JP2006032713A - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
JP2006032713A
JP2006032713A JP2004210379A JP2004210379A JP2006032713A JP 2006032713 A JP2006032713 A JP 2006032713A JP 2004210379 A JP2004210379 A JP 2004210379A JP 2004210379 A JP2004210379 A JP 2004210379A JP 2006032713 A JP2006032713 A JP 2006032713A
Authority
JP
Japan
Prior art keywords
solid
image sensor
photoelectric conversion
state imaging
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004210379A
Other languages
English (en)
Other versions
JP4564794B2 (ja
JP2006032713A5 (ja
Inventor
Yasuo Suda
康夫 須田
Akihiko Nagano
明彦 長野
Goro Noto
悟郎 能登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004210379A priority Critical patent/JP4564794B2/ja
Priority to US11/099,447 priority patent/US7119319B2/en
Priority to CNB2005100651060A priority patent/CN100403545C/zh
Priority to KR1020050029519A priority patent/KR100733853B1/ko
Publication of JP2006032713A publication Critical patent/JP2006032713A/ja
Publication of JP2006032713A5 publication Critical patent/JP2006032713A5/ja
Application granted granted Critical
Publication of JP4564794B2 publication Critical patent/JP4564794B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】 変倍機能もしくはピント調節機能を備えた撮影レンズを有する撮像装置において、撮像素子の集光効率を高めることによって品位の高い画像を得る。
【解決手段】 各固体撮像素子が入射光(60)を電気信号に変換する光電変換素子(31)と、マイクロレンズ(902)と、樹脂に、酸化チタン、窒化シリコン、五酸化ニオブのいずれかを分散させたコンポジット材から成る光導波路(36)と、疎水性多孔質シリカから成る層間絶縁層(38)とを有し、複数の前記固体撮像素子を2次元に並べて成るイメージセンサを搭載する撮像装置の射出瞳から光電変換素子までの距離をL、イメージセンサの中心から、固体撮像素子の位置までの距離をH、光電変換素子からマイクロレンズの頂点までの高さをD、イメージセンサにおける、複数の固体撮像素子の間隔をP、光導波路の屈折率をN、層間絶縁層の屈折率をNとした場合に、距離(H)に位置する固体撮像素子が、
Figure 2006032713

但し、0<a<1を満たす。
【選択図】 図12

Description

本発明はデジタルスチルカメラ、ビデオカメラ、監視カメラ、あるいは撮像機能付き携帯電話などの撮像装置に関し、詳しくは、撮影光学系に変倍機能やピント調節機能を有する撮像装置に関する。
図17は、従来の交換レンズ方式のデジタルスチルカメラの概略図である。一例として、カメラ本体1200に対してテレフォト型の望遠レンズ1220が装着されたカメラシステムを図示している。
カメラ本体1200と望遠レンズ1220はカメラ側マウント1211とレンズ側マウント1221にて連結されている。望遠レンズ1220に設けられた不図示のレンズMPU等の電気回路は、レンズ側接点1222とカメラ側接点1212とを介して不図示のカメラMPU等の電気回路と結線されている。
撮影者がファインダーを介して被写体を観察する時は、望遠レンズ1220を透過した被写体光の一部が跳ね上げミラー1201で反射してフォーカシングスクリーン1202に到達し、フォーカシングスクリーン1202で拡散透過した被写体光がペンタダハプリズム1203及び接眼レンズ1204を介して不図示の撮影者の目に導かれる。
また、被写体光の一部は跳ね上げミラー1201を透過し、サブミラー1205にて反射して焦点検出ユニット1206に導かれる。カメラMPUは焦点検出ユニット1206にて得られた像信号に基づいて望遠レンズ1220の焦点調節量を演算し、望遠レンズ1220のレンズ1223を駆動する。
撮影時は、跳ね上げミラー1201及びサブミラー1205がフォーカシングスクリーン1202方向に回転し、望遠レンズ1220を透過した被写体光を固体撮像素子を用いたイメージセンサ1208に導く。なお、カメラ本体1200に装着される交換レンズの焦点距離等によって射出瞳位置が異なるため、イメージセンサ1208の、特に周辺部分の画素において受光可能な光束が、装着される交換レンズによって変化する。
近年、上述したようなデジタルスチルカメラ等に主に用いられている固体撮像素子は、大別すると、CCD(Charge-Coupled Device)とCMOS(Complimentary Metal Oxide Semiconductor)とに分類される(例えば特許文献1及び特許文献2参照)。
まず、CCDの構造について、図18を用いてその主要部について簡単に説明する。
図18はCCD1000の1画素分の断面図である。同図において、1001はシリコンなどからなる半導体基板、1002はフォトダイオードからなる光電変換素子、1003は半導体基板1001上に形成した酸化膜、1004は光電変換素子1002で変換された電荷などを転送するためのクロック信号が伝送されるポリシリコンなどからなる3層の配線、1006は主として配線1004の下に設けられている電荷転送用の垂直CCDレジスタ1005を遮光する、タングステンなどからなる遮光層、1007は光電変換素子1002などを外気(O2、H2O)、不純物イオン(K+、Na+)などから保護するSiO2などからなる第1保護膜、及びSiON系などの第2保護膜1008である。1009は第2保護膜1008の凹凸を少なくするための有機材料からなる平坦化層であり、1010は光電変換素子1002に被写体からの光を集めるマイクロレンズである。
平坦化層1009はCCD1000の主面1011の凹凸を無くすと共に、マイクロレンズ1010の焦点が光電変換素子1002上に結ぶように、マイクロレンズ1010の焦点距離を調整する役目も兼ねている。よって、透明感光性樹脂により構成される平坦化層1009の厚さは、レンズの曲率、レンズ材料の屈折率によって決められる。
次に、CMOSの構造について、図19を用いてその主要部について簡単に説明する。
図19はCMOS1050の1画素分の断面図である。同図において、1051はシリコン基板(Si基板)で、フォトダイオード等の光電変換素子となる光電変換部1052が設けられている。1054はSiO2等で形成された層間絶縁層、1053は光電変換部1052にて発生した光電荷を不図示のフローティングディフュージョン部(FD部)に転送するための転送電極である。また、1055は光電変換部1052以外に光が入射しないように形成された遮光作用を有する配線電極、1056は電極や不図示の配線により形成される凹凸表面上に形成されて平坦な表面を提供するための平坦化膜、1057は例えば赤、緑、青などのカラーフィルタ、1059はマイクロレンズである。マイクロレンズ1059は、平坦化層1058の上部に形成されている。マイクロレンズ1059は、不図示の撮影レンズから入射する光束を光電変換部1052に集光するようにレンズ形状が決められている。
上述したように、イメージセンサ1208の画面の周辺では画素に対して斜めに光線が入射する。このとき、特許文献3に開示されているように、マイクロレンズを光電変換部に対して偏芯させれば、光線を光電変換部に導くことができるものの、撮影レンズの射出瞳の条件が変わると、再び光電変換部に光線が入らなくなってしまい、画面周辺が暗くなることがある。こういった現象は、画素を小さくしていくと顕著に生じ、特に変倍機能やピント調節機構を備えた撮影レンズを用いる際には大きな制約となってしまう。
従来、この現象に対処する幾つかの技術が知られており、特許文献4は、オンチップマイクロレンズを備えた撮像素子を用いる撮像装置において、シェーディングを補正するためにゲイン制御を行う技術を開示している。撮影レンズの射出瞳の位置に関する情報を用いて各色成分ごとにゲインの制御を行うことによって、シェーディングを解消できるという利点がある。
特許文献5は、交換レンズを含む撮像システムのシェーディング補正情報に関する技術を開示している。交換レンズ側に口径蝕データおよび射出瞳位置データを格納し、カメラ本体側に撮像素子出力の入射角依存性に基づくデータを格納することによって、交換レンズとカメラ本体の両者の特性を反映したシェーディング補正を行う。
特許文献6は、オンチップマイクロレンズの色収差に起因する画像の色相変化を防ぐための色補正手段に関する技術の開示例である。撮像素子の光電変換部上に投影される射出瞳の集光スポットの大きさが光の波長に依存して変化することに起因し、画像の色相が変化してしまうのを、撮影レンズの射出瞳位置に応じて画像信号の色刺激値の比率を補正する色補正手段を用いることによって解消する。
特開2002−141488号公報(第7頁、図6) 特開2002−083948号公報(第17頁、図6) 特開平1−213079 特開2000−324505 特開2003−163826 特開平8−223587
特許文献4、5、6に開示された方式のシェーディング補正や色補正の技術は、基本的に撮影レンズの射出瞳の位置に基づいて画像信号を電気的に補正するものである。電気的にゲインをかけて適切な信号レベルまで引き上げるということは、信号成分だけでなくノイズ成分も拡大してしまうために、減光が補正された周辺部でノイズが目立つ低品位の画像になってしまうという問題があった。
本発明は上記問題点を鑑みてなされたものであり、変倍機能もしくはピント調節機能を備えた撮影レンズを有する撮像装置において、撮像素子の集光効率を高めることによって品位の高い画像を得ることを目的とする。
上記目的を達成するために、本発明の各固体撮像素子は、入射光をその光量に応じて電気信号に変換する光電変換素子と、入射面に配設されたマイクロレンズと、前記光電変換素子と前記マイクロレンズの間に配設され、樹脂に、酸化チタン(TiO2)、窒化シリコン(Si3N4)、五酸化ニオブ(Nb2O5)のいずれかを分散させたコンポジット材から成る光導波路と、前記光導波路の周囲に配設された、疎水性多孔質シリカから成る層間絶縁層とを有し、複数の前記固体撮像素子を2次元に並べて成るイメージセンサを搭載する撮像装置の撮像光学系の射出瞳から前記光電変換素子までの距離をL、前記イメージセンサの中心から、前記イメージセンサ上の前記固体撮像素子の位置までの距離をH、前記光電変換素子から前記マイクロレンズの頂点までの高さをD、前記イメージセンサにおける、前記複数の固体撮像素子の間隔をP、前記光導波路の屈折率をN、前記層間絶縁層の屈折率をNとした場合に、前記距離(H)に位置する固体撮像素子が、
Figure 2006032713
但し、0<a<1
を満たすことを特徴とする。
また、別の構成によれば、本発明の各固体撮像素子は、入射光をその光量に応じて電気信号に変換する光電変換素子と、入射面に配設されたマイクロレンズと、前記光電変換素子と前記マイクロレンズの間に配設され、窒化シリコン(Si3N4)または酸化窒化シリコン(SiON)から成る光導波路と、前記光導波路の周囲に配設された、酸化シリコン(SiO2)から成る層間絶縁層とを有し、複数の前記固体撮像素子を2次元に並べて成るイメージセンサを搭載する撮像装置の撮像光学系の射出瞳から前記光電変換素子までの距離をL、前記イメージセンサの中心から、前記イメージセンサ上の前記固体撮像素子の位置までの距離をH、前記光電変換素子から前記マイクロレンズの頂点までの高さをD、前記イメージセンサにおける、前記複数の固体撮像素子の間隔をP、前記光導波路の屈折率をN、前記層間絶縁層の屈折率をNとした場合に、前記距離(H)に位置する固体撮像素子が、
Figure 2006032713
但し、0<a<1
を満たすことを特徴とする。
更に別の構成によれば、本発明の各固体撮像素子は、入射光をその光量に応じて電気信号に変換する光電変換素子と、入射面に配設されたマイクロレンズと、前記光電変換素子と前記マイクロレンズの間に配設され、酸化シリコン(SiO2)から成る光導波路と、前記光導波路の周囲に配設された、疎水性多孔質シリカから成る層間絶縁層とを有し、複数の前記固体撮像素子を2次元に並べて成るイメージセンサを搭載する撮像装置の撮像光学系の射出瞳から前記光電変換素子までの距離をL、前記イメージセンサの中心から、前記イメージセンサ上の前記固体撮像素子の位置までの距離をH、前記光電変換素子から前記マイクロレンズの頂点までの高さをD、前記イメージセンサにおける、前記複数の固体撮像素子の間隔をP、前記光導波路の屈折率をN、前記層間絶縁層の屈折率をNとした場合に、前記距離(H)に位置する固体撮像素子が、
Figure 2006032713
但し、0<a<1
を満たすことを特徴とする。
本発明によれば、集光効率を高めることによって品位の高い画像を得ることが可能である。また、画面周辺での撮像素子の感度が向上し、撮像素子に起因するシェーディングを解消することができる。
以下、添付図面を参照して本発明を実施するための最良の形態を詳細に説明する。ただし、本形態において例示される構成部品の寸法、材質、形状、それらの相対配置などは、本発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、本発明がそれらの例示に限定されるものではない。
<第1の実施形態>
図1は本発明の第1の実施形態における撮像装置であるデジタルカラーカメラの概略構成を示す側方視断面図である。本カメラは、CCDあるいはCMOSセンサなどの撮像素子を用いた単板式のデジタルカラーカメラであり、撮像素子を連続的または単発的に駆動して動画像または静止画像を表わす画像信号を得る。ここで、撮像素子は、入射光をその光量に応じて電荷に変換して画素毎に蓄積し、蓄積した電荷を読み出すタイプのエリアセンサである。
図1に於いて、101はカメラ本体、102は内部に撮影レンズ103を有し、カメラ本体101から取り外し可能なレンズ装置である。なお、図1では撮影レンズ103としてレンズを1つ図示しているが、通常、複数のレンズを組み合わせて構成される。レンズ装置102は、公知のマウント機構を介してカメラ本体101に電気的、機械的に接続されている。撮影レンズの焦点距離が異なるレンズ装置に交換することによって、様々な画角の撮影をすることが可能である。また、レンズ装置102は不図示の駆動機構を内部に有し、撮影レンズ103の一部の要素であるフォーカシングレンズを光軸L1方向に移動させたり、フォーカシングレンズを柔軟性のある透明弾性部材や液体レンズで構成した場合には、界面形状を変化させて屈折力を変えることで、被写体に対するピント調節を行う。
106はパッケージ124に収納された撮像素子である。撮影レンズ103から撮像素子106に至る光路中には、撮像素子106上に被写体像の必要以上に高い空間周波数成分が伝達されないように、撮影レンズ103の空間周波数特性を制御する光学ローパスフィルター156が設けられている。また、撮影レンズ103には赤外線カットフィルター(不図示)も形成されている。
撮像素子106で捉えられた被写体像は表示装置107上に表示される。表示装置107はカメラの背面に取り付けられており、使用者は表示された画像を直接観察することができる。表示装置107は有機EL空間変調素子や液晶空間変調素子、微粒子の電気泳動を利用した空間変調素子などで構成すると消費電力が小さくかつ薄型に構成可能であるので、携帯機器として都合が良い。
また、撮像素子106は、本第1の実施形態においては、増幅型撮像素子の1つであるCMOSプロセスコンパチブルのセンサーであるものとする。CMOS撮像素子の特長の1つに、エリアセンサ部のMOSトランジスタと撮像素子 駆動回路、AD変換回路、画像処理部といった周辺回路を同一工程で形成できるため、マスク枚数、プロセス工程がCCDと比較して大幅に削減できるということが挙げられる。また、任意の画素へのランダムアクセスが可能といった特長も有し、ディスプレイ用に画素出力の間引き読み出しが容易であって、高い表示レートでリアルタイム表示を行うことができる。撮像素子106は、この特長を利用し、ディスプレイ画像出力動作、高精彩画像出力動作を行う。なお、本発明はCMOSセンサに限るものではなく、CCD等、他のタイプの固体撮像素子を用いることが可能であることは言うまでもない。
111は光学ファインダーへ撮影レンズ103からの光路を分割する可動型のハーフミラー、105は被写体像の予定結像面に配置されたフォーカシングスクリーン、112はペンタプリズムである。109はファインダー像を観察するためのレンズであり、実際には視度調節機能のために複数のレンズで構成されている。フォーカシングスクリーン105、ペンタプリズム112、レンズ109はファインダー光学系を構成する。ハーフミラー111の屈折率はおよそ1.5、厚さは0.5mmである。ハーフミラー111の背後には可動型のサブミラー122が設けられ、ハーフミラー111を透過した光束のうち光軸に近い部分の光束を焦点検出ユニット121に偏向する。サブミラー122は不図示の回転軸を中心に回転し、撮像時にはハーフミラー111とともに撮像光路から退避する。また、焦点検出ユニット121は、例えば、位相差検出方式の焦点検出を行う。
ハーフミラー111の表面に可視光の波長よりも小さなピッチを持つ微細な角錐状の周期構造を樹脂によって形成し、いわゆるフォトニック結晶として作用させることによって、空気と樹脂との屈折率差による光の表面反射を低減し、光の利用効率を高めることも可能である。このように構成すると、ハーフミラーの裏面と表面での光の多重反射によって発生するゴーストを抑制することができる。
不図示の電磁モータとギア列からなるミラー駆動機構は、ハーフミラー111とサブミラー122の位置を変化させて、撮影レンズ103からの光束を直接的に撮像素子106に入射させる状態と、光学ファインダーに光路を分割する状態を切り換える。
104は可動式の閃光発光装置、113はフォーカルプレンシャッター、119はメインスイッチ、120はレリーズボタン、123は光学ファインダーと電子ファインダーを切り換えるためのファインダーモード切り換えスイッチ、180は光学ファインダー内情報表示装置である。
図2は上述したデジタルカラーカメラの機能構成を示すブロック図である。なお、図1と同じ構成には同じ参照番号を付す。
カメラは、撮像系、画像処理系、記録再生系、制御系を有する。撮像系は、撮影レンズ103および撮像素子106を含み、画像処理系は、A/D変換器130、RGB画像処理部131 およびYC処理部132を含む。また、記録再生系は、記録処理部133および再生処理部134 を含み、制御系は、カメラシステム制御部135、操作検出部136および撮像素子106の駆動回路137を含む。138は外部のコンピュータ等に接続して、データの送受信をするための規格化された接続端子である。これら各構成は、例えば、アルカリ電池やリチウム電池等の一次電池やNiCd電池やNiMH電池、Li電池等の二次電池、小型燃料電池、ACアダプター等からなる不図示の電力供給手段によって駆動される。
撮像系は、被写体からの光を撮影レンズ103を介して撮像素子106の撮像面に結像する光学処理系であり、レンズ装置102の不図示の絞りと、必要に応じてさらにフォーカルプレーンシャッター113を調節し、適切な光量の被写体光により撮像素子106を露光する。撮像素子106は、正方画素が、例えば、長辺方向に7400個、短辺方向に5600個並べられ、合計で約4000万個の画素数を有し、4画素を一組として各画素にR(赤色)G(緑色)B(青色)のいずれかのカラーフィルターを所謂ベイヤー配列に配している。ベイヤー配列では、観察者が画像を見たときに強く感じやすいGの画素をRやBの画素よりも多く配置することで、総合的な画像の品質を上げている。一般に、この方式の撮像素子を用いる画像処理では、輝度信号の多くの部分をG信号から生成し、色信号はR,G,B信号から生成する。なお、画素数及びカラーフィルタの配列については上述したものに限るものではなく、適宜変更可能であることは言うまでもない。
撮像素子106から読み出された画像信号は、A/D変換器130を介して画像処理系に供給される。A/D変換器130は、露光した各画素の信号の振幅に応じた、たとえば12ビットのデジタル信号に変換して出力する信号変換回路であり、A/D変換器130より後段における画像信号処理はデジタル処理にて実行される。
画像処理系は、R,G,Bデジタル信号から所望の形式の画像信号を得る信号処理回路であり、R,G,B信号を、輝度信号Yと色差信号(R−Y)、(B−Y)で表わされるYC信号などに変換する。
RGB画像処理部131は、A/D変換器130を介して撮像素子106 から受けた7400×5600画素の画像信号を処理する信号処理回路であり、ホワイトバランス回路、ガンマ補正回路、補間演算による高解像度化を行う補間演算回路を有する。
YC処理回路132は、輝度信号Yおよび色差信号R−Y及びB−Yを生成する信号処理回路である。高域輝度信号YHを生成する高域輝度信号発生回路、低域輝度信号YLを生成する低域輝度信号発生回路、および、色差信号R−Y及びB−Yを生成する色差信号発生回路で構成されている。輝度信号Yは高域輝度信号YHと低域輝度信号YLを合成することによって形成される。
記録再生系は、不図示のメモリへの画像信号の出力と、表示装置107への画像信号の出力とを行う処理系であり、記録処理部133はメモリへの画像信号の書き込み処理および読み出し処理を行い、再生処理部134はメモリから読み出した画像信号を再生して、表示装置107に出力する。
また、記録処理部133は、静止画像および動画像を表わすYC信号を所定の圧縮形式にて圧縮し、また、圧縮データを読み出した際に伸張する、圧縮伸張回路を内部に有する。圧縮伸張回路は、信号処理のためのフレームメモリなどを含み、このフレームメモリに画像処理系からのYC信号をフレーム毎に蓄積して、それぞれ複数のブロック毎に読み出して圧縮符号化する。圧縮符号化は、たとえば、ブロック毎の画像信号を2次元直交変換、正規化およびハフマン符号化することにより行われる。
再生処理部134は、輝度信号Yおよび色差信号R−Y及びB−Yをマトリックス変換して、例えばRGB信号に変換する回路である。再生処理部134によって変換された信号は表示装置107に出力され、可視画像が再生表示される。再生処理部134と表示装置107の間はBluetoothなどの無線通信手段を介して接続してもよく、このように構成すれば、このデジタルカラーカメラで撮像する画像を離れたところからモニタすることができる。
制御系は、レリーズボタン120やファインダーモード切り換えスイッチ123等の操作を検出する操作検出部136と、その検出信号に応動してハーフミラー111やサブミラー122を含む各部を制御し、撮像の際のタイミング信号などを生成して出力するカメラシステム制御部135と、このカメラシステム制御部135の制御の下で撮像素子106を駆動する駆動信号を生成する駆動回路137と、光学ファインダー内情報表示装置180を制御する情報表示部142を含む。
制御系は、外部操作に応動して撮像系、画像処理系、記録再生系をそれぞれ制御し、例えば、レリーズボタン120の押下を検出して、撮像素子106の駆動、RGB画像処理部131の動作、記録処理部133の圧縮処理などを制御し、さらに情報表示部142によって光学ファインダー内に情報表示を行う情報表示装置180の各セグメントの状態を制御する。
カメラシステム制御部135は、YC処理部132から得られる輝度信号Yに基づいて被写体の輝度を判断し、被写体の輝度が低く、十分な焦点検出精度が得られないと判定されるときには、閃光発光装置104、あるいは不図示の白色LEDや蛍光管によって被写体を照明するように指示したり、逆に被写体の輝度が高く、白飛びしてしまうと判定されるときには、フォーカルプレーンシャッター113のシャッタースピードを早くしたり、電子シャッターにより撮像素子106の電荷蓄積期間を短くするなどの露出量の調節を行う。
カメラシステム制御部135には、さらにAF制御部140とレンズシステム制御部141が接続されている。これらはカメラシステム制御部135を中心にして各々の処理に必要とするデータを相互に通信している。
AF制御部140は、撮影画面上の所定の位置に設定された焦点検出領域内の焦点検出用センサー167の信号出力を得て、この信号出力に基づいて焦点検出信号を生成し、撮影レンズ103の結像状態を検出する。デフォーカスが検出されると、これを撮影レンズ103の一部の要素であるフォーカシングレンズの駆動量に変換し、カメラシステム制御部135を中継してレンズシステム制御部141に送信する。また、移動する被写体に対しては、レリーズボタン120が押下されてから実際の撮像制御が開始されるまでのタイムラグを勘案し、適切なレンズ位置を予測した結果によるフォーカシングレンズの駆動量を指示する。
レンズシステム制御部141はフォーカシングレンズの駆動量を受信すると、レンズ装置102内の不図示の駆動機構によってフォーカシングレンズを光軸L1方向に移動させるなどの動作を行い、被写体にピントを合わせる。AF制御部140によって、被写体にピントが合ったことが検出されると、この情報はカメラシステム制御部135に伝えられる。このとき、レリーズボタン120が押下されれば、前述のごとく撮像系、画像処理系、記録再生系による撮像制御が成される。
図3と図4はレンズ装置102に組み込まれる撮影レンズの一つであるズームレンズ(変倍レンズ)の構成図である。ここでは、一眼レフカメラなどに用いられる正・負・正・正・負の5群構成の望遠ズームレンズを一例として示す。被写体側から順に、第1群ZG1〜第5群ZG5と呼ぶ。図3は広角端、図4は望遠端の状態を示し、絞り開放状態での光線トレースを表している。また、広角端の焦点距離とFナンバーを100mm/5.6、望遠端の焦点距離とFナンバーを400mm/8.0 とする。
図3と図4に示すとおり、第1群ZG1は、被写体側に凸面を向けた正レンズ511と、被写体側に凸面を向けた負メニスカスレンズ512と、負メニスカスレンズ512に接合されて被写体側により強い曲率の面を向けた正レンズ513から成っている。第2群ZG2は、両凹形状の負レンズ521と、被写体側により強い曲率の面を向けた正レンズ522から成り、第3群ZG3は像側に凸面を向けた正レンズ531で構成されている。第4群ZG4は、両凸形状の正レンズ541と、正レンズ541に接合されて被写体側に凹面を向けた負レンズ542から成り、第5群ZG5は像側により強い曲率の面を向けた正レンズ551と、正レンズ551に接合されて両凹形状の負レンズ552より成っている。絞りZSは第2群ZG2と第3群ZG3との間に配置されている。
広角端から望遠端へのズーミングに際しては、第1群ZG1と第2群ZG2との空気間隔が拡大しながら、第2群ZG2と第3群ZG3の空気間隔が縮小し、さらに、第3群ZG3と第4群ZG4の空気間隔が拡大しながら、第4群ZG4と第5群ZG5の空気間隔が縮小する。より詳しくは、第4群ZG4が撮像面501に対して固定された状態で、第1群ZG1が被写体側へ移動し、第2群ZG2が像側へ移動し、さらに、第3群ZG3が被写体側へ移動し、第5群ZG5が被写体側へ移動する。
射出瞳位置はズーミングによって変動するために、光軸外の撮像位置に入射する光線の入射角も設定された焦点距離に応じて変化する。図3に示す角度θ1は広角端において最大画角位置へ入射する光束を、その光量重心で代表させたときの入射角、図4に示す角度θ2は望遠端において最大画角位置へ入射する光束を、その光量重心で代表させたときの入射角である。広角側では射出瞳位置が撮像面に近づき、逆に望遠側では射出瞳位置が撮像面から遠ざかるために、θ1>θ2の関係となる。なお、一般に中間画角での光線入射角は角度θ1と角度θ2の間である。
さらに、図3及び図4に示すような望遠ズームレンズでは、絞りZSを開放状態にしたときに、光軸外の撮像位置に入射する光線は絞り面上の偏った位置を通過しているので、絞りZSを絞り込むと、撮像面への光線入射角は変化する。
図5と図6は、絞りZSを実質的に点開口と見なせるまで絞り込んだときの広角端と望遠端での光路図である。図5に示す角度θ3は広角端において最大画角位置へ入射する光束の入射角、図6に示す角度θ4は望遠端において最大画角位置へ入射する光束の入射角である。最大画角位置へ入射する光束の入射角の大小関係は、
θ3>θ1>θ4>θ2
であり、焦点距離に加えて絞りZSの開度を考慮すると、入射角の変動幅はさらに拡大することが判る。最大の角度と最少の角度の差は、変倍比やレンズ構成に依存するが、およそ10度から40度の範囲である。
こういった光軸外に入射する光線の入射角の変化は、ズーミングだけでなくフォーカシング(ピント調節)でも生じる。図7と図8はレンズ装置102に組み込まれる撮影レンズの一つであるマクロレンズの構成図であって、Fナンバーが明るく一眼レフカメラ用として好適なレンズを例としている。図7は無限遠にある被写体にフォーカスした状態、図8は結像倍率が−0.2倍となる近距離にある被写体にフォーカスした状態を表している。ここでは、マクロレンズの焦点距離とFナンバーを50mm/2.0とし、また、被写体側から順に、第1群MG1〜第3群MG3と呼ぶ。また、MSは絞りである。
正の屈折力を有する第1群MG1と、絞りMSと、正の屈折力を有する第2群MG2と、正の屈折力を有する第3群MG3とからなり、第1群MG1は両凹形状の負レンズ611を最も被写体側に配し、第3群MG3は負メニスカスレンズ632を最も像側に配している。負レンズ611と負レンズ632はいわゆるガウスタイプのレンズ系を挟み込み、両凸形状の正レンズ612、被写体側により強い曲率の面を向けた正レンズ613、両凹形状の負レンズ614、両凹形状の負レンズ621、負レンズ621に接合された正レンズ622、両凸形状の正レンズ623、正メニスカスレンズ631がガウスタイプのレンズ構成である。絞りMSは第1群MG1と第2群MG2の間に配置されている。ガウスタイプのレンズ系の前後に負レンズを配置することによって入射瞳と射出瞳を近づけ、充分な周辺光量を得ている。
さらに、このマクロレンズは無限遠にある被写体から近距離にある被写体の何れに対しても良好な光学性能が得られるように、フローティング機構を備えている。無限遠にある被写体にフォーカンシングをしている状態から近距離にある被写体へのフォーカシングに際しては、第1群MG1と第2群MG2とを一体に被写体側へ繰り出すとともに、第3群MG3を第2群MG2との空気間隔が増大するように繰り出す。
射出瞳位置はフォーカシングによって変動するために、光軸外の撮像位置に入射する光線の入射角も設定された被写体距離に応じて変化する。図7に示す角度θ5は無限遠にある被写体にフォーカスした状態において最大画角位置へ入射する光束を、その光量重心で代表させたときの入射角、図8に示す角度θ6は近距離にある被写体にフォーカスした状態において最大画角位置へ入射する光束を、その光量重心で代表させたときの入射角である。無限遠にある被写体にフォーカスした状態では射出瞳位置が撮像面に近づき、逆に近距離にある被写体にフォーカスした状態では射出瞳位置が撮像面から遠ざかるために、θ5>θ6なる関係となる。なお、一般に中間距離被写体での光線入射角は角度θ5と角度θ6の間である。
さらに、被写体距離に加えて絞りMSの開度を考慮すると、入射角の変動幅はさらに拡大する場合がある。最大の角度と最少の角度との差は、フォーカス可能とする至近被写体距離やレンズ構成に依存するが、およそ3度から30度の範囲である。
次に、図9から図12を用いて撮像素子106の構造について説明する。
図9は図1に示した撮像素子106の平面図である。図9において、106は撮像素子、124は撮像素子106を収納するセンサーパッケージである。撮像素子106はCMOS撮像素子であって、数千万画素の画像データを得るために数千万個の画素を縦横に、あるいは斜め方向に規則的に配列して成る。したがって、センサーパッケージの内部は、空気、不活性ガス、あるいはハイドロフルオロエーテルといった屈折率1.27程度の低屈折率液体が充填されている。
図10は撮像素子106の部分断面図である。ここでは、撮像素子106の周辺部を拡大したものであって、撮像素子106の光軸が左方向にあるものとし、マイクロレンズは図の左方向に偏芯している。カラーフィルターの配列には様々な種類があるが、ここではベイヤー配列とする。
図10において、70は緑色光を透過する緑色カラーフィルター、71は赤色光を透過する赤色カラーフィルターである。ベイヤー配列の撮像素子の断面では、図10に示すように緑色カラーフィルターと赤色カラーフィルターが交互に配列された行か、または、青色カラーフィルターと緑色カラーフィルターが交互に配列された行の何れかが現れる。
30はシリコン基板、31はピッチLで規則的に配列された埋め込みフォトダイオードの光電変換部、32はポリシリコン配線、33、34は銅配線、38は疎水性多孔質シリカ等から成る層間絶縁層である。金属の配線が層間絶縁層を挟んで一種のコンデンサーを形成し、信号の遅延を引き起こすため、多孔質シリカはこれを抑制すべく従来多用されて来たシリコン酸化膜SiO2よりも誘電率を低くしてある。また、屈折率は誘電率の平方根に比例するので、屈折率も1.3程度と低くなっている。
36は埋め込み透明樹脂層、35はシリコン酸化窒化膜SiONからなる保護膜である。
埋め込み透明樹脂層36は、先ず、シリコン内部のポテンシャル構造、光電変換部31、MOSトランジスタアンプ、画素選択トランジスタ、銅配線33及び34、および層間絶縁層38等を形成し、さらにその上層に保護膜35を成長させた後に、保護膜35の上から光電変換部31に向けて異方性エッチングを施すことによって開口を形成し、この開口に液体透明樹脂を流し込んで熱硬化させるといった工程で製作する。
透明樹脂層36の屈折率は1.6であり、透明樹脂層36に隣接する層間絶縁層38の屈折率1.3とは1.2倍ほどの屈折率の差異をもって光導波路を構成している。この界面に高屈折率側から低屈折率側に臨界角を越えて斜入射する光線を全反射することが可能である。
なお、埋め込み透明樹脂層36はベースとなる樹脂にナノスケールの酸化チタンTiO2粒子、あるいは窒化シリコンSi3N4粒子や五酸化ニオブNb2O5粒子などを均一に分散させたコンポジット材であっても良い。このようなコンポジット材では、酸化チタン粒子や窒化シリコン粒子や五酸化ニオブ粒子が十分に光の波長よりも小さいサイズであることと、その屈折率が酸化チタン粒子で2.35、窒化シリコン粒子で2.0、五酸化ニオブで2.2と高いことに起因して、コンポジット材内部での光の直進性を保ったまま屈折率を1.8乃至2.1程度にまで引き上げることができ、全反射が生じる臨界角をかなり小さくすることができる。
また、37及び39は平坦化層、902はマイクロ凸レンズである。平坦化層37は保護膜35と透明樹脂層36の上部に形成された透明樹脂による層である。また、平坦化層39の上部を凹面状にエッチングして、その上部にシリコン酸化窒化膜SiON層を形成し、さらにその上面を凸面状にエッチングすることによって、SiONによるマイクロ凸レンズ902が形成される。マイクロ凸レンズ902の一つひとつを光軸方向から見た形状は正方形であり、各マイクロ凸レンズ902の面は、上面と下面の何れもが軸対象性の非球面となっている。図11はマイクロ凸レンズ902の形状を説明した図で、マイクロ凸レンズ902を斜め上方から俯瞰した俯瞰図である。
平坦化層39の屈折率が1.58、マイクロ凸レンズ902の屈折率が1.8であるので、マイクロ凸レンズ902は収束系としての焦点距離を有する。したがって、隣り合う埋め込み透明樹脂層36の間には隙間があっても、光束は隙間なく敷きつめられているマイクロ凸レンズ902を必ず通るので、何れかの埋め込み透明樹脂層36に無駄なく集められることとなる。なお、マイクロ凸レンズ902は円筒形状にエッチングで成形した樹脂を溶融させて作成しても良い。
一般に、CMOS撮像素子の光電変換部付近には配線層などがあり、また、CCD撮像素子においても電荷転送部などがあるため、斜めに撮像素子の内部を進む光線は光電変換部に到達し難い。光電変換部に到達できなかった光線は配線層などで吸収されて最終的に熱に変わるだけである。
前述したように、本撮像素子106は、こういった撮像素子106の内部を進む光線を光電変換部31に導くための光導波路構造を備えている。図12は、撮像素子106に入射する光束の光路の内、代表的に、マイクロ凸レンズ902aに入射する光束の光路を示す光線トレース図である。
撮像素子106の上方から入射する光線60はマイクロ凸レンズ902aに入射し、マイクロ凸レンズ902aで屈折作用を受けて、平坦化層37を経て埋め込み透明樹脂層36aに入射する。埋め込み透明樹脂層36aは層間絶縁膜38よりも高屈折率であるために、層間絶縁膜38との界面では臨界角を越えて斜入射する光線は全反射し、埋め込み透明樹脂層36aから層間絶縁膜38に出ることはできない。すなわち、例えば、光線62は埋め込み透明樹脂層36aと層間絶縁膜38の界面64で全反射し、光線63となって埋め込み透明樹脂層36a内に留まり、光電変換部31aに入射して光電変換される。
次に、図13から図15を用いて、光導波路内の光線の挙動と瞳位置との関係について詳述する。
図13は撮影レンズ103と撮像素子106との関係を示す概念図、図14と図15は、撮像素子106の最外周部に位置する1画素の詳細を示す図であって、例えば、図13に示すA部にある画素の断面図である。図14には撮影レンズの瞳距離が撮像素子から比較的近い状態における光線の状態を、図15には、撮影レンズの瞳距離が撮像素子から比較的遠い状態における光線の状態を示してある。
図13において、撮像素子106は被写体光束が撮像光学系103を介して焦点を結ぶ受光面302を有する。なお、撮像光学系103と撮像素子106の受光面302との光軸303方向の距離をL(以下、「瞳距離」と呼ぶ。)、光軸303から受光面302の最外周辺部までの距離をHとする。従って、距離Hは像高に相当する。また、光軸303と撮像光学系103の射出瞳304との交点から射出する主光線305と光軸303とが成す角をθとする。
図14において、201は光電変換部、202は光電変換部201が構成されるシリコン(Si)基板、203は屈折率の高い材料であるSiN等で構成された光導波路で、その中心軸は光電変換部201の中心軸とほぼ一致している。なお、光導波路203の光入射側は、より多くの光が入射可能なように開口が広くなるように形成されている。210は、屈折率の低いSiO2等で形成された層間絶縁層211の間に形成され、光電変換部201にて発生した光電荷を不図示のフローティングディフュージョン部(FD部)に転送するための転送電極、204は光電変換部201以外に光が入射しないように形成された遮光作用を有する配線電極である。また、206は、電極や不図示の配線により形成される凹凸表面上に形成されて平坦な表面を提供するための平坦化層であり、平坦化層206を介してカラーフィルタ207が設けられており、さらに平坦化層208を介してマイクロレンズ209が形成されている。マイクロレンズ209は、図2に示す撮像光学系101から入射する被写体光束を光電変換部201に集光するようにレンズ形状及びその配置位置が決められている。
図14に示すように、撮像光学系103が撮像素子106に「近い」、即ち、瞳距離が短く、光束330の入射角θが大きい場合(θ=α1)は、光束330は光導波路203の傾斜面で全反射し、また、図15に示すように瞳距離が長く光束330の入射角θが小さい場合(θ=α2)は、光導波路203の傾斜面で反射せずに、光電変換部201に導かれる。
このように、光導波路構造を用いれば、入射角θが変化しても、光電変換部に導くことが可能である。
したがって、埋め込み透明樹脂層36が無い場合には、ズーミングやフォーカシングで射出瞳位置が撮像素子に適合せず、光電変換部31に入射できなかった光線が、図12に示したような埋め込み透明樹脂層36による光導波路構造を用いることよって光電変換部31に入射できるようになり、画面周辺での撮像素子の感度は向上する。したがって、撮像素子に起因するシェーディングが解消できる。
光導波路の構成は次のような性質に基づいて決定する。
1. 像高Hが増加すると、入射角θが大きくなる。
2. 瞳距離Lが増加すると、入射角θが小さくなる。
3. 光導波路の屈折率Nと層間絶縁層の屈折率Nの比、N/Nが小さいほど、屈折率界面で全反射を起こすための臨界角は小さくなって、入射角θが大きい光線を捉えることができる。
4. 画素ピッチPが減少すると、各画素の回路部が占める面積が増大して、相対的に光電変換部の大きさが減少し、入射角θが大きい光線を捉えることができなくなる。CMOS型固体撮像素子の場合、回路部は電荷転送用MOSトランジスタ、リセット電位を供給するリセット用MOSトランジスタ、ソースフォロワアンプMOSセンサトランジスタ、選択的にソースフォロワアンプMOSトランジスタから信号を出力させるための選択用MOSトランジスタ等である。
5. 光電変換部からマイクロレンズまでの高さDが増加すると、マイクロレンズから光電変換部を見込む角が小さくなるため、入射角θが大きい光線を捉えることができなくなる。
これらの性質から、像高H、瞳距離L、画素ピッチP、高さD、光導波路の屈折率N、層間絶縁層の屈折率Nで表した式(1)の評価量Eの大きさが、如何に入射角θの大きな光線を光電変換部まで導けるかを表す好適な指標となる。
Figure 2006032713
一例として、
・像高H=4251[μm]
・瞳距離L=15000[μm]
・画素ピッチP=3.25[μm]
・高さD=5.0[μm]
・層間絶縁層211の屈折率N=1.46
・光導波路の屈折率N1.65
の場合は、E=0.39である。このように、
E<1.0 …(2)
となるように、像高H、瞳距離L、画素ピッチP、高さD、光導波路の屈折率NH、層間絶縁膜の屈折率Nを選択すると、光導波路構造の効果は大きい。
<第2の実施形態>
光導波路は他の物質との組み合わせによっても構成可能である。
本第2の実施形態では、図10に示す構造を有するカラー撮像素子において、第1の実施形態とは異なり、相関絶縁層38を酸化シリコンSiO2で、埋め込み透明樹脂層36を窒化シリコンSi3N4で形成する。
埋め込み窒化シリコン層36の屈折率は2.0であり、埋め込み窒化シリコン36に隣接する層間絶縁層38を構成する酸化シリコンSiO2の屈折率は1.46であるので、1.37倍ほどの屈折率の差異がある。このため、界面に高屈折率側から低屈折率側に臨界角を越えて斜入射する光線を全反射することが可能である。こういった光導波路構造によって、斜入射光を効率的に光電変換部31に導いている。
さらに、本第2の実施形態では、平坦化層39を酸化シリコンSiO2で構成し、この平坦化層39の上部を凹面状にエッチングして、その上部に酸化チタンTiO2層を形成し、その上面を凸面上にエッチングすることによって、酸化チタンTiO2によるマイクロ凸レンズ902を形成する。
平坦化層39を構成する酸化シリコンSiO2の屈折率が1.46、マイクロ凸レンズ902を構成する酸化チタンTiO2の屈折率が2.35であるので、マイクロ凸レンズ902は収束系としての焦点距離を有する。したがって、隣り合う埋め込み窒化シリコン36の間には隙間があっても、光束は隙間なく敷きつめられているマイクロ凸レンズ902を必ず通るので、無駄なく埋め込み窒化シリコン36に集められることになる。
このように、異なる物質を組み合わせても、上記第1の実施形態と同様の効果を得ることができる。
なお、光導波路を構成する窒化シリコンの代わりに、酸化窒化シリコン膜SiONで構成しても良い。酸化窒化シリコンSiONを用いると、残留応力を小さくできるので、膜剥がれなどが発生する確率が下がり、撮像素子の製造歩留まりを高めることができる。
<第3の実施形態>
光導波路はさらに別の物質の組み合わせによっても構成可能である。また、撮像素子内の低屈折率層を利用して層内レンズを形成することができる。
図16は、本発明の第3の実施形態における光導波路を有するカラー撮像素子の一部画素の断面図である。第1および第2の実施形態には無かった層構造の光電変換部が形成されている。
図16において、340はシリコン基板、331B、331B、331Rは埋め込みフォトダイオードの光電変換部、332はポリシリコン配線、333、334は銅配線、338は層間絶縁膜である疎水性多孔質シリカである。336は埋め込み酸化シリコンSiO2層、335はシリコン酸化窒化膜SiONからなる保護膜である。
光電変換部331Bは可視域全体を、光電変換部331Gは主に緑色光と赤色光を、光電変換部331Rは主に赤色光を光電変換する。こういった一画素に分光感度の異なる3つの光電変換部を備える構成によれば、カラー画像を得る際の色毎の被写体像サンプリング位置が一致するため、偽色の発生が無い。
埋め込み酸化シリコン層336は、まず、シリコン内部のポテンシャル構造、光電変換部331B、331B、331R、MOSトランジスタアンプ、画素選択トランジスタ、銅配線333及び334、および層間絶縁層338等を形成し、さらにその上層に保護膜335を成長させた後に、保護膜335上から光電変換部331に向けて異方性エッチングを施すことによって開口を形成し、この開口にCVD装置により酸化シリコンSiO2を埋め込むといった工程で製作する。
埋め込み酸化シリコン層336の屈折率は1.46であり、埋め込み酸化シリコン層336に隣接する層間絶縁膜の屈折率1.3とは1.12倍ほどの屈折率の差異があって、この界面に高屈折率側から低屈折率側に臨界角を越えて斜入射する光線を全反射することが可能である。こういった光導波路構造によって、斜入射光を効率的に光電変換部331B、331B、331Rに導いている。
さらに、337は平坦化層、90は層内レンズ、339は透明樹脂による平坦化層である。平坦化層337は保護膜335と埋め込み酸化シリコン層336の上部に形成された窒化酸化シリコンSiONによる層である。この平坦化層337の上部を凸面状にエッチングして、その上部に疎水性多孔質シリカ層を形成し、今度はその上面を凹面上にエッチングすることによって、疎水性多孔質シリカによる層内レンズ90が形成される。層内レンズ90の一つひとつを正面から見た形状は正方形であり、各層内レンズ90の面は、上面と下面の何れもが軸対象性の非球面となっている。
平坦化層337の屈折率が1.80、層内レンズ90の屈折率が1.30、平坦化層339の屈折率が1.58であるので、層内レンズ90は両凹レンズでありながら収束系としての焦点距離を有する。したがって、隣り合う埋め込み酸化シリコン層336の間には隙間があっても、光束は隙間なく敷きつめられている層内レンズ90を必ず通るので、無駄なく埋め込み酸化シリコン層336に集められることとなる。
代表的に、マイクロ凸レンズ90aに入射する光束の光路を示す光線トレース図を図16に示している。層内レンズ90aに入射した光線360は、層内レンズ90aで屈折作用を受けて、平坦化層337を経て埋め込み酸化シリコン層336aに入射する。埋め込み酸化シリコン層336aは層間絶縁膜338よりも高屈折率であるために、この界面では臨界角を越えて斜入射する光線は全反射し、埋め込み酸化シリコン層から層間絶縁膜338に出ることはできない。すなわち、例えば、光線362は埋め込み酸化シリコン層336aと層間絶縁膜338の界面364で全反射し、光線363となって埋め込み酸化シリコン層336a内に留まり、次に光電変換部331aに入射して光電変換される。
このように、本第3の実施形態によれば、上記第1の実施形態と同様の効果を得ることができる。
なお、上記第1乃至第3の実施形態では物質の屈折率の差を利用して全反射を行う光導波路構造について説明したが、金属面反射を利用した光導波路を用いることもできる。また、層間絶縁膜の代わりに気体を封入した空隙や、真空の空隙を用いても良い。
本発明の第1の実施形態におけるデジタルカラーカメラの概略構成を示す側方視断面図である。 図1に示すデジタルカラーカメラの機能構成を示すブロック図である。 広角端におけるズームレンズのレンズ構成と、絞りを開放した状態での光線トレースを表す図である。 望遠端におけるズームレンズのレンズ構成と、絞りを開放した状態での光線トレースを表す図である。 広角端におけるズームレンズのレンズ構成と、絞りを点開口と見なせるまで絞り込んだ状態での光線トレースを表す図である。 望遠端におけるズームレンズのレンズ構成と、絞りを点開口と見なせるまで絞り込んだ状態での光線トレースを表す図である。 マクロレンズのレンズ構成と、無限遠にある被写体にフォーカスした状態での光線トレースを表す図である。 マクロレンズのレンズ構成と、近距離にある被写体にフォーカスした状態での光線トレースを表す図である。 本発明の第1の実施形態における撮像素子の平面図である。 撮像素子の部分断面図である。 マイクロ凸レンズを斜め上方から俯瞰した俯瞰図である。 図10に示す撮像素子内における入射光の光路を示す光線トレース図である。 撮影レンズと撮像素子との関係を示す概念図である。 撮影レンズの瞳距離が撮像素子から比較的近い状態である場合の撮像素子の周辺部にある1画素における光線トレース図である。 撮影レンズの瞳距離が撮像素子から比較的遠い状態である場合の撮像素子の周辺部にある1画素における光線トレース図である。 本発明の第3の実施形態における撮像素子の部分断面図である。 望遠レンズをレンズ交換方式のデジタルカメラシステムに装着した場合の従来のデジタルスチルカメラの概略断面図である。 従来のCCD型固体撮像素子の概略断面図である。 従来のCMOS型固体撮像素子の概略断面図である。
符号の説明
30 シリコン基板
31 光電変換部
32 ポリシリコン配線
33、34 銅配線
35 保護膜
36 埋め込み透明樹脂層
37、39 平坦化層
38 層間絶縁層
70 緑色カラーフィルター
71 赤色カラーフィルター
106 撮像素子
902 マイクロ凸レンズ

Claims (6)

  1. 各固体撮像素子が
    入射光をその光量に応じて電気信号に変換する光電変換素子と、
    入射面に配設されたマイクロレンズと、
    前記光電変換素子と前記マイクロレンズの間に配設され、樹脂に、酸化チタン(TiO2)、窒化シリコン(Si3N4)、五酸化ニオブ(Nb2O5)のいずれかを分散させたコンポジット材から成る光導波路と、
    前記光導波路の周囲に配設された、疎水性多孔質シリカから成る層間絶縁層と
    を有し、
    複数の前記固体撮像素子を2次元に並べて成るイメージセンサを搭載する撮像装置の撮像光学系の射出瞳から前記光電変換素子までの距離をL、前記イメージセンサの中心から、前記イメージセンサ上の前記固体撮像素子の位置までの距離をH、前記光電変換素子から前記マイクロレンズの頂点までの高さをD、前記イメージセンサにおける、前記複数の固体撮像素子の間隔をP、前記光導波路の屈折率をN、前記層間絶縁層の屈折率をNとした場合に、前記距離(H)に位置する固体撮像素子が、
    Figure 2006032713
    但し、0<a<1
    を満たすことを特徴とする固体撮像素子。
  2. 各固体撮像素子が
    入射光をその光量に応じて電気信号に変換する光電変換素子と、
    入射面に配設されたマイクロレンズと、
    前記光電変換素子と前記マイクロレンズの間に配設され、窒化シリコン(Si3N4)または酸化窒化シリコン(SiON)から成る光導波路と、
    前記光導波路の周囲に配設された、酸化シリコン(SiO2)から成る層間絶縁層と
    を有し、
    複数の前記固体撮像素子を2次元に並べて成るイメージセンサを搭載する撮像装置の撮像光学系の射出瞳から前記光電変換素子までの距離をL、前記イメージセンサの中心から、前記イメージセンサ上の前記固体撮像素子の位置までの距離をH、前記光電変換素子から前記マイクロレンズの頂点までの高さをD、前記イメージセンサにおける、前記複数の固体撮像素子の間隔をP、前記光導波路の屈折率をN、前記層間絶縁層の屈折率をNとした場合に、前記距離(H)に位置する固体撮像素子が、
    Figure 2006032713
    但し、0<a<1
    を満たすことを特徴とする固体撮像素子。
  3. 各固体撮像素子が
    入射光をその光量に応じて電気信号に変換する光電変換素子と、
    入射面に配設されたマイクロレンズと、
    前記光電変換素子と前記マイクロレンズの間に配設され、酸化シリコン(SiO2)から成る光導波路と、
    前記光導波路の周囲に配設された、疎水性多孔質シリカから成る層間絶縁層と
    を有し、
    複数の前記固体撮像素子を2次元に並べて成るイメージセンサを搭載する撮像装置の撮像光学系の射出瞳から前記光電変換素子までの距離をL、前記イメージセンサの中心から、前記イメージセンサ上の前記固体撮像素子の位置までの距離をH、前記光電変換素子から前記マイクロレンズの頂点までの高さをD、前記イメージセンサにおける、前記複数の固体撮像素子の間隔をP、前記光導波路の屈折率をN、前記層間絶縁層の屈折率をNとした場合に、前記距離(H)に位置する固体撮像素子が、
    Figure 2006032713
    但し、0<a<1
    を満たすことを特徴とする固体撮像素子。
  4. 前記マイクロレンズと前記光導波路との間に配設され、酸化シリコン(SiO2)から成る平坦化層を更に有し、
    前記マイクロレンズを酸化チタン(TiO2)により構成したことを特徴とする請求項1乃至3のいずれかに記載の固体撮像素子。
  5. 前記マイクロレンズと前記光導波路との間に配設され、窒化酸化シリコン(SiON)から成る平坦化層を更に有し、
    前記マイクロレンズは、疎水性多孔質シリカから成る両凹の層内レンズであることを特徴とする請求項1乃至3のいずれかに記載の固体撮像素子。
  6. 前記光電変換素子が分光感度の異なる複数層の光電変換層から成ることを特徴とする請求項1乃至5のいずれかに記載の固体撮像素子。
JP2004210379A 2004-04-08 2004-07-16 固体撮像素子 Expired - Fee Related JP4564794B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004210379A JP4564794B2 (ja) 2004-07-16 2004-07-16 固体撮像素子
US11/099,447 US7119319B2 (en) 2004-04-08 2005-04-06 Solid-state image sensing element and its design support method, and image sensing device
CNB2005100651060A CN100403545C (zh) 2004-04-08 2005-04-08 固体摄像元件及其设计支持方法及摄像装置
KR1020050029519A KR100733853B1 (ko) 2004-04-08 2005-04-08 고체 촬상소자, 그 설계 지원방법 및 촬상장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210379A JP4564794B2 (ja) 2004-07-16 2004-07-16 固体撮像素子

Publications (3)

Publication Number Publication Date
JP2006032713A true JP2006032713A (ja) 2006-02-02
JP2006032713A5 JP2006032713A5 (ja) 2007-08-30
JP4564794B2 JP4564794B2 (ja) 2010-10-20

Family

ID=35898679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210379A Expired - Fee Related JP4564794B2 (ja) 2004-04-08 2004-07-16 固体撮像素子

Country Status (1)

Country Link
JP (1) JP4564794B2 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071972A (ja) * 2006-09-14 2008-03-27 Canon Inc 撮像素子及び撮像システム
JP2008198971A (ja) * 2007-02-08 2008-08-28 Taiwan Semiconductor Manufacturing Co Ltd 先端cmos撮像装置における多重絶縁体構造上の光伝送の改良
JP2008283070A (ja) * 2007-05-11 2008-11-20 Canon Inc 撮像素子
KR20090020689A (ko) * 2006-06-13 2009-02-26 질렉스 오와이 폴리머층을 구비한 반도체 광전자 디바이스
JP2010232448A (ja) * 2009-03-27 2010-10-14 Toppan Printing Co Ltd 固体撮像素子及びその製造方法
JP2012160783A (ja) * 2011-01-28 2012-08-23 Canon Inc 固体撮像装置およびカメラ
JP2016058538A (ja) * 2014-09-09 2016-04-21 キヤノン株式会社 固体撮像装置およびカメラ
CN105895651A (zh) * 2008-02-11 2016-08-24 美商豪威科技股份有限公司 图像传感器的自对准滤光片
WO2017002346A1 (ja) * 2015-07-01 2017-01-05 パナソニックIpマネジメント株式会社 空調制御装置
WO2019239693A1 (ja) * 2018-06-15 2019-12-19 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
JP2019220941A (ja) * 2018-06-15 2019-12-26 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134966A (ja) * 1987-11-20 1989-05-26 Fuji Photo Film Co Ltd 固体撮像装置
JPH03190166A (ja) * 1989-12-19 1991-08-20 Dainippon Printing Co Ltd 固体撮像素子用マイクロレンズの製造方法
JPH08139300A (ja) * 1994-11-10 1996-05-31 Olympus Optical Co Ltd 固体撮像装置
JP2003224249A (ja) * 2002-01-28 2003-08-08 Sony Corp 半導体撮像装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134966A (ja) * 1987-11-20 1989-05-26 Fuji Photo Film Co Ltd 固体撮像装置
JPH03190166A (ja) * 1989-12-19 1991-08-20 Dainippon Printing Co Ltd 固体撮像素子用マイクロレンズの製造方法
JPH08139300A (ja) * 1994-11-10 1996-05-31 Olympus Optical Co Ltd 固体撮像装置
JP2003224249A (ja) * 2002-01-28 2003-08-08 Sony Corp 半導体撮像装置及びその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101596358B1 (ko) * 2006-06-13 2016-02-22 질렉스 오와이 폴리머층을 구비한 반도체 광전자 디바이스
KR20090020689A (ko) * 2006-06-13 2009-02-26 질렉스 오와이 폴리머층을 구비한 반도체 광전자 디바이스
JP2009540589A (ja) * 2006-06-13 2009-11-19 シレクス オサケユキチュア 半導体オプトエレクトロニクスデバイス
JP2008071972A (ja) * 2006-09-14 2008-03-27 Canon Inc 撮像素子及び撮像システム
JP2008198971A (ja) * 2007-02-08 2008-08-28 Taiwan Semiconductor Manufacturing Co Ltd 先端cmos撮像装置における多重絶縁体構造上の光伝送の改良
JP2008283070A (ja) * 2007-05-11 2008-11-20 Canon Inc 撮像素子
CN105895651A (zh) * 2008-02-11 2016-08-24 美商豪威科技股份有限公司 图像传感器的自对准滤光片
JP2010232448A (ja) * 2009-03-27 2010-10-14 Toppan Printing Co Ltd 固体撮像素子及びその製造方法
JP2012160783A (ja) * 2011-01-28 2012-08-23 Canon Inc 固体撮像装置およびカメラ
US9065992B2 (en) 2011-01-28 2015-06-23 Canon Kabushiki Kaisha Solid-state image sensor and camera including a plurality of pixels for detecting focus
JP2016058538A (ja) * 2014-09-09 2016-04-21 キヤノン株式会社 固体撮像装置およびカメラ
WO2017002346A1 (ja) * 2015-07-01 2017-01-05 パナソニックIpマネジメント株式会社 空調制御装置
WO2019239693A1 (ja) * 2018-06-15 2019-12-19 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
JP2019220941A (ja) * 2018-06-15 2019-12-26 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
JP7246948B2 (ja) 2018-06-15 2023-03-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器

Also Published As

Publication number Publication date
JP4564794B2 (ja) 2010-10-20

Similar Documents

Publication Publication Date Title
US7119319B2 (en) Solid-state image sensing element and its design support method, and image sensing device
JP4855192B2 (ja) イメージセンサ及びデジタルカメラ
JP5422889B2 (ja) 固体撮像素子及びこれを用いた撮像装置
CN104517982B (zh) 固态摄像装置、固态摄像装置的制造方法以及电子设备
JP4323002B2 (ja) 撮像装置
KR20160100569A (ko) 이미지 센서 및 이미지 센서를 포함하는 촬상 장치
JP5247663B2 (ja) 撮像装置
WO2015159727A1 (ja) 焦点検出装置、電子機器
JP2007116437A (ja) 撮像素子および撮像システム
JP2011029932A (ja) 撮像素子及び撮像装置
JP2007281144A (ja) 固体撮像素子及び撮像装置
US9467619B2 (en) Focus detection apparatus, electronic apparatus, manufacturing apparatus, and manufacturing method
JP2012088617A (ja) 撮像装置
US7355154B2 (en) Image sensing apparatus with movable light flux splitter and control method thereof
JP4564794B2 (ja) 固体撮像素子
JP2018139272A (ja) 撮像素子および撮像装置
JP2023067935A (ja) 撮像素子
JP2006126652A (ja) 撮像装置
JP2001210812A (ja) 固体撮像装置及びそれを備えた固体撮像システム
US7732745B2 (en) Imaging apparatus including a solid state imaging device including a plurality of photo diodes
JP2004228645A (ja) 固体撮像装置及びこれを用いた光学機器
JP2005302884A (ja) 固体撮像素子、設計支援方法及び装置
KR20060053147A (ko) 촬상 장치 및 촬상 방법
JP2006040948A (ja) 撮像装置
JP2008129360A (ja) 焦点検出装置及び撮像装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4564794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees