JP2006027946A - 炭化ケイ素系接合構造体、炭化ケイ素系接合構造体の製造方法および炭化ケイ素系接合構造体の製造装置 - Google Patents

炭化ケイ素系接合構造体、炭化ケイ素系接合構造体の製造方法および炭化ケイ素系接合構造体の製造装置 Download PDF

Info

Publication number
JP2006027946A
JP2006027946A JP2004208317A JP2004208317A JP2006027946A JP 2006027946 A JP2006027946 A JP 2006027946A JP 2004208317 A JP2004208317 A JP 2004208317A JP 2004208317 A JP2004208317 A JP 2004208317A JP 2006027946 A JP2006027946 A JP 2006027946A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
bonded
bonding
formed body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004208317A
Other languages
English (en)
Inventor
Tsuneji Kameda
常治 亀田
Akiko Suyama
章子 須山
Yoshiyasu Ito
義康 伊藤
Shigeki Maruyama
茂樹 丸山
Norihiko Iida
式彦 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004208317A priority Critical patent/JP2006027946A/ja
Publication of JP2006027946A publication Critical patent/JP2006027946A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

【課題】反応焼結法による炭化ケイ素部品ユニットの接合において、ずれなどを生じず均一な信頼性のある接合部を得ることができ、炭化ケイ素接合構造体の大型化、複雑形状化を図ることができる炭化ケイ素系接合構造体、炭化ケイ素系接合構造体の製造方法および炭化ケイ素系接合構造体の製造装置を提供することを目的とする。
【解決手段】一方の炭化ケイ素系形成体10の凹形接合面11に、他方の炭化ケイ素系形成体10の凸形接合面12を、接着剤を介して接着させる。これによって、凹形接合面11と凸形接合面12とが対応した嵌め合い構造となっているので、位置決めを容易に行うことができる。
【選択図】図1

Description

本発明は、室温および高温における強度および耐食性等に優れたセラミックス焼結部品の製造法に係わり、特に、反応焼結法による炭化ケイ素系接合構造体、炭化ケイ素系接合構造体の製造方法および炭化ケイ素系接合構造体の製造装置に関する。
硫酸、硝酸などの化学生成プラント、同種の化学物質を用いる各種化学プラント、エネルギプラント、環境有害物質の処理装置、ごみ処理用ガス化溶解炉等において使用される構造部品に従来の金属材料を用いる場合には、高温における耐食性が不十分であるので、熱的、化学的な安定性に優れたセラミックスの適用が図られている。
セラミックス熱交換器を例にとると、チューブ状シングルエンド型(単一孔の単純形状)のものが工業炉用に実用化されている。例えば、内側からバーナによる燃焼により輻射伝熱を図るラジアントチューブは、1994年頃から炉温1150℃の連続式焼鈍炉などで使用されている。また、同様のラジアントチューブは、燃焼熱を炉内に輻射伝熱するだけではなく、低温の空気をチューブに吹き込んで炉内から熱回収する場合にも適用されている。
上述のような化学プラント構造部品等へのセラミックスの適用に関して、これらの構造部品の大型化、および複雑形状化により、構造部品を一体のセラミックス部材で作製することが困難な場合がある。このような場合には、複数のセラミックス部材を部品ユニットとして用意し、これら部品ユニットを接合して大型構造物や複雑形状部品などを作製することが開示されている(例えば、特許文献1参照。)。
例えば、炭化ケイ素体(炭化ケイ素基焼結体、もしくはその前駆体としての成形体や仮焼体)と多孔質炭化ケイ素体(炭化ケイ素の反応焼結工程における成形体、仮焼体、焼結体など)とを、炭化ケイ素微粉末を含有する熱硬化性樹脂からなるバインダ層を介して重ね合わせ、多孔質炭化ケイ素体の上面側から溶融シリコンを含浸することによって、炭化ケイ素体と多孔質炭化ケイ素体とを接合する方法が開示されている(例えば、特許文献2参照。)。この接合方法では、バインダ層中の炭素と溶融シリコンとを反応させることで、炭化ケイ素体と多孔質炭化ケイ素体とを反応焼結炭化ケイ素層で接合している。
また、この接合方法を用いて、例えば、炭化ケイ素体からなる部品ユニット間を、炭化ケイ素粉末を含有した樹脂系接着剤で接着し、脱バインダ処理後、溶融シリコンを含侵させて部品ユニットを接合することが行われている。
特開2002−11653号公報 特公平5−79630号公報
上記したような多孔質体に溶融シリコンを含侵させて部品ユニットを接合する接合方法では、冷却過程において溶融シリコンが凝固する際、体積が膨張する。しかしながら、従来のセラミックス接合構造体の製造方法では、接合するセラミックス部材を、例えば所定の治具などによって位置決めした接合が行われていないため、溶融シリコンの凝固膨張により、当初設定した位置からずれた状態で部品ユニットが接合されるという問題があった。また、そのような接合状態では、均一な接合部を得ることは難しく、接合状態によっては、接合部に多量のポアが発生することなどがあり、接合部の信頼性に欠けるという問題があった。
そこで、本発明は、上記課題を解決するためになされたものであり、反応焼結法による炭化ケイ素部品ユニットの接合において、ずれなどを生じず均一な信頼性のある接合部を得ることができ、炭化ケイ素接合構造体の大型化、複雑形状化を図ることができる炭化ケイ素系接合構造体、炭化ケイ素系接合構造体の製造方法および炭化ケイ素系接合構造体の製造装置を提供することを目的とする。
上記目的を達成するために、本発明の炭化ケイ素系接合構造体は、炭化ケイ素系形成体どうしを接着剤で接着し、脱バインダ処理し、溶融シリコンを含浸して接合された炭化ケイ素系接合構造体であって、前記炭化ケイ素系成形体どうしの接合面を嵌め合い構造としたことを特徴とする。
この嵌め合い構造は、例えば、一方の炭化ケイ素系形成体の凸形状の接合面と、その一方の炭化ケイ素系形成体と接合される他方の炭化ケイ素系形成体の凹形状の接合面とで構成してもよい。また、嵌め合い構造は、例えば、一方の炭化ケイ素系形成体のテーパ形状の接合面と、その一方の炭化ケイ素系形成体と接合される他方の炭化ケイ素系形成体の該テーパ状の接合面に対応して形成されたテーパ状の接合面とで構成してもよい。なお、嵌め合い構造は、上記した形状以外にも、部材の形状、大きさなどに対応して、適切な嵌め合い構造を適宜選定することができ、雄雌を有して嵌め合い接合できる形状ならばよい。
この発明によれば、炭化ケイ素系形成体が嵌め合い構造を有しているので、炭化ケイ素系形成体どうしの接合の際の接合面の位置決めを容易に的確に行うことができる。さらに、炭化ケイ素系形成体どうしの接合時の接合部でのずれを防止することができ、炭化ケイ素系形成体間の最適な接合を行うことができる。
本発明の炭化ケイ素系接合構造体の製造方法は、炭化ケイ素系形成体の接合面に形成された嵌め合い構造部の雄雌を対応させ、接着剤を介して炭化ケイ素系形成体どうしを接着する接着工程と、前記炭化ケイ素系形成体を接着する接着剤のバインダを除去する脱バインダ工程と、バインダが除去された接着部に、溶融したシリコンを含浸させ、前記炭化ケイ素系形成体間の接合を行う接合工程とを具備することを特徴とする。
この発明によれば、炭化ケイ素系形成体どうしの接合の際の接合面の位置決めを容易に的確に行うことができる。さらに、炭化ケイ素系形成体どうしの接合時の接合部でのずれを防止することができ、炭化ケイ素系形成体間の最適な接合を行うことができる。
また、本発明の炭化ケイ素系接合構造体の製造方法は、炭化ケイ素系形成体の接合面どうしを接着剤を介して接着する接着工程と、前記接着された炭化ケイ素系形成体を、前記炭化ケイ素系形成体の接合面に垂直方向の荷重を負荷可能な支持部材に固定する支持部材固定工程と、前記炭化ケイ素系形成体を接着する接着剤のバインダを除去する脱バインダ工程と、バインダが除去された接着部に、溶融したシリコンを含浸させ、前記炭化ケイ素系形成体間の接合を行う接合工程とを具備することを特徴とする。
この発明によれば、支持部材に備えられた、例えば、弾性体などで、支持部材に設置された炭化ケイ素系形成体の接合面に垂直方向の荷重を負荷することができる。そして、この支持部材に炭化ケイ素系形成体を設置したまま、脱バインダ工程や接合工程を行うことができる。これによって、炭化ケイ素系形成体どうしをずれることなく接合することができる。さらに、溶融シリコンを含侵させて炭化ケイ素系形成体を接合後、冷却過程において溶融シリコンが凝固するときに体積が膨張するが、負荷をかけた状態でこの膨張を可能としているため、膨張する際の接合部のずれを防止することができる。
さらに、本発明の炭化ケイ素系接合構造体の製造方法は、炭化ケイ素系形成体を設置する設置部に、該炭化ケイ素系形成体の形状に対応した溝部が形成され、該溝部に炭化ケイ素系形成体を設置することで炭化ケイ素系形成体の位置決めが可能な支持部材上に、該溝に沿って該炭化ケイ素系形成体を配置し、該炭化ケイ素系形成体の接合面どうしを接着剤を介して接着する接着工程と、前記炭化ケイ素系形成体を接着する接着剤のバインダを除去する脱バインダ工程と、バインダが除去された接着部に、溶融したシリコンを含浸させ、前記炭化ケイ素系形成体間の接合を行う接合工程とを具備することを特徴とする。
この発明によれば、炭化ケイ素系形成体の形状に対応して水平方向に延設された溝部に炭化ケイ素系形成体を設置することで、炭化ケイ素系形成体の接合面に水平な方向のずれを防止することができる。また、溶融シリコンを含侵させて炭化ケイ素系形成体を接合後、冷却過程において溶融シリコンが凝固するときに体積が膨張するが、支持部材を用いることで、接合面に垂直な方向の移動のみを可能としているため、膨張する際の接合部のずれを防止することができる。さらに、炭化ケイ素系形成体を水平方向に延設された溝部に設置して、その方向に炭化ケイ素系形成体の接合部を沿わせ、各接合面にかかる負荷を同じにすることで、各接合部の厚さを均一に形成することができる。
本発明の炭化ケイ素系接合構造体の製造装置は、接着剤によって接着された複数の炭化ケイ素系形成体を収容可能な空間を有し、内部を減圧下または不活性雰囲気下に設定可能な収容容器と、前記炭化ケイ素系形成体の各接合部の下側部から下部にわたって接触させて設置され、該各接合部にシリコンを供給するシリコン供給部と、少なくとも前記シリコン供給部を支持する支持部と、前記収容容器の周囲に設けられた加熱機構とを具備することを特徴とする。
この発明によれば、加熱機構として、全体を加熱するものでは、接合時間を短縮することができる。また、加熱機構を移動させて、溶融シリコンを順次含浸させてもよく、これによって、加熱機構の小型化を図ることができる。
また、本発明の炭化ケイ素系接合構造体の製造装置は、接着剤によって接着された複数の炭化ケイ素系形成体を収容可能な空間を有し、内部を減圧下または不活性雰囲気下に設定可能な収容容器と、前記炭化ケイ素系形成体の各接合部の下側部から下部にわたって接触させて設置され、該各接合部にシリコンを供給するシリコン供給部と、少なくとも前記シリコン供給部を支持する支持部と、前記炭化ケイ素系形成体の各接合部に対応して設置された複数の加熱機構とを具備することを特徴とする。
この発明によれば、加熱機構は、各炭化ケイ素系形成体の接合部に対応して設置しているので、各接合部を同時に加熱することができ、接合時間を短縮することができる。
本発明の炭化ケイ素系接合構造体、炭化ケイ素系接合構造体の製造方法および炭化ケイ素系接合構造体の製造装置によれば、反応焼結法による炭化ケイ素部品ユニットの接合において、ずれなどを生じず均一な信頼性のある接合部を得ることができ、炭化ケイ素接合構造体の大型化、複雑形状化を図ることができる。
以下、本発明の一実施の形態について説明する。
図1は、本発明の一実施形態による炭化ケイ素(SiC)系接合部品を構成する炭化ケイ素系形成体10の概略構造を模式的に示す斜視図である。また、図2には、図1に示した炭化ケイ素系形成体10からなる複数の部品ユニット21、22を接合した炭化ケイ素系接合部品20の断面図が示されている。
図1に示すように、本発明の一実施形態の炭化ケイ素系形成体10は、その一面に形成された凹形接合面11と、その凹形接合面11に対向する面に、凹形接合面11の形状に対応して形成された凸形接合面12とを有した嵌め合い構造(いわゆるイン・ロー構造)を備えている。
例えば、2個の炭化ケイ素系形成体10を接着する場合、一方の炭化ケイ素系形成体10の凹形接合面11に、他方の炭化ケイ素系形成体10の凸形接合面12を、接着剤を介して接着させる。凹形接合面11と凸形接合面12とが対応した嵌め合い構造となっているので、位置決めを容易に行うことができる。
図2に示す炭化ケイ素系接合部品20は、炭化ケイ素系形成体10からなる複数の部品ユニット21、22を有し、これらの部品ユニット21、22は、接合層23を介して接合されている。なお、ここでは2個の部品ユニット21、22を用いた炭化ケイ素系接合部品20を示したが、炭化ケイ素系接合部品20を構成する部品ユニットの数は、2個に限られるものではなく、3個またはそれ以上であってもよい。
部品ユニット21、22を構成する炭化ケイ素系形成体10は、例えば、炭化ケイ素粉末と炭素粉末とからなる成形体、または炭化ケイ素基反応焼結体などで構成される。ここで、炭化ケイ素粉末と炭素粉末とからなる成形体を炭化ケイ素系形成体10に用いた場合には、接合層23に溶融シリコンを含浸させる際、炭化ケイ素粉末と炭素粉末とからなる成形体にも溶融シリコンを含浸させ、一体的に炭化ケイ素基反応焼結体を形成する。
接着剤には、加熱処理により炭素源が残存する有機系接着剤や樹脂系材料、炭化ケイ素粉末および/または炭素粉末を混合した有機系接着剤や樹脂系材料などを用いることができる。
接合層23は、炭化ケイ素の反応焼結を利用した反応焼結接合層であり、図3に微細構造を拡大して示すように、反応焼結により生成した炭化ケイ素結晶粒24と、これらの炭化ケイ素結晶粒24の隙間にネットワーク状に連続して存在する遊離シリコン(Si)相25とから主として構成されている。
炭化ケイ素結晶粒24は、平均結晶粒径が0.1〜10μmの範囲となるように粒子形状を制御することが好ましい。炭化ケイ素結晶粒24の平均結晶粒径が10μmを超えると接合層23自体の強度などが低下し、部品ユニット21、22間の強度を十分に発現させることができない。一方、炭化ケイ素結晶粒24の平均結晶粒径が0.1μm未満であると、製造プロセスの観点から遊離シリコン相25をネットワーク状に存在させた微構造を安定して得ることができないため、炭化ケイ素系接合部品20の歩留りが低下したり、炭化ケイ素系接合部品20の信頼性や耐久性が不足することになる。
また、炭化ケイ素結晶粒24のより好ましい平均結晶粒径は、0.2〜5μmの範囲である。なお、炭化ケイ素結晶粒24の平均結晶粒径は、接合層23の任意の断面を鏡面仕上げした後、光学顕微鏡(金属顕微鏡)または電子顕微鏡を用いて組織観察を行い、この拡大組織写真を画像処理することにより求めた値とする。
炭化ケイ素結晶粒24の隙間に存在する遊離シリコン相25の微構造については、連続したネットワーク構造を有することが重要である。この遊離シリコン相25のネットワーク構造が分断されると比較的多量の気孔の発生などを招き、接合層23の強度が低下する。言い換えると、接合層23は、炭化ケイ素結晶粒24の隙間に遊離シリコン相25を連続して存在させることで緻密な反応焼結層とされている。接合層23の気孔率は、例えば5%以下であることが好ましい。気孔率が5%を超えると、部品ユニット21、22間の接合強度が十分に発現しないため、例えば構造材料に求められる特性を十分に得ることはできない。
また、接合層23における遊離シリコン相25の含有量は、7〜40体積%の範囲とすることが好ましい。遊離シリコン相25の含有量が7体積%未満であると、ネットワーク構造が分断されやすくなる。また、接合層23中の遊離シリコン相25の含有量が40体積%を超えると、破壊の起点となりやすい遊離シリコン相25が増加する。これらのことから、遊離シリコン相25の含有量が7〜40体積%の範囲を外れると、接合層23自体の強度や部品ユニット21、22間の接合強度が低下しやすくなる。遊離シリコン相25のさらに好ましい含有量は、8〜25体積%である。なお、遊離シリコン相25の含有量は、組織観察写真の画像処理結果と密度から、ケイ素および炭化ケイ素の理論密度に基づいて算出するものとする。
また、接合層23の厚さ(平均厚さ)は、5〜300μmの範囲とすることが好ましい。厚さが5μm未満の接合層23は、接合されていない箇所が発生するなどして製造プロセス上作製が困難であると共に、接合層23自体の強度、さらに炭化ケイ素系接合部品20の信頼性や耐久性も低下する。一方、接合層23の厚さが300μmを超えると、炭化ケイ素系接合部品20の強度の低下要因となる。接合層23のより好ましい厚さは、15〜25μmの範囲である。
上記したように、本発明の一実施形態の炭化ケイ素系形成体10は、嵌め合い構造を備えて、接合の際の接合面の位置決めを容易に的確に行うことができる。さらに、嵌め合い構造を備えているので、接合時の接合部でのずれを防止することができ、接合部品間の最適な接合を行うことができる。
ここで、嵌め合い構造は、上記した形状に限られるのもではなく、例えば、図4に示す形状にすることもできる。
図4には、スカーフ継手構造によって接合された接合部の断面図を示している。ここで、スカーフ継手構造とは、筒体で形成された一方の炭化ケイ素系形成体30の接合端をテーパ状の接合面30aとし、それと接合される他方の炭化ケイ素系形成体31の接合端を、一方の炭化ケイ素系形成体30のテーパ状の接合面30aに対応させたテーパ状の接合面31aとした構造をいう。そして、これらの接合面30a、31a間には、接合層32が形成されている。
このように接合部をスカーフ継手構造による嵌め合い構造とすることによって、接合の際の接合面の位置決めを容易に的確に行うことができる。また、嵌め合い構造を備えているので、接合時の接合部でのずれを防止することができ、接合部品間の最適な接合を行うことができる。さらに、スカーフ継手構造は、円管などの筒体どうしの接合に適しており、特に、薄肉の筒体どうしを接合する場合には、接合面積を増加させることができる。
また、接合部の嵌め合い構造は、上記した形状以外にも、部材の形状、大きさなどに対応して、適切な嵌め合い構造を適宜選定することができ、雄雌を有して嵌め合い接合できる形状ならばよい。
この実施形態の炭化ケイ素系接合部品は、非酸化物系セラミックスの適用分野である工具部品、耐食性部品、半導体製造装置用治具、半導体関連部品(ヒートシンクやダミーウエハなど)、ガスタービン用高温構造部材、自動車や船舶などのエンジン部品、宇宙および航空用構造部材、メカニカルシール部材、ブレーキ用部材、摺動部品、ミラー部品、ポンプ部品、熱交換器部品、化学プラント要素部品などの各種装置部品や装置部材など、各種産業分野で広範囲で適用することができる。特に、強度が求められる装置部品や部材などにも適用することが可能である。
次に、炭化ケイ素系接合部品の製造方法について、図5および6を参照して説明する。
なお、ここでは、接合される部品ユニットを、上記した凹形接合面および凸形接合面による嵌め合い構造の接合部を有する部品ユニットを用いて説明するが、例えば、スカーフ継手構造による嵌め合い構造を有する部品ユニットでも同様の製造方法で、炭化ケイ素系接合部品を製造することができる。
ここで、反応焼結を適用した炭化ケイ素系接合部品の製造方法は、部品ユニットを、例えば炭化ケイ素とカーボンとの混合物からなる成形体の段階で接合する方法(第1の製造方法)と、部品ユニットを焼結体とした後に接合する方法(第2の製造方法)とに大別される。
まず、部品ユニットを、炭化ケイ素とカーボンとの混合物からなる成形体40の段階で接合する場合の炭化ケイ素系接合部品の製造方法(第1の製造方法)について、図5を参照して説明する。
図5(a)に示すように、2個もしくはそれ以上の成形体40を用意する。成形体40は、炭化ケイ素基反応焼結体の基礎となるものであって、炭化ケイ素粉末とカーボン粉末との混合物、さらに必要に応じて有機バインダや有機溶媒などを添加、混合した混合物やスラリーなどを、所望の形状に例えば加圧成形した成形体が用いられる。成形体40における炭化ケイ素粉末とカーボン粉末との配合比は、質量比で10:1〜10:10の範囲とすることが好ましく、さらには10:3〜10:5の範囲とすることが望ましい。なお、カーボン粉末に代えて樹脂などを使用することもできる。
炭化ケイ素粉末とカーボン粉末との混合物は、例えば粉体加圧成形や圧力鋳込み成形などを適用して所望形状に成形される。粉体加圧成形を適用する場合の圧力は、0.5〜2MPa程度とすることが好ましい。粉体の加圧成形には金型プレス、ラバープレス、冷間等方圧プレスなどを使用することができる。圧力鋳込み成形を適用する場合には、混合物を水または有機系溶媒に分散させてスラリーを作製し、このスラリーを成形型内に圧力を加えつつ鋳込んで所望形状に成形する。鋳込み時の圧力は、0.5〜10MPa程度とすることが好ましい。このような加圧成形を適用することで、適度な密度(粉体の充填状態)を有する成形体が得られる。
次に、図5(b)に示すように、2個の成形体40において、一方の成形体40の凹形接合面41に、他方の成形体40の凸形接合面42を、有機系接着剤43を介して接着する。ここで、有機系接着剤43は、特に限定されるものではなく、熱処理後にカーボンが残留するものであれば種々の接着剤を使用することができる。
続いて、図5(c)に示すように、熱処理を施して有機系接着剤43をカーボンを主体とする多孔質体44とする。すなわち、カーボンを主成分とする多孔質体44で2個の成形体40を繋げた予備接合体45を作製する。
接合部を構成する多孔質体44の気孔率は、20〜70%の範囲とすることが好ましい。多孔質体44の気孔率が20%未満であると、溶融シリコンの含浸量が不十分になるなどして、遊離炭素が残存しやすくなる。遊離炭素は、接合層自体の強度や接合強度の低下要因となる。一方、多孔質体44の気孔率が70%を超えると、溶融シリコンの含浸処理後に遊離シリコン相として存在するシリコン量が多くなり過ぎて、接合層自体の強度や接合強度が低下するおそれがある。
上述したような予備接合体45をシリコンの融点以上の温度、具体的には1414℃以上の温度に加熱し、この加熱状態の予備接合体45に対して溶融シリコンを含浸する。溶融シリコンの含浸は、例えば減圧下または不活性雰囲気下で実施する。成形体40の大きさにもよるが、溶融シリコンの含浸、それに続く溶融シリコンとカーボン粉末との反応は迅速に行われる。このような溶融シリコンの含浸処理において、2個の成形体40は、それぞれ反応焼結されると同時に、接合部の多孔質体44も反応焼結される。
すなわち、成形体40中のカーボンおよび接合部の多孔質体44を構成するカーボンは、それぞれ高温下で溶融シリコンと接触して反応し、例えば成形体40中の骨材である炭化ケイ素より平均結晶粒径が小さい炭化ケイ素を生成する。成形体40においては、骨材である炭化ケイ素と反応焼結炭化ケイ素の結晶粒の隙間に、反応に関与しなかったシリコンが遊離シリコン相としてネットワーク状に連続して存在する炭化ケイ素基反応焼結体46が形成される。接合部においては、炭化ケイ素結晶粒の隙間に遊離シリコン相がネットワーク状に連続して存在する反応焼結接合層47が形成される。この反応焼結接合層47の形成と同時に、2個の炭化ケイ素基反応焼結体が一体的に接合される。ここで、溶融シリコンは、例えば、成形体40や接合部に接するように配置された所定量の固相のシリコンが、シリコンの融点以上の温度に加熱されて溶融したものである。そして、この溶融シリコンは、成形体40や接合部の多孔質体に、毛細管現象によって均一に含浸される。
このようにして、図5(d)に示すように、2個の炭化ケイ素基反応焼結体46が反応焼結接合層47で接合一体化された接合体48が得られる。接合体48は、機械加工などによる最終加工が施されて炭化ケイ素系接合部品となる。なお、上述したような反応焼結処理によれば、成形体からの焼結収縮を極めて小さくすることができる。例えば、焼結時の収縮量を±3%以内、さらには±1%以内とすることができる。このように、焼結時の収縮量を大幅に小さくすることによって、最終寸法への加工コストを削減することが可能となる。
次に、部品ユニットを焼結体とした後に接合する場合の炭化ケイ素系接合部品の製造方法(第2の製造方法)について、図6を参照して説明する。
まず、図6(a)に示すように、2個もしくはそれ以上の炭化ケイ素基反応焼結体50を用意する。炭化ケイ素基反応焼結体50には、上述した第1の製造方法における成形体40の作製し、その成形体40への溶融シリコンの含浸処理などを経て作製された焼結体を適用することができる。また、他の反応焼結処理で作製した炭化ケイ素基反応焼結体であっても同様に使用することが可能である。
2個の炭化ケイ素基反応焼結体50については、凹形接合面51および凸形接合面52に存在するシリコンを熱処理や薬品処理によって予め除去しておく。このように、炭化ケイ素基反応焼結体50の凹形接合面51および凸形接合面52に存在するシリコンを予め除去しておくことによって、溶融シリコンの含浸処理で作製される最終的な反応焼結接合層56と炭化ケイ素基反応焼結体50との密着性、さらには接合強度を高めることが可能となる。
次いで、図6(b)に示すように、2個の炭化ケイ素基反応焼結体50において、一方の炭化ケイ素基反応焼結体50の凹形接合面51に、他方の炭化ケイ素基反応焼結体50の凸形接合面52を、有機系接着剤53を介して接着させる。有機系接着剤53には、第1の製造方法と同様のものが使用される。
続いて、図6(c)に示すように、熱処理を施して有機系接着剤53をカーボンを主体とする多孔質体54とする。すなわち、カーボンを主成分とする多孔質体54で2個の炭化ケイ素基反応焼結体50を繋げた予備接合体55を作製する。
続いて、予備接合体55をシリコンの融点以上の温度に加熱し、この加熱状態の予備接合体55の接合部に対して溶融シリコンを含浸する。この溶融シリコンの含浸処理において、接合部の多孔質体54を反応焼結させると同時に、2個の炭化ケイ素基反応焼結体50を一体的に接合する。すなわち、接合部の多孔質体54を構成するカーボンは、高温下で溶融シリコンと反応して炭化ケイ素を生成し、さらにこの炭化ケイ素結晶粒の隙間に遊離シリコン相がネットワーク状に連続して存在する。ここで、溶融シリコンは、例えば、接合部に接するように配置された所定量の固相のシリコンが、シリコンの融点以上の温度に加熱されて溶融したものである。そして、その溶融シリコンは、接合部の多孔質体に、毛細管現象によって均一に含浸される。なお、溶融シリコンの含浸方法は、これに限られるものではなく、炭化ケイ素基反応焼結体50の表面に付着させることなく、接合部の多孔質体に含侵させる方法ならばよく、この含侵方法については後に詳しく説明する。
このようにして反応焼結接合層56が形成されると同時に、2個の炭化ケイ素基反応焼結体50が一体的に接合される。すなわち、図6(d)に示すように、2個の炭化ケイ素基反応焼結体50が反応焼結接合層56で接合一体化された接合体57が得られる。接合体57は、機械加工などによる最終加工が施されて炭化ケイ素基接合部品となる。反応焼結接合層56は、それ自体の強度に優れると共に、炭化ケイ素基反応焼結体50に対する接合強度も優れることから、2個の炭化ケイ素基反応焼結体50を高強度に接合することが可能となる。
上述したように、炭化ケイ素基接合部品の製造方法においては、接合部を嵌め合い構造とすることによって、接合の際の接合面の位置決めを容易に的確に行うことができる。また、嵌め合い構造を備えているので、接合時の接合部でのずれを防止することができ、接合部品間の最適な接合を行うことができる。
また、炭化ケイ素基接合部品の製造方法においては、炭化ケイ素基反応焼結体からなる複数の部品ユニットを、有機系接着剤43、53を熱処理して形成されたカーボンを主体とする多孔質体44、54と溶融シリコンとの反応に基づく反応焼結接合層47、56で接合一体化している。反応焼結接合層47、56は、図3に示したように、反応焼結により生成した炭化ケイ素結晶粒24とその隙間にネットワーク状に連続して存在する遊離シリコン相25とから構成されており、複数の部品ユニット間の高強度接合を実現するものである。このような反応焼結接合層47、56を利用した接合部品の製造方法によれば、大型構造物や複雑形状部品などを効率よくかつ低コストで作製することが可能となる。なお、ここで言う部品とは、複数集まって全体を構成する、普通の意味での部品のほかに、装置などに付属的に用いられる治具、部材、あるいは装飾品なども含むものである。
ここで、上述した炭化ケイ素系接合部品の製造方法(第1の製造方法および第2の製造方法)において、所定の支持部材に、接合する成形体や炭化ケイ素基反応焼結体の接合対象物を固定または設置して接合することができれば、成形体や炭化ケイ素基反応焼結体に上記したような嵌め合い構造を設けなくても、接合部がずれることなく的確に接合することができる。
以下に、この支持部材の構成の一例を図7を参照して説明する。
図7には、有機系接着剤61を介して接着された成形体や炭化ケイ素基反応焼結体からなる部品ユニット60が支持部材62に支持された状態の斜視図が示されている。
支持部材62は、部品ユニット60を設置する底部部材63と、この底部部材63に上に設置された部品ユニット60の両端面に対向して、底部部材63に垂直に設けられた側壁64と、この側壁の内面と部品ユニット60の端面との間に設置され、部品ユニット60の接合面に、接合面に垂直方向の荷重を負荷する弾性部材65とから主に構成されている。
ここで、支持部材62は、例えば、炭化系材料、炭化物系材料、窒化物系材料などの耐熱材料で形成される。また、弾性部材65は、例えば、板ばねなどの弾性体で構成され、炭化系材料、炭化物系材料、窒化物系材料などの耐熱材料で形成される。この耐熱材料は、溶融シリコンの含浸処理における加熱温度や雰囲気の条件に基づいて、上記した材料から使用可能な材料から選定される。
これによって、部品ユニット60は、支持部材62に支持され、さらに、接合面に垂直方向の荷重を負荷した状態で、加熱して有機系接着剤61のバインダを除去する処理や、溶融したシリコンを含浸させ、部品ユニット60間の接合を行う処理などを行うことができる。
また、この支持部材62を用いることで、接合面に垂直方向に所定の負荷をかけた状態で接合処理などを行うことができるので、部品ユニット60どうしをずれることなく接合することができる。さらに、多孔質体に溶融シリコンを含侵させて部品ユニット60を接合後、冷却過程において溶融シリコンが凝固するときに体積が膨張するが、弾性部材65を設けることで、負荷をかけた状態でこの膨張を可能としているため、膨張する際の接合部のずれを防止することができる。
次に、他の支持部材の構造について、図8を参照して説明する。
図8には、有機系接着剤61を介して接着された成形体や炭化ケイ素基反応焼結体からなる部品ユニット60が支持部材70に支持された状態の斜視図が示されている。
支持部材70は、上部に部品ユニット60を設置する設置部71が形成された柱体である。この設置部71には、部品ユニット60の形状に対応した溝部72が形成され、この溝部72に部品ユニット60を設置することで部品ユニット60の位置決めを可能としている。また、支持部材70の溝部72は、水平方向に延設され、その方向に部品ユニット60の接合部が沿うように部品ユニット60が設置される。ここで、溝部72の形状は、設置する部品ユニットの形状に対応させて適宜に設定される。
ここで、支持部材70は、例えば、炭化系材料、炭化物系材料、窒化物系材料などの耐熱材料で形成される。この耐熱材料は、溶融シリコンの含浸処理における加熱温度や雰囲気の条件に基づいて、上記した材料から使用可能な材料から選定される。
これによって、部品ユニット60は、支持部材70に支持された状態で、加熱して有機系接着剤61のバインダを除去する処理や、溶融したシリコンを含浸させ、部品ユニット60間の接合を行う処理などを行うことができる。
この支持部材70を用いることで、部品ユニット60の接合面に水平な方向のずれを防止することができる。また、多孔質体に溶融シリコンを含侵させて部品ユニット60を接合後、冷却過程において溶融シリコンが凝固するときに体積が膨張するが、支持部材70を用いることで、接合面に垂直な方向の移動のみを可能としているため、膨張する際の接合部のずれを防止することができる。
また、部品ユニット60を水平方向に延設された溝部72に設置して、その方向に部品ユニット60の接合部を沿わせることで、縦置きにして接合するときに生じる部品ユニット60の上部と下部での接合面にかかる加圧力差の影響をなくすことができるので、各接合部の厚さを均一に形成することができる。
また、上記した支持部材62、70では、支持部材62、70上に直接、部品ユニット60を設置する例を示したが、支持部材62、70上に離型材を介して部品ユニット60を設置してもよい。ここで、支持部材62に離型材80を設置した場合の一例を図9を参照して説明する。
図9に示すように、支持部材62の底部部材63上には、離型材80が設置され、その上に部品ユニット60が配置されている。ここで、この離型材80は、部品ユニット60の接合部に含侵される溶融シリコンが底部部材63に付着し、部品ユニット60の取り出しを困難にするのを防止するために設けられる。離型材80は、溶融シリコンとぬれ性の悪い、窒化ホウ素、酸化物系セラミックス材料およびガラス状カーボンなどのいずれかを使用することができる。
この離型材80の形状として、例えば、これらの材料を薄板状に形成したものや、これらの材料を粉末にしたものに、例えば、アセトンやアルコールなどの揮発性の有機性溶媒を混合して形成したものなどが挙げられる。ここで、酸化物系セラミックス材料として、MgO、Al、TiO、AlSi13、MgAl、ZrSiO、ZrOなどが挙げられる。
このように、溶融シリコンとぬれ性の悪い離型材80を、底部部材63と部品ユニット60との間に設けることで、支持部材62からの部品ユニット60の取り外しを容易に行うことができる。また、離型材80を設けることで、部品ユニット60の接合部の側面を滑らかに形成することができる。さらに、部品ユニット60として、炭化ケイ素とカーボンとの混合物からなる成形体を用いて接合する場合(第1の製造方法)には、離型材80を設けることで、成形体と底部部材63の接合も防止することができる。
なお、図8に示した支持部材70の設置部71上に離型材80を設けた場合も、上記した支持部材62の場合と同様の効果を得ることができる。さらに、支持部材62、70は、上記した嵌め合い構造を有する部品ユニットを接合する際に用いてもよい。
次に、炭化ケイ素系接合構造体の製造装置100の一実施の形態について、図10〜11を参照して説明する。
図10には、炭化ケイ素系接合構造体の製造装置100の概要を示す斜視図が示されている。また、図11には、図10のA−A断面図が示されている。
この炭化ケイ素系接合構造体の製造装置100は、有機系接着剤を介して接着された成形体や炭化ケイ素基反応焼結体からなる部品ユニット101について、加熱して有機系接着剤102のバインダを除去する処理や、溶融したシリコンを含浸させ、部品ユニット101間の接合を行う処理などを行うものである。
そして、この炭化ケイ素系接合構造体の製造装置100は、有機系接着剤102によって接着された複数の部品ユニット101を収容可能な空間を有し、内部を減圧下または不活性雰囲気下に設定可能な収容容器103と、この収容容器103内に、複数の部品ユニット101の各接合部の下側部から下部にわたってコ字状に接触させて設置され、該各接合部にシリコンを供給するシリコン供給部104と、シリコン供給部104を支持する支持部105と、収容容器103の周囲に設けられた図示しない加熱機構とから主に構成されている。
収容容器103は、例えば、円筒形状の石英ガラスなどで構成され、その両端部にはフランジ部107を備え、このフランジ部107を介して収容容器蓋108が着脱可能に取り付けられる。
シリコン供給部104は、図11に示すように、部品ユニット101の各接合部の下側部から下部にわたって、接合部に接するように配置されている。このシリコン供給部104の接合部に接する内側には、接合部の幅に対応させた溝部104aが、接合部の下側部から下部にわたって形成されている。この溝部104aには、接合部に溶融シリコンとして供給するのに必要な量の固相のシリコン109が収納されている。このシリコン109は、例えば、粉末などで構成することができる。シリコン供給部104は、耐熱性の材料で構成され、例えば、溶融シリコンとぬれ性の悪い、窒化ホウ素、酸化物系セラミックス材料およびガラス状カーボンなどを使用することができる。
支持部105は、耐熱性の材料からなる平板で形成され、シリコン供給部104を支持している。支持部105を構成する耐熱性の材料は、例えば、溶融シリコンとぬれ性の悪い、窒化ホウ素、酸化物系セラミックス材料およびガラス状カーボンなどを使用することができる。なお、シリコン供給部104を支持する支持部105の上面には、例えば、支持部105の長手方向、つまり部品ユニット101を設置する方向に、シリコン供給部104のサイズに対応した溝部を形成し、シリコン供給部104をその溝部に沿って摺動可能とすることもできる。また、シリコン供給部104に部品ユニット101を設置したときに形成される部品ユニット101と支持部105との隙間を埋めるべく耐熱性の材料からなる平板を設置してもよい。
なお、部品ユニット101に炭化ケイ素とカーボンとの混合物からなる成形体を用いる場合には、固相のシリコン粒子を、成形体および接合部に接した状態で溶融することで、成形体および接合部に含侵させることができるので、シリコン供給部104を設けなくてもシリコンの含侵処理を行うことができる。また、部品ユニット101に炭化ケイ素基反応焼結体を用いる場合には、溶融したシリコンを部品ユニット101の接合面以外の部分に付着させることなく接合を行うという点で、シリコン供給部104を備えることが好ましいが、シリコン供給部104を設けずに、部品ユニット101の接合部にのみ接した状態に固相のシリコンを設置し溶融して、接合部にシリコンを含侵させることもできる。
加熱機構は、収容容器103内に収容された部品ユニット101をシリコンの融点である1414℃以上に加熱することができ、例えば、カーボンヒータ、誘導加熱コイルなどで構成される。
ここで、加熱機構による有機系接着剤のバインダを除去する処理およびシリコンの含侵処理の動作について説明する。なお、ここでは、部品ユニット101が炭化ケイ素基反応焼結体で形成されている場合の一例を示す。
まず、収容容器蓋108を開けて、有機系接着剤102によって接着された複数の部品ユニット101を接合部に対応して設置されたシリコン供給部104に設置する。ここで、収容容器103内に設置される部品ユニット101は、接合部の有機系接着剤102からバインダが除去された状態のものであってもよい。
続いて、収容容器蓋108が閉じられ、収容容器103内を、例えば減圧下または不活性雰囲気下に設定する。
続いて、加熱機構により、その接合部を加熱する。そして、接合部が所定の温度まで加熱されると、接合部を形成する有機系接着剤102からバインダが除去される。さらに、加熱機構によって加熱され、その接合部およびその接合部の下側部から下部にわたって接するように設けられたシリコン供給部104の温度が、シリコンの溶融温度に達すると、シリコン供給部104の内側に形成された溝部104aに収納されたシリコンが溶融する。
この溝部104a内の溶融したシリコンは、接合部の多孔質体内に毛細管現象によって均一に広がり、接合部内に含侵され、接合部の多孔質体44も反応焼結される。なお、溝部104a内に収納されているシリコンは、この接合部の反応焼結に必要な量のシリコンが収納されているため、過剰な溶融したシリコンが、例えば、接合部の外部に流れ出したり、溝部104a内に残存することはない。
このようにして、反応焼結接合層が形成され、部品ユニット101どうしが接合され、炭化ケイ素系接合構造体が形成される。
また、特に部品ユニット101に炭化ケイ素基反応焼結体を用いる場合には、シリコン供給部104を設けることで、溶融したシリコンを部品ユニット101の接合面以外の部分に付着させることなく、接合部にのみ適量のシリコンを供給し接合を行うことができる。
ここで、炭化ケイ素系接合構造体の製造装置100の加熱機構は、上記した収容容器103の周囲に設けられた加熱機構の構成以外にも、例えば、図12に示すように、収容容器103内におけるシリコン供給部104を含む各部品ユニット101の接合部の周囲に炭素部材106を設置して、誘導加熱の発熱体としてもよい。この構成を採る場合には、各接合部を同時に加熱することができ、接合時間を短縮することができる。
次に、本発明の具体的な実施例について説明する。
(実施例1)
炭化ケイ素とカーボンとの混合物からなる成形体の段階で接合する場合の炭化ケイ素系接合部品の製造方法(第1の製造方法)(図5参照)によって、凹形接合面と凸形接合面による嵌め合い構造を備えた2個の炭化ケイ素基反応焼結体からなる部品ユニットが接合された接合部品120を作製した。
この接合部品120は、炭化ケイ素粉末と炭素粉末からなる成形体どうしを有機系接着剤で接合し、脱バインダー処理後に、溶融シリコンを含浸して一体化形成されたものである。ここで、接合層の厚さが、200〜300μmになるように有機系接着剤の塗布量を調節した。脱バインダ処理は、窒素ガス気流中において、温度を800℃まで昇温し、2時間加熱保持することで行われた。また、溶融シリコンの含浸は、接合された成形体に固相のシリコンを接触させて設置し、温度が1450℃の真空中で1時間加熱保持することで行われた。
ここで、図13に作製された接合部品120の断面図を示す。
接合部品120を形成する凸形接合面121aを有する部品ユニット121は、15mm×12mmの凸形接合面121a、5mmの凸形接合面121aの突起高さL、50mm×40mmの部品ユニット121の胴部、60mmの長さMで形成されている。一方、この部品ユニット121に、接合層123を介して接合する凹形接合面を有する部品ユニット122では、凹形接合面122aは、凸形接合面121aの形状に対応するサイズに形成されている。また、部品ユニット122の他のサイズは、部品ユニット121の対応する部分のサイズと同じである。
凹形接合面と凸形接合面による嵌め合い構造を備えた2個の部品ユニットを接合した接合部品120を作製した結果、接合面におけるずれは発生せず、接合層もほぼ均一な厚みで形成され、良好な接合部品120を作製することができた。また、接合部品120の外観も良好であった。
(実施例2)
炭化ケイ素とカーボンとの混合物からなる成形体の段階で接合する場合の炭化ケイ素系接合部品の製造方法(第1の製造方法)によって、実施例1に示した条件で、30mm×20mmの接合面を有し、長さが60mmの2個の炭化ケイ素基反応焼結体からなる部品ユニットが接合された接合部品を作製した。なお、第1の製造方法において部品ユニットを接合する際、接合する2つの成形体を図7に示す支持部材62によって支持し、30mm×20mmの接合面に対して、100g、300g、1000gの負荷をかけた状態で接合したものと、負荷をかけないで接合したものの4種類の接合部品を作製した。また、支持部材62から接合部品の取り外しを容易にするため、支持部材62の底部部材63上には窒化ホウ素にアセトン溶媒を混合した離型材を塗布し、その上に成形体を設置して接合を行った。
続いて、この作製された4種類の接合部品について、接合部の強度を3点曲げ強度試験によって測定した。この測定では、各種類の接合部品をそれぞれ5個ずつ作製し、その5個について試験を行った。その5回の試験結果を平均した平均曲げ強度を表1に示す。
Figure 2006027946
測定結果から、すべての条件において、平均曲げ強度は、650MPa以上であった。この平均強度は、炭化ケイ素基反応焼結体からなる部品ユニットの曲げ強度の60%以上の強度であり、良好な接合状態が得られている。また、接合部品の外観は、どの条件においても良好であった。
(実施例3)
炭化ケイ素とカーボンとの混合物からなる成形体の段階で接合する場合の炭化ケイ素系接合部品の製造方法(第1の製造方法)によって、実施例1に示した条件で、50mm×50mmの接合面を有し、長さが50mmの2個の炭化ケイ素基反応焼結体からなる部品ユニットが接合された接合部品を作製した。なお、第1の製造方法において部品ユニットを接合する際、接合する2つの成形体を図7に示す支持部材62によって支持し、さらに支持部材62から接合部品の取り外しを容易にするため、支持部材62の底部部材63上面に上述した離型材を塗布し、その上に成形体を設置して接合を行った。ここで使用された離型材は、窒化ホウ素粉末、アルミナ粉末、ガラス状カーボン粉末のそれぞれにアセトン溶媒を混合した3種類の離型材である。
続いて、接合部品が作製され、接合部品を取り除いた後の各離型材が塗布された底部部材63上面の様子を観察した。その観察結果を表2に示す。
Figure 2006027946
この観察結果から、窒化ホウ素粉末を用いた場合には、底部部材63上面にシリコンの付着はなかったが、アルミナ粉末、ガラス状カーボン粉末を用いた場合には、一部にシリコンの付着が確認された。なお、一部にシリコンの付着が確認されたアルミナ粉末、ガラス状カーボン粉末を用いた場合でも、剥離性は良好であった。また、接合部品の外観は、どの条件においても良好であった。
(実施例4)
炭化ケイ素とカーボンとの混合物からなる成形体の段階で接合する場合の炭化ケイ素系接合部品の製造方法(第1の製造方法)によって、実施例1に示した条件で、50mm×50mmの接合面を有し、長さが50mmの2個の炭化ケイ素基反応焼結体からなる部品ユニットが接合された接合部品を作製した。なお、第1の製造方法において部品ユニットを接合する際、接合する2つの成形体を図8に示す支持部材70によって支持し、さらに支持部材70から接合部品の取り外しを容易にするため、支持部材70の設置部71上面に、窒化ホウ素にアセトン溶媒を混合した離型材を塗布し、その上に成形体を設置して接合を行った。
接合部品を作製した結果、接合面におけるずれは発生せず、接合層もほぼ均一な厚みで形成され、良好な接合部品を作製することができた。また、接合部品の外観も良好であった。
(比較例1)
炭化ケイ素とカーボンとの混合物からなる成形体の段階で接合する場合の炭化ケイ素系接合部品の製造方法(第1の製造方法)によって、実施例1に示した条件で、50mm×40mmの接合面を有し、長さが60mmの2個の炭化ケイ素基反応焼結体からなる部品ユニットが接合された接合部品を作製した。この接合部品は、接合面に嵌め合い構造を有せず、また、上記した支持部材62、70を用いずに、単に2つの成形体の平らな接合面を接着して、接合したものである。
この比較例1の接合部品の作製において、成形体が大型のため、成形体どうしを有機系接着剤で接着するハンドリング中や焼結中などに接合部のずれを生じた。その結果、接合面において部分的な接合反応は起こったものの、全体に均一ではなく、接合部に割れが生じた。
この比較例1で作製された接合部品と実施例1で作製された接合部品120を比較すると、実施例1における嵌め合い構造を備えることで、接合面におけるずれの発生を防止できることとがわかった。また、実施例2で示した支持部材62または実施例4で示した支持部材70を用いて、接合部品を作製することでも、接合面におけるずれの発生を防止できることとがわかった。
(比較例2)
比較例2では、実施例3に使用した離型剤とは異なる種類の離型材を用いた場合において、接合部品を取り除いた後の各離型材が塗布された底部部材63上面の様子を観察した。他の条件は、実施例3の条件と同じである。比較例1で用いた、離型剤は、窒化ケイ素粉末、炭化ケイ素粉末、酸化ケイ素粉末のそれぞれにアセトン溶媒を混合した3種類の離型材である。また、離型剤を塗布しない場合においても底部部材63上面の様子を観察した。この離型剤を塗布しない場合には、成形体を炭素からなる底部部材63上面に設置した。その観察結果を表2に示す。
この観察結果から、これらの離型材を用いたすべての条件において、良好な接合部品の外観は得られたものの、離型効果がないため、底部部材63上面にシリコンが多く付着していた。
この比較例2の結果と、実施例3の結果を比較すると、離型材としての機能は、窒化ホウ素が特に優れ、アルミナ粉末、ガラス状カーボン粉末でも支障なく利用できることがわかった。しかし、比較例2で用いた窒化ケイ素、炭化ケイ素、酸化ケイ素は、離型効果がなく、離型材としての機能を果たさないことがわかった。
本発明の一実施形態による炭化ケイ素系接合部品を構成する炭化ケイ素系形成体の概略構造を模式的に示す斜視図。 部品ユニットを接合した炭化ケイ素系接合部品の断面図。 反応焼結接合層の断面図。 スカーフ継手構造によって接合された接合部の断面図。 第1の製造方法で作製される炭化ケイ素系接合部品の断面図。 第2の製造方法で作製される炭化ケイ素系接合部品の断面図。 部品ユニットが支持部材に支持された状態の斜視図。 部品ユニットが支持部材に支持された状態の斜視図。 支持部材に離型材を設置した場合の一例を示す斜視図。 炭化ケイ素系接合構造体の製造装置の概要を示す斜視図。 図10のA−A断面図。 炭化ケイ素系接合構造体の製造装置における加熱機構の他の構成を示す斜視図。 接合部品の断面図。
符号の説明
10…炭化ケイ素系形成体、11…凹形接合面、12…凸形接合面。

Claims (13)

  1. 炭化ケイ素系形成体どうしを接着剤で接着し、脱バインダ処理し、溶融シリコンを含浸して接合された炭化ケイ素系接合構造体であって、
    前記炭化ケイ素系成形体どうしの接合面を嵌め合い構造としたことを特徴とする炭化ケイ素系接合構造体。
  2. 前記炭化ケイ素系形成体が、炭化ケイ素粉末と炭素粉末とからなる成形体、または炭化ケイ素基反応焼結体であることを特徴とする請求項1記載の炭化ケイ素系接合構造体。
  3. 炭化ケイ素系形成体の接合面に形成された嵌め合い構造部の雄雌を対応させ、接着剤を介して炭化ケイ素系形成体どうしを接着する接着工程と、
    前記炭化ケイ素系形成体を接着する接着剤のバインダを除去する脱バインダ工程と、
    バインダが除去された接着部に、溶融したシリコンを含浸させ、前記炭化ケイ素系形成体間の接合を行う接合工程と
    を具備することを特徴とする炭化ケイ素系接合構造体の製造方法。
  4. 炭化ケイ素系形成体の接合面どうしを接着剤を介して接着する接着工程と、
    前記接着された炭化ケイ素系形成体を、前記炭化ケイ素系形成体の接合面に垂直方向の荷重を負荷可能な支持部材に固定する支持部材固定工程と、
    前記炭化ケイ素系形成体を接着する接着剤のバインダを除去する脱バインダ工程と、
    バインダが除去された接着部に、溶融したシリコンを含浸させ、前記炭化ケイ素系形成体間の接合を行う接合工程と
    を具備することを特徴とする炭化ケイ素系接合構造体の製造方法。
  5. 炭化ケイ素系形成体を設置する設置部に、該炭化ケイ素系形成体の形状に対応した溝部が形成され、該溝部に炭化ケイ素系形成体を設置することで炭化ケイ素系形成体の位置決めが可能な支持部材上に、該溝に沿って該炭化ケイ素系形成体を配置し、該炭化ケイ素系形成体の接合面どうしを接着剤を介して接着する接着工程と、
    前記炭化ケイ素系形成体を接着する接着剤のバインダを除去する脱バインダ工程と、
    バインダが除去された接着部に、溶融したシリコンを含浸させ、前記炭化ケイ素系形成体間の接合を行う接合工程と
    を具備することを特徴とする炭化ケイ素系接合構造体の製造方法。
  6. 前記支持部材が、炭素系材料、炭化物系材料、窒化物系材料のいずれかの材料で形成されていることを特徴とする請求項4または5記載の炭化ケイ素系接合構造体の製造方法。
  7. 前記支持部材が、離型剤を介して前記炭化ケイ素系形成体と接触することを特徴とする請求項4乃至6のいずれか1項記載の炭化ケイ素系接合構造体の製造方法。
  8. 前記離型剤が、窒化ホウ素、酸化物系セラミックス材料およびガラス状カーボンのいずれかの材料で構成されることを特徴とする請求項7記載の炭化ケイ素系接合構造体の製造方法。
  9. 前記脱バインダ工程および前記接合工程において、前記各炭化ケイ素系形成体の接着部に対応して設置された加熱機構によって、前記各接着部を加熱し、接着剤のバインダの除去および溶融シリコンの含浸を行うことを特徴とする請求項3乃至8のいずれか1項記載の炭化ケイ素系接合構造体の製造方法。
  10. 前記脱バインダ工程および前記接合工程が、減圧下または不活性雰囲気下で行われることを特徴とする請求項3乃至9のいずれか1項記載の炭化ケイ素系接合構造体の製造方法。
  11. 前記炭化ケイ素系形成体が、炭化ケイ素粉末と炭素粉末とからなる成形体、または炭化ケイ素基反応焼結体であることを特徴とする請求項3乃至10のいずれか1項記載の炭化ケイ素系接合構造体の製造方法。
  12. 接着剤によって接着された複数の炭化ケイ素系形成体を収容可能な空間を有し、内部を減圧下または不活性雰囲気下に設定可能な収容容器と、
    前記炭化ケイ素系形成体の各接合部の下側部から下部にわたって接触させて設置され、該各接合部にシリコンを供給するシリコン供給部と、
    少なくとも前記シリコン供給部を支持する支持部と、
    前記収容容器の周囲に設けられた加熱機構と
    を具備することを特徴とする炭化ケイ素系接合構造体の製造装置。
  13. 接着剤によって接着された複数の炭化ケイ素系形成体を収容可能な空間を有し、内部を減圧下または不活性雰囲気下に設定可能な収容容器と、
    前記炭化ケイ素系形成体の各接合部の下側部から下部にわたって接触させて設置され、該各接合部にシリコンを供給するシリコン供給部と、
    少なくとも前記シリコン供給部を支持する支持部と、
    前記炭化ケイ素系形成体の各接合部に対応して設置された複数の加熱機構と
    を具備することを特徴とする炭化ケイ素系接合構造体の製造装置。
JP2004208317A 2004-07-15 2004-07-15 炭化ケイ素系接合構造体、炭化ケイ素系接合構造体の製造方法および炭化ケイ素系接合構造体の製造装置 Withdrawn JP2006027946A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208317A JP2006027946A (ja) 2004-07-15 2004-07-15 炭化ケイ素系接合構造体、炭化ケイ素系接合構造体の製造方法および炭化ケイ素系接合構造体の製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208317A JP2006027946A (ja) 2004-07-15 2004-07-15 炭化ケイ素系接合構造体、炭化ケイ素系接合構造体の製造方法および炭化ケイ素系接合構造体の製造装置

Publications (1)

Publication Number Publication Date
JP2006027946A true JP2006027946A (ja) 2006-02-02

Family

ID=35894738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208317A Withdrawn JP2006027946A (ja) 2004-07-15 2004-07-15 炭化ケイ素系接合構造体、炭化ケイ素系接合構造体の製造方法および炭化ケイ素系接合構造体の製造装置

Country Status (1)

Country Link
JP (1) JP2006027946A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050181A (ja) * 2006-08-23 2008-03-06 Taiheiyo Cement Corp Si−SiC複合材料接合体の製造方法
JP2008137830A (ja) * 2006-11-30 2008-06-19 Toshiba Corp セラミックス複合部材とその製造方法
JP2010277022A (ja) * 2009-06-01 2010-12-09 Nec Toshiba Space Systems Ltd 光学装置
JP5367363B2 (ja) * 2006-03-24 2013-12-11 日本碍子株式会社 接合体、接合材組成物、ハニカムセグメント接合体、並びにそれを用いたハニカム構造体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367363B2 (ja) * 2006-03-24 2013-12-11 日本碍子株式会社 接合体、接合材組成物、ハニカムセグメント接合体、並びにそれを用いたハニカム構造体
JP2008050181A (ja) * 2006-08-23 2008-03-06 Taiheiyo Cement Corp Si−SiC複合材料接合体の製造方法
JP2008137830A (ja) * 2006-11-30 2008-06-19 Toshiba Corp セラミックス複合部材とその製造方法
US8956482B2 (en) 2006-11-30 2015-02-17 Kabushiki Kaisha Toshiba Ceramics composite member and method of producing the same
JP2010277022A (ja) * 2009-06-01 2010-12-09 Nec Toshiba Space Systems Ltd 光学装置

Similar Documents

Publication Publication Date Title
JP5322382B2 (ja) セラミックス複合部材とその製造方法
JP5978105B2 (ja) 炭化ケイ素セラミックス接合体及び炭化ケイ素セラミックス接合体の製造方法
US20070225151A1 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
JP3092796B2 (ja) 炭化ケイ素部品の結合方法
JP2006128603A (ja) セラミックス部材及びその製造方法
JPH0686333U (ja) 拡散炉構成要素
IT201800006916A1 (it) “sintesi in situ, densificazione e conformazione di ceramiche non ossidiche mediante tecnologie di produzione additive sottovuoto”
KR20210120847A (ko) 적층 구조체 및 반도체 제조 장치 부재
JP4890968B2 (ja) 低熱膨張セラミックス接合体及びその製造方法
JP2001048667A (ja) セラミックス部品の接合方法
JP6512401B2 (ja) 反応焼結炭化珪素部材
JP4381207B2 (ja) 反応焼結炭化ケイ素構造体の製造方法
JP2012121785A (ja) セラミックス接合体の製造方法
CN114315362A (zh) 一种换热器、陶瓷及其制法和应用
JP5654993B2 (ja) 耐火性のロウ付けにより炭素部品を組立てる方法
JP2006027946A (ja) 炭化ケイ素系接合構造体、炭化ケイ素系接合構造体の製造方法および炭化ケイ素系接合構造体の製造装置
JP4537669B2 (ja) 炭化ケイ素基接合部品とその製造方法
JP5085575B2 (ja) 反応焼結炭化ケイ素構造体の製造方法
JP2012082095A (ja) 複数のセラミックス部材を相互に接合する方法
JPWO2015025951A1 (ja) 多孔質セラミックス及びその製造方法
JP4599591B2 (ja) セラミックス構造体の製造方法
JP2008230904A (ja) 多孔質体およびその製造方法
JP2008231543A (ja) 金属−セラミックス複合材料及びその製造方法
RU2622067C1 (ru) Способ получения керамического композита с мультиканальной структурой
JP2009107864A (ja) 半導体製造用部品

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002