JP2006021295A - Method and device for processing ultraprecise mirror surface - Google Patents

Method and device for processing ultraprecise mirror surface Download PDF

Info

Publication number
JP2006021295A
JP2006021295A JP2004203423A JP2004203423A JP2006021295A JP 2006021295 A JP2006021295 A JP 2006021295A JP 2004203423 A JP2004203423 A JP 2004203423A JP 2004203423 A JP2004203423 A JP 2004203423A JP 2006021295 A JP2006021295 A JP 2006021295A
Authority
JP
Japan
Prior art keywords
processing
ultra
processed
mirror
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004203423A
Other languages
Japanese (ja)
Other versions
JP4639669B2 (en
Inventor
Yuzo Mori
勇藏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004203423A priority Critical patent/JP4639669B2/en
Publication of JP2006021295A publication Critical patent/JP2006021295A/en
Application granted granted Critical
Publication of JP4639669B2 publication Critical patent/JP4639669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for processing an ultraprecise mirror surface capable of mirror-surface processing a surface to be processed of a workpiece such as a semiconductor wafer and a substrate for a thin film without generating distortion, cracks, and thermal deterioration, etc., and suitable for mass-production. <P>SOLUTION: The surface to be processed of the workpiece K is horizontally held in a processing container W. Superfine powder adsorbing water molecules is housed in the processing container and positioned on the surface to be processed. The superfine powder is made to contact in a fluidized state with the surface to be processed of the workpiece by two-dimensionally oscillating the processing container in a horizontal surface. The mirror surface processing is made to proceed by mutual action on an interface between the superfine powder and the surface to be processed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超精密鏡面加工方法及びその装置に係わり、更に詳しくはシリコンウエハ、SOI等の半導体ウエハ及び薄膜用基板等の被加工物の加工面に超微粉体を流動接触させて歪み、クラック及び熱変質等を全く生じさせずに鏡面加工を進行させる超精密鏡面加工方法及びその装置に関するものである。   The present invention relates to an ultra-precise mirror surface processing method and apparatus, and more specifically, a fine powder is fluidly contacted with a processed surface of a workpiece such as a silicon wafer, a semiconductor wafer such as SOI, and a thin film substrate, and is distorted. The present invention relates to an ultra-precise mirror surface processing method and apparatus for proceeding mirror surface processing without causing any cracks or thermal alteration.

従来、超微粉体を分散した懸濁液を被加工物の加工面に沿って流動させて、該超微粉体を加工面上に略無荷重の状態で接触させ、その際の超微粉体と加工面界面での相互作用(一種の化学結合)により、加工面原子を原子単位に近いオーダで除去して加工する、いわゆるEEM(Elastic Emission Machining)による超精密鏡面加工は既に知られている。   Conventionally, a suspension in which ultra fine powder is dispersed is flowed along the processed surface of the workpiece, and the ultra fine powder is brought into contact with the processed surface in a substantially no-load state. Ultra-precision specular machining by so-called EEM (Elastic Emission Machining) is already known, in which machining surface atoms are removed on the order of atomic units by interaction (a kind of chemical bond) at the interface between the powder and the machining surface. ing.

従来のEEMを使った加工では、特許文献1〜3に示されているように、加工用球体を被加工物の加工面に押圧しながら回転駆動手段により回転させて加工面近傍に懸濁液流を発生させるとともに、その動圧によって加工面に対して非接触状態を維持し、そして球体を加工面全面に走査して、加工面上の微小領域に形成されるスポット加工痕を連続させて、全面を精密に加工するのである。   In the processing using the conventional EEM, as shown in Patent Documents 1 to 3, the processing sphere is pressed against the processing surface of the workpiece and rotated by the rotation driving means so that the suspension is near the processing surface. A flow is generated, and the non-contact state is maintained with respect to the processing surface by the dynamic pressure, and the sphere is scanned over the entire processing surface, and the spot processing traces formed in the minute regions on the processing surface are continuously performed. The entire surface is processed precisely.

しかし、このような加工用球体と被加工物を相対的に走査し、スポット加工痕を連続させる加工方法は、加工面を任意の形状に超精密に加工することができるといった利点があるものの、加工速度が遅いため半導体ウエハ等の被加工物の加工面全面を均一に鏡面加工するには適していない。   However, the processing method of scanning the processing sphere and the workpiece relative to each other and making the spot processing traces continuous has the advantage that the processing surface can be processed into an arbitrary shape in an ultra-precision manner, Since the processing speed is slow, it is not suitable for uniformly mirror-finishing the entire processing surface of a workpiece such as a semiconductor wafer.

尚、特許文献4には、定盤の下方に定盤に対して垂直姿勢で並列配置され、それぞれが固定軸受により定位置に回転自在に支持されると共に、同方向に同期回転駆動される複数本の軸と、複数本の軸の各上端部に中心位置から離れた位置でそれぞれ結合されると共に、中心位置から離れた位置を中心とする偏心回転が定盤に伝達されるように、定盤の下面に設けられた凹形に回転自在に嵌合し、複数本の軸の同期回転に伴って凹形内で同方向に同期偏心回転を行うことにより、定盤に回転運動を伴わない円運動をさせる複数の偏心円板を具えた駆動機構が開示されている。
特公平2−25745号公報 特公平7−16870号公報 特公平6−44989号公報 特許第2717124号公報
In Patent Document 4, there are a plurality of units arranged in parallel in a vertical posture with respect to the surface plate below the surface plate, each of which is rotatably supported at a fixed position by a fixed bearing, and is synchronously driven to rotate in the same direction. Are connected to the upper ends of the two shafts and the plurality of shafts at positions away from the center position, and eccentric rotation about the position away from the center position is transmitted to the surface plate. The surface plate is free from rotational motion by being rotatably fitted in a concave shape provided on the bottom surface of the panel and performing synchronous eccentric rotation in the same direction within the concave shape with the synchronous rotation of multiple axes. A drive mechanism having a plurality of eccentric discs for circular motion is disclosed.
Japanese Patent Publication No. 2-25745 Japanese Patent Publication No. 7-16870 Japanese Patent Publication No. 6-44989 Japanese Patent No. 2717124

そこで、本発明が前述の状況に鑑み、解決しようとするところは、半導体ウエハ及び薄膜用基板等の被加工物の加工面を、歪み、クラック及び熱変質等を全く生じさせずに鏡面加工することができ、しかも量産性に適した超精密鏡面加工方法及びその装置を提供する点にある。   Therefore, in view of the above-mentioned situation, the present invention intends to solve the problem that the processed surface of a workpiece such as a semiconductor wafer and a thin film substrate is mirror-finished without causing any distortion, cracking, thermal alteration or the like. In addition, the present invention is to provide an ultra-precise mirror finishing method and apparatus suitable for mass production.

本発明は、前述の課題解決のために、被加工物の加工面を水平にして加工容器内に保持するとともに、該加工容器内に水分子を吸着させた超微粉体を収容して前記加工面上に位置させ、前記加工容器を水平面内で二次元的に加振することにより被加工物の加工面に超微粉体を流動接触させ、超微粉体と加工面界面での相互作用により鏡面加工を進行してなる超精密鏡面加工方法を構成した(請求項1)。   In order to solve the above-mentioned problems, the present invention holds the processing surface of the workpiece horizontally in the processing container, and stores the ultrafine powder in which water molecules are adsorbed in the processing container. By positioning the processing vessel on the processing surface and vibrating the processing container two-dimensionally in a horizontal plane, the ultrafine powder is brought into fluid contact with the processing surface of the work piece, and the ultrafine powder and the processing surface interface with each other. An ultra-precise mirror surface processing method in which mirror surface processing is advanced by the action is configured (claim 1).

ここで、前記加工容器を水平面内で回転運動を伴わない円運動をさせて加振すること(請求項2)、若しくは前記加工容器を水平面内で回転運動を伴わない円運動と直線往復運動とを組み合わせて加振すること(請求項3)が好ましい。   Here, the processing container is vibrated in a circular motion without a rotational motion in a horizontal plane (Claim 2), or the processing container is rotated in a horizontal plane without a rotational motion and a linear reciprocating motion. (Claim 3) is preferable.

また、本発明は、平面視円形のベース体の周囲にリング状のウエイト体を固定した定盤体を、該ウエイト体の直下を振動吸収体により支持して浮遊状態で水平に配置し、前記定盤体の重心を通る鉛直腺に中心を一致させて前記ベース体に軸受孔を貫通形成し、前記ベース体の下面中心部に駆動モータを取付けてその駆動軸を前記軸受孔に回転可能に支持するとともに、前記駆動軸の周囲のベース体に該駆動軸と同一回転姿勢で複数の従動軸を回転可能に支持し、前記ベース体の上位に円板状の振動体を水平に配し、該振動体の重心位置を前記駆動軸の上端に延設した偏心駆動軸で回転可能に支持すると同時に、該振動体の周囲を前記従動軸の上端に延設した偏心従動軸で前記偏心駆動軸に同期して回転可能に支持し、前記振動体の上面に固定した加工容器内に被加工物の加工面を水平にして保持するとともに、該加工容器内に水分子を吸着させた超微粉体を収容して前記加工面上に位置させ、前記加工容器を加振することにより被加工物の加工面に超微粉体を流動接触させ、超微粉体と加工面界面での相互作用により鏡面加工を進行してなる超精密鏡面加工装置を構成した(請求項4)。   Further, the present invention provides a surface plate body in which a ring-shaped weight body is fixed around a circular base body in plan view, and is disposed horizontally in a floating state with a vibration absorber supporting a portion directly below the weight body. A bearing hole is formed through the base body so that the center coincides with a vertical gland passing through the center of gravity of the surface plate body, and a drive motor is attached to the center of the lower surface of the base body so that the drive shaft can rotate to the bearing hole. And supporting a plurality of driven shafts rotatably on the base body around the drive shaft in the same rotation posture as the drive shaft, and horizontally arranging a disc-shaped vibrating body above the base body, The center of gravity of the vibrating body is rotatably supported by an eccentric drive shaft extending to the upper end of the drive shaft, and at the same time, the eccentric drive shaft is extended by an eccentric driven shaft extending to the upper end of the driven shaft. And is supported on the upper surface of the vibrator. And holding the processing surface of the workpiece horizontally in the processing container, accommodating the ultra fine powder having water molecules adsorbed in the processing container, and positioning the processing container on the processing surface. An ultra-precise mirror finishing machine was constructed in which ultra-fine powder was brought into fluid contact with the work surface of the workpiece by vibration, and mirror processing was advanced by interaction between the ultra-fine powder and the work surface interface ( Claim 4).

ここで、前記振動吸収体として空気バネを用い、該空気バネを設置板上に設けるとともに、該空気バネが作動しないときに前記定盤体を載支する支持棒を前記設置板に複数立設してなることが好ましい(請求項5)。   Here, an air spring is used as the vibration absorber, the air spring is provided on the installation plate, and a plurality of support rods for supporting the surface plate body are installed on the installation plate when the air spring does not operate. (Claim 5).

更に、前記振動体を前記ベース体とリング状のウエイト体とで囲まれる空間内に配置するとともに、該振動体の上下位置を前記定盤体の重心近傍に設定してなることがより好ましい(請求項6)。   Further, it is more preferable that the vibrating body is disposed in a space surrounded by the base body and the ring-shaped weight body, and the vertical position of the vibrating body is set near the center of gravity of the surface plate body ( Claim 6).

そして、前記振動体に対する前記定盤体の重量比を100倍以上に設定し、定盤体の振動を抑制して振動体に予期しない振動を与えないようにすることが好ましい(請求項7)。   Preferably, the weight ratio of the surface plate body to the vibration body is set to 100 times or more to suppress vibration of the surface plate body so as not to give unexpected vibration to the vibration body. .

以上にしてなる請求項1に係る発明の超精密鏡面加工方法は、加工容器内に被加工物の加工面を水平にして保持するとともに、該加工容器内に水分子を吸着させた超微粉体を収容して前記加工面上に位置させ、該加工容器を水平面内で二次元的に加振するだけで、半導体ウエハ及び薄膜用基板等の被加工物の加工面を、歪み、クラック及び熱変質等を全く生じさせずに鏡面加工することができ、しかも同時に多数の加工容器を加振することができるので量産性に適している。   The ultra-precision mirror surface processing method according to the first aspect of the present invention as described above is an ultrafine powder in which a processing surface of a workpiece is held horizontally in a processing container and water molecules are adsorbed in the processing container. The processing surface of a workpiece such as a semiconductor wafer and a thin film substrate is distorted, cracked, and simply placed in the processing surface by accommodating a body and vibrating the processing container two-dimensionally in a horizontal plane. It can be mirror-finished without causing any thermal alteration, and can vibrate many processing containers at the same time, which is suitable for mass production.

請求項2によれば、被加工物の加工面と超微粉体とを、相対的に回転運動を伴わない円運動円運動をさせることによって均一な加工を行うことができる。   According to the second aspect, uniform processing can be performed by causing the processing surface of the workpiece and the ultrafine powder to perform a circular motion and a circular motion without a relative rotational motion.

請求項3によれば、被加工物の加工面と超微粉体とを、相対的に回転運動を伴わない円運動円運動と直線運動を組合わせた運動させることによって、被加工物の加工面と超微粉体との相対運動において加速度運動を伴うので、加工速度を速くすることができる。   According to the third aspect of the present invention, the processing surface of the workpiece and the ultrafine powder are moved by combining a circular motion and a linear motion with no relative rotational motion, thereby processing the workpiece. Since the relative motion between the surface and the ultrafine powder is accompanied by an acceleration motion, the processing speed can be increased.

請求項4に係る発明の超精密鏡面加工装置は、振動体の上面に固定した加工容器内に被加工物の加工面を水平にして保持するとともに、該加工容器内に水分子を吸着させた超微粉体を収容して前記加工面上に位置させ、前記加工容器を加振するだけで、半導体ウエハ及び薄膜用基板等の被加工物の加工面を、歪み、クラック及び熱変質等を全く生じさせずに鏡面加工することができ、しかも振動体の上面に多数の加工容器を装着して同時に多数の加工容器を加振することで、同時に多数枚の半導体ウエハ等の被加工物を加工することができるので、量産性に適し、更に振動体の振動を定盤体の大きな慣性質量によって振幅を小さくし、該定盤体を振動吸収体により浮遊状態で支持するので、設置床面への振動伝達を遮断することができる。   According to a fourth aspect of the present invention, the ultraprecision mirror surface processing apparatus holds the processing surface of the workpiece horizontally in the processing container fixed to the upper surface of the vibrator, and adsorbs water molecules in the processing container. The ultra-fine powder is accommodated and positioned on the processing surface, and the processing surface of a workpiece such as a semiconductor wafer and a thin film substrate is subjected to distortion, cracks, thermal alteration, etc. by simply vibrating the processing container. It can be mirror-finished without any occurrence, and by attaching a large number of processing containers on the upper surface of the vibrator and simultaneously vibrating a large number of processing containers, a large number of workpieces such as semiconductor wafers can be simultaneously processed. Since it can be processed, it is suitable for mass production, and further, the vibration of the vibrating body is reduced in amplitude by the large inertial mass of the surface plate body, and the surface plate body is supported in a floating state by the vibration absorber, so that the installation floor surface The transmission of vibration to can be cut off.

請求項5によれば、設置板上に設けた空気バネによって定盤体を支持するので、振動体の振動が設置床面に殆ど伝達することがなく、また停電時やメンテナンス時に空気バネに対する加圧空気の供給を停止した際にも、前記定盤体や振動体の全荷重を支持棒で支持することができる。   According to the fifth aspect, since the surface plate body is supported by the air spring provided on the installation plate, the vibration of the vibration body is hardly transmitted to the installation floor surface, and is applied to the air spring at the time of power failure or maintenance. Even when the supply of compressed air is stopped, the entire load of the surface plate body and the vibrating body can be supported by the support rod.

請求項6によれば、振動体及び定盤体の上下振動を極めて小さくでき、それにより被加工物の加工面に対する超微粉体の運動において法線方向成分が少なくなるので、良好な加工を行うことができる。   According to the sixth aspect, the vertical vibration of the vibrating body and the surface plate body can be extremely reduced, and thereby the normal direction component is reduced in the movement of the ultra fine powder with respect to the processing surface of the workpiece, so that good processing It can be carried out.

請求項7によれば、定盤体の振動を抑制して振動体に予期しない振動を与えないようにして良好な加工を行うことができ、更に定盤体自体の振動振幅も小さくすることができるので、設置床面を介した他の装置への振動の影響を最小限に抑制することができる。   According to the seventh aspect of the present invention, it is possible to perform excellent processing by suppressing the vibration of the surface plate body so as to prevent unexpected vibrations from being applied to the vibration body, and further reducing the vibration amplitude of the surface plate body itself. Therefore, the influence of vibration on other devices via the installation floor can be minimized.

次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。図1は、本発明の係る超精密鏡面加工装置の全体斜視図、図2〜図6は要部を示し、図中符号Kは加工容器、Wは被加工物、1は定盤体、2は設置板、3は振動吸収体、4は駆動モータ、5は振動体、6はベース体、7はウエイト体をそれぞれ示している。   Next, the present invention will be described in more detail based on the embodiments shown in the accompanying drawings. FIG. 1 is an overall perspective view of an ultra-precision mirror surface processing apparatus according to the present invention, FIGS. 2 to 6 show main parts, in which K is a processing container, W is a workpiece, 1 is a surface plate, Indicates an installation plate, 3 is a vibration absorber, 4 is a drive motor, 5 is a vibration body, 6 is a base body, and 7 is a weight body.

本発明に係る超精密鏡面加工装置は、慣性質量の大きな定盤体1を、床面に設置した設置板2上に同心円上に配設した複数の振動吸収体3,…にて浮遊状態で水平に支持し、前記定盤体1に対して固定した駆動モータ4による偏心回転により振動体5を加振し、もって該振動体5に上置して固定した加工容器Kを加振する構造である。そして、前記加工容器K内に被加工物Wの加工面を水平にして保持するとともに、該加工容器K内に水分子を吸着させた超微粉体を収容して前記加工面上に位置させ、前記加工容器Kを加振することにより被加工物Wの加工面に超微粉体を流動接触させ、超微粉体と加工面界面での相互作用により鏡面加工を進行させるのである。尚、加工速度は遅くなるが、超純水に超微粉体を分散した懸濁液を加工容器K内に収容して前記加工面上に位置させることも可能である。   The ultra-precision mirror surface processing apparatus according to the present invention floats a surface plate body 1 having a large inertial mass by a plurality of vibration absorbers 3,... Arranged concentrically on an installation plate 2 installed on a floor surface. A structure in which the vibrating body 5 is vibrated by an eccentric rotation by a drive motor 4 that is supported horizontally and fixed to the surface plate body 1, and thus a processing container K that is placed on and fixed to the vibrating body 5 is vibrated. It is. Then, the processing surface of the workpiece W is held horizontally in the processing container K, and ultra fine powder having water molecules adsorbed in the processing container K is accommodated and positioned on the processing surface. By vibrating the processing container K, the ultrafine powder is brought into fluid contact with the processing surface of the workpiece W, and the mirror surface processing is advanced by the interaction between the ultrafine powder and the processing surface interface. Although the processing speed is slow, it is also possible to place a suspension obtained by dispersing ultrafine powder in ultrapure water in the processing container K and place it on the processing surface.

更に詳しくは、本発明に係る超精密鏡面加工装置は、平面視円形のベース体6の周囲にリング状のウエイト体7を固定した定盤体1を、該ウエイト体7の直下を振動吸収体3,…により支持して浮遊状態で水平に配置し、前記定盤体1の重心を通る鉛直腺に中心を一致させて前記ベース体6に軸受孔8を貫通形成し、前記ベース体6の下面中心部に駆動モータ4を取付けてその駆動軸9を前記軸受孔8に回転可能に支持するとともに、前記駆動軸9の周囲のベース体6に該駆動軸9と同一回転姿勢で複数の従動軸10,…を回転可能に支持し、前記ベース体6の上位に円板状の振動体5を水平に配し、該振動体5の重心位置を前記駆動軸9の上端に延設した偏心駆動軸11で回転可能に支持すると同時に、該振動体5の周囲を前記従動軸10,…の上端に延設した偏心従動軸12,…で前記偏心駆動軸11に同期して回転可能に支持した構造を有している。   More specifically, the ultra-precision mirror surface processing apparatus according to the present invention includes a surface plate body 1 in which a ring-shaped weight body 7 is fixed around a circular base body 6 in plan view, and a vibration absorber directly under the weight body 7. 3,... Are horizontally arranged in a floating state, and the base body 6 is formed with a bearing hole 8 penetrating the base body 6 so that the center coincides with a vertical gland passing through the center of gravity of the surface plate body 1. The drive motor 4 is attached to the center of the lower surface and the drive shaft 9 is rotatably supported in the bearing hole 8, and a plurality of followers are mounted on the base body 6 around the drive shaft 9 in the same rotational posture as the drive shaft 9. The shafts 10,... Are rotatably supported, the disk-like vibrating body 5 is horizontally disposed above the base body 6, and the center of gravity of the vibrating body 5 extends to the upper end of the drive shaft 9. At the same time as being rotatably supported by the drive shaft 11, the driven shaft 10 surrounds the vibrating body 5. ... eccentric driven shaft and extending to the upper end of 12, has a structure in which is rotatably supported in synchronization with the eccentric drive shaft 11 by ....

また、前記振動吸収体3として空気バネを用い、該空気バネを設置板2上に設けるとともに、該空気バネが作動しないときに前記定盤体1を載支する支持棒13,…を前記設置板2に複数立設している。   Further, an air spring is used as the vibration absorber 3 and the air spring is provided on the installation plate 2 and the support rods 13 for supporting the surface plate body 1 when the air spring is not operated are installed. A plurality of the plates 2 are erected.

そして、前記振動体5を前記ベース体6とリング状のウエイト体7とで囲まれる空間内に配置するとともに、該振動体5の上下位置を前記定盤体1の重心近傍に設定すると、前記定盤体1及び振動体5の縦振動を抑制することができる。更に、前記振動体5に対する前記定盤体1の重量比を100倍以上に設定し、定盤体1の振動を抑制して振動体5に予期しない振動を与えないようにすることができる。   When the vibrating body 5 is disposed in a space surrounded by the base body 6 and the ring-shaped weight body 7, and the vertical position of the vibrating body 5 is set near the center of gravity of the surface plate body 1, The longitudinal vibration of the surface plate body 1 and the vibrating body 5 can be suppressed. Furthermore, the weight ratio of the platen body 1 to the vibrating body 5 can be set to 100 times or more, so that the vibration of the surface plate body 1 can be suppressed and unexpected vibrations can be prevented from being applied to the vibrating body 5.

ここで、前記加工容器を水平面内で回転運動を伴わない円運動をさせて加振すること、若しくは前記加工容器を水平面内で回転運動を伴わない円運動と直線往復運動とを組み合わせて加振することが好ましい。   Here, the processing vessel is vibrated in a circular motion without rotational motion in a horizontal plane, or the processing vessel is vibrated in combination with a circular motion without rotational motion and a linear reciprocating motion in a horizontal plane. It is preferable to do.

次に、各部の詳細を説明する。本実施形態では、前記定盤体1は、前記ベース体6とウエイト体7とで構成し、またベース体6は外側の保持リング14とその内側に嵌合して固定される円板状の定盤15とで構成し、前記保持リング14の上部に前記ウエイト体7を凹凸嵌合状態で連結するとともに、下部にリング状の支持リング16を取付けている。そして、前記支持リング16を前記設置板2上に配した6つの前記振動吸収体3,…で支持するのである。ここで、前記定盤体1のウエイト体7の外径は1200mm、内径は820mm、上下寸法はウエイト体7と支持リング16を合わせて345mm、定盤15の外径は820mm、厚さは85mmとしている。このように定盤体1はスチール製で非常に重量が重く、また寸法も大きいので、加工性及び取扱性を考慮して複数の部品に分割して構成したのである。また、前記振動体5は、アルミニウム製で、外径は800mm、前記偏心駆動軸11と偏心従動軸12,…で支持する中心部側の厚さは40mm、周辺部側の厚さは10mmとして剛性を保ちながら軽量化を図っている。   Next, details of each part will be described. In the present embodiment, the surface plate body 1 is constituted by the base body 6 and the weight body 7, and the base body 6 is a disc-like shape that is fitted and fixed to the outer holding ring 14 and the inner side thereof. The weight plate 7 is connected to the upper portion of the holding ring 14 in a concavo-convex fitting state, and a ring-shaped support ring 16 is attached to the lower portion. The support ring 16 is supported by the six vibration absorbers 3 disposed on the installation plate 2. Here, the outer diameter of the weight body 7 of the surface plate body 1 is 1200 mm, the inner diameter is 820 mm, the vertical dimension is 345 mm including the weight body 7 and the support ring 16, the outer diameter of the surface plate 15 is 820 mm, and the thickness is 85 mm. It is said. As described above, the surface plate 1 is made of steel, is very heavy, and has a large size. Therefore, the platen 1 is divided into a plurality of parts in consideration of workability and handling. Further, the vibrating body 5 is made of aluminum, has an outer diameter of 800 mm, a thickness of the central portion supported by the eccentric drive shaft 11 and the eccentric driven shaft 12,... 40 mm, and a thickness of the peripheral portion side of 10 mm. The weight is reduced while maintaining rigidity.

前記保持リング14の内周面は、若干上方へ向けて広がったテーパー面17となっており、また前記定盤15の外周面は、若干下方へ向けて狭まったテーパー面18となっており、該定盤15を上方から保持リング14の内部に嵌合し、両テーパー面17,18を密着させた状態で、前記保持リング14の下面に下方からボルト19にて固定した前記支持リング16の内周部に、上方からボルト20にて引き付けて固定している。尚、前記ウエイト体7は、前記保持リング14の上面に載置した状態で、下方よりボルト21にて連結している。   The inner peripheral surface of the holding ring 14 is a tapered surface 17 slightly widened upward, and the outer peripheral surface of the surface plate 15 is a tapered surface 18 slightly narrowed downward. The support ring 16 is fixed to the lower surface of the holding ring 14 from below with a bolt 19 in a state where the surface plate 15 is fitted into the holding ring 14 from above and the tapered surfaces 17 and 18 are in close contact with each other. It is attracted and fixed to the inner peripheral portion with bolts 20 from above. The weight body 7 is connected to the bolt 21 from below while being placed on the upper surface of the holding ring 14.

図3に示すように、前記駆動軸9は、前記定盤15の中心に形成した軸受孔8を貫通させ、複数のアンギュラベアリング22,…によって、定位置で回転可能に支持している。また、前記従動軸10も前記定盤15の半径部に形成した軸受孔23に複数のアンギュラベアリング24,…によって、定位置で回転可能に支持している。そして、前記偏心駆動軸11は、前記振動体5の中心に形成した軸孔25に複数のアンギュラベアリング26,…によって回転可能に取付けている。また、前記偏心従動軸12も前記振動体5の半径部に形成した軸孔27に複数のアンギュラベアリング28,…によって回転可能に取付けている。ここで、前記駆動軸9の中心に対する前記偏心駆動軸11の中心の偏差は、本実施形態では5mmに設定するとともに、前記従動軸10の中心に対する前記偏心従動軸12の中心の偏差も5mmに設定している。従って、前記振動体5の最大振幅は10mmとなっている。   As shown in FIG. 3, the drive shaft 9 passes through a bearing hole 8 formed in the center of the surface plate 15 and is rotatably supported at a fixed position by a plurality of angular bearings 22. Further, the driven shaft 10 is also rotatably supported at a fixed position by a plurality of angular bearings 24 in a bearing hole 23 formed in the radius portion of the surface plate 15. The eccentric drive shaft 11 is rotatably attached to a shaft hole 25 formed at the center of the vibrating body 5 by a plurality of angular bearings 26. The eccentric driven shaft 12 is also rotatably attached to a shaft hole 27 formed in the radius portion of the vibrating body 5 by a plurality of angular bearings 28. Here, the deviation of the center of the eccentric drive shaft 11 from the center of the drive shaft 9 is set to 5 mm in this embodiment, and the deviation of the center of the eccentric driven shaft 12 from the center of the driven shaft 10 is also set to 5 mm. It is set. Therefore, the maximum amplitude of the vibrating body 5 is 10 mm.

また、前記駆動軸9の下端は、カップリング29を介して前記駆動モータ4の回転軸30に連結されている。尚、前記カップリング29として、非接触で前記駆動軸9と前記回転軸30を回転に対して連結できるマグネットカップリングを採用することで、前記駆動モータ4の振動が駆動軸9を介して加工容器K、ひいては被加工物Wに直接伝達しないようにしている。また、前記駆動モータ4は、前記定盤15の下面に、制振構造の取付部材31を介して取付けている。   The lower end of the drive shaft 9 is connected to the rotary shaft 30 of the drive motor 4 via a coupling 29. Incidentally, as the coupling 29, a magnet coupling that can connect the drive shaft 9 and the rotary shaft 30 to rotation without contact is adopted, so that the vibration of the drive motor 4 is processed through the drive shaft 9. It is prevented from being transmitted directly to the container K and thus to the workpiece W. The drive motor 4 is attached to the lower surface of the surface plate 15 via an attachment member 31 having a vibration control structure.

また、図1に示すように、前記振動吸収体3として空気バネを用いた場合、エアーポンプ32から複数の圧力ホース33,…で各空気バネ3に圧縮空気を供給し、前記定盤体1を浮遊状態で支持するようになっている。   As shown in FIG. 1, when an air spring is used as the vibration absorber 3, compressed air is supplied from the air pump 32 to each air spring 3 by a plurality of pressure hoses 33,. Is supported in a floating state.

そして、前記駆動軸9を回転させると、偏心駆動軸11が偏心回転し、それに同調して全ての偏心従動軸12,…が偏心回転することで、前記振動体5を水平面内で揺動させるのである。従って、前記振動体5の上面のどの位置に加工容器Kを装着しても同じ振動を付与することができる。前記駆動軸9の回転数(振動体5の振動周期)は、500〜2000rpmの範囲とすることが好ましい。また、本発明で使用する超部粉体は、被加工物の材質に応じて加工速度が異なるので、被加工物に応じて最適な表面物性を有するものを使用すべきである。例えば、被加工物がシリコンウエハである場合には、平均粒径が100nm〜50μm、好ましくは1μm〜10μmのSiO2やZrO2を用いることが好ましい。尚、前述の超部粉末は、内部まで均一な物性を有するものでなくても、比較的粒度が揃い、入手が容易なAl23やGeO2などの核となる超微粒子の表面に目的の物性を有する材料をコーティングして作製したものでも良い。本実施形態の装置では、前記振動体5の上面の垂直方向への振動は、1800rpmの回転で最大振幅が15μm以内となっている。 When the drive shaft 9 is rotated, the eccentric drive shaft 11 rotates eccentrically, and all the eccentric driven shafts 12,... It is. Therefore, the same vibration can be applied to any position on the upper surface of the vibrator 5 regardless of the position of the processing container K. The rotational speed of the drive shaft 9 (vibration cycle of the vibrating body 5) is preferably in the range of 500 to 2000 rpm. In addition, since the super-part powder used in the present invention has a different processing speed depending on the material of the workpiece, a powder having an optimum surface property according to the workpiece should be used. For example, when the workpiece is a silicon wafer, it is preferable to use SiO 2 or ZrO 2 having an average particle diameter of 100 nm to 50 μm, preferably 1 μm to 10 μm. Note that the above-mentioned super-part powder is used for the surface of ultra-fine particles such as Al 2 O 3 and GeO 2 that have relatively uniform particle sizes and are easily available even if they do not have uniform physical properties to the inside. It may be produced by coating a material having the above physical properties. In the apparatus according to the present embodiment, the vibration in the vertical direction of the upper surface of the vibrating body 5 has a maximum amplitude of 15 μm or less at a rotation of 1800 rpm.

尚、前記加工容器Kを水平面内で回転運動を伴わない円運動と直線往復運動とを組み合わせて加振する場合には、前記振動体5の上面に図示しない直線往復運動装置を取付け、その上に加工容器Kを装着する。若しくは、直線往復運動装置の上に回転装置を載せて円運動と直線往復運動とを組み合わせて加振する。また、前記振動体5の上面で加工容器Kをゆっくりと回転させても良い。   When the processing container K is vibrated in combination with a circular motion that does not involve a rotational motion and a linear reciprocating motion in a horizontal plane, a linear reciprocating device (not shown) is attached to the upper surface of the vibrating body 5. A processing container K is mounted on the. Alternatively, a rotating device is placed on the linear reciprocating device, and the circular motion and the linear reciprocating motion are combined for vibration. Further, the processing container K may be slowly rotated on the upper surface of the vibrating body 5.

次に、前述の超精密鏡面加工装置を用いて、Siウエハの加工を行った結果を以下に示す。大きさが50mm×100mmのSiウエハを、平面形状が50mm×100mmの加工容器Kの底面に固定し、その上に平均粒径が約6μmの水分子を吸着させたSiO2の粉末約20gを載せ、駆動軸9の回転数1800rpmで12時間の加工条件で行った。ここで、前記SiO2の粉末を上面が解放した容器に入れ、それを密封容器内に超純水を入れて実現した飽和水蒸気中に12〜24時間曝し、SiO2の粉末に水分子を吸着させた状態で使用する。加工中、前記加工容器Kは密閉し、SiO2の粉末が乾燥しないようにしている。乾燥したSiO2の粉末を用いると、Siウエハの表面は殆ど加工されないことが確認されている。 Next, the results of processing the Si wafer using the above-described ultraprecision mirror surface processing apparatus are shown below. A Si wafer having a size of 50 mm × 100 mm is fixed to the bottom surface of a processing vessel K having a planar shape of 50 mm × 100 mm, and about 20 g of SiO 2 powder on which water molecules having an average particle diameter of about 6 μm are adsorbed. This was carried out under a processing condition of 12 hours at a rotational speed of 1800 rpm of the drive shaft 9. Here, the SiO 2 powder is put into a container whose upper surface is opened, and it is exposed to saturated water vapor that is realized by putting ultrapure water in a sealed container for 12 to 24 hours, so that water molecules are adsorbed to the SiO 2 powder. Use it in the state where During processing, the processing container K is sealed to prevent the SiO 2 powder from drying. It has been confirmed that when the dried SiO 2 powder is used, the surface of the Si wafer is hardly processed.

Siウエハの表面を加工前(図7)と加工後(図8)について原子間力顕微鏡(AFM)で観察した結果を示す。(a)はSiウエハの表面AFM像を示し、(b)は表面凹凸の線分布を示している。図7の未加工面のPV値は2.397nm、RMSは0.213nmであったのが、図8の加工面のPV値は1.130nm、RMSは0.077nmとなり、本発明の超精密鏡面加工方法及び装置の優れた効果を確認できた。ここで、PV値は凹凸の最大値と最小値の差、RMSは二乗平均平方根粗さを表している。   The result of observing the surface of the Si wafer with an atomic force microscope (AFM) before processing (FIG. 7) and after processing (FIG. 8) is shown. (A) shows the surface AFM image of the Si wafer, and (b) shows the line distribution of the surface irregularities. The PV value of the unprocessed surface in FIG. 7 was 2.397 nm and RMS was 0.213 nm, whereas the PV value of the processed surface in FIG. 8 was 1.130 nm and RMS was 0.077 nm. The excellent effect of the mirror finishing method and apparatus was confirmed. Here, the PV value represents the difference between the maximum value and the minimum value of the unevenness, and RMS represents the root mean square roughness.

本発明の超精密鏡面加工装置の全体斜視図である。It is a whole perspective view of the ultraprecision mirror surface processing apparatus of this invention. 同じく縦断面図である。It is a longitudinal cross-sectional view similarly. 要部の拡大縦断面図である。It is an expanded vertical sectional view of the principal part. 各部品の平面配置を示す説明図である。It is explanatory drawing which shows the planar arrangement | positioning of each component. 本発明の超精密鏡面加工装置の平面図である。It is a top view of the ultraprecision mirror surface processing apparatus of this invention. 振動体の振動の様子を示す説明用平面図である。It is an explanatory top view which shows the mode of a vibration of a vibrating body. Siウエハの加工前の表面観察結果を示し、(a)は表面AFM像、(b)は表面凹凸の線分布を示している。The surface observation result before processing of the Si wafer is shown, (a) is a surface AFM image, and (b) is a line distribution of surface irregularities. Siウエハの加工後の表面観察結果を示し、(a)は表面AFM像、(b)は表面凹凸の線分布を示している。The surface observation result after processing of the Si wafer is shown, (a) shows a surface AFM image, and (b) shows a line distribution of surface irregularities.

符号の説明Explanation of symbols

K 加工容器 W 被加工物
1 定盤体 2 設置板
3 振動吸収体(空気バネ) 4 駆動モータ
5 振動体 6 ベース体
7 ウエイト体 8 軸受孔
9 駆動軸 10 従動軸
11 偏心駆動軸 12 偏心従動軸
13 支持棒 14 保持リング
15 定盤 16 支持リング
17 テーパー面 18 テーパー面
19 ボルト 20 ボルト
21 ボルト 22 アンギュラベアリング
23 軸受孔 24 アンギュラベアリング
25 軸孔 26 アンギュラベアリング
27 軸孔 28 アンギュラベアリング
29 カップリング 30 回転軸
31 取付部材 32 エアーポンプ
33 圧力ホース
K processing container W work piece 1 surface plate body 2 installation plate 3 vibration absorber (air spring) 4 drive motor 5 vibration body 6 base body 7 weight body 8 bearing hole 9 drive shaft 10 driven shaft 11 eccentric drive shaft 12 eccentric driven Shaft 13 Support rod 14 Retaining ring 15 Surface plate 16 Support ring 17 Tapered surface 18 Tapered surface 19 Bolt 20 Bolt 21 Bolt 22 Angular bearing 23 Bearing hole 24 Angular bearing 25 Shaft hole 26 Angular bearing 27 Shaft hole 28 Angular bearing 29 Coupling 30 Rotating shaft 31 Mounting member 32 Air pump 33 Pressure hose

Claims (7)

被加工物の加工面を水平にして加工容器内に保持するとともに、該加工容器内に水分子を吸着させた超微粉体を収容して前記加工面上に位置させ、前記加工容器を水平面内で二次元的に加振することにより被加工物の加工面に超微粉体を流動接触させ、超微粉体と加工面界面での相互作用により鏡面加工を進行してなることを特徴とする超精密鏡面加工方法。   The processing surface of the workpiece is leveled and held in the processing container, and ultra fine powder having water molecules adsorbed in the processing container is accommodated and positioned on the processing surface. The ultra fine powder is fluidly contacted with the work surface of the workpiece by two-dimensional vibration in the inside, and the mirror finish is advanced by the interaction between the ultra fine powder and the work surface interface. Ultra-precision mirror finishing method. 前記加工容器を水平面内で回転運動を伴わない円運動をさせて加振する請求項1記載の超精密鏡面加工方法。   The ultraprecision mirror surface processing method according to claim 1, wherein the processing container is vibrated by making a circular motion without a rotational motion in a horizontal plane. 前記加工容器を水平面内で回転運動を伴わない円運動と直線往復運動とを組み合わせて加振する請求項1記載の超精密鏡面加工方法。   The ultraprecision mirror surface processing method according to claim 1, wherein the processing container is vibrated in combination with a circular motion without a rotational motion and a linear reciprocating motion in a horizontal plane. 平面視円形のベース体の周囲にリング状のウエイト体を固定した定盤体を、該ウエイト体の直下を振動吸収体により支持して浮遊状態で水平に配置し、前記定盤体の重心を通る鉛直腺に中心を一致させて前記ベース体に軸受孔を貫通形成し、前記ベース体の下面中心部に駆動モータを取付けてその駆動軸を前記軸受孔に回転可能に支持するとともに、前記駆動軸の周囲のベース体に該駆動軸と同一回転姿勢で複数の従動軸を回転可能に支持し、前記ベース体の上位に円板状の振動体を水平に配し、該振動体の重心位置を前記駆動軸の上端に延設した偏心駆動軸で回転可能に支持すると同時に、該振動体の周囲を前記従動軸の上端に延設した偏心従動軸で前記偏心駆動軸に同期して回転可能に支持し、前記振動体の上面に固定した加工容器内に被加工物の加工面を水平にして保持するとともに、該加工容器内に水分子を吸着させた超微粉体を収容して前記加工面上に位置させ、前記加工容器を加振することにより被加工物の加工面に超微粉体を流動接触させ、超微粉体と加工面界面での相互作用により鏡面加工を進行してなることを特徴とする超精密鏡面加工装置。   A surface plate body in which a ring-shaped weight body is fixed around a circular base body in a plan view is horizontally placed in a floating state with the vibration body absorbing the bottom of the weight body, and the center of gravity of the surface plate body is A bearing hole is formed in the base body so that the center coincides with the vertical gland that passes therethrough, a drive motor is attached to the center of the lower surface of the base body, and the drive shaft is rotatably supported in the bearing hole. A plurality of driven shafts are rotatably supported on the base body around the shaft in the same rotational posture as the drive shaft, and a disk-shaped vibrating body is horizontally disposed above the base body, and the position of the center of gravity of the vibrating body Is supported rotatably by an eccentric drive shaft extending to the upper end of the drive shaft, and at the same time, the periphery of the vibrating body can be rotated in synchronization with the eccentric drive shaft by an eccentric driven shaft extending to the upper end of the driven shaft. In a processing container fixed to the upper surface of the vibrating body. The processed surface of the work piece is held horizontally, and the fine powder having water molecules adsorbed in the processed container is placed on the processed surface, and the processed container is vibrated to vibrate. An ultra-precise mirror finishing apparatus characterized in that ultra fine powder is fluidly contacted with a processed surface of a workpiece, and mirror processing is advanced by interaction between the ultra fine powder and the processed surface interface. 前記振動吸収体として空気バネを用い、該空気バネを設置板上に設けるとともに、該空気バネが作動しないときに前記定盤体を載支する支持棒を前記設置板に複数立設してなる請求項4記載の超精密鏡面加工装置。   An air spring is used as the vibration absorber, and the air spring is provided on the installation plate, and a plurality of support rods for supporting the surface plate body are provided on the installation plate when the air spring does not operate. The ultra-precision mirror surface processing apparatus according to claim 4. 前記振動体を前記ベース体とリング状のウエイト体とで囲まれる空間内に配置するとともに、該振動体の上下位置を前記定盤体の重心近傍に設定してなる請求項4又は5記載の超精密鏡面加工装置。   The vibration body is disposed in a space surrounded by the base body and a ring-shaped weight body, and the vertical position of the vibration body is set near the center of gravity of the surface plate body. Ultra-precision mirror finishing machine. 前記振動体に対する前記定盤体の重量比を100倍以上に設定した請求項4〜6何れかに記載の超精密鏡面加工装置。
The ultra-precision mirror finishing apparatus according to any one of claims 4 to 6, wherein a weight ratio of the surface plate to the vibrating body is set to 100 times or more.
JP2004203423A 2004-07-09 2004-07-09 Ultra-precision mirror surface processing method and apparatus by EEM method Active JP4639669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203423A JP4639669B2 (en) 2004-07-09 2004-07-09 Ultra-precision mirror surface processing method and apparatus by EEM method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203423A JP4639669B2 (en) 2004-07-09 2004-07-09 Ultra-precision mirror surface processing method and apparatus by EEM method

Publications (2)

Publication Number Publication Date
JP2006021295A true JP2006021295A (en) 2006-01-26
JP4639669B2 JP4639669B2 (en) 2011-02-23

Family

ID=35794939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203423A Active JP4639669B2 (en) 2004-07-09 2004-07-09 Ultra-precision mirror surface processing method and apparatus by EEM method

Country Status (1)

Country Link
JP (1) JP4639669B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018117A1 (en) * 2005-08-05 2007-02-15 Yuzo Mori Electron beam assisted eem method
JP4988708B2 (en) * 2006-03-30 2012-08-01 旭テック株式会社 Vertical swing processing device
CN105252401A (en) * 2015-10-15 2016-01-20 珠海东锦石英科技有限公司 Miniaturized chip edge rolling process and roller
CN107941442A (en) * 2017-11-30 2018-04-20 北京强度环境研究所 Vibration testing device and the method that vibration test is carried out to product
CN108356610A (en) * 2018-02-02 2018-08-03 中国工程物理研究院激光聚变研究中心 A kind of ultrasound burr remover
CN109623509A (en) * 2018-12-29 2019-04-16 厦门大学 A kind of centre-drive ultrasonic vibration auxiliary polishing tool
CN114654309A (en) * 2022-04-15 2022-06-24 周刚 Steel plate polishing device for automobile machining and using method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590261A (en) * 1978-12-27 1980-07-08 Matsushita Electric Ind Co Ltd Method of slightly polishing thin ceramic sheet
JPS5934955U (en) * 1982-08-31 1984-03-05 高田 津木男 barrel polishing machine
JPS62107964A (en) * 1985-11-01 1987-05-19 Japan Aviation Electronics Ind Ltd Superfine polishing machine
JPS6427852A (en) * 1987-07-17 1989-01-30 Yuzo Mori Polishing device
JPH01236939A (en) * 1988-03-17 1989-09-21 Yuzo Mori Production of uniform superfine powder imparted with arbitrary physical properties on surface thereof and equipment thereof and superprecision working method utilizing the superfine powder
JPH06182664A (en) * 1992-12-17 1994-07-05 Osaka Kiko Co Ltd Vibrating table device
JP2003266293A (en) * 2002-03-11 2003-09-24 Sanshin Co Ltd Platelike member polishing method and device thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590261A (en) * 1978-12-27 1980-07-08 Matsushita Electric Ind Co Ltd Method of slightly polishing thin ceramic sheet
JPS5934955U (en) * 1982-08-31 1984-03-05 高田 津木男 barrel polishing machine
JPS62107964A (en) * 1985-11-01 1987-05-19 Japan Aviation Electronics Ind Ltd Superfine polishing machine
JPS6427852A (en) * 1987-07-17 1989-01-30 Yuzo Mori Polishing device
JPH01236939A (en) * 1988-03-17 1989-09-21 Yuzo Mori Production of uniform superfine powder imparted with arbitrary physical properties on surface thereof and equipment thereof and superprecision working method utilizing the superfine powder
JPH06182664A (en) * 1992-12-17 1994-07-05 Osaka Kiko Co Ltd Vibrating table device
JP2003266293A (en) * 2002-03-11 2003-09-24 Sanshin Co Ltd Platelike member polishing method and device thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018117A1 (en) * 2005-08-05 2007-02-15 Yuzo Mori Electron beam assisted eem method
US8235769B2 (en) 2005-08-05 2012-08-07 Yuzo Mori Electron-beam-assisted EEM method
JP4988708B2 (en) * 2006-03-30 2012-08-01 旭テック株式会社 Vertical swing processing device
CN105252401A (en) * 2015-10-15 2016-01-20 珠海东锦石英科技有限公司 Miniaturized chip edge rolling process and roller
CN107941442A (en) * 2017-11-30 2018-04-20 北京强度环境研究所 Vibration testing device and the method that vibration test is carried out to product
CN107941442B (en) * 2017-11-30 2023-08-29 北京强度环境研究所 Vibration test device and method for performing vibration test on product
CN108356610A (en) * 2018-02-02 2018-08-03 中国工程物理研究院激光聚变研究中心 A kind of ultrasound burr remover
CN109623509A (en) * 2018-12-29 2019-04-16 厦门大学 A kind of centre-drive ultrasonic vibration auxiliary polishing tool
CN109623509B (en) * 2018-12-29 2019-12-06 厦门大学 Center-driven ultrasonic vibration auxiliary polishing tool
CN114654309A (en) * 2022-04-15 2022-06-24 周刚 Steel plate polishing device for automobile machining and using method thereof

Also Published As

Publication number Publication date
JP4639669B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US4918870A (en) Floating subcarriers for wafer polishing apparatus
US10118269B2 (en) Self-sharpening polishing device with magnetorheological flexible polishing pad formed by dynamic magnetic field and polishing method thereof
TWI408773B (en) Substrate supporting unit, and apparatus and method for polishing substrate using the same
JP5331804B2 (en) Apparatus and method for wet treatment of disc-like objects
JP4639669B2 (en) Ultra-precision mirror surface processing method and apparatus by EEM method
WO2014017460A1 (en) Support structure for ultrasonic vibrator equipped with tool
WO2017155081A1 (en) Planarizing device
JP5061296B2 (en) Flat double-side polishing method and flat double-side polishing apparatus
US20080102199A1 (en) Multi-wafer rotating disc reactor with wafer planetary motion induced by vibration
JP3665188B2 (en) Polishing equipment
JP2014024168A (en) Polishing device, method of polishing glass substrate, method of manufacturing glass substrate, and method of manufacturing glass substrate for magnetic recording medium
JP2016092247A (en) Method for polishing silicon carbide substrate
JP5018479B2 (en) Electron beam assisted EEM method
JP6425505B2 (en) Grinding method of workpiece
JP2009178806A (en) Polishing carrier, and polishing device
JP2010023122A (en) Holding device and polishing apparatus
JP2006073654A (en) Non-contact chuck
JP6725831B2 (en) Work processing device
CN210524780U (en) Centrifugal rotary polishing mechanism for hard and brittle material edge
JP2018164953A (en) Machine tool
JP5129902B2 (en) Surface polishing method and apparatus for substrate mounting plate for substrate mounting apparatus
CN105150034A (en) Grinding head capable of achieving end face ultrasound-assisted grinding and polishing
JPH03121761A (en) Work holder for polishing
JPWO2019230883A1 (en) Ultrasonic vibration imparting tool, traveling wave generator and ultrasonic processing device
JP2017163144A (en) Flatting process apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4639669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250