WO2016051857A1 - Nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device Download PDF

Info

Publication number
WO2016051857A1
WO2016051857A1 PCT/JP2015/065079 JP2015065079W WO2016051857A1 WO 2016051857 A1 WO2016051857 A1 WO 2016051857A1 JP 2015065079 W JP2015065079 W JP 2015065079W WO 2016051857 A1 WO2016051857 A1 WO 2016051857A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
layer
emitting device
semiconductor light
light emitting
Prior art date
Application number
PCT/JP2015/065079
Other languages
French (fr)
Japanese (ja)
Inventor
聡 駒田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016051857A1 publication Critical patent/WO2016051857A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid

Definitions

  • the present invention relates to a nitride semiconductor light emitting element (ultraviolet LED element) that emits ultraviolet light and a nitride semiconductor light emitting device that emits ultraviolet light.
  • a nitride semiconductor light emitting element ultraviolet LED element
  • a nitride semiconductor light emitting device that emits ultraviolet light.
  • Ultraviolet LED elements are promising for industrial applications such as resin curing and photolithography light sources, and in that case, use with high power of several hundred watts or more is required.
  • the number of chips to be mounted is small.
  • the chip height (thickness) is that anodes and cathodes are formed at both ends of the) direction, and current flows in the vertical direction.
  • sapphire is generally used as a material for the growth substrate.
  • Sapphire is an insulator.
  • anodes and cathodes are formed at both ends in the height (thickness) direction as described above, a nitride semiconductor multilayer film is stacked, and then the growth substrate is peeled to form electrodes.
  • a normal ultraviolet LED element is attached to a Si support substrate after crystal growth, and then the sapphire substrate (growth substrate) is peeled off using a laser or the like. Since the Si support substrate has low reflectivity for ultraviolet light, a reflective metal layer using a metal having high reflectivity for ultraviolet light is formed between the nitride semiconductor layer and the support substrate to improve light extraction efficiency. ing.
  • An ultraviolet LED device is formed by mounting the ultraviolet LED element thus formed on a base.
  • a metal base having a high reflectance is used in order to increase the light extraction efficiency.
  • a base made of aluminum having a high surface reflectance is used.
  • an LED element is mounted in a recess of a base coated with aluminum having a recess, and the surface is coated with glass and packaged.
  • Patent Document 1 proposes a package made of a ceramic sintered body sealed with a silicone resin with respect to an ultraviolet LED element mounted on a flip chip as in Patent Document 1 .
  • Patent Document 2 proposes a package in which ultraviolet light is transmitted through a sapphire substrate using a package sealed with a silicone resin for an ultraviolet LED element mounted on a flip chip.
  • Patent Document 3 proposes a method in which an ultraviolet LED element is sealed with an addition-type thermosetting silicone resin containing dimethyl silicone resin as a main component from the viewpoint of heat resistance and light resistance.
  • a barrier metal layer is further required to suppress the migration of the reflective metal material when a current is applied.
  • manufacture of the LED element of the sticking peeling structure mentioned above requires the sticking process which sticks the laminated
  • AlGaN which is an essential nitride semiconductor for ultraviolet LED elements, is difficult to control strain, and tends to cause warping of the substrate.
  • the substrate is warped, there is a problem in that the attaching and peeling processes are not performed with high accuracy.
  • the substrate is enlarged (increased in diameter) in order to increase the number of chips that can be taken per wafer, there is a problem that the influence of the warp of the substrate is further increased.
  • An object of the present invention is to provide a nitride semiconductor light emitting device with high light extraction efficiency while suppressing manufacturing cost.
  • a nitride semiconductor light-emitting device includes a nitride semiconductor light-emitting element that emits ultraviolet light including a sapphire substrate and a nitride semiconductor layer, a base made of a ceramic sintered body, and the nitride.
  • the Si substrate sticking step and the sapphire substrate peeling step can be omitted.
  • the negative effect on the manufacturing process due to the warpage of the nitride semiconductor layer is smaller than that including the pasting step and the peeling step, so that the yield can be increased and the manufacturing cost can be reduced.
  • the ceramic sintered body has a larger band gap than the nitride semiconductor layer, and therefore absorbs less light, and light is easily scattered inside the ceramic sintered body. Furthermore, the surface of the ceramic sintered body has a high reflectance in the ultraviolet region. Therefore, the light extraction efficiency is improved by attaching the ceramic sintered body to the base with the transparent sapphire substrate facing down.
  • the refractive index of the sealing resin used for the resin sealing part is close to the intermediate value between the refractive index of the nitride semiconductor and the refractive index of air, total reflection can be suppressed and light can be extracted compared to when sealing is not performed. Efficiency is further improved.
  • irregularities may be formed on the surface of the sapphire substrate on which at least the nitride semiconductor layer is laminated.
  • the unevenness of the sapphire substrate may be a dot-like unevenness in which convex portions are two-dimensionally arranged.
  • the nitride semiconductor layer may include an AlGaN layer including an n-type AlGaN layer and an undoped AlGaN layer.
  • the undoped AlGaN layer may be formed between the n-type AlGaN layer and the sapphire substrate.
  • the AlGaN layer may have a total thickness of 6 ⁇ m or more.
  • the LED element may include an oxide transparent conductive layer on the anode side.
  • the oxide transparent conductive layer may be ITO.
  • the oxide transparent conductive layer may have a thickness of 60 nm or less.
  • the nitride semiconductor element may include an n-side electrode and a p-side electrode, and at least one of the n-side electrode and the p-side electrode may include a main electrode and a branch electrode extending from the main electrode.
  • the base may be an alumina sintered body.
  • the resin sealing portion may be formed of a silicone resin.
  • the resin sealing portion may be formed of dimethyl silicone resin.
  • the LED element may have an emission wavelength of 300 nm to 375 nm.
  • the LED element may have a light extraction surface on the anode side.
  • the present invention it is possible to provide a nitride semiconductor light emitting device with high light extraction efficiency while suppressing manufacturing cost.
  • FIG. 1 is a perspective view of a nitride semiconductor light emitting device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II of the nitride semiconductor light emitting device shown in FIG. It is sectional drawing of the LED element of the nitride semiconductor light-emitting device shown in FIG. It is an expanded sectional view of a sapphire substrate. It is a figure which shows arrangement
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII of the nitride semiconductor light emitting device shown in FIG.
  • a nitride semiconductor light-emitting device A includes a flat base 1 and an LED element (nitride semiconductor light-emitting element) placed on the upper surface of the base. 2 and a resin sealing portion 3 that seals the LED element 2.
  • the LED element 2 emits ultraviolet light of about 300 nm to about 375 nm.
  • the LED element 2 includes a sapphire substrate 20, an AlN buffer layer 21, an undoped AlGaN layer 22, an n-type nitride semiconductor layer 23, an active (light emitting) layer 24, a p-type nitride semiconductor layer 25, and an ITO (Indium Tin Oxide) layer 26.
  • a semiconductor multilayer film is formed on one main surface (growth surface) of the sapphire substrate 20.
  • irregularities are formed on the growth surface 200 of the sapphire substrate 20.
  • the concave and convex portions 201 of the growth surface 200 have a planar arrangement as shown in FIG. That is, the top part of the convex part 201 is arrange
  • FIG. Note that the arrangement method of the convex portions 201 is not limited to this.
  • the ultraviolet light generated in the nitride semiconductor layer is the boundary surface with the sapphire substrate 20. It is easy to totally reflect.
  • the concavo-convex portion is formed on the growth surface 200 of the sapphire substrate, the ultraviolet light is irregularly reflected by the concavo-convex portion at the boundary between the sapphire substrate 20 and the nitride semiconductor layer. By this irregular reflection, it becomes possible to change the light path of the reflected light to increase the amount of light in the escape cone, that is, to extract a lot of light from the LED element 2.
  • the unevenness of the sapphire substrate 20 may have a configuration (dot type) in which the convex portions 201 are arranged according to a certain rule as described above, or a configuration in which the concave grooves and the convex portions are arranged in stripes (stripe). Type). Both the stripe type and the dot type can obtain the effect of irregular reflection, but the dot type is more preferable because it can reduce the flat region where the effect of irregular reflection is not obtained, and thus the light extraction efficiency is improved.
  • the nitride semiconductor used in the LED element 2 according to the present invention is a compound of at least one of the group 3 elements aluminum (Al) and gallium (Ga) and the group 5 element nitrogen (N).
  • an element such as silicon (Si) or germanium (Ge) is added (doped) as an impurity to the above-described nitride semiconductor.
  • elements such as magnesium (Mg) and zinc (Zn) are added (doped) as impurities to the nitride semiconductor.
  • an AlN buffer layer 21 having a layer thickness of 20 nm is formed on the growth surface 200 of the sapphire substrate 20 on which irregularities are formed.
  • An undoped AlGaN layer 22 having a layer thickness of 3 ⁇ m is formed on the upper surface of the AlN buffer layer 21.
  • An n-AlGaN layer 231 having a layer thickness of 3 ⁇ m and a Si concentration of 5 ⁇ 10 18 / cm 3 is formed on the upper surface of the undoped AlGaN layer 22.
  • the band gap is adjusted by changing the Al composition ratio.
  • the Al composition ratio is adjusted to 7% to 10% in order to make the band gap larger than the emission wavelength.
  • AlGaN needs a certain layer thickness in order to increase the light extraction efficiency from the side. Since n-AlGaN is doped with impurities, cracks are likely to occur due to tensile strain generated in the crystal when dislocations bend in the lateral direction in accordance with the dislocation crib model. On the other hand, since the undoped AlGaN layer 22 has higher crystallinity than n-AlGaN, it is difficult to crack even if it is grown thick. Therefore, the undoped AlGaN layer 22 is formed below the n-AlGaN layer 231 in order to make the AlGaN layer thickness necessary for extracting light from the side surface.
  • the thickness of both the undoped AlGaN layer 22 and the n-AlGaN layer 231 is preferably 6 ⁇ m or more.
  • the sapphire substrate used in the present embodiment forms irregularities in order to increase the light extraction efficiency, but the height of the irregularities is preferably 500 nm or more, and more preferably 1 ⁇ m or more in order to facilitate processing.
  • the layer thickness of the undoped AlGaN layer 22 is preferably at least 3 ⁇ m or more in order to form an oblique facet film in order to fill the unevenness of the sapphire substrate and to planarize it. If an Si-AlGaN layer is formed directly without forming an undoped AlGaN layer, it is difficult to planarize, and therefore an n-AlGaN layer 231 must be separately formed on the undoped AlGaN layer.
  • the thickness of the n-AlGaN layer 231 is preferably 3 ⁇ m or more because the sheet resistance is ideally set to 10 ⁇ sq or less from the viewpoint of current diffusion. Therefore, it is preferable that the thickness of both the undoped AlGaN layer 22 and the n-AlGaN layer 231 is 6 ⁇ m or more.
  • one of the factors determining the crystallinity of the n-AlGaN layer 231 is threading dislocations, and the formation of threading dislocations is caused by lattice shift when crystals (layers) are associated with each other and propagates in the crystal growth direction.
  • the growth surface 200 of the sapphire substrate 20 is uneven, and a dislocation is formed in the n-AlGaN layer 231 in the vertical direction by forming a portion where the dislocation is bent in an oblique direction at the initial growth stage of the undoped AlGaN layer. It is difficult to propagate and the threading transition density decreases. From the above, the crystallinity of the n-AlGaN layer 231 can be increased by forming the undoped AlGaN layer 22 having high crystallinity in the initial stage of growth.
  • an n-GaN layer 232 is formed by growing n-GaN doped so that the layer thickness is 50 nm and the Si concentration is 5 ⁇ 10 18 / cm 3 .
  • the n-AlGaN layer 231 and the n-GaN layer 232 become the n-type nitride semiconductor layer 23.
  • an active (light emitting) layer 24 is formed by laminating a total of 10 layers of an InGaN layer 241 having a thickness of 6 nm and an AlGaN layer 242 having a thickness of 10 nm.
  • the In composition ratio of the InGaN layer 241 is set to several percent or less so that the emission wavelength is 300 nm to 375 nm, and the Al composition ratio of the AlGaN layer 242 is adjusted to about 10%.
  • a p-AlGaN layer 251 having a layer thickness of 40 nm and an Mg concentration of 1 ⁇ 10 19 / cm 3 is formed on the upper surface of the active layer 24. Note that the Al composition ratio of the p-AlGaN layer 251 was 30%. Then, a p-GaN layer 252 having a layer thickness of 5 nm and an Mg concentration of 1 ⁇ 10 20 / cm 3 is formed on the upper surface of the p-AlGaN layer 251. Here, the p-AlGaN layer 251 and the p-GaN layer 252 become the p-type nitride semiconductor layer 25.
  • the p-type nitride semiconductor layer 25 has high resistance, it is difficult to diffuse current in the planar direction of the semiconductor stack. Further, the p-type nitride semiconductor has a high work function, and it is necessary to provide a transparent electrode having a high work function in order to reduce the contact resistance. Therefore, an ITO layer 26 using ITO having a high work function among the transparent electrodes is formed on the upper surface of the p-GaN layer 252 as a current diffusion layer. After the ITO layer 26 is formed, it is annealed at 500 ° C. to be transparent.
  • the work function of the p-type nitride semiconductor layer 25 is about 7 eV, and the work function of the ITO layer 26 is about 4 eV.
  • a Schottky barrier of about 3 eV is generated, but contact is caused by diffusion at the interface, hopping conduction through defects, and a pinning effect due to the interface state. Resistance can be lowered.
  • a SiO2 cover layer 27 is formed on the upper surface of the ITO layer 26.
  • a p-pad electrode 28 is formed on the ITO layer 26. Further, a part of the n-AlGaN layer 231 is exposed by etching from the upper surface by ICP (Inductively Coupled Plasma) or the like from the p-type nitride semiconductor layer 25 side. An n contact 290 made of Al, Ti or the like is formed on the exposed portion of the AlGaN layer 231, and an n pad electrode 29 is formed on the n contact 290. In the LED element 2, the p pad electrode 28 is on the anode side, and the n pad electrode 29 is on the cathode side.
  • ICP Inductively Coupled Plasma
  • the light extraction efficiency deteriorates. Therefore, in the present invention, by using AlGaN, the light extraction efficiency is improved at an emission wavelength of 375 nm or less.
  • the transmittance of ITO significantly decreases when the emission wavelength is 300 nm or less
  • the composition ratio of Al is adjusted so that the emission wavelength is 300 nm to 375 nm. I was able to use it.
  • the LED element 2 it is necessary to diffuse the current in the planar direction of the semiconductor stack.
  • n-AlGaN has a large band gap and it is difficult to obtain a ternary mixed crystal with high electron mobility, resistance is high and current is difficult to diffuse.
  • the light absorption increases exponentially as the layer thickness of ITO increases, it is not preferable to form the ITO layer 26 thick. Therefore, the layer thickness of the ITO layer 26 is thin and current is difficult to diffuse.
  • the LED element 2 has an electrode configuration as shown in FIG. 6 is a top view of the electrode configuration of the LED element shown in FIG.
  • the p-pad electrode 28 includes a circular main electrode 281 and a pair of branch electrodes 282 extending in the opposite direction with the main electrode 281 as the center.
  • the pair of branch electrodes 282 have a curved shape and are opposed to each other with the main electrode 281 interposed therebetween.
  • the main electrode 281 is a part for attaching a wire for supplying electric power, and the main electrode 281 and the branch electrode 282 are integrally formed.
  • the n pad electrode 29 is provided so as to be located within a range surrounded by the main electrode 281 and the branch electrode 282 of the p pad electrode 28 in a plan view.
  • the n-pad electrode 29 includes a circular main electrode 291 and a pair of branch electrodes 292 extending in opposite directions with the main electrode 291 as the center.
  • the main electrode 291 is also a member for attaching a wire, and the main electrode 291 and the branch electrode 292 are integrally formed.
  • the position of the branch electrode 292 connected to the main electrode 291 is the same position as the position of the branch electrode 282 connected to the main electrode 281.
  • a branch electrode 292 is arranged inside a portion surrounded by the branch electrode 282 that forms a part of the circumference.
  • both the p pad electrode 28 and the n pad electrode 29 include branch electrodes, but may be configured to be provided in at least one of them.
  • the above-described AlN buffer layer 21, undoped AlGaN layer 22, n-AlGaN layer 231, n-GaN layer 232, active layer ( InGaN 241, AlGaN 242) 24, p-AlGaN layer 251, p-GaN layer 252, ITO layer 26, and SiO 2 cover layer 27 are laminated.
  • the n-AlGaN layer 231 is exposed by mesa etching, an n contact 290 is formed on the exposed portion, and then an n pad electrode 29 is formed on the upper surface of the n contact 290.
  • the LED element 2 is formed by being divided into regions constituting one LED element.
  • the sapphire substrate is polished to a predetermined thickness
  • the LED element 2 is formed by being divided into regions constituting one LED element.
  • the LED element 2 (LED chip) formed as described above is attached to the ceramic base 1.
  • the base 1 is a sintered body of alumina and is a white ceramic plate.
  • the material constituting the base 1 is not limited to alumina as long as the material has a high band gap and a high reflectance.
  • a pattern wiring 11 made of a highly conductive metal (for example, copper, aluminum or the like) is formed on the surface of the base 1.
  • the LED element 2 is fixed to a predetermined installation position of the base 1 thus formed with a thermosetting die bond paste resin. Specifically, a die bond paste resin is applied to the installation position of the base 1 and / or the surface opposite to the growth surface 200 of the sapphire substrate 20 of the LED element 2. Then, the LED element 2 is arranged on the base 1 so that the sapphire substrate 20 faces the base 1, and the LED element 2 is mounted on the base 1 by heat curing. Thereafter, the pattern wiring 11 of the base 1 is connected to the p pad electrode 28 and the n pad electrode 29 with a wire 12 of a metal (for example, gold) having a low resistance.
  • a metal for example, gold
  • the resin sealing portion 3 is provided to suppress contact between the LED element 2 and the atmosphere, and is made of a resin that is transparent to the LED emission wavelength.
  • the resin sealing portion 3 flows into the upper surface of the base 1 on which the LED element 2 is mounted so as to completely surround the LED element 2.
  • the base 1 is a plate-like member, and if the resin sealing part 3 that is a fluid is allowed to flow as it is, the resin flows and the LED element 2 may be exposed from the resin sealing part 3. is there. Therefore, in the nitride semiconductor light emitting device A, the periphery of the LED element 2 of the ceramic base 1 is subjected to water repellent processing in a circumferential shape, and the fluid resin sealing portion 3 is poured into the water repellent processed inside. Since the water-repellent processing is performed in a circumferential shape, the resin sealing portion 3 rises like a dome due to surface tension. The resin sealing portion 3 is heated and cured to form a cap of the dome-shaped resin sealing portion 3. The water repellent finish is obtained by depositing a water repellent resin in a circular shape on the outer edge forming the dome.
  • the resin sealing portion 3 is made of a material that blocks outside air and hardly deteriorates due to ultraviolet rays.
  • examples include thermosetting silicone (Si) resin and dimethyl silicone resin. Since the methyl group contained in the dimethyl silicone resin has a property stable to ultraviolet rays, the dimethyl silicone resin is more preferable because it is less deteriorated by ultraviolet rays than the silicone resin.
  • the cost of the component members of the element can be reduced. Further, since the sapphire substrate 20 is left, a peeling process is not necessary. As a result, the manufacturing cost of the LED element 2 can be reduced.
  • the nitride semiconductor light emitting device A according to the present invention is arranged such that the sapphire substrate 20 is on the base 1 side with respect to the light emitting layer.
  • Ceramic (alumina) has a high surface reflectivity, a large band gap, and is a sintered body. Therefore, it has a high light scattering effect, so it is difficult to absorb LED light emission.
  • the sapphire substrate 20 and the ceramic base 1 are arranged so as to be adjacent to each other, the light extraction efficiency of the nitride semiconductor light emitting device A of the present invention is improved.
  • the refractive index of the nitride semiconductor layer (LED element 2) is about 2.5, and the refractive index of the sealing resin (silicone resin, dimethyl silicone resin) is about 1.4.
  • the difference in refractive index between the nitride semiconductor layer and the sealing resin is smaller than the difference in refractive index between the nitride semiconductor layer and air. Therefore, total reflection of LED light emission is less likely to occur at the interface between the nitride semiconductor layer and the sealing resin than when it is in contact with air. Since the difference in refractive index between the nitride semiconductor layer and the sealing resin and the difference in refractive index between the sealing resin and air are close to each other, the nitride semiconductor layer is sealed by sealing with the sealing resin. The light extraction efficiency is improved compared to the case where it does not stop.
  • the LED element 2 is arranged on the ceramic base 1 so that the sapphire substrate 20 is on the base 1 side with respect to the light emitting layer, and the LED element 2 is sealed with resin
  • the portion 3 it is possible to reduce the manufacturing cost and increase the light extraction efficiency, that is, increase the intensity of the emitted light.
  • FIG. 7 is a perspective view of the nitride semiconductor light emitting device according to the present invention
  • FIG. 8 is a cross-sectional view of the nitride semiconductor light emitting device shown in FIG. 7 cut along the line VIII-VIII.
  • the nitride semiconductor light emitting device B has the same configuration as the nitride semiconductor light emitting device A of the first embodiment except that the base 4 is different. That is, the LED element 2 has the same configuration.
  • the nitride semiconductor light emitting device B uses a rectangular parallelepiped base 4 having a cylindrical recess 40 at the center.
  • the recess 41 includes a bottom surface portion 401 having a circular shape in plan view and a peripheral wall portion 402 connected to the peripheral surface of the bottom surface portion 401.
  • the peripheral wall 402 has a shape that widens toward the opening of the recess 40.
  • the pattern wiring 41 is formed on the base 4.
  • the pattern wiring 41 is formed on the bottom surface portion 401 and supplies power to the LED element 2. Since the pattern wiring 41 has the same configuration as the pattern wiring 11 of the base 1, details are omitted.
  • the nitride semiconductor light emitting device B is manufactured as follows. A die bond paste is applied to at least one of the portion of the bottom surface portion 401 where the LED element 2 is attached or the surface of the LED device 2 opposite to the growth surface 200 of the sapphire substrate 20, and the LED device 2 is attached to the bottom surface portion 401 of the sapphire substrate 20. Install so that they are adjacent. Next, the die bond paste is cured, and the LED element 2 is fixed to the bottom surface portion 401.
  • the pattern wiring 11 and the p pad electrode 28 are connected to the pattern wiring 11 and the n pad electrode 29 by the wire 12, respectively.
  • the resin sealing portion 5 is formed by flowing the sealing resin into the recess 40 and curing it. Since the resin sealing part 5 is made to flow into the recessed part 40, it can suppress that resin flows widely. In addition, in order to seal LED element 2 and the wire 12 reliably with the resin sealing part 5, the depth of the recessed part 40 is formed deeper than the thickness of the LED element 2 at least.
  • the light generated by the LED element 2 is emitted from the opening of the recess 40.
  • the cylindrical shape such that the peripheral wall portion 402 of the recess 40 spreads toward the opening, the light incident on the peripheral wall portion 402 is reflected toward the opening side.
  • the light of the LED element 2 can be condensed and the extraction efficiency of light can be improved.
  • the layer thickness of the ITO layer 26 of the LED element 2 was changed, and the emission wavelength and light output from the LED element 2 were measured.
  • the LED element 2 formed in this manner is mounted on a silver-coated TO18 mount so that the sapphire substrate 20 faces down, and a gold wire 12 is connected to the p pad electrode 28 and the n pad electrode 29.
  • Sample A had a wavelength of 367.2 nm and an output of 4.57 mW.
  • Sample B had a wavelength of 368.3 and an output of 2.29 mW.
  • Sample C had a wavelength of 365.3 and an output of 2.28 mW.
  • the thickness of the ITO layer 26 is preferably 50 nm or less. Actually, the thickness was set to 60 nm or less in consideration of the fluctuation of the layer thickness.
  • an LED element was manufactured by removing the n-GaN layer 232 between the active layer 24 and the n-AlGaN layer 231 having the structure of Sample A with the ITO layer 26 having a thickness of 50 nm.
  • the n-GaN layer functions as an absorption layer, and may have lowered the light extraction efficiency, so it was removed to clarify the effect of the presence or absence of the sealing resin.
  • Other configurations are the same as those of the first embodiment.
  • a nitride semiconductor light emitting device in which a sample is fixed to a base 1 of an alumina sintered body and a wire 12 is wired to a p pad electrode 28 and an n pad electrode 29 and the base 1 is placed on a TO18 mount coated with silver. Two were produced.
  • one LED element was sealed with a silicone resin to obtain a sample D.
  • the other was used as Sample E without sealing the LED element.
  • the LED elements were operated at a current of 50 mA and compared.
  • the emission wavelengths were all 374 nm.
  • the output of sample D was 17.2 mW, while that of sample E was 13.3 mW.
  • the light output was higher and the light extraction efficiency was improved when the LED element was sealed with silicone resin.
  • Sample D and Sample F were prepared by changing the shape of the base of Sample D from the flat base 1 to the base 4 that is a sintered body of alumina having a recess, and the light distribution was compared. As a result, the sample F was able to distribute light forward.
  • Sample D and Sample G in which the sealing resin of Sample D was changed from silicone resin to dimethyl silicone resin were prepared, and the deterioration of sealing resin portion 3 due to light emission was compared.
  • the sample G is more preferable than the sample D in the deterioration of the resin sealing portion 3 (resin cracking), and the silicone resin is preferable, but the dimethyl silicone resin is more preferable.

Abstract

A nitride semiconductor light emitting device A is provided with: an LED element 2 that emits ultraviolet light having a predetermined wavelength; a base 1 formed of a ceramic sintered body; and a resin sealing section 3 that resin-seals the LED element that is disposed such that a sapphire substrate 20 is adjacent to the base 1. The resin sealing section 3 is formed of a sealing resin having a refractive index that is close to the intermediate value between the refractive index of a nitride semiconductor layer and that of the air.

Description

窒化物半導体発光装置Nitride semiconductor light emitting device
 本発明は、紫外線を発光する窒化物半導体発光素子(紫外LED素子)および紫外線を発光する窒化物半導体発光装置に関する。 The present invention relates to a nitride semiconductor light emitting element (ultraviolet LED element) that emits ultraviolet light and a nitride semiconductor light emitting device that emits ultraviolet light.
 紫外LED素子は樹脂硬化、フォトリソグラフィーの光源など工業用途として有望で、その場合、数百ワット以上のハイパワーでの使用が要求される。前記紫外LED素子のパッケージを小型化するためには実装されるチップの数は少ない方が好ましいが、このようなLEDでは1チップあたり高い電流を流す必要があるため、チップの高さ(厚さ)方向の両端にアノード、カソードを形成し、縦方向に電流を流すのが主流である。 Ultraviolet LED elements are promising for industrial applications such as resin curing and photolithography light sources, and in that case, use with high power of several hundred watts or more is required. In order to reduce the size of the package of the ultraviolet LED element, it is preferable that the number of chips to be mounted is small. However, in such an LED, since a high current needs to flow per chip, the chip height (thickness) The mainstream is that anodes and cathodes are formed at both ends of the) direction, and current flows in the vertical direction.
 前記紫外LED素子に用いられる窒化物半導体では成長基板の材料として一般にサファイアが用いられる。サファイアは絶縁体であり、上述のような、高さ(厚み)方向の両端に、アノード、カソードを形成する場合、窒化物半導体多層膜を積層した後、成長基板を剥離して電極が形成される。 In the nitride semiconductor used for the ultraviolet LED element, sapphire is generally used as a material for the growth substrate. Sapphire is an insulator. When anodes and cathodes are formed at both ends in the height (thickness) direction as described above, a nitride semiconductor multilayer film is stacked, and then the growth substrate is peeled to form electrodes. The
 通常の紫外LED素子は、結晶成長の後、Siの支持基板に貼り付け、その後、レーザーなどを使ってサファイア基板(成長基板)の剥離を行う。Siの支持基板は紫外光に対し反射率が低いため、紫外光に対して反射率の高い金属を用いた反射金属層を窒化物半導体層と支持基板の間に形成し光取出し効率を向上させている。 A normal ultraviolet LED element is attached to a Si support substrate after crystal growth, and then the sapphire substrate (growth substrate) is peeled off using a laser or the like. Since the Si support substrate has low reflectivity for ultraviolet light, a reflective metal layer using a metal having high reflectivity for ultraviolet light is formed between the nitride semiconductor layer and the support substrate to improve light extraction efficiency. ing.
 このように形成された紫外LED素子を基台に搭載し、紫外LED装置が形成される。紫外LED装置では光取り出し効率を高めるため、高い反射率を持つ金属の基台が用いられる。通常は表面の反射率が高いアルミニウムで形成された基台が用いられる。例えば、凹部を有するアルミニウムがコートされた基台の凹部にLED素子を搭載し、表面をガラスでコーティングしてパッケージ化したものが利用される。 An ultraviolet LED device is formed by mounting the ultraviolet LED element thus formed on a base. In the ultraviolet LED device, a metal base having a high reflectance is used in order to increase the light extraction efficiency. Usually, a base made of aluminum having a high surface reflectance is used. For example, an LED element is mounted in a recess of a base coated with aluminum having a recess, and the surface is coated with glass and packaged.
 また、特許文献1のようにフリップチップ実装した紫外LED素子に対してシリコーン樹脂で封止したセラミック焼結体からなるパッケージが提案されている。特許文献2にはフリップチップ実装した紫外LED素子に対してシリコーン樹脂で封止したパッケージを使用し紫外光がサファイア基板を透過するものが提案されている。特許文献3には、耐熱性、耐光性の観点から、ジメチルシリコーン樹脂を主成分とした付加型の熱硬化性シリコーン樹脂にて紫外LED素子を封止するものが提案されている。 Also, a package made of a ceramic sintered body sealed with a silicone resin with respect to an ultraviolet LED element mounted on a flip chip as in Patent Document 1 has been proposed. Patent Document 2 proposes a package in which ultraviolet light is transmitted through a sapphire substrate using a package sealed with a silicone resin for an ultraviolet LED element mounted on a flip chip. Patent Document 3 proposes a method in which an ultraviolet LED element is sealed with an addition-type thermosetting silicone resin containing dimethyl silicone resin as a main component from the viewpoint of heat resistance and light resistance.
特開2011-228411JP2011-228411 特開2005-228996JP2005-228996 特開2013-138216JP2013-138216
 反射金属層が形成された紫外LED素子では電流印加時の、反射金属材料のマイグレーションを抑制するため、さらにバリア金属層が必要となる。また、前述した貼り付け剥離構造のLED素子の製造は、積層したLED素子を支持基板に貼り付ける貼付工程、貼り付け後剥離する剥離工程が必要であり、製造コストが高くなる。 In the ultraviolet LED element in which the reflective metal layer is formed, a barrier metal layer is further required to suppress the migration of the reflective metal material when a current is applied. Moreover, manufacture of the LED element of the sticking peeling structure mentioned above requires the sticking process which sticks the laminated | stacked LED element to a support substrate, and the peeling process which peels after sticking, and manufacturing cost becomes high.
 また、紫外LED素子では必須の窒化物半導体であるAlGaNは歪のコントロールが難しく、また、基板の反りの原因となりやすい。基板が反ると、貼り付け、剥離の工程が精度よく行われない問題がある。また、1ウエハあたりのチップの取れ数を多くするために、基板を大きくする(大口径化する)場合、基板の反りの影響がさらに大きくなる問題がある。 In addition, AlGaN, which is an essential nitride semiconductor for ultraviolet LED elements, is difficult to control strain, and tends to cause warping of the substrate. When the substrate is warped, there is a problem in that the attaching and peeling processes are not performed with high accuracy. Further, when the substrate is enlarged (increased in diameter) in order to increase the number of chips that can be taken per wafer, there is a problem that the influence of the warp of the substrate is further increased.
 また、上述のようにガラスでコーティングしたパッケージはガラスと空気との屈折率差からパッケージ内で全反射が起こり、光取り出し効率が低下する。 Also, in the package coated with glass as described above, total reflection occurs in the package due to the difference in refractive index between glass and air, and the light extraction efficiency decreases.
 本発明は、製造コストを抑えつつ、光取りだし効率が高い窒化物半導体発光装置を提供することを目的とする。 An object of the present invention is to provide a nitride semiconductor light emitting device with high light extraction efficiency while suppressing manufacturing cost.
 上記目的を達成するため本発明にかかる窒化物半導体発光装置は、サファイア基板と窒化物半導体層からなる紫外線を発光する窒化物半導体発光素子と、セラミック焼結体からなる基台と、前記窒化物半導体発光素子を封止する封止樹脂部を備え、前記窒化物半導体発光素子は前記サファイア基板が前記窒化物半導体層に対し下側となるよう前記基台上に配置され、前記樹脂封止部は前記窒化物半導体層の屈折率と空気の屈折率の間の屈折率の材料からなることを特徴とする。 In order to achieve the above object, a nitride semiconductor light-emitting device according to the present invention includes a nitride semiconductor light-emitting element that emits ultraviolet light including a sapphire substrate and a nitride semiconductor layer, a base made of a ceramic sintered body, and the nitride. A sealing resin portion for sealing the semiconductor light emitting device, wherein the nitride semiconductor light emitting device is disposed on the base so that the sapphire substrate is on the lower side with respect to the nitride semiconductor layer, and the resin sealing portion Is made of a material having a refractive index between the refractive index of the nitride semiconductor layer and the refractive index of air.
 この構成によると、成長基板であるサファイア基板を残すため、Si基板の貼付工程、サファイア基板の剥離工程を省略できる。また、窒化物半導体層の反りによる製造工程への悪影響が貼付工程及び剥離工程を含むものに比べて小さく、歩留りを上げ、製造コストを低減できる。 According to this configuration, since the sapphire substrate as the growth substrate is left, the Si substrate sticking step and the sapphire substrate peeling step can be omitted. In addition, the negative effect on the manufacturing process due to the warpage of the nitride semiconductor layer is smaller than that including the pasting step and the peeling step, so that the yield can be increased and the manufacturing cost can be reduced.
 セラミック焼結体は窒化物半導体層よりバンドギャップが大きいため光吸収が少なく、またセラミック焼結体内部で光が散乱しやすい。さらに、セラミック焼結体の表面は、紫外領域で反射率が高い。よって、透明なサファイア基板を下にして、セラミック焼結体を基台に取り付けることで、光の取り出し効率が向上する。また、樹脂封止部に用いられる封止樹脂の屈折率が窒化物半導体の屈折率と空気の屈折率の中間値に近いため、封止しない場合に比べ、全反射を抑制でき、光の取出し効率がさらに向上する。 The ceramic sintered body has a larger band gap than the nitride semiconductor layer, and therefore absorbs less light, and light is easily scattered inside the ceramic sintered body. Furthermore, the surface of the ceramic sintered body has a high reflectance in the ultraviolet region. Therefore, the light extraction efficiency is improved by attaching the ceramic sintered body to the base with the transparent sapphire substrate facing down. In addition, since the refractive index of the sealing resin used for the resin sealing part is close to the intermediate value between the refractive index of the nitride semiconductor and the refractive index of air, total reflection can be suppressed and light can be extracted compared to when sealing is not performed. Efficiency is further improved.
 上記構成において、前記サファイア基板の少なくとも窒化物半導体層が積層される面に凹凸が形成されてもよい。 In the above configuration, irregularities may be formed on the surface of the sapphire substrate on which at least the nitride semiconductor layer is laminated.
 上記構成において、前記サファイア基板の凹凸は凸部が二次元配置されたドット状の凹凸であってもよい。 In the above configuration, the unevenness of the sapphire substrate may be a dot-like unevenness in which convex portions are two-dimensionally arranged.
 上記構成において、前記窒化物半導体層は、n型AlGaN層とアンドープAlGaN層を含むAlGaN層を備えてもよい。 In the above configuration, the nitride semiconductor layer may include an AlGaN layer including an n-type AlGaN layer and an undoped AlGaN layer.
 上記構成において、前記アンドープAlGaN層は、前記n型AlGaN層と前記サファイア基板との間に形成されてもよい。 In the above configuration, the undoped AlGaN layer may be formed between the n-type AlGaN layer and the sapphire substrate.
 上記構成において、前記AlGaN層は全層厚が6μm以上としてもよい。 In the above configuration, the AlGaN layer may have a total thickness of 6 μm or more.
 上記構成において、前記LED素子が酸化物透明導電層をアノード側に含んでいるものとしてもよい。 In the above configuration, the LED element may include an oxide transparent conductive layer on the anode side.
 上記構成において、前記酸化物透明導電層はITOとしてもよい。 In the above configuration, the oxide transparent conductive layer may be ITO.
 上記構成において、前記酸化物透明導電層の層厚は60nm以下としてもよい。 In the above configuration, the oxide transparent conductive layer may have a thickness of 60 nm or less.
 上記構成において、前記窒化物半導体素子はn側電極とp側電極を備え、前記n側電極と前記p側電極の少なくとも一方が主電極と前記主電極から延びる枝電極とを備えてもよい。 In the above configuration, the nitride semiconductor element may include an n-side electrode and a p-side electrode, and at least one of the n-side electrode and the p-side electrode may include a main electrode and a branch electrode extending from the main electrode.
 上記構成において、前記基台はアルミナの焼結体であってもよい。 In the above configuration, the base may be an alumina sintered body.
 上記構成において、前記樹脂封止部がシリコーン樹脂で形成されてもよい。 In the above configuration, the resin sealing portion may be formed of a silicone resin.
 上記構成において、前記樹脂封止部はジメチルシリコーン樹脂で形成されてもよい。 In the above configuration, the resin sealing portion may be formed of dimethyl silicone resin.
 上記構成において、前記LED素子は発光波長が300nm以上375nm以下としてもよい。 In the above configuration, the LED element may have an emission wavelength of 300 nm to 375 nm.
 上記構成において、前記LED素子は、アノード側が光取り出し面であってもよい。 In the above configuration, the LED element may have a light extraction surface on the anode side.
 本発明によると、製造コストを抑えつつ、光取りだし効率が高い窒化物半導体発光装置を提供することができる。 According to the present invention, it is possible to provide a nitride semiconductor light emitting device with high light extraction efficiency while suppressing manufacturing cost.
本発明の第1実施形態にかかる窒化物半導体発光装置の斜視図である。1 is a perspective view of a nitride semiconductor light emitting device according to a first embodiment of the present invention. 図1に示す窒化物半導体発光装置のII-II線で切断した断面図である。FIG. 2 is a cross-sectional view taken along line II-II of the nitride semiconductor light emitting device shown in FIG. 図2に示す窒化物半導体発光装置のLED素子の断面図である。It is sectional drawing of the LED element of the nitride semiconductor light-emitting device shown in FIG. サファイア基板の拡大断面図である。It is an expanded sectional view of a sapphire substrate. サファイア基板の成長面の凹凸の配置を示す図である。It is a figure which shows arrangement | positioning of the unevenness | corrugation of the growth surface of a sapphire substrate. 図3に示すLED素子の電極の上面図である。It is a top view of the electrode of the LED element shown in FIG. 本発明の第2実施形態にかかる窒化物半導体発光装置の斜視図である。It is a perspective view of the nitride semiconductor light-emitting device concerning 2nd Embodiment of this invention. 図7に示す窒化物半導体発光装置のVIII-VIII線で切断した断面図である。FIG. 8 is a cross-sectional view taken along line VIII-VIII of the nitride semiconductor light emitting device shown in FIG.
(第1実施形態)
 本発明にかかる窒化物半導体発光装置について図面を参照して説明する。
(First embodiment)
A nitride semiconductor light emitting device according to the present invention will be described with reference to the drawings.
 窒化物半導体発光装置について
 図1、図2に示すように、窒化物半導体発光装置Aは、平板状の基台1と、基台の上面に載置されたLED素子(窒化物半導体発光素子)2と、LED素子2を封止する樹脂封止部3とを備える。
About Nitride Semiconductor Light-Emitting Device As shown in FIGS. 1 and 2, a nitride semiconductor light-emitting device A includes a flat base 1 and an LED element (nitride semiconductor light-emitting element) placed on the upper surface of the base. 2 and a resin sealing portion 3 that seals the LED element 2.
 LED素子2は、約300nm~約375nmの紫外光を発光する。LED素子2は、サファイア基板20、AlNバッファ層21、アンドープAlGaN層22、n型窒化物半導体層23、活性(発光)層24、p型窒化物半導体層25、ITO(Indium Tin Oxide)層26、SiO2カバー層27、pパッド電極28及びnパッド電極29を備える。 LED element 2 emits ultraviolet light of about 300 nm to about 375 nm. The LED element 2 includes a sapphire substrate 20, an AlN buffer layer 21, an undoped AlGaN layer 22, an n-type nitride semiconductor layer 23, an active (light emitting) layer 24, a p-type nitride semiconductor layer 25, and an ITO (Indium Tin Oxide) layer 26. , A SiO 2 cover layer 27, a p pad electrode 28 and an n pad electrode 29.
 LED素子2は、サファイア基板20の一方の主面(成長面)に半導体多層膜が形成される。図4に示すようにサファイア基板20の成長面200には、凹凸が形成される。成長面200の凹凸の凸部201は、図5に示すような平面配置となる。すなわち、凸部201の頂部は成長面200で正六角形の頂点となる位置に配置される。なお、凸部201の配列方法については、これに限定されるものではない。 In the LED element 2, a semiconductor multilayer film is formed on one main surface (growth surface) of the sapphire substrate 20. As shown in FIG. 4, irregularities are formed on the growth surface 200 of the sapphire substrate 20. The concave and convex portions 201 of the growth surface 200 have a planar arrangement as shown in FIG. That is, the top part of the convex part 201 is arrange | positioned in the position used as the vertex of a regular hexagon on the growth surface 200. FIG. Note that the arrangement method of the convex portions 201 is not limited to this.
 サファイア基板20の屈折率が約1.7で窒化物半導体の屈折率が約2.5であり屈折率の差が大きいため、窒化物半導体層で発生した紫外光はサファイア基板20との境界面で全反射しやすい。しかし、サファイア基板の成長面200には凹凸部が形成されているため、サファイア基板20と窒化物半導体層との境界において、紫外光は凹凸部分で乱反射される。この乱反射によって、反射光の光の経路を変えて、エスケープコーン内の光線量を増やす、すなわち、LED素子2から多くの光を取り出すことが可能になる。 Since the refractive index of the sapphire substrate 20 is about 1.7 and the refractive index of the nitride semiconductor is about 2.5 and the difference in refractive index is large, the ultraviolet light generated in the nitride semiconductor layer is the boundary surface with the sapphire substrate 20. It is easy to totally reflect. However, since the concavo-convex portion is formed on the growth surface 200 of the sapphire substrate, the ultraviolet light is irregularly reflected by the concavo-convex portion at the boundary between the sapphire substrate 20 and the nitride semiconductor layer. By this irregular reflection, it becomes possible to change the light path of the reflected light to increase the amount of light in the escape cone, that is, to extract a lot of light from the LED element 2.
 なお、サファイア基板20の凹凸は、上述したような、凸部201を一定の法則で配列した構成(ドットタイプ)であってもよいし、凹溝と凸部分をストライプ状に配列した構成(ストライプタイプ)であってもよい。ストライプタイプ、ドットタイプともに乱反射の効果を得ることができるが、ドットタイプの方が乱反射の効果のない平坦領域を減らすことができるため、光を取り出す効率が向上し、より好ましい。 The unevenness of the sapphire substrate 20 may have a configuration (dot type) in which the convex portions 201 are arranged according to a certain rule as described above, or a configuration in which the concave grooves and the convex portions are arranged in stripes (stripe). Type). Both the stripe type and the dot type can obtain the effect of irregular reflection, but the dot type is more preferable because it can reduce the flat region where the effect of irregular reflection is not obtained, and thus the light extraction efficiency is improved.
 本発明にかかるLED素子2に用いられる窒化物半導体は、3族元素であるアルミニウム(Al)及びガリウム(Ga)の少なくとも1つと、5族元素である窒素(N)の化合物である。そして、n型窒化物半導体層23は、上述の窒化物半導体にケイ素(Si)、ゲルマニウム(Ge)等の元素が不純物として添加(ドープ)される。p型窒化物半導体層25は、窒化物半導体にマグネシウム(Mg)、亜鉛(Zn)等の元素が不純物として添加(ドープ)される。 The nitride semiconductor used in the LED element 2 according to the present invention is a compound of at least one of the group 3 elements aluminum (Al) and gallium (Ga) and the group 5 element nitrogen (N). In the n-type nitride semiconductor layer 23, an element such as silicon (Si) or germanium (Ge) is added (doped) as an impurity to the above-described nitride semiconductor. In the p-type nitride semiconductor layer 25, elements such as magnesium (Mg) and zinc (Zn) are added (doped) as impurities to the nitride semiconductor.
 具体的には、凹凸が形成されたサファイア基板20の成長面200に層厚20nmのAlNバッファ層21が形成される。AlNバッファ層21の上面に、層厚3μmのアンドープAlGaN層22が形成される。アンドープAlGaN層22の上面に、層厚3μm、Si濃度が5×1018/cmのn-AlGaN層231が形成される。これらの各層では、Alの組成比を変更することでバンドギャップが調整される。これらの各層では、発光波長よりもバンドギャップを大きくするため、Alの組成比は7%~10%に調整される。 Specifically, an AlN buffer layer 21 having a layer thickness of 20 nm is formed on the growth surface 200 of the sapphire substrate 20 on which irregularities are formed. An undoped AlGaN layer 22 having a layer thickness of 3 μm is formed on the upper surface of the AlN buffer layer 21. An n-AlGaN layer 231 having a layer thickness of 3 μm and a Si concentration of 5 × 10 18 / cm 3 is formed on the upper surface of the undoped AlGaN layer 22. In each of these layers, the band gap is adjusted by changing the Al composition ratio. In each of these layers, the Al composition ratio is adjusted to 7% to 10% in order to make the band gap larger than the emission wavelength.
 AlGaNは側面からの光取出し効率を高めるため、ある程度の層厚が必要である。n-AlGaNは不純物をドープしていることで、dislocation climb modelに従って転位が横方向に曲がるときに結晶内に生じる引っ張り歪みによりクラックが入りやすい。一方、アンドープAlGaN層22はn-AlGaNと比較して結晶性が高いため厚く成長させても割れにくい。そこで、AlGaNの層厚を側面から光を取り出すのに必要な層厚とするため、n-AlGaN層231の下層にアンドープAlGaN層22が形成される。なお、上述のアンドープAlGaN層22及びn-AlGaN層231から光を効率よく取り出すためには、アンドープAlGaN層22とn-AlGaN層231との両層で6μm以上であることが好ましい。 AlGaN needs a certain layer thickness in order to increase the light extraction efficiency from the side. Since n-AlGaN is doped with impurities, cracks are likely to occur due to tensile strain generated in the crystal when dislocations bend in the lateral direction in accordance with the dislocation crib model. On the other hand, since the undoped AlGaN layer 22 has higher crystallinity than n-AlGaN, it is difficult to crack even if it is grown thick. Therefore, the undoped AlGaN layer 22 is formed below the n-AlGaN layer 231 in order to make the AlGaN layer thickness necessary for extracting light from the side surface. In order to efficiently extract light from the undoped AlGaN layer 22 and the n-AlGaN layer 231 described above, the thickness of both the undoped AlGaN layer 22 and the n-AlGaN layer 231 is preferably 6 μm or more.
 本実施形態で使用されるサファイア基板は光取り出し効率を上げるために凹凸を形成するが、凹凸の高さは500nm以上、加工を容易にするために1um以上がより好ましい。アンドープAlGaN層22の層厚は、サファイア基板の凹凸を埋め込むため、斜めファセット膜を形成し、平坦化するために少なくとも3um以上が好ましい。アンドープAlGaN層を形成せず直接Si-AlGaN層を形成すると平坦化が難しいため、アンドープAlGaN層上に別途n-AlGaN層231を形成する必要がある。n-AlGaN層231の層厚は、電流拡散の観点からシート抵抗を10Ωsq以下とすることが理想であるため、3μm以上が好ましい。したがってアンドープAlGaN層22とn-AlGaN層231との両層で6μm以上であることが好ましい。 The sapphire substrate used in the present embodiment forms irregularities in order to increase the light extraction efficiency, but the height of the irregularities is preferably 500 nm or more, and more preferably 1 μm or more in order to facilitate processing. The layer thickness of the undoped AlGaN layer 22 is preferably at least 3 μm or more in order to form an oblique facet film in order to fill the unevenness of the sapphire substrate and to planarize it. If an Si-AlGaN layer is formed directly without forming an undoped AlGaN layer, it is difficult to planarize, and therefore an n-AlGaN layer 231 must be separately formed on the undoped AlGaN layer. The thickness of the n-AlGaN layer 231 is preferably 3 μm or more because the sheet resistance is ideally set to 10 Ωsq or less from the viewpoint of current diffusion. Therefore, it is preferable that the thickness of both the undoped AlGaN layer 22 and the n-AlGaN layer 231 is 6 μm or more.
 また、n-AlGaN層231の結晶性を決める要因の一つは貫通転位であり、貫通転位の形成は結晶(層)同士が会合するときの格子ずれによって生じ結晶成長方向に伝播する。また、サファイア基板20の成長面200には凹凸が形成されており、アンドープAlGaN層の成長初期に斜め方向に転位を曲げる部分が形成されることで、転位がn-AlGaN層231に縦方向に伝播されにくく、貫通転移密度が下がる。以上のことから、成長初期に結晶性が高いアンドープAlGaN層22を形成することで、n-AlGaN層231の結晶性を高めることが可能である。 Also, one of the factors determining the crystallinity of the n-AlGaN layer 231 is threading dislocations, and the formation of threading dislocations is caused by lattice shift when crystals (layers) are associated with each other and propagates in the crystal growth direction. Further, the growth surface 200 of the sapphire substrate 20 is uneven, and a dislocation is formed in the n-AlGaN layer 231 in the vertical direction by forming a portion where the dislocation is bent in an oblique direction at the initial growth stage of the undoped AlGaN layer. It is difficult to propagate and the threading transition density decreases. From the above, the crystallinity of the n-AlGaN layer 231 can be increased by forming the undoped AlGaN layer 22 having high crystallinity in the initial stage of growth.
 n-AlGaN層231の上面に、層厚50nm、Si濃度が5×1018/cmとなるようにドープしたn-GaNを成長させたn-GaN層232が形成される。なお、ここではn-AlGaN層231とn-GaN層232がn型窒化物半導体層23となる。 On the upper surface of the n-AlGaN layer 231, an n-GaN layer 232 is formed by growing n-GaN doped so that the layer thickness is 50 nm and the Si concentration is 5 × 10 18 / cm 3 . Here, the n-AlGaN layer 231 and the n-GaN layer 232 become the n-type nitride semiconductor layer 23.
 n-GaN層232の上面には、層厚6nmのInGaN層241と層厚10nmのAlGaN層242とを5周期、合計10層を積層した活性(発光)層24が形成される。なお、InGaN層241のInの組成比は発光波長を300nm~375nmになるように、数%以下とし、AlGaN層242のAlの組成比は10%程度に調整される。 On the top surface of the n-GaN layer 232, an active (light emitting) layer 24 is formed by laminating a total of 10 layers of an InGaN layer 241 having a thickness of 6 nm and an AlGaN layer 242 having a thickness of 10 nm. The In composition ratio of the InGaN layer 241 is set to several percent or less so that the emission wavelength is 300 nm to 375 nm, and the Al composition ratio of the AlGaN layer 242 is adjusted to about 10%.
 活性層24の上面に、層厚40nm、Mg濃度が1×1019/cmのp-AlGaN層251が形成される。なお、p-AlGaN層251のAlの組成比は30%とした。そして、p-AlGaN層251の上面に層厚が5nm、Mg濃度が1×1020/cmのp-GaN層252が形成される。ここでは、p-AlGaN層251とp-GaN層252がp型窒化物半導体層25となる。 A p-AlGaN layer 251 having a layer thickness of 40 nm and an Mg concentration of 1 × 10 19 / cm 3 is formed on the upper surface of the active layer 24. Note that the Al composition ratio of the p-AlGaN layer 251 was 30%. Then, a p-GaN layer 252 having a layer thickness of 5 nm and an Mg concentration of 1 × 10 20 / cm 3 is formed on the upper surface of the p-AlGaN layer 251. Here, the p-AlGaN layer 251 and the p-GaN layer 252 become the p-type nitride semiconductor layer 25.
 p型窒化物半導体層25は抵抗が高いため電流を半導体積層の平面方向に拡散させるのが難しい。また、p型窒化物半導体は仕事関数が高く、コンタクト抵抗を下げるためには仕事関数が高い透明電極を設ける必要がある。そこで、p-GaN層252の上面に透明電極の中でも高い仕事関数のITOを用いたITO層26が電流拡散層として形成される。ITO層26は形成後、500℃でアニールされ透明化される。 Since the p-type nitride semiconductor layer 25 has high resistance, it is difficult to diffuse current in the planar direction of the semiconductor stack. Further, the p-type nitride semiconductor has a high work function, and it is necessary to provide a transparent electrode having a high work function in order to reduce the contact resistance. Therefore, an ITO layer 26 using ITO having a high work function among the transparent electrodes is formed on the upper surface of the p-GaN layer 252 as a current diffusion layer. After the ITO layer 26 is formed, it is annealed at 500 ° C. to be transparent.
 p型窒化物半導体層25の仕事関数が約7eVであり、ITO層26の仕事関数が約4eVである。p型窒化物半導体層25とITO層26との理想的な接合において、約3eVのショットキー障壁が生じるが、界面での拡散、欠陥を通してのホッピング伝導、界面準位によるピン止め効果により、コンタクト抵抗を下げることができる。ITO層26の上面には、SiO2カバー層27が形成される。 The work function of the p-type nitride semiconductor layer 25 is about 7 eV, and the work function of the ITO layer 26 is about 4 eV. In an ideal junction between the p-type nitride semiconductor layer 25 and the ITO layer 26, a Schottky barrier of about 3 eV is generated, but contact is caused by diffusion at the interface, hopping conduction through defects, and a pinning effect due to the interface state. Resistance can be lowered. A SiO2 cover layer 27 is formed on the upper surface of the ITO layer 26.
 ITO層26上にpパッド電極28が形成される。また、p型窒化物半導体層25側からICP(Inductively Coupled Plasma)等で上面からエッチングすることによりn-AlGaN層231の一部が露出される。AlGaN層231の露出部分に、Al、Ti等のnコンタクト290が形成され、nコンタクト290上にnパッド電極29が形成される。なお、LED素子2において、pパッド電極28がアノード側であり、nパッド電極29がカソード側である。 A p-pad electrode 28 is formed on the ITO layer 26. Further, a part of the n-AlGaN layer 231 is exposed by etching from the upper surface by ICP (Inductively Coupled Plasma) or the like from the p-type nitride semiconductor layer 25 side. An n contact 290 made of Al, Ti or the like is formed on the exposed portion of the AlGaN layer 231, and an n pad electrode 29 is formed on the n contact 290. In the LED element 2, the p pad electrode 28 is on the anode side, and the n pad electrode 29 is on the cathode side.
 GaNは発光波長が375nm以下において吸収係数が高いため、光取出し効率が悪くなる。そのため、本発明は、AlGaNを用いることで、発光波長が375nm以下で光取出し効率を向上させた。また、ITOは発光波長が300nm以下において透過率が著しく低下するが、LED素子2では、発光波長が300nm~375nmとなるようにAlの組成比を調整しているため、電流拡散層にITOを使用できた。 Since GaN has a high absorption coefficient at an emission wavelength of 375 nm or less, the light extraction efficiency deteriorates. Therefore, in the present invention, by using AlGaN, the light extraction efficiency is improved at an emission wavelength of 375 nm or less. In addition, although the transmittance of ITO significantly decreases when the emission wavelength is 300 nm or less, in the LED element 2, the composition ratio of Al is adjusted so that the emission wavelength is 300 nm to 375 nm. I was able to use it.
 また、上述のLED素子2では、電流を半導体積層の平面方向に拡散させる必要がある。しかし、n-AlGaNはバンドギャップが大きいこと、さらに、電子の移動度が高い3元混晶を得ることが困難なため、抵抗が高く電流が拡散しにくい。また、ITOは層厚が大きくなると、光の吸収が指数関数的に上昇するため、ITO層26を厚く形成するのは好ましくない。そのため、ITO層26の層厚が薄く、電流が拡散しにくい。 Further, in the LED element 2 described above, it is necessary to diffuse the current in the planar direction of the semiconductor stack. However, since n-AlGaN has a large band gap and it is difficult to obtain a ternary mixed crystal with high electron mobility, resistance is high and current is difficult to diffuse. Moreover, since the light absorption increases exponentially as the layer thickness of ITO increases, it is not preferable to form the ITO layer 26 thick. Therefore, the layer thickness of the ITO layer 26 is thin and current is difficult to diffuse.
 n-AlGaN層231およびITO層26は半導体積層の平面方向に電流が拡散しにくいため大電流駆動時において、電極直下に電流が集中する。このため電極面での光の吸収が大きくなり、光の取出し効率が低下する。そこで、LED素子2は図6に示すような、電極構成を有する。図6は図3に示すLED素子の電極構成を上面から見た図である。 In the n-AlGaN layer 231 and the ITO layer 26, current is difficult to diffuse in the planar direction of the semiconductor stack, so that current concentrates directly under the electrodes when driven with a large current. For this reason, the absorption of light on the electrode surface increases, and the light extraction efficiency decreases. Therefore, the LED element 2 has an electrode configuration as shown in FIG. 6 is a top view of the electrode configuration of the LED element shown in FIG.
 図6に示すように、pパッド電極28は円形状の主電極281を備えるとともに、主電極281を中心として反対方向に延びる一対の枝電極282を備える。一対の枝電極282は、湾曲した形状を有しており、主電極281を挟んで対向する形状となる。主電極281は電力を供給するためのワイヤを取り付けるための部分であり、主電極281と枝電極282は一体に形成される。 As shown in FIG. 6, the p-pad electrode 28 includes a circular main electrode 281 and a pair of branch electrodes 282 extending in the opposite direction with the main electrode 281 as the center. The pair of branch electrodes 282 have a curved shape and are opposed to each other with the main electrode 281 interposed therebetween. The main electrode 281 is a part for attaching a wire for supplying electric power, and the main electrode 281 and the branch electrode 282 are integrally formed.
 また、nパッド電極29は、平面視において、pパッド電極28の主電極281及び枝電極282で囲まれる範囲内に位置するように設けられる。nパッド電極29は円形状の主電極291と、主電極291を中心として反対方向に延びる一対の枝電極292を備える。主電極291もワイヤを取り付けるための部材であり、主電極291と枝電極292とが一体に形成される。枝電極292の主電極291と接続する位置は、枝電極282の主電極281と接続する位置と同じ位置となる。円周の一部を形成する枝電極282で囲まれる部分の内部に枝電極292が配置される。 Further, the n pad electrode 29 is provided so as to be located within a range surrounded by the main electrode 281 and the branch electrode 282 of the p pad electrode 28 in a plan view. The n-pad electrode 29 includes a circular main electrode 291 and a pair of branch electrodes 292 extending in opposite directions with the main electrode 291 as the center. The main electrode 291 is also a member for attaching a wire, and the main electrode 291 and the branch electrode 292 are integrally formed. The position of the branch electrode 292 connected to the main electrode 291 is the same position as the position of the branch electrode 282 connected to the main electrode 281. A branch electrode 292 is arranged inside a portion surrounded by the branch electrode 282 that forms a part of the circumference.
 pパッド電極28とnパッド電極29の間に電流を流すと、枝電極282と枝電極292の間で電流が流れる。このとき、電極の位置がずれているので活性層24の広い範囲に拡散した電流を流すことができ、光取出し効率が向上する。なお、図6に示す電極の形状は一例でありこれに限定されるものではない。広い範囲に電流を拡散できる電極の構成を広く採用することが可能である。また、図6に示す構成では、pパッド電極28及びnパッド電極29の両方が枝電極を備えるが、少なくとも一方に備わる構成であってもよい。 When a current is passed between the p pad electrode 28 and the n pad electrode 29, a current flows between the branch electrode 282 and the branch electrode 292. At this time, since the position of the electrode is shifted, it is possible to flow a diffused current over a wide range of the active layer 24, and the light extraction efficiency is improved. In addition, the shape of the electrode shown in FIG. 6 is an example, and is not limited to this. It is possible to widely adopt an electrode configuration capable of diffusing current over a wide range. Further, in the configuration shown in FIG. 6, both the p pad electrode 28 and the n pad electrode 29 include branch electrodes, but may be configured to be provided in at least one of them.
 LED素子2の製造方法として、大型のサファイア基板の凹凸が形成されている成長面に、上述したAlNバッファ層21、アンドープAlGaN層22、n-AlGaN層231、n-GaN層232、活性層(InGaN241、AlGaN242)24、p-AlGaN層251、p-GaN層252、ITO層26、SiO2カバー層27を積層する。そして、アニーリングの後、メサエッチでn-AlGaN層231を露出させ、露出した部分にnコンタクト290を形成した後、nコンタクト290の上面にnパッド電極29を形成する。さらにサファイア基板を所定の厚さまで研磨した後、1つのLED素子を構成する領域ごとに分割してLED素子2が形成される。このように、大型の基板を用いて半導体層、保護層、電極を形成した後、分割してチップを生成する方法を用いることで、作業の効率を高めることが可能である。 As a manufacturing method of the LED element 2, the above-described AlN buffer layer 21, undoped AlGaN layer 22, n-AlGaN layer 231, n-GaN layer 232, active layer ( InGaN 241, AlGaN 242) 24, p-AlGaN layer 251, p-GaN layer 252, ITO layer 26, and SiO 2 cover layer 27 are laminated. Then, after annealing, the n-AlGaN layer 231 is exposed by mesa etching, an n contact 290 is formed on the exposed portion, and then an n pad electrode 29 is formed on the upper surface of the n contact 290. Further, after the sapphire substrate is polished to a predetermined thickness, the LED element 2 is formed by being divided into regions constituting one LED element. Thus, after forming a semiconductor layer, a protective layer, and an electrode using a large substrate, it is possible to increase work efficiency by using a method in which a chip is generated by being divided.
 以上のように形成されたLED素子2(LEDチップ)をセラミック製の基台1に取り付ける。基台1は、アルミナの焼結体であり、白色のセラミック板である。なお、基台1を構成する材料は、バンドギャップが高く、反射率が高い材料であればアルミナに限定されない。また、基台1の表面には導電性の高い金属(例えば、銅、アルミニウム等からなるパターン配線11が形成される。 The LED element 2 (LED chip) formed as described above is attached to the ceramic base 1. The base 1 is a sintered body of alumina and is a white ceramic plate. The material constituting the base 1 is not limited to alumina as long as the material has a high band gap and a high reflectance. A pattern wiring 11 made of a highly conductive metal (for example, copper, aluminum or the like) is formed on the surface of the base 1.
 このように形成された基台1の予め決められている設置位置にLED素子2を熱硬化性のダイボンドペースト樹脂により固定する。詳しくは、基台1の設置位置及び(又は)LED素子2のサファイア基板20の成長面200と反対側の面にダイボンドペースト樹脂を塗布する。そして、サファイア基板20が基台1と対向するようにLED素子2を基台1に配置し、加熱硬化することでLED素子2を基台1に実装する。その後、基台1のパターン配線11とpパッド電極28、nパッド電極29とを、抵抗が低い金属(例えば、金)のワイヤ12で接続する。 The LED element 2 is fixed to a predetermined installation position of the base 1 thus formed with a thermosetting die bond paste resin. Specifically, a die bond paste resin is applied to the installation position of the base 1 and / or the surface opposite to the growth surface 200 of the sapphire substrate 20 of the LED element 2. Then, the LED element 2 is arranged on the base 1 so that the sapphire substrate 20 faces the base 1, and the LED element 2 is mounted on the base 1 by heat curing. Thereafter, the pattern wiring 11 of the base 1 is connected to the p pad electrode 28 and the n pad electrode 29 with a wire 12 of a metal (for example, gold) having a low resistance.
 樹脂封止部3は、LED素子2と大気との接触を抑制するために設けられ、LED発光波長に対し透明な樹脂からなる。LED素子2が実装された基台1の上面にLED素子2を完全に囲むように、樹脂封止部3が流入される。 The resin sealing portion 3 is provided to suppress contact between the LED element 2 and the atmosphere, and is made of a resin that is transparent to the LED emission wavelength. The resin sealing portion 3 flows into the upper surface of the base 1 on which the LED element 2 is mounted so as to completely surround the LED element 2.
 基台1は、平板状の部材であり、このまま、流動体である樹脂封止部3を流入させると、樹脂が流れてしまい、LED素子2が樹脂封止部3から露出してしまう場合がある。そこで、窒化物半導体発光装置Aでは、セラミック基台1のLED素子2の周囲を円周状に撥水加工し、撥水加工されている内部に流動体の樹脂封止部3を流し込む。円周状に撥水加工がされるため、樹脂封止部3は表面張力によってドーム状に盛り上がる。この樹脂封止部3を加熱して硬化させ、ドーム状の樹脂封止部3のキャップを形成する。撥水加工は撥水性の樹脂をドームを形成する外縁に円形に堆積させることで得られる。 The base 1 is a plate-like member, and if the resin sealing part 3 that is a fluid is allowed to flow as it is, the resin flows and the LED element 2 may be exposed from the resin sealing part 3. is there. Therefore, in the nitride semiconductor light emitting device A, the periphery of the LED element 2 of the ceramic base 1 is subjected to water repellent processing in a circumferential shape, and the fluid resin sealing portion 3 is poured into the water repellent processed inside. Since the water-repellent processing is performed in a circumferential shape, the resin sealing portion 3 rises like a dome due to surface tension. The resin sealing portion 3 is heated and cured to form a cap of the dome-shaped resin sealing portion 3. The water repellent finish is obtained by depositing a water repellent resin in a circular shape on the outer edge forming the dome.
 窒化物半導体発光装置Aでは、樹脂封止部3は外気を遮断するとともに、紫外線により劣化しにくい材料を用いることが好ましい。例として、熱硬化性のシリコーン(Si)樹脂、ジメチルシリコーン樹脂などがある。ジメチルシリコーン樹脂に含まれるメチル基は紫外線に対して安定な性質があるため、ジメチルシリコーン樹脂はシリコーン樹脂よりも紫外線による劣化が少なく、より好ましい。 In the nitride semiconductor light emitting device A, it is preferable that the resin sealing portion 3 is made of a material that blocks outside air and hardly deteriorates due to ultraviolet rays. Examples include thermosetting silicone (Si) resin and dimethyl silicone resin. Since the methyl group contained in the dimethyl silicone resin has a property stable to ultraviolet rays, the dimethyl silicone resin is more preferable because it is less deteriorated by ultraviolet rays than the silicone resin.
 本発明にかかる窒化物半導体発光装置AのLED素子2において、成長基板として用いられる他の基板よりも安価なサファイア基板を用いているので素子の構成部材のコストを低減できる。また、サファイア基板20を残すため、剥離の工程が不要となる。これらにより、LED素子2の製造コストを低減することが可能である。 In the LED element 2 of the nitride semiconductor light emitting device A according to the present invention, since a sapphire substrate that is less expensive than another substrate used as a growth substrate is used, the cost of the component members of the element can be reduced. Further, since the sapphire substrate 20 is left, a peeling process is not necessary. As a result, the manufacturing cost of the LED element 2 can be reduced.
 また、本発明にかかる窒化物半導体発光装置Aは、サファイア基板20が発光層に対し基台1側となるように配置される。セラミック(アルミナ)は表面反射率が高いこと、バンドギャップが大きく、焼結体であるため、光の散乱効果が高ことから、LED発光を吸収しにくい。また、サファイア基板20とセラミックの基台1とを隣合うように配置することから、本発明の窒化物半導体発光装置Aの光の取出し効率が向上する。 Further, the nitride semiconductor light emitting device A according to the present invention is arranged such that the sapphire substrate 20 is on the base 1 side with respect to the light emitting layer. Ceramic (alumina) has a high surface reflectivity, a large band gap, and is a sintered body. Therefore, it has a high light scattering effect, so it is difficult to absorb LED light emission. Moreover, since the sapphire substrate 20 and the ceramic base 1 are arranged so as to be adjacent to each other, the light extraction efficiency of the nitride semiconductor light emitting device A of the present invention is improved.
 さらに、窒化物半導体層(LED素子2)の屈折率が約2.5であり、封止樹脂(シリコーン樹脂、ジメチルシリコーン樹脂)の屈折率が約1.4である。窒化物半導体層と封止樹脂との屈折率の差は、窒化物半導体層と空気との屈折率の差よりも小さい。そのため、窒化物半導体層と封止樹脂の界面では、空気と接している場合よりも、LED発光の全反射が発生しにくい。そして、窒化物半導体層と封止樹脂の屈折率の差と、封止樹脂と空気の屈折率の差とが近い値になるため、窒化物半導体層を封止樹脂で封止することで封止しない場合に比べて光の取出し効率が向上する。 Furthermore, the refractive index of the nitride semiconductor layer (LED element 2) is about 2.5, and the refractive index of the sealing resin (silicone resin, dimethyl silicone resin) is about 1.4. The difference in refractive index between the nitride semiconductor layer and the sealing resin is smaller than the difference in refractive index between the nitride semiconductor layer and air. Therefore, total reflection of LED light emission is less likely to occur at the interface between the nitride semiconductor layer and the sealing resin than when it is in contact with air. Since the difference in refractive index between the nitride semiconductor layer and the sealing resin and the difference in refractive index between the sealing resin and air are close to each other, the nitride semiconductor layer is sealed by sealing with the sealing resin. The light extraction efficiency is improved compared to the case where it does not stop.
 本発明にかかる窒化物半導体発光装置Aが、セラミックの基台1にサファイア基板20が発光層に対し基台1側となるようにLED素子2を配置し、さらに、LED素子2を樹脂封止部3で封止することで、製造コストを削減し、光の取出し効率を高める、すなわち、出射光の強度を高めることが可能である。 In the nitride semiconductor light emitting device A according to the present invention, the LED element 2 is arranged on the ceramic base 1 so that the sapphire substrate 20 is on the base 1 side with respect to the light emitting layer, and the LED element 2 is sealed with resin By sealing with the portion 3, it is possible to reduce the manufacturing cost and increase the light extraction efficiency, that is, increase the intensity of the emitted light.
(第2実施形態)
 本発明にかかる窒化物半導体発光装置について図面を参照して説明する。図7は本発明にかかる窒化物半導体発光装置の斜視図であり、図8は図7に示す窒化物半導体発光装置をVIII-VIII線で切断した断面図である。なお、窒化物半導体発光装置Bは、基台4が異なる以外は、第1実施形態の窒化物半導体発光装置Aと同じ構成である。つまり、LED素子2は同じ構成である。
(Second Embodiment)
A nitride semiconductor light emitting device according to the present invention will be described with reference to the drawings. 7 is a perspective view of the nitride semiconductor light emitting device according to the present invention, and FIG. 8 is a cross-sectional view of the nitride semiconductor light emitting device shown in FIG. 7 cut along the line VIII-VIII. The nitride semiconductor light emitting device B has the same configuration as the nitride semiconductor light emitting device A of the first embodiment except that the base 4 is different. That is, the LED element 2 has the same configuration.
 窒化物半導体発光装置Bは、中央に円柱状の凹部40を備えた直方体形状の基台4を用いる。凹部41は、平面視円形状の底面部401と、底面部401の周面に接続する周壁部402とを有する。周壁部402は凹部40の開口に向かって広がる形状となる。 The nitride semiconductor light emitting device B uses a rectangular parallelepiped base 4 having a cylindrical recess 40 at the center. The recess 41 includes a bottom surface portion 401 having a circular shape in plan view and a peripheral wall portion 402 connected to the peripheral surface of the bottom surface portion 401. The peripheral wall 402 has a shape that widens toward the opening of the recess 40.
 そして、基台4にはパターン配線41が形成される。パターン配線41は底面部401に形成され、LED素子2に電力を供給する。パターン配線41は、基台1のパターン配線11と同様の構成であるため詳細は省略する。 And, the pattern wiring 41 is formed on the base 4. The pattern wiring 41 is formed on the bottom surface portion 401 and supplies power to the LED element 2. Since the pattern wiring 41 has the same configuration as the pattern wiring 11 of the base 1, details are omitted.
 窒化物半導体発光装置Bは次のように作製される。底面部401のLED素子2が取り付けられる部分又はLED素子2のサファイア基板20の成長面200と反対側の面の少なくとも一方にダイボンドペーストを塗布し、LED素子2を底面部401にサファイア基板20が隣接するように取り付ける。次に、ダイボンドペーストを硬化し、LED素子2を底面部401に固定する。パターン配線11とpパッド電極28と、パターン配線11とnパッド電極29とをそれぞれワイヤ12で接続する。 The nitride semiconductor light emitting device B is manufactured as follows. A die bond paste is applied to at least one of the portion of the bottom surface portion 401 where the LED element 2 is attached or the surface of the LED device 2 opposite to the growth surface 200 of the sapphire substrate 20, and the LED device 2 is attached to the bottom surface portion 401 of the sapphire substrate 20. Install so that they are adjacent. Next, the die bond paste is cured, and the LED element 2 is fixed to the bottom surface portion 401. The pattern wiring 11 and the p pad electrode 28 are connected to the pattern wiring 11 and the n pad electrode 29 by the wire 12, respectively.
 次に、凹部40に封止樹脂を流入し、硬化させることで樹脂封止部5を形成する。樹脂封止部5は、凹部40に流入させるため、樹脂が広く流れてしまうのを抑制できる。なお、樹脂封止部5でLED素子2及びワイヤ12を確実に封止するため、凹部40の深さは少なくともLED素子2の厚さよりも深く形成される。 Next, the resin sealing portion 5 is formed by flowing the sealing resin into the recess 40 and curing it. Since the resin sealing part 5 is made to flow into the recessed part 40, it can suppress that resin flows widely. In addition, in order to seal LED element 2 and the wire 12 reliably with the resin sealing part 5, the depth of the recessed part 40 is formed deeper than the thickness of the LED element 2 at least.
 窒化物半導体発光装置Bでは、LED素子2で発生した光は凹部40の開口から出射される。凹部40の周壁部402が開口に向けて広がるような筒形状とすることで、周壁部402に入射した光は、開口側に向けて反射される。このような構成とすることで、LED素子2の光を集光させることができ、光の取出し効率を高めることができる。 In the nitride semiconductor light emitting device B, the light generated by the LED element 2 is emitted from the opening of the recess 40. By making the cylindrical shape such that the peripheral wall portion 402 of the recess 40 spreads toward the opening, the light incident on the peripheral wall portion 402 is reflected toward the opening side. By setting it as such a structure, the light of the LED element 2 can be condensed and the extraction efficiency of light can be improved.
 これ以外の特徴は、第1実施形態と同じである。 Other features are the same as in the first embodiment.
 以上に示したような、本発明にかかる窒化物半導体発光装置の効果を確認するため、実際にLED素子又は窒化物半導体発光装置を作製した。以下にその確認結果について説明する。 In order to confirm the effect of the nitride semiconductor light emitting device according to the present invention as described above, an LED element or a nitride semiconductor light emitting device was actually manufactured. The confirmation result will be described below.
(ITO層厚の効果の確認)
 第1の実施形態においてLED素子2のITO層26の層厚を変化させ、LED素子2からの発光波長および光出力を測定した。
(Confirmation of the effect of ITO layer thickness)
In the first embodiment, the layer thickness of the ITO layer 26 of the LED element 2 was changed, and the emission wavelength and light output from the LED element 2 were measured.
 具体的には、ITO層26の層厚を、50nm、90nm、130nmとした試料A、試料B、試料Cをそれぞれ作製した。ITO層26の層厚以外はすべての試料で同じ構成となる。 Specifically, Sample A, Sample B, and Sample C, in which the thickness of the ITO layer 26 was 50 nm, 90 nm, and 130 nm, were prepared. Except for the thickness of the ITO layer 26, all the samples have the same configuration.
 このように形成したLED素子2を銀コートされたTO18マウント上にサファイア基板20が下になるように取り付け、pパッド電極28、nパッド電極29には、金のワイヤ12を接続する。 The LED element 2 formed in this manner is mounted on a silver-coated TO18 mount so that the sapphire substrate 20 faces down, and a gold wire 12 is connected to the p pad electrode 28 and the n pad electrode 29.
 各試料に50mAの電流を印加し、LED発光を積分球で光出力と発光波長を測定した。試料Aは波長367.2nmで出力4.57mWであった。試料Bは波長368.3で出力2.29mWであった。試料Cは波長365.3で出力2.28mWであった。 A current of 50 mA was applied to each sample, and LED light emission was measured with an integrating sphere for light output and emission wavelength. Sample A had a wavelength of 367.2 nm and an output of 4.57 mW. Sample B had a wavelength of 368.3 and an output of 2.29 mW. Sample C had a wavelength of 365.3 and an output of 2.28 mW.
 以上の結果から、ITO層26の層厚が50nmのときに顕著な出力の改善が見られた。そのため、ITO層26の層厚としては50nm以下が好ましい。実際には層厚の揺らぎを考慮して60nm以下とした。 From the above results, a remarkable improvement in output was observed when the thickness of the ITO layer 26 was 50 nm. Therefore, the thickness of the ITO layer 26 is preferably 50 nm or less. Actually, the thickness was set to 60 nm or less in consideration of the fluctuation of the layer thickness.
(封止樹脂の効果の確認)
 次に、ITO層26の層厚を50nmとした試料Aの構成の活性層24とn-AlGaN層231との間のn-GaN層232を除いたLED素子を作製した。なお、n-GaN層は吸収層として働き、光取り出し効率を下げている可能性があるため封止樹脂の有無の効果をより明確にするため除いた。その他の構成は第1実施形態と同じである。試料をアルミナの焼結体の基台1に固定し、pパッド電極28及びnパッド電極29にワイヤ12を配線したものを銀コートされたTO18マウントに基台1ごと配置した窒化物半導体発光装置を二つ作製した。
(Confirmation of the effect of sealing resin)
Next, an LED element was manufactured by removing the n-GaN layer 232 between the active layer 24 and the n-AlGaN layer 231 having the structure of Sample A with the ITO layer 26 having a thickness of 50 nm. Note that the n-GaN layer functions as an absorption layer, and may have lowered the light extraction efficiency, so it was removed to clarify the effect of the presence or absence of the sealing resin. Other configurations are the same as those of the first embodiment. A nitride semiconductor light emitting device in which a sample is fixed to a base 1 of an alumina sintered body and a wire 12 is wired to a p pad electrode 28 and an n pad electrode 29 and the base 1 is placed on a TO18 mount coated with silver. Two were produced.
 そして、一方のLED素子をシリコーン樹脂で封止し試料Dとした。他方は、LED素子を封止せず試料Eとした。そして、試料D、試料Eに対して試料A、試料B、試料Cの比較と同様、LED素子を50mAの電流で動作して比較した。発光波長はいずれも374nmであった。そして、出力は試料Dが17.2mWであったのに対し、試料Eが13.3mWであった。 Then, one LED element was sealed with a silicone resin to obtain a sample D. The other was used as Sample E without sealing the LED element. Then, as in the comparison of sample A, sample B, and sample C with respect to sample D and sample E, the LED elements were operated at a current of 50 mA and compared. The emission wavelengths were all 374 nm. The output of sample D was 17.2 mW, while that of sample E was 13.3 mW.
 本発明にかかる窒化物半導体発光装置では、LED素子をシリコーン樹脂で封止した方が、光出力が高く、光取出し効率が向上していることが確認できた。 In the nitride semiconductor light emitting device according to the present invention, it was confirmed that the light output was higher and the light extraction efficiency was improved when the LED element was sealed with silicone resin.
(基台の形状の効果の確認)
 さらに、試料Dと、試料Dの基台の形状を平板状の基台1から凹部を有するアルミナの焼結体である基台4とした試料Fを作製し、その配光性を比較した。その結果、試料Fの方が前方に配光することができた。
(Confirmation of base shape effect)
Further, Sample D and Sample F were prepared by changing the shape of the base of Sample D from the flat base 1 to the base 4 that is a sintered body of alumina having a recess, and the light distribution was compared. As a result, the sample F was able to distribute light forward.
(樹脂材料の比較)
 また、試料Dと、試料Dの封止樹脂をシリコーン樹脂からジメチルシリコーン樹脂に変更した試料Gを作製し、発光による封止樹脂部3の劣化を比較した。その結果、試料Gは試料Dよりも樹脂封止部3の劣化(樹脂のクラック)が抑制され、シリコーン樹脂が好適であるが、ジメチルシリコーン樹脂がより好適であることが分かった。
(Comparison of resin materials)
Further, Sample D and Sample G in which the sealing resin of Sample D was changed from silicone resin to dimethyl silicone resin were prepared, and the deterioration of sealing resin portion 3 due to light emission was compared. As a result, it was found that the sample G is more preferable than the sample D in the deterioration of the resin sealing portion 3 (resin cracking), and the silicone resin is preferable, but the dimethyl silicone resin is more preferable.
 以上、本発明の実施形態について説明したが、本発明はこの内容に限定されるものではない。また本発明の実施形態は、発明の趣旨を逸脱しない限り、種々の改変を加えることが可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this content. The embodiments of the present invention can be variously modified without departing from the spirit of the invention.
1 基台
11 パターン配線
12 ワイヤ
2 LED素子
20 サファイア基板
200 成長面
201 凸部
21 AlNバッファ層
22 アンドープAlGaN層
23 n型窒化物半導体層
231 n-AlGaN層
232 n-GaN層
24 活性(発光)層
241 InGaN層
242 AlGaN層
25 p型窒化物半導体層
251 p-AlGaN層
252 p-GaN層
26 ITO層
27 SiO2カバー層
28 pパッド電極
281 主電極
282 枝電極
29 nパッド電極
291 主電極
292 枝電極
290 導電膜
3 樹脂封止部
4 基台
40 凹部
401 底部
402 周側壁
41 パターン配線
5 樹脂封止部
DESCRIPTION OF SYMBOLS 1 Base 11 Pattern wiring 12 Wire 2 LED element 20 Sapphire substrate 200 Growth surface 201 Convex part 21 AlN buffer layer 22 Undoped AlGaN layer 23 n-type nitride semiconductor layer 231 n-AlGaN layer 232 n-GaN layer 24 Activity (light emission) Layer 241 InGaN layer 242 AlGaN layer 25 p-type nitride semiconductor layer 251 p-AlGaN layer 252 p-GaN layer 26 ITO layer 27 SiO2 cover layer 28 p-pad electrode 281 main electrode 282 branch electrode 29 n-pad electrode 291 main electrode 292 branch Electrode 290 Conductive film 3 Resin sealing part 4 Base 40 Recess 401 Bottom 402 Peripheral side wall 41 Pattern wiring 5 Resin sealing part

Claims (11)

  1.  サファイア基板と窒化物半導体層からなる紫外光を発光する窒化物半導体発光素子と、
     セラミック焼結体からなる基台と、
     前記窒化物半導体発光素子を樹脂封止する樹脂封止部とを備え、
     前記窒化物半導体発光素子は前記サファイア基板が前記窒化物半導体層に対し下側となるよう前記基台上に配置され、
     前記樹脂封止部は前記窒化物半導体層の屈折率と空気の屈折率の間の屈折率の材料からなることを特徴とする窒化物半導体発光装置。
    A nitride semiconductor light-emitting element that emits ultraviolet light comprising a sapphire substrate and a nitride semiconductor layer;
    A base made of a ceramic sintered body;
    A resin sealing portion for sealing the nitride semiconductor light emitting element with resin,
    The nitride semiconductor light emitting device is disposed on the base such that the sapphire substrate is on the lower side with respect to the nitride semiconductor layer,
    The nitride semiconductor light emitting device, wherein the resin sealing portion is made of a material having a refractive index between the refractive index of the nitride semiconductor layer and the refractive index of air.
  2.  前記サファイア基板の前記窒化物半導体層が積層される面に凹凸が形成されることを特徴とする請求項1記載の窒化物半導体発光装置。 2. The nitride semiconductor light emitting device according to claim 1, wherein irregularities are formed on a surface of the sapphire substrate on which the nitride semiconductor layer is laminated.
  3.  前記窒化物半導体層は、n型AlGaN層とアンドープAlGaN層を含むAlGaN層を備えることを特徴とする請求項1又は請求項2に記載の窒化物半導体発光装置。 The nitride semiconductor light emitting device according to claim 1 or 2, wherein the nitride semiconductor layer includes an AlGaN layer including an n-type AlGaN layer and an undoped AlGaN layer.
  4.  前記アンドープAlGaN層は、前記n型AlGaN層と前記サファイア基板との間に形成されることを特徴とする請求項3に記載の窒化物半導体発光装置。 4. The nitride semiconductor light emitting device according to claim 3, wherein the undoped AlGaN layer is formed between the n-type AlGaN layer and the sapphire substrate.
  5.  前記AlGaN層の全層厚が6μm以上であることを特徴とする請求項3又は請求項4に記載の窒化物半導体発光装置。 The nitride semiconductor light emitting device according to claim 3 or 4, wherein the total thickness of the AlGaN layer is 6 µm or more.
  6.  前記窒化物半導体発光素子は酸化物透明導電層を備えることを特徴とする請求項1から請求項5のいずれかに記載の窒化物半導体発光装置。 The nitride semiconductor light-emitting device according to claim 1, wherein the nitride semiconductor light-emitting element includes an oxide transparent conductive layer.
  7.  前記酸化物透明導電層はITOからなることを特徴とする請求項6に記載の窒化物半導体発光装置。 The nitride semiconductor light emitting device according to claim 6, wherein the transparent oxide conductive layer is made of ITO.
  8.  前記酸化物透明導電層の層厚は60nm以下であることを特徴とする請求項7に記載の窒化物半導体発光装置。 8. The nitride semiconductor light emitting device according to claim 7, wherein the oxide transparent conductive layer has a thickness of 60 nm or less.
  9.  前記窒化物半導体発光素子はn側電極とp側電極とを備え、前記n側電極と前記p側電極の少なくとも一方が主電極と前記主電極から延びる枝電極からなることを特徴とする請求項1から請求項8のいずれかに記載の窒化物半導体発光装置。 The nitride semiconductor light emitting device includes an n-side electrode and a p-side electrode, and at least one of the n-side electrode and the p-side electrode includes a main electrode and a branch electrode extending from the main electrode. The nitride semiconductor light-emitting device according to claim 1.
  10.  前記基台はアルミナの焼結体からなることを特徴とする請求項1から請求項9のいずれかに記載の窒化物半導体発光装置。 The nitride semiconductor light emitting device according to any one of claims 1 to 9, wherein the base is made of an alumina sintered body.
  11.  前記樹脂封止部がシリコーン樹脂又はジメチルシリコーン樹脂からなることを特徴とする請求項1から請求項10のいずれかに記載の窒化物半導体発光装置。 The nitride semiconductor light emitting device according to any one of claims 1 to 10, wherein the resin sealing portion is made of a silicone resin or a dimethyl silicone resin.
PCT/JP2015/065079 2014-09-30 2015-05-26 Nitride semiconductor light emitting device WO2016051857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014201027 2014-09-30
JP2014-201027 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016051857A1 true WO2016051857A1 (en) 2016-04-07

Family

ID=55629913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065079 WO2016051857A1 (en) 2014-09-30 2015-05-26 Nitride semiconductor light emitting device

Country Status (1)

Country Link
WO (1) WO2016051857A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017265A (en) * 2015-07-06 2017-01-19 ナイトライド・セミコンダクター株式会社 Light-emitting device
JP2019079994A (en) * 2017-10-26 2019-05-23 豊田合成株式会社 Template substrate and manufacturing method thereof, and light-emitting element

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280609A (en) * 2001-03-21 2002-09-27 Mitsubishi Cable Ind Ltd Ultraviolet light emitting element
JP2005072571A (en) * 2003-08-07 2005-03-17 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
JP2005136123A (en) * 2003-10-30 2005-05-26 Kyocera Corp Package for housing light-emitting element, and light-emitting device
JP2006032726A (en) * 2004-07-16 2006-02-02 Kyocera Corp Light emitting device
JP2006054224A (en) * 2004-08-10 2006-02-23 Sanyo Electric Co Ltd Light-emitting device
JP2006245555A (en) * 2005-02-07 2006-09-14 Showa Denko Kk Translucent electrode
JP2007134656A (en) * 2005-11-14 2007-05-31 Toyoda Gosei Co Ltd Fluorescent board and light emitting device having it
JP2008210900A (en) * 2007-02-24 2008-09-11 Nichia Chem Ind Ltd Semiconductor light emitting element and light emitting device provided with the same
JP2012038950A (en) * 2010-08-09 2012-02-23 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP2012089754A (en) * 2010-10-21 2012-05-10 Uv Craftory Co Ltd Nitride semiconductor ultraviolet light-emitting element
JP2013187484A (en) * 2012-03-09 2013-09-19 Sharp Corp Nitride semiconductor light-emitting element and manufacturing method of the same
JP2013254814A (en) * 2012-06-06 2013-12-19 Sharp Corp Semiconductor device manufacturing process and semiconductor device manufactured thereby

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280609A (en) * 2001-03-21 2002-09-27 Mitsubishi Cable Ind Ltd Ultraviolet light emitting element
JP2005072571A (en) * 2003-08-07 2005-03-17 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
JP2005136123A (en) * 2003-10-30 2005-05-26 Kyocera Corp Package for housing light-emitting element, and light-emitting device
JP2006032726A (en) * 2004-07-16 2006-02-02 Kyocera Corp Light emitting device
JP2006054224A (en) * 2004-08-10 2006-02-23 Sanyo Electric Co Ltd Light-emitting device
JP2006245555A (en) * 2005-02-07 2006-09-14 Showa Denko Kk Translucent electrode
JP2007134656A (en) * 2005-11-14 2007-05-31 Toyoda Gosei Co Ltd Fluorescent board and light emitting device having it
JP2008210900A (en) * 2007-02-24 2008-09-11 Nichia Chem Ind Ltd Semiconductor light emitting element and light emitting device provided with the same
JP2012038950A (en) * 2010-08-09 2012-02-23 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP2012089754A (en) * 2010-10-21 2012-05-10 Uv Craftory Co Ltd Nitride semiconductor ultraviolet light-emitting element
JP2013187484A (en) * 2012-03-09 2013-09-19 Sharp Corp Nitride semiconductor light-emitting element and manufacturing method of the same
JP2013254814A (en) * 2012-06-06 2013-12-19 Sharp Corp Semiconductor device manufacturing process and semiconductor device manufactured thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017265A (en) * 2015-07-06 2017-01-19 ナイトライド・セミコンダクター株式会社 Light-emitting device
JP2019079994A (en) * 2017-10-26 2019-05-23 豊田合成株式会社 Template substrate and manufacturing method thereof, and light-emitting element

Similar Documents

Publication Publication Date Title
JP7281231B2 (en) Semiconductor device and semiconductor device package
KR101552413B1 (en) Light emitting device including n-type gallium-nitride layer having multiple conductive intervening layers and manufacturing method thereof
JP5752855B2 (en) Method for manufacturing light emitting device
US8686430B2 (en) Buffer layer for GaN-on-Si LED
KR102450150B1 (en) Semiconductor light emitting device
JP5151301B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5740532B2 (en) Light emitting device and manufacturing method thereof
US10014442B2 (en) Method for manufacturing vertical type light emitting diode, vertical type light emitting diode, method for manufacturing ultraviolet ray light emitting diode, and ultraviolet ray light emitting diode
JP5856293B2 (en) Light emitting device and manufacturing method thereof
JP2017520118A (en) Wavelength-converted light-emitting device with small light source
JP2013120829A (en) Nitride semiconductor ultraviolet light-emitting device
JP2010171142A (en) Semiconductor light emitting element, and semiconductor light emitting device
JP2008300621A (en) Semiconductor light-emitting element and its manufacturing method
JP2007281037A (en) Semiconductor light emitting element, and its manufacturing method
JP7445160B2 (en) light emitting element
KR100735488B1 (en) Method for forming the gan type led device
KR20130066308A (en) Light emitting device
US20130341661A1 (en) Semiconductor light emitting element
WO2016051857A1 (en) Nitride semiconductor light emitting device
JP2013211598A (en) Semiconductor light-emitting diode element and semiconductor light-emitting device
JP5319820B2 (en) Semiconductor light emitting diode element and semiconductor light emitting device
JP2016171141A (en) Nitride light emitting element and nitride light emitting element manufacturing method
JP2011066453A (en) Semiconductor light emitting element, and semiconductor light emitting device
KR101580213B1 (en) Manufacturing method for UV-light emitting diode and UV-light emitting diode
KR101550913B1 (en) 3 fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15845636

Country of ref document: EP

Kind code of ref document: A1