JP2006026882A - Surface-coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy - Google Patents

Surface-coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy Download PDF

Info

Publication number
JP2006026882A
JP2006026882A JP2004345471A JP2004345471A JP2006026882A JP 2006026882 A JP2006026882 A JP 2006026882A JP 2004345471 A JP2004345471 A JP 2004345471A JP 2004345471 A JP2004345471 A JP 2004345471A JP 2006026882 A JP2006026882 A JP 2006026882A
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
cemented carbide
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004345471A
Other languages
Japanese (ja)
Other versions
JP4621974B2 (en
Inventor
Tsutomu Ogami
強 大上
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004345471A priority Critical patent/JP4621974B2/en
Priority to PCT/JP2004/019637 priority patent/WO2005123312A1/en
Priority to EP04807992.5A priority patent/EP1757388B1/en
Publication of JP2006026882A publication Critical patent/JP2006026882A/en
Application granted granted Critical
Publication of JP4621974B2 publication Critical patent/JP4621974B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide cutting tool having a hard coating layer exhibiting excellent wear resistance in high-speed cutting of a heat resistant alloy. <P>SOLUTION: The surface coated cemented carbide cutting tool has a cemented carbide body formed of a tungsten-carbide-based cemented carbide or a titanium-carbonitride-based cermet, and the hard coating layer consisting of (a) a lower layer, (b) a tight bonding layer, and (c) an upper layer, on the surface of the body. (a) The lower layer is formed of a (Ti, Al, B)N layer which has a mean layer thickness of 0.8 to 5 μm and satisfies the following composition formula: (Ti<SB>1-(X+Z)</SB>Al<SB>X</SB>B<SB>Z</SB>)N (where X is in the range of 0.25 to 0.65, and Z in the range of 0.01 to 0.10 by atomic ratio, respectively). (b) The tight bonding layer is formed of a CrN layer having a mean layer thickness of 0.1 to 0.5 μm. (c) The upper layer is formed of a CrB<SB>2</SB>layer having a mean layer thickness of 0.8 to 5 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、特にTi基合金やNi基合金、さらにCo基合金などの耐熱合金の切削を高い発熱を伴なう高速切削条件で行った場合にも、すぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   The present invention provides a surface coating that exhibits excellent wear resistance, especially when cutting heat-resistant alloys such as Ti-base alloys, Ni-base alloys, and Co-base alloys under high-speed cutting conditions with high heat generation. The present invention relates to a cemented carbide cutting tool (hereinafter referred to as a coated carbide tool).

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, coated carbide tools include a throw-away tip that is attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
組成式:(Ti1-(X+Z)Al)N(ただし、原子比で、Xは0.25〜0.65、Z:0.01〜0.10を示す)を満足するTiとAlとB(ボロン)の複合窒化物[以下、(Ti,Al,B)Nで示す]層からなる硬質被覆層を1〜10μmの平均層厚で物理蒸着してなる被覆超硬工具が知られており、かつ前記被覆超硬工具の硬質被覆層である(Ti,Al,B)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備し、さらに同Bによる一段の高温硬さ向上効果と相俟って、これを各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
Composition formula: (Ti 1-(X + Z) Al X B Z ) N (wherein, X is 0.25 to 0.65, Z: 0.01 to 0.10 in atomic ratio) is satisfied. Coated carbide tool formed by physical vapor deposition of a hard coating layer composed of a composite nitride of Ti, Al and B (boron) [hereinafter referred to as (Ti, Al, B) N] layer with an average layer thickness of 1 to 10 μm And (Ti, Al, B) N layer, which is a hard coating layer of the above-mentioned coated carbide tool, has high temperature hardness and heat resistance due to Al as a component, and high temperature strength due to the Ti, Furthermore, combined with the effect of improving the high-temperature hardness by B, it is also known to exhibit excellent cutting performance when used for continuous cutting and intermittent cutting of various steels and cast irons. .

さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−B合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2793696号明細書
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which a Ti—Al—B alloy having a predetermined composition is set, for example, at a current of 90 A, while being heated to a temperature of 500 ° C. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied to the surface of the carbide substrate under a condition that a bias voltage of, for example, −100 V is applied. It is also known that it is produced by vapor-depositing a hard coating layer composed of the (Ti, Al, B) N layer.
Japanese Patent No. 2793696

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを鋼や鋳鉄などの切削を通常の切削加工条件で行うのに用いた場合には問題はないが、特にTi基合金やNi基合金、さらにCo基合金などの耐熱合金などの切削を、高速切削条件で行なった場合には、特に高い発熱を伴なうことから、前記被覆超硬工具および被削材は高温に加熱された状態となり、この結果前記耐熱合金の被削材と硬質被覆層である(Ti,Al,B)N層の反応が著しく活発になり、前記硬質被覆層の摩耗進行が一段と促進するようになることから、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. In coated carbide tools, there is no problem when this is used to cut steel or cast iron under normal cutting conditions, but especially Ti-based alloys, Ni-based alloys, Co-based alloys, etc. When cutting a heat-resistant alloy or the like under high-speed cutting conditions, the coated carbide tool and the work material are heated to a high temperature because of particularly high heat generation. As a result, the heat-resistant alloy Since the reaction between the work material and the (Ti, Al, B) N layer, which is a hard coating layer, becomes extremely active and the progress of wear of the hard coating layer is further promoted, it can be used in a relatively short time. The current situation is that it reaches the end of its life.

そこで、本発明者等は、上述のような観点から、特に耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具に着目し、研究を行った結果、
(a)上記従来被覆超硬工具の硬質被覆層である(Ti,Al,B)N層を下部層とし、これの上に上部層として硼化クロム(以下、CrBで示す)層を形成すると、前記CrB層は熱的安定性にすぐれ、特に被削材である耐熱合金の高速切削時に発生する高熱で高温加熱された状態でも前記被削材である耐熱合金との親和性がきわめて低く、低い反応性を保持することから、前記下部層である(Ti,Al,B)N層は保護され、この結果(Ti,Al,B)N層のもつすぐれた特性が長期に亘って十分に発揮されるようになること。
In view of the above, the present inventors have developed the above-mentioned conventional coated carbide tool in order to develop a coated carbide tool exhibiting excellent wear resistance with a hard coating layer particularly in high-speed cutting of a heat-resistant alloy. As a result of conducting research with a focus on tools,
(A) A (Ti, Al, B) N layer, which is a hard coating layer of the above conventional coated carbide tool, is used as a lower layer, and a chromium boride (hereinafter referred to as CrB 2 ) layer is formed thereon as an upper layer. Then, the CrB 2 layer is excellent in thermal stability, and particularly has a high affinity with the heat-resistant alloy as the work material even in a state where the heat-resistant alloy as the work material is heated at a high temperature and at a high temperature. The lower (Ti, Al, B) N layer is protected because it is low and retains low reactivity. As a result, the excellent characteristics of the (Ti, Al, B) N layer can be maintained over a long period of time. To be fully demonstrated.

(b)しかし、上記上部層であるCrB層と下部層である(Ti,Al,B)N層との密着性は十分でなく、特に断続切削を高速で行った場合に剥離現象が発生し易いが、前記CrB層と(Ti,Al,B)N層との間に窒化クロム(以下、CrNで示す)層を介在させると、前記CrN層は前記CrB層および(Ti,Al,B)N層のいずれとも強固に密着することから、前記(Ti,Al,B)N層が超硬基体表面に対してすぐれた密着性を有することと相俟って、前記CrB層と(Ti,Al,B)N層との間にCrN層を介在させてなる硬質被覆層は、高熱発生を伴なう耐熱合金の高速切削でも、層間剥離の発生なく、すぐれた耐摩耗性を発揮するようになること。 (B) However, the adhesion between the CrB 2 layer as the upper layer and the (Ti, Al, B) N layer as the lower layer is not sufficient, and peeling phenomenon occurs especially when intermittent cutting is performed at high speed. However, when a chromium nitride (hereinafter, referred to as CrN) layer is interposed between the CrB 2 layer and the (Ti, Al, B) N layer, the CrN layer becomes the CrB 2 layer and (Ti, Al). , B) Since the N layer is firmly adhered to the N layer, the CrB 2 layer is coupled with the fact that the (Ti, Al, B) N layer has excellent adhesion to the surface of the carbide substrate. The hard coating layer with a CrN layer interposed between the (Ti, Al, B) N layer and excellent wear resistance without delamination even during high-speed cutting of heat-resistant alloys with high heat generation To come out.

(c)上記(b)の硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置(以下、AIP装置と略記する)とスパッタリング装置(以下、SP装置と略記する)が共存の蒸着装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に前記AIP装置のカソード電極(蒸発源)として金属Cr、他方側に前記SP装置のカソード電極(蒸発源)としてCrB焼結体(例えば原料粉末としてCrB粉末を用いて、ホットプレスにより成形された焼結体)を対向配置し、さらに前記回転テーブルに沿って、かつ前記金属CrおよびCrB焼結体のそれぞれから90度離れた位置に前記AIP装置のカソード電極(蒸発源)として所定の組成を有するTi−Al−B合金を配置した蒸着装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、基本的に、まず前記Ti−Al−B合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に下部層として(Ti,Al,B)N層を0.8〜5μmの平均層厚で蒸着し、ついで、前記Ti−Al−B合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、前記AIP装置のカソード電極(蒸発源)である金属Crとアノード電極との間にアーク放電を発生させて、密着接合層としてCrN層を0.1〜0.5μmの平均層厚で蒸着した後、前記蒸着装置内の雰囲気を、窒素雰囲気に代って、Arと窒素の混合ガス雰囲気とするが、経時的にArの導入割合を漸次増加させ、一方窒素の導入割合は漸次減少させた雰囲気として、最終的にAr雰囲気とすると共に、前記SP装置のカソード電極(蒸発源)として配置したCrB焼結体のスパッタリングを開始し、前記スパッタリング開始後所定時間経過して、前記金属Crとアノード電極との間のアーク放電を停止し、所定時間の前記CrB焼結体のスパッタリングを行って前記CrN層に重ねて上部層として0.8〜5μmの平均層厚でCrB層を蒸着することにより形成することができること。 (C) The hard coating layer of (b) is, for example, an arc ion plating apparatus (hereinafter, abbreviated as AIP apparatus) having a structure shown in a schematic plan view in FIG. 1 (a) and a schematic front view in (b). And a sputtering apparatus (hereinafter abbreviated as SP apparatus), that is, a carbide substrate mounting rotary table is provided at the center of the apparatus, and the cathode of the AIP apparatus is placed on one side of the rotary table. Metal Cr as electrode (evaporation source), CrB 2 sintered body as cathode electrode (evaporation source) of SP device on the other side (for example, sintered body formed by hot pressing using CrB 2 powder as raw material powder) was opposed, further cathode electrode along said rotary table, and the AIP device in a position 90 degrees apart from each of the metal Cr and CrB 2 sintered body (evaporation source) Then, using a vapor deposition apparatus in which a Ti—Al—B alloy having a predetermined composition is disposed, a plurality of carbides are disposed along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. In this state, the substrate is mounted in a ring shape, the atmosphere inside the apparatus is changed to a nitrogen atmosphere, the rotary table is rotated, and the carbide substrate itself is rotated for the purpose of uniforming the thickness of the hard coating layer formed by vapor deposition. Basically, first, an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of the Ti—Al—B alloy to form a lower layer (Ti, Al, B) on the surface of the cemented carbide substrate. ) N layer is deposited with an average layer thickness of 0.8 to 5 μm, and then the arc discharge between the cathode electrode (evaporation source) and anode electrode of the Ti—Al—B alloy is stopped, and the AIP device Cathode electrode (evaporation source Arc discharge is generated between the metal Cr and the anode electrode, and a CrN layer is deposited as an adhesion bonding layer with an average layer thickness of 0.1 to 0.5 μm, and then the atmosphere in the deposition apparatus is Instead of the nitrogen atmosphere, a mixed gas atmosphere of Ar and nitrogen is used, but the Ar introduction rate is gradually increased over time, while the nitrogen introduction rate is gradually reduced, and finally the Ar atmosphere is obtained. At the same time, sputtering of the CrB 2 sintered body arranged as the cathode electrode (evaporation source) of the SP apparatus is started, and arc discharge between the metal Cr and the anode electrode is stopped after a predetermined time has elapsed after the start of the sputtering. Then, the CrB 2 sintered body is sputtered for a predetermined time, and is formed by depositing a CrB 2 layer as an upper layer on the CrN layer with an average layer thickness of 0.8 to 5 μm. What you can do.

(d)上記の下部層、密着接合層、および上部層で構成された硬質被覆層を蒸着形成してなる被覆超硬工具は、特に著しい高熱発生を伴なうTi基合金やNi基合金、さらにCo基合金などの耐熱合金などの高速切削でも、下部層である(Ti,Al,B)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ密着接合層としてのCrN層によって強固に密着したCrB層によって、被削材である耐熱合金との間にすぐれた熱的安定性(きわめて低い反応性)が確保されることから、層間剥離の発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The coated carbide tool formed by vapor-depositing the hard coating layer composed of the lower layer, the adhesive bonding layer, and the upper layer is a Ti-based alloy or Ni-based alloy with particularly high heat generation, Furthermore, even in high-speed cutting of heat-resistant alloys such as Co-based alloys, the lower layer (Ti, Al, B) N layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and as an adhesive bonding layer The CrB 2 layer firmly adhered by the CrN layer ensures excellent thermal stability (very low reactivity) with the heat-resistant alloy that is the work material, so there is no delamination and excellent The wear resistance should be demonstrated over a long period of time.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)0.8〜5μmの平均層厚を有し、かつ、組成式:(Ti1-(X+Z) AlXZ)N(ただし、原子比で、Xは0.25〜0.65、Zは0.01〜0.10を示す)を満足する(Ti,Al,B)N層からなる下部層、
(b)0.1〜0.5μmの平均層厚を有するCrN層からなる密着接合層、
(c)0.8〜5μmの平均層厚を有するCrB層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、耐熱合金の高速切削で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) having an average layer thickness of 0.8 to 5 μm and a composition formula: (Ti 1- (X + Z) Al X B Z ) N (wherein, X is 0.25 to 0 in atomic ratio) .65, Z represents 0.01 to 0.10) (Ti, Al, B) lower layer composed of N layer,
(B) an adhesive bonding layer comprising a CrN layer having an average layer thickness of 0.1 to 0.5 μm;
(C) an upper layer composed of two CrB layers having an average layer thickness of 0.8 to 5 μm,
It is characterized by a coated carbide tool that forms a hard coating layer composed of the above (a) to (c) and exhibits excellent wear resistance by high-speed cutting of a heat-resistant alloy. .

つぎに、この発明の被覆超硬工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式のX値およびZ値、並びに平均層厚
下部層を構成する(Ti,Al,B)N層におけるAl成分には高温硬さと耐熱性を向上させ、一方同Ti成分には高温強度を向上させ、さらに同B成分にはAlとの共存において一段と高温硬さを向上させる作用があるが、Alの割合を示すX値がTiとBの合量に占める割合(原子比、以下同じ)で0.25未満になると、相対的にTiの割合が多くなり過ぎて、高速切削に要求されるすぐれた高温硬さと耐熱性を確保することができなくなり、摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.65を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果切刃部にチッピング(微少欠け)などが発生し易くなることから、X値を0.25〜0.65と定めた。
また、Bの割合がを示すZ値がTiとAlの合量に占める割合で0.01未満では所望の高温硬さ向上効果が得られず、さらに同Z値が0.10を超えると、高温強度が急激に低下するようになることから、Z値を0.01〜0.10と定めた。
さらにその平均層厚が0.8μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、上記の耐熱合金の高速切削では切刃部にチッピングが発生し易くなることから、その平均層厚を0.8〜5μmと定めた。
Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.
(A) X value and Z value of the lower layer composition formula, and average layer thickness The (Ti, Al, B) N layer constituting the lower layer improves the high temperature hardness and heat resistance, while the Ti layer The component has the effect of improving the high temperature strength, and the component B has the effect of further improving the high temperature hardness in the coexistence with Al, but the ratio of the X value indicating the proportion of Al to the total amount of Ti and B ( If the atomic ratio (hereinafter the same) is less than 0.25, the proportion of Ti becomes relatively large, and the high-temperature hardness and heat resistance required for high-speed cutting cannot be secured, and wear progresses. On the other hand, when the X value indicating the proportion of Al exceeds 0.65, the proportion of Ti becomes relatively small and the high-temperature strength rapidly decreases. As a result, the cutting edge portion Is it easy for chipping (slight chipping) to occur? Therefore, the X value was determined to be 0.25 to 0.65.
Further, if the Z value indicating the ratio of B is less than 0.01 in the ratio of the total amount of Ti and Al, the desired high temperature hardness improvement effect cannot be obtained, and if the Z value exceeds 0.10, Since the high temperature strength suddenly decreases, the Z value is determined to be 0.01 to 0.10.
Furthermore, if the average layer thickness is less than 0.8 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, while if the average layer thickness exceeds 5 μm, the above heat-resistant alloy Since high-speed cutting tends to cause chipping at the cutting edge, the average layer thickness is set to 0.8 to 5 μm.

(b)密着接合層の平均層厚
その平均層厚が0.1μm未満では、上部層と下部層の間に強固な接合強度を確保することができず、一方その平均層厚が0.5μmを越えると、硬質被覆層の強度が密着接合層部分で急激に低下するようになり、これがチッピング発生の原因となることから、その平均層厚を0.1〜0.5μmと定めた。
(B) Average layer thickness of the adhesive bonding layer If the average layer thickness is less than 0.1 μm, a strong bonding strength cannot be ensured between the upper layer and the lower layer, while the average layer thickness is 0.5 μm. If it exceeds 1, the strength of the hard coating layer suddenly decreases in the tight bonding layer portion, which causes chipping, so the average layer thickness was determined to be 0.1 to 0.5 μm.

(c)上部層の平均層厚
上部層を構成するCrB層は、上記の通り熱的にきわめて安定した性質を有し、高温加熱された被削材および切粉との反応性の著しく低い特性をもつものであるから、熱発生が著しい耐熱合金の高速切削でも、下部層である(Ti,Al,B)N層を前記高温加熱された被削材および切粉から保護し、これの摩耗進行を抑制する作用を発揮するが、その平均層厚が0.8μm未満では、前記作用に所望の効果が得られず、一方その平均層厚が5μmを越えて厚くなり過ぎると、チッピング発生の原因となることから、その平均層厚を0.8〜5μmと定めた。
(C) Average layer thickness of the upper layer The CrB 2 layer constituting the upper layer has a thermally stable property as described above, and has extremely low reactivity with the work material and chips heated at high temperature. Because it has characteristics, even in high-speed cutting of heat-resistant alloys that generate significant heat, the (Ti, Al, B) N layer, which is the lower layer, is protected from the high-temperature heated work material and chips, Demonstrates the effect of suppressing the progress of wear. If the average layer thickness is less than 0.8 μm, the desired effect cannot be obtained. On the other hand, if the average layer thickness exceeds 5 μm, chipping occurs. The average layer thickness was determined to be 0.8 to 5 μm.

この発明の被覆超硬工具は、硬質被覆層を構成する下部層の(Ti,Al,B)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ同密着接合層としてのCrN層によって強固に密着接合した上部層としてのCrB層によって、被削材との間にすぐれた熱的安定性(きわめて低い反応性)が確保されることから、特に著しい高熱発生を伴なうTi基合金やNi基合金、さらにCo基合金などの耐熱合金などの高速切削でも、層間剥離の発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。 The coated carbide tool of the present invention has a high-temperature hardness and heat resistance in which the lower layer (Ti, Al, B) N layer constituting the hard coating layer has excellent high-temperature strength, and the same adhesive bonding layer Since the CrB 2 layer as the upper layer firmly adhered and bonded by the CrN layer as the material ensures excellent thermal stability (very low reactivity) with the work material, particularly high heat generation is achieved. Even with high-speed cutting of heat-resistant alloys such as Ti-base alloys, Ni-base alloys, and Co-base alloys, excellent wear resistance is exhibited over a long period of time without delamination.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系超硬製の超硬基体B−1〜B−6を形成した。
さらに、硬質被覆層の上部層形成用カソード電極(蒸発源)として、0.8μmの平均粒径を有するCrB粉末を温度:1500℃、圧力:20Pa、保持時間:3時間の条件でホットプレスして成形したCrB焼結体を用意した。
In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 and ISO standard / CNMG120408. TiCN-based cemented carbide substrates B-1 to B-6 having the following chip shape were formed.
Furthermore, as a cathode electrode (evaporation source) for forming the upper layer of the hard coating layer, CrB 2 powder having an average particle diameter of 0.8 μm was hot pressed under the conditions of temperature: 1500 ° C., pressure: 20 Pa, holding time: 3 hours. Then, a CrB 2 sintered body formed by molding was prepared.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される蒸着装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のAIP装置のカソード電極(蒸発源)として密着接合層形成用金属Cr、他方側のSP装置のカソード電極(蒸発源)として上部層形成用CrB焼結体を対向配置し、さらに前記回転テーブルに沿って、かつ前記金属CrおよびCrB焼結体のそれぞれから90度離れた位置にAIP装置のカソード電極(蒸発源)として所定の組成を有する下部層形成用Ti−Al−B合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−B合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3に示される目標組成および目標層厚の(Ti,Al,B)N層を硬質被覆層の下部層として蒸着形成し、
(d)上記の下部層形成用Ti−Al−B合金のカソード電極とアノード電極との間のアーク放電を停止し、装置内の雰囲気を同じ3Paの窒素雰囲気に保持すると共に、超硬基体への直流バイアス電圧(−100V)も同じくしたままで、カソード電極の前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって同じく表3に示される目標層厚のCrN層を硬質被覆層の密着接合層として蒸着形成し、
(e)上記金属Crとアノード電極とのアーク放電を続行させながら、前記蒸着装置内の雰囲気を、窒素雰囲気に代って、Arと窒素の混合ガス雰囲気とするが、経時的にArの導入割合を漸次増加させ、一方窒素の導入割合は漸次減少させた雰囲気として、最終的にAr雰囲気とすると共に、この間の反応雰囲気も同じく経時的に3Paから0.3Paに漸減し、かつ前記蒸着装置中へのArと窒素の混合ガス導入と同時に前記SP装置のカソード電極(蒸発源)として配置したCrB焼結体に、スパッタ出力:3kWの条件でスパッタリングを開始し、前記金属Crとアノード電極とのアーク放電は前記反応雰囲気のArと窒素の混合ガスの窒素の割合が10容量%になった時点で中止し、
(f)以後、上記の0.3PaのAr雰囲気を保持しながら、上記CrB焼結体とアノード電極と間のスパッタ出力も3kWと同じくした条件でスパッタリングを続行し、同じく表3に示される目標層厚のCrB層を硬質被覆層の上部層として蒸着形成しすることにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then in the vapor deposition apparatus shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table, a close contact bonding layer forming metal Cr as the cathode electrode (evaporation source) of the AIP device on one side, and the SP on the other side As a cathode electrode (evaporation source) of the apparatus, a CrB 2 sintered body for forming an upper layer is disposed oppositely, and further along the rotary table and at a position 90 degrees away from each of the metal Cr and CrB 2 sintered bodies. A lower layer forming Ti—Al—B alloy having a predetermined composition is disposed as a cathode electrode (evaporation source) of the AIP device,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And a current of 100 A is applied between the Ti—Al—B alloy of the cathode electrode and the anode electrode to generate an arc discharge, and thus the surface of the carbide substrate is made to the Ti—Al—B. Bombard washed by alloy and
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to a carbide substrate rotating while rotating on the rotary table, and a cathode electrode A current of 100 A was passed between the Ti—Al—B alloy and the anode electrode to generate an arc discharge, so that the surface of the cemented carbide substrate had a target composition and target layer thickness (Ti) shown in Table 3. , Al, B) N layer is deposited as a lower layer of the hard coating layer,
(D) The arc discharge between the cathode electrode and the anode electrode of the Ti-Al-B alloy for forming the lower layer is stopped, and the atmosphere in the apparatus is maintained in the same nitrogen atmosphere of 3 Pa. While maintaining the same DC bias voltage (−100 V), an arc discharge is generated by flowing a current of 100 A between the metal Cr and the anode electrode of the cathode electrode. A CrN layer is vapor-deposited as an adhesive bonding layer of a hard coating layer,
(E) While continuing the arc discharge between the metal Cr and the anode electrode, the atmosphere in the vapor deposition apparatus is changed to a mixed gas atmosphere of Ar and nitrogen instead of a nitrogen atmosphere. The ratio is gradually increased, while the nitrogen introduction ratio is gradually decreased, and finally the Ar atmosphere is obtained, and the reaction atmosphere is gradually decreased from 3 Pa to 0.3 Pa with time, and the vapor deposition apparatus. Simultaneously with the introduction of a mixed gas of Ar and nitrogen into the inside, sputtering was started on a CrB 2 sintered body arranged as a cathode electrode (evaporation source) of the SP apparatus under the condition of sputtering output: 3 kW, and the metal Cr and anode electrode Arc discharge with the reaction atmosphere was stopped when the ratio of nitrogen in the mixed gas of Ar and nitrogen reached 10% by volume,
(F) After that, while maintaining the Ar atmosphere of 0.3 Pa, the sputtering was continued under the same conditions as the sputtering output of 3 kW between the CrB 2 sintered body and the anode electrode. By depositing a CrB 2 layer having a target layer thickness as an upper layer of the hard coating layer, the surface-coated carbide throw-away tip of the present invention as the coated carbide tool of the present invention (hereinafter referred to as the present coated chip). 1 to 16 were produced.

また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される蒸着装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Al−B合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−B合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−B合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表4に示される目標組成および目標層厚の(Ti,Al,B)N層を硬質被覆層として蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。   For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, in the vapor deposition apparatus shown in FIG. A Ti-Al-B alloy having various composition is mounted as a cathode electrode (evaporation source), and the apparatus is first heated with a heater while evacuating the apparatus and maintaining a vacuum of 0.1 Pa or less. After heating the inside to 500 ° C., a DC bias voltage of −1000 V is applied to the cemented carbide substrate, and a current of 100 A is passed between the Ti—Al—B alloy of the cathode electrode and the anode electrode to cause arc discharge. Thus, the surface of the carbide substrate is bombarded with the Ti—Al—B alloy, and then nitrogen gas is introduced into the apparatus to form a reaction atmosphere of 3 Pa and applied to the carbide substrate. Bias voltage The voltage is lowered to −100 V, and an arc discharge is generated between the cathode electrode and the anode electrode of the Ti—Al—B alloy, so that the carbide substrates A-1 to A-10 and B-1 to B-6 The conventional surface-coated carbide as a conventional coated carbide tool is formed by vapor-depositing a (Ti, Al, B) N layer having the target composition and target layer thickness shown in Table 4 on each surface as a hard coating layer. Slow away chips (hereinafter referred to as conventional coated chips) 1 to 16 were produced.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:質量%で、Ti−6%Al−4%Vの組成を有するTi基合金の丸棒
切削速度:120m/min.、
切り込み:1.2mm、
送り:0.15mm/rev.、
切削時間:3分、
の条件(切削条件A)でのTi基合金の乾式連続高速切削加工試験(通常の切削速度は50m/min.)、
被削材:質量%で、Ni−19%Cr−14%Co−4.5%Mo−2.5%Ti−2%Fe−1.2%Al−0.7%Mn−0.4%Siの組成を有するNi基合金の丸棒
切削速度:80m/min.、
切り込み:0.3mm、
送り:0.2mm/rev.、
切削時間:8分、
の条件(切削条件B)でのNi基合金の乾式連続高速切削加工試験(通常の切削速度は45m/min.)、
被削材:質量%で、Co−23%Cr−6%Mo−2%Ni−1%Fe−0.6%Si−0.4%Cの組成を有するCo基合金の長さ方向等間隔4本縦溝入り丸棒
切削速度:60m/min.、
切り込み:0.5mm、
送り:0.1mm/rev.、
切削時間:4分、
の条件(切削条件C)でのCo基合金の乾式断続高速切削加工試験(通常の切削速度は30m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the above-mentioned various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the conventional coated chips 1-16,
Work material: Round bar of Ti base alloy having a composition of Ti-6% Al-4% V in mass% Cutting speed: 120 m / min. ,
Cutting depth: 1.2mm,
Feed: 0.15 mm / rev. ,
Cutting time: 3 minutes
Dry continuous high-speed cutting test of Ti-based alloy under the conditions (cutting condition A) (normal cutting speed is 50 m / min.),
Work Material: Ni-19% Cr-14% Co-4.5% Mo-2.5% Ti-2% Fe-1.2% Al-0.7% Mn-0.4% by mass% Ni-based alloy round bar with Si composition Cutting speed: 80 m / min. ,
Cutting depth: 0.3 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 8 minutes
Dry continuous high-speed cutting test of Ni-based alloy under the following conditions (cutting condition B) (normal cutting speed is 45 m / min.),
Work material: Equal intervals in the length direction of Co-based alloy having a composition of Co-23% Cr-6% Mo-2% Ni-1% Fe-0.6% Si-0.4% C in mass% Four vertical grooved round bars Cutting speed: 60 m / min. ,
Cutting depth: 0.5mm,
Feed: 0.1 mm / rev. ,
Cutting time: 4 minutes
A dry interrupted high-speed cutting test (normal cutting speed was 30 m / min.) Of the Co-based alloy under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 5.

Figure 2006026882
Figure 2006026882

Figure 2006026882
Figure 2006026882

Figure 2006026882
Figure 2006026882

Figure 2006026882
Figure 2006026882

Figure 2006026882
Figure 2006026882

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powders were prepared, each of these raw material powders was blended in the composition shown in Table 6, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then shaped into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of round rod sintered bodies described above were subjected to grinding and shown in Table 7. Made of WC-base cemented carbide with a combination of 4 blade square shape with diameter and length of 6mm × 13mm, 10mm × 22mm, and 20mm × 45mm respectively, and a twist angle of 30 degrees. Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表7に示される目標組成および目標層厚の(Ti,Al,B)N層からなる下部層と、同じく表7に示される目標層厚のCrN層からなる密着接合層およびCrB層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Subsequently, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. A lower layer composed of a (Ti, Al, B) N layer having the target composition and target layer thickness shown in Table 7 and an adhesive bonding layer consisting of a CrN layer having the target layer thickness also shown in Table 7 And a hard coating layer composed of an upper layer composed of two layers of CrB, by vapor deposition, the present surface coated carbide end mill (hereinafter referred to as the present coated end mill) 1 to 1 as the coated carbide tool of the present invention. 8 were produced respectively.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表7に示される目標組成および目標層厚の(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the vapor deposition apparatus shown in FIG. By depositing a hard coating layer composed of a (Ti, Al, B) N layer having the target composition and target layer thickness shown in Table 7 under the same conditions as in Example 1, the conventional coated carbide tool Conventional surface-coated carbide end mills (hereinafter referred to as conventional coated end mills) 1 to 8 were produced.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Mn−0.05%Cu−0.04%Cの組成をもったNi基合金の板材、
切削速度:50m/min.、
溝深さ(切り込み):1mm、
テーブル送り:350mm/分、
の条件でのNi基合金の乾式高速溝切削加工試験(通常の切削速度は30m/min.)、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ti−3%Al−2.5%Vの組成をもったTi基合金の板材、
切削速度:120m/min.、
溝深さ(切り込み):2mm、
テーブル送り:540mm/分、
の条件でのTi基合金の乾式高速溝切削加工試験(通常の切削速度は50m/min.)、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Co−20%Cr−20%Ni−4%Mo−4%W−4%Cd−3%Fe−1.5%Mn−0.7%Si−0.38%Cの組成をもったCo基合金の板材、
切削速度:45m/min.、
溝深さ(切り込み):5mm、
テーブル送り:145mm/分、
の条件でのCo基合金の乾式高速溝切削加工試験(通常の切削速度は25m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7にそれぞれ示した。
Next, of the present invention coated end mills 1 to 8 and the conventional coated end mills 1 to 8, the present coated end mills 1 to 3 and the conventional coated end mills 1 to 3 are as follows:
Work material-plane: 100 mm × 250 mm, thickness: 50 mm, and mass%, Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0. A Ni-based alloy plate having a composition of 9% Ti-0.5% Al-0.3% Mn-0.05% Cu-0.04% C;
Cutting speed: 50 m / min. ,
Groove depth (cut): 1mm,
Table feed: 350 mm / min,
With respect to the dry high-speed grooving test of a Ni-based alloy under the conditions (normal cutting speed is 30 m / min.), The coated end mills 4 to 6 and the conventional coated end mills 4 to 6
Work material-plane: 100 mm × 250 mm, thickness: 50 mm, and Ti-based alloy plate material having a composition of Ti-3% Al-2.5% V in mass%,
Cutting speed: 120 m / min. ,
Groove depth (cut): 2 mm,
Table feed: 540 mm / min,
With respect to the dry high-speed grooving test of the Ti-based alloy under the conditions (normal cutting speed is 50 m / min.), The present coated end mills 7 and 8 and the conventional coated end mills 7 and 8,
Work Material-Plane: 100 mm × 250 mm, Thickness: 50 mm in Dimensions and Mass%, Co-20% Cr-20% Ni-4% Mo-4% W-4% Cd-3% Fe-1. A plate material of a Co-based alloy having a composition of 5% Mn-0.7% Si-0.38% C;
Cutting speed: 45 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 145 mm / min,
A dry high-speed grooving test (normal cutting speed is 25 m / min.) Of a Co-based alloy under the above conditions was performed, and the flank wear width of the outer peripheral edge of the cutting edge was the service life in any grooving test. The cutting groove length up to 0.1 mm, which is a guideline, was measured. The measurement results are shown in Table 7, respectively.

Figure 2006026882
Figure 2006026882

Figure 2006026882
Figure 2006026882

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の(Ti,Al,B)N層からなる下部層と、同じく表8に示される目標層厚のCrN層からなる密着接合層およびCrB層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then loaded into the vapor deposition apparatus shown in FIG. Then, under the same conditions as in Example 1, the lower layer composed of the (Ti, Al, B) N layer having the target composition and target layer thickness shown in Table 8, and CrN having the target layer thickness also shown in Table 8 A hard coating layer composed of an adhesive bonding layer composed of layers and an upper layer composed of two CrB layers is formed by vapor deposition to form the surface coated carbide drill of the present invention as the coated carbide tool of the present invention (hereinafter, coated with the present invention). (Referred to as drills) 1 to 8 were produced.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表8に示される目標組成および目標層厚を有する(Ti,Al,B)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. By charging the apparatus and vapor-depositing a hard coating layer comprising a (Ti, Al, B) N layer having the target composition and target layer thickness shown in Table 8 under the same conditions as in Example 1 above. Conventional surface coated carbide drills (hereinafter referred to as conventional coated drills) 1 to 8 as conventional coated carbide tools were manufactured, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Co−20%Cr−15%W−10%Ni−1.5%Mn−1%Si−1%Fe−0.12%Cの組成をもったCo基合金の板材、
切削速度:45m/min.、
送り:0.1mm/rev、
穴深さ:6mm、
の条件でのCo基合金の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ni−19%Cr−14%Co−4.5%Mo−2.5%Ti−2%Fe−1.2%Al−0.7%Mn−0.4%Siの組成をもったNi基合金の板材、
切削速度:50m/min.、
送り:0.12mm/rev、
穴深さ:14mm、
の条件でのNi基合金の湿式高速穴あけ切削加工試験(通常の切削速度は30m/min.)、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ti−3%Al−2.5%Vの組成をもったTi基合金の板材、
切削速度:70m/min.、
溝深さ(切り込み):0.2mm、
テーブル送り:28mm/分、
の条件でのTi基合金の湿式高速穴あけ切削加工試験(通常の切削速度は40m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work Material-Plane: 100mm x 250mm, Thickness: 50mm, and mass%, Co-20% Cr-15% W-10% Ni-1.5% Mn-1% Si-1% Fe- A Co-base alloy plate with a composition of 0.12% C;
Cutting speed: 45 m / min. ,
Feed: 0.1 mm / rev,
Hole depth: 6mm,
About the wet high speed drilling cutting test (normal cutting speed is 25 m / min.) Of the Co-based alloy under the conditions of the present invention, the coated drills 4 to 6 and the conventional coated drills 4 to 6
Work Material-Plane: 100 mm × 250 mm, Thickness: 50 mm, and Mass%, Ni-19% Cr-14% Co-4.5% Mo-2.5% Ti-2% Fe-1. A Ni-based alloy plate having a composition of 2% Al-0.7% Mn-0.4% Si,
Cutting speed: 50 m / min. ,
Feed: 0.12 mm / rev,
Hole depth: 14mm,
The wet-type high-speed drilling test of the Ni-based alloy under the conditions (normal cutting speed is 30 m / min.), The present invention coated drills 7 and 8 and the conventional coated drills 7 and 8
Work material-plane: 100 mm × 250 mm, thickness: 50 mm, and Ti-based alloy plate material having a composition of Ti-3% Al-2.5% V in mass%,
Cutting speed: 70 m / min. ,
Groove depth (cut): 0.2 mm,
Table feed: 28mm / min,
The high-speed drilling machining test (normal cutting speed is 40 m / min.) Of the Ti-based alloy under the above conditions, and the cutting edge surface of the tip in any wet high-speed drilling machining test (using water-soluble cutting oil) The number of drilling processes until the flank wear width was 0.3 mm was measured. The measurement results are shown in Table 8, respectively.

Figure 2006026882
この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する(Ti,Al,B)N層(下部層)の組成、並びに従来被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の(Ti,Al,B)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
Figure 2006026882
The hard coating layers of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated carbide tool obtained as a result of this (Ti, Al, B) ) Composition of N layer (lower layer), and from conventional coated chips 1-16 as a conventional coated carbide tool, conventional coated end mills 1-8, and (Ti, Al, B) N layer of conventional coated drills 1-8 When the composition of the resulting hard coating layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, it showed substantially the same composition as the target composition.

また、上記の硬質被覆層の構成層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of the constituent layers of the hard coating layer was measured by a cross-section using a scanning electron microscope, all showed an average value (average value of five locations) substantially the same as the target layer thickness.

表3〜8に示される結果から、本発明被覆超硬工具は、いずれも著しい高熱発生を伴なうTi基合金やNi基合金、さらにCo基合金からなる耐熱合金の高速切削でも、硬質被覆層の下部層である(Ti,Al,B)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ密着接合層としてのCrN層によって強固に密着したCrB層によって、被削材である耐熱合金との間にすぐれた熱的安定性(きわめて低い反応性)が確保されることから、層間剥離の発生なく、すぐれた耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層が(Ti,Al,B)N層で構成された従来被覆超硬工具においては、いずれも前記耐熱合金の高速切削加工では摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 8, the coated carbide tool of the present invention is hard-coated even in high-speed cutting of heat-resistant alloys composed of Ti-based alloys, Ni-based alloys, and Co-based alloys, all of which generate significant heat. The (Ti, Al, B) N layer, which is the lower layer of the layer, has excellent high-temperature hardness and heat resistance, excellent high-temperature strength, and a CrB 2 layer firmly adhered by a CrN layer as an adhesive bonding layer. Since excellent thermal stability (very low reactivity) is ensured with the heat-resistant alloy that is the work material, it exhibits excellent wear resistance over a long period of time without delamination On the other hand, in the conventional coated carbide tools in which the hard coating layer is composed of (Ti, Al, B) N layer, the wear progress is fast in the high-speed cutting of the heat-resistant alloy, and it is used in a relatively short time. It is clear that it reaches the end of its life.

上述のように、この発明の被覆超硬工具は、特に各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高い発熱を伴なう上記の硬質合金の高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化および自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cemented carbide tool of the present invention can be used not only for cutting under normal cutting conditions such as various steels and cast iron, but also for high-speed cutting of the above hard alloy with particularly high heat generation. However, because it exhibits excellent wear resistance and excellent cutting performance over a long period of time, it is possible to improve the performance and automation of cutting equipment, reduce labor and energy of cutting, and reduce costs. It can respond satisfactorily.

被覆超硬工具を構成する硬質被覆層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used in forming the hard coating layer which comprises a coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、
(a)0.8〜5μmの平均層厚を有し、かつ、組成式:(Ti1-(X+Z) AlXZ)N(ただし、原子比で、Xは0.25〜0.65、Zは0.01〜0.10を示す)を満足するTiとAlとB(ボロン)の複合窒化物層からなる下部層、
(b)0.1〜0.5μmの平均層厚を有する窒化クロム層からなる密着接合層、
(c)0.8〜5μmの平均層厚を有する硼化クロム層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、耐熱合金の高速切削で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。
On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) having an average layer thickness of 0.8 to 5 μm and a composition formula: (Ti 1- (X + Z) Al X B Z ) N (wherein, X is 0.25 to 0 in atomic ratio) .65, Z represents 0.01 to 0.10), and a lower layer composed of a composite nitride layer of Ti, Al, and B (boron),
(B) an adhesive bonding layer comprising a chromium nitride layer having an average layer thickness of 0.1 to 0.5 μm;
(C) an upper layer comprising a chromium boride layer having an average layer thickness of 0.8 to 5 μm;
A surface-coated cemented carbide cutting tool that exhibits the wear resistance of a hard coating layer excellent in high-speed cutting of a heat-resistant alloy, formed by forming a hard coating layer composed of (a) to (c) above.
JP2004345471A 2004-06-18 2004-11-30 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys. Expired - Fee Related JP4621974B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004345471A JP4621974B2 (en) 2004-06-18 2004-11-30 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
PCT/JP2004/019637 WO2005123312A1 (en) 2004-06-18 2004-12-28 Surface-coated cutware and process for producing the same
EP04807992.5A EP1757388B1 (en) 2004-06-18 2004-12-28 Surface-coated cutware and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004181251 2004-06-18
JP2004345471A JP4621974B2 (en) 2004-06-18 2004-11-30 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.

Publications (2)

Publication Number Publication Date
JP2006026882A true JP2006026882A (en) 2006-02-02
JP4621974B2 JP4621974B2 (en) 2011-02-02

Family

ID=35893810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345471A Expired - Fee Related JP4621974B2 (en) 2004-06-18 2004-11-30 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.

Country Status (1)

Country Link
JP (1) JP4621974B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330853A (en) * 1991-03-16 1994-07-19 Leybold Ag Multilayer Ti-Al-N coating for tools
JPH06220571A (en) * 1992-08-31 1994-08-09 Sumitomo Electric Ind Ltd Sintered hard alloy and coated sintered hard alloy for cutting tool
JP2002096206A (en) * 2000-09-19 2002-04-02 Hitachi Tool Engineering Ltd Hard film covering tool
GB2378187A (en) * 2001-08-01 2003-02-05 Peter Albany Dearnley Wear Resistant Metal Boride Coatings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330853A (en) * 1991-03-16 1994-07-19 Leybold Ag Multilayer Ti-Al-N coating for tools
JPH06220571A (en) * 1992-08-31 1994-08-09 Sumitomo Electric Ind Ltd Sintered hard alloy and coated sintered hard alloy for cutting tool
JP2002096206A (en) * 2000-09-19 2002-04-02 Hitachi Tool Engineering Ltd Hard film covering tool
GB2378187A (en) * 2001-08-01 2003-02-05 Peter Albany Dearnley Wear Resistant Metal Boride Coatings

Also Published As

Publication number Publication date
JP4621974B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP4844880B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2006001006A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2008173756A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy
JP4844884B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP4621973B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP4844879B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP2008173752A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed cutting of heat resistant alloy
JP4697390B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP4621974B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP2007152457A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting heat resisting alloy
JP4697391B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2006001005A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP4120490B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4683266B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP2006051594A (en) Surface coated cemented carbide cutting tool having hard coating layer displaying excellent chipping resistance in high speed heavy cutting of heat resistant alloy
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP4771200B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2006001001A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of highly reactive material to be cut

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101017

R150 Certificate of patent or registration of utility model

Ref document number: 4621974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees