2005-01-10 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination system with ceramic luminescence converter
JP2008533270A (en) * 2005-03-14 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Phosphor having a polycrystalline ceramic structure, and light emitting device having the phosphor
JP2008538652A (en) * 2005-04-20 2008-10-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system including ceramic luminescence converter
US10008644B2 (en) 2005-05-30 2018-06-26 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
JP2010171465A (en) * 2005-09-22 2010-08-05 Toshiba Lighting & Technology Corp Light emitting device
JP2007116138A (en) * 2005-09-22 2007-05-10 Lexedis Lighting Gmbh Light emitting device
JP2007201301A (en) * 2006-01-30 2007-08-09 Sumitomo Metal Electronics Devices Inc Light emitting device using white led
US7811471B2 (en) 2006-08-03 2010-10-12 Nippon Electric Glass Co., Ltd. Wavelength-converting member
US7807071B2 (en) 2006-08-03 2010-10-05 Nichia Corporation Light emitting apparatus
JP2008115332A (en) * 2006-11-07 2008-05-22 Mitsubishi Chemicals Corp Phosphor-containing composition, light-emitting device, lighting device, and image display device
JP5353694B2 (en) * 2007-03-22 2013-11-27 コニカミノルタ株式会社 Phosphor sheet manufacturing method and phosphor sheet manufacturing apparatus
JP2008258413A (en) * 2007-04-05 2008-10-23 Rohm Co Ltd Semiconductor light-emitting device
JP2010525092A (en) * 2007-04-17 2010-07-22 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Phosphors emitting red and light sources having this type of phosphor
US8460579B2 (en) 2007-04-17 2013-06-11 Osram Gesellschaft mit beschränkter Haftung Red-emitting luminophore and light source comprising such a luminophore
JP2009094262A (en) * 2007-10-09 2009-04-30 Toyoda Gosei Co Ltd Method for manufacturing light-emitting device
JP2010074117A (en) * 2007-12-07 2010-04-02 Panasonic Electric Works Co Ltd Light emitting device
WO2009072589A1 (en) * 2007-12-07 2009-06-11 Panasonic Electric Works Co., Ltd. Light emitting device
US8294177B2 (en) 2007-12-07 2012-10-23 Panasonic Corporation Light emitting device utilizing a LED chip
JP2011012215A (en) * 2009-07-03 2011-01-20 Covalent Materials Corp Ceramic composite
JP2013502710A (en) * 2009-08-17 2013-01-24 オスラム アクチエンゲゼルシャフト High efficiency conversion LED
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
JP2012138561A (en) * 2010-12-08 2012-07-19 Sharp Corp Light-emitting device and method for manufacturing the same
JP2014525480A (en) * 2011-08-16 2014-09-29 日東電工株式会社 Phosphor composition and method for producing the same
US9567518B2 (en) 2011-08-16 2017-02-14 Nitto Denko Corporation Phosphor compositions and methods of making the same
JP2015534277A (en) * 2012-10-10 2015-11-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Ceramic conversion element, optoelectronic semiconductor device, and method of manufacturing ceramic conversion element
US9431586B2 (en) 2012-10-10 2016-08-30 Osram Opto Semiconductors Gmbh Ceramic conversion element, optoelectronic semiconductor element, and method for producing a ceramic conversion element
CN107207957A (en) * 2015-01-21 2017-09-26 三菱化学株式会社 Sinter fluorophor, light-emitting device, lighting device, vehicle head lamp and the manufacture method for sintering fluorophor
EP3249026A4 (en) * 2015-01-21 2018-01-31 Mitsubishi Chemical Corporation Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor
JPWO2016117623A1 (en) * 2015-01-21 2017-12-28 三菱ケミカル株式会社 Sintered phosphor, light emitting device, lighting device, vehicle headlamp, and method for manufacturing sintered phosphor
US10753574B2 (en) 2015-01-21 2020-08-25 Mitsubishi Chemical Corporation Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor
JP2018026550A (en) * 2016-07-27 2018-02-15 三菱ケミカル株式会社 Light-emitting device, illumination device, image display unit and vehicle indicating lamp
JP7147138B2 (en) 2016-07-27 2022-10-05 三菱ケミカル株式会社 Light-emitting device, lighting device, image display device, and vehicle indicator light
JP2019008067A (en) * 2017-06-22 2019-01-17 スタンレー電気株式会社 Wavelength conversion member and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2004161871A (en) Sintered phosphor layer
JP4450547B2 (en) Method for manufacturing light emitting device
JP4415548B2 (en) Light emitting device using oxynitride phosphor
JP5138145B2 (en) Phosphor laminate structure and light source using the same
JP4374913B2 (en) Light emitting device
JP5066786B2 (en) Nitride phosphor and light emitting device using the same
JP4222017B2 (en) Light emitting device
JP4760082B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
JP2008227523A (en) Nitride phosphor and method for manufacturing the same, and light emitting device using nitride phosphor
JP5326182B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
JP4892861B2 (en) Nitride phosphor and light emitting device using the same
JP2004186278A (en) Light emitting device and method therefor
JP2001308393A (en) Light-emitting diode
JP2003243726A (en) Light emitting apparatus and manufacturing method therefor
JP2006086191A (en) Light-emitting device
JP2005008844A (en) Phosphor, and light emitter using the same
JP2003321675A (en) Nitride fluorophor and method for producing the same
JP2003243727A (en) Light emitting apparatus
JP2004161807A (en) Nitride phosphor and light-emitting device
JP2004095765A (en) Light emitting device and method for manufacturing the same
JP4214768B2 (en) Nitride phosphor and light emitting device using the same
JP4151284B2 (en) Nitride semiconductor light-emitting element, light-emitting device, and manufacturing method thereof
JP2004210921A (en) Oxynitride fluorophor and method for producing the same and light-emitting device using the same
JP5592764B2 (en) Light emitting device
WO2006117984A1 (en) Nitride phosphor and light-emitting device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060420

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060429

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729