JP2006013066A - インダクタ - Google Patents

インダクタ Download PDF

Info

Publication number
JP2006013066A
JP2006013066A JP2004186764A JP2004186764A JP2006013066A JP 2006013066 A JP2006013066 A JP 2006013066A JP 2004186764 A JP2004186764 A JP 2004186764A JP 2004186764 A JP2004186764 A JP 2004186764A JP 2006013066 A JP2006013066 A JP 2006013066A
Authority
JP
Japan
Prior art keywords
powder
core
coil
sample
carbonyl iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004186764A
Other languages
English (en)
Inventor
Masayoshi Ishii
政義 石井
Hiroyuki Wada
浩之 和田
Hajime Daigaku
元 大學
Kazuyuki Okita
一幸 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Coil Engineering Co Ltd
Original Assignee
Tokyo Coil Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Coil Engineering Co Ltd filed Critical Tokyo Coil Engineering Co Ltd
Priority to JP2004186764A priority Critical patent/JP2006013066A/ja
Publication of JP2006013066A publication Critical patent/JP2006013066A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

【課題】低ロス特性の劣化がなく直流重畳特性及びインダクタンスを向上できるインダクタを提供することにある。
【解決手段】磁性粉末及びバインダーを混合した混合粉末を加圧して成形されたコア2内にコイル3が一体に埋設されたチョークコイル(インダクタ)1において、カルボニル鉄粉末にセンダスト粉末を5〜20wt%混合した粉末を、磁性粉末として用いた。
【選択図】 図1

Description

本発明は、大電流や高周波でも好適に使用できるチョークコイルや他のコイル部品として用いられるインダクタに関する。
従来、金型を用いて加圧成形されたコア内にコイルが一体に埋設されたインダクタが知られている(例えば特許文献1参照)。
この種のインダクタのコアは磁性粉末とバインダーとを混合した混合粉末の圧粉体であり、特許文献1に記載のインダクタのコアでは、その磁性粉末としてカルボニル鉄粉末が用いられている。又、これ以外に、特許文献1には、磁性粉末としてケイ化鉄、パーマロー、スーパーマロイ、センダスト、窒化鉄、鉄アルミ合金、鉄コバルト合金、リン鉄等の内の1種又は2種以上を選択して用いてもよいことも記載されている。
特開2001−267160号公報〔段落0003、0056、0057、0079−0087、図1(A)−(D)、図5(A)−(I)〕
従来は、コアの磁性材料として、特許文献1に記載の実施例1,2で代表されるように単一種の磁性粉末(例えばカルボニル鉄粉末)を使用することが一般的である。又、特許文献1で2種以上の磁性粉末を選択して用いるという記載は、単に複数種の磁性材料を混ぜて使用可能であるということを示唆しているに過ぎず、2種以上の磁性粉末を具体的にどのような配合割合で用いるのかということについて言及していない。
ところで、大電流で使用するチョークコイルのコアの磁性材料としては、カルボニル鉄が一般的に用いられている。この理由はカルボニル鉄の以下の特長に依存している。つまり、カルボニル鉄粉末は、その粉末硬度が低いので、この粉末の加圧成形に伴って粉末中に配置されたコイルの変形を抑制するのに有効である。更に、カルボニル鉄の飽和磁束密度は高く、このため、コイルの空芯部に充填して固められる磁芯部の損失を低く(以下低ロス特性と称する。)できる。
しかし、カルボニル鉄は透磁率μが低いので、その粉末を加圧成形してなるコアを備えたインダクタは、そのインダクタンス値が低い。このようにカルボニル鉄粉末のみを用いてそれを加圧成形して得たコアを有した従来のインダクタは、直流重畳特性に好ましい影響を与えるインダクタンスを高めることが難しく、その改善が望まれている。
又、特許文献1には、その実施例2にコアの磁性材料としてパーマロイ粉末を用いる技術が記載されている。しかし、パーマロイは、飽和磁束密度も透磁率も高いが、低ロス特性が悪いことが知られている。したがって、パーマロイ粉末だけを用いて、それを加圧成形してなるコアを備えるインダクタでは、低ロス特性が劣化する。
本発明の目的は、低ロス特性の劣化がなく直流重畳特性及びインダクタンスを向上できるインダクタを提供することにある。
本発明は、磁性粉末及びバインダーを混合した混合粉末を加圧して成形されたコア内にコイルが一体に埋設されたインダクタを前提とする。
そして、前記目的を達成するために、請求項1の発明は、カルボニル鉄粉末にセンダスト粉末を5〜20wt%混合した粉末を、前記磁性粉末として用いている。
この発明では、センダスト粉末をカルボニル鉄粉末に前記割合で混ぜたことにより、カルボニル鉄粉末の好ましい特長である高飽和磁束密度と低ロス特性とを損なうことなく、透磁率を高めてインダクタンスを向上できる。
同様に、前記目的を達成するために、請求項2の発明は、カルボニル鉄粉末に40〜60%のNiを含んだFe−Ni合金粉末を5〜50wt%混合した粉末を、前記磁性粉末として用いている。
この発明では、前記組成のFe−Ni合金(パーマロイ)粉末をカルボニル鉄粉末に混ぜたことにより、これら両粉末の好ましい特長である高飽和磁束密度を維持できるとともに、カルボニル鉄粉末の好ましい特長である低ロス特性の劣化を抑制しつつ、パーマロイ粉末の好ましい特長である高透磁率を与えてインダクタンスを向上できる。
以上説明した本発明によれば、カルボニル鉄粉末にセンダスト粉末を5〜20wt%混合した粉末を磁性粉末として用いたコアを備えているので、低ロス特性の劣化がなく直流重畳特性及びインダクタンスが向上されたインダクタを提供できる。
又、本発明によれば、カルボニル鉄粉末に40〜60%のNiを含んだFe−Ni合金粉末を5〜50wt%混合した粉末を磁性粉末として用いたコアを備えているので、低ロス特性の劣化がなく直流重畳特性及びインダクタンスが向上されたインダクタを提供できる。
図1及び図2を参照して本発明の一実施形態を説明する。
この一実施形態に係るインダクタは大電流が流れるチョークコイル1として使用されるもので、電子機器例えばコンピュータやテレビゲーム機などに搭載して好適に使用できる。このチョークコイル1は、図1(A)(B)(C)に示すように各面が互に直角に連続する六面体状をなして一体成形されたコア2と、このコア2に両端部を除いて埋設されたコイル3とを備えている。
コイル3には、導電性金属線、例えば銅線、好ましくは図1に例示するように断面が長方形の平角銅線を好適に使用できる。コイル3は図示しないが外周を絶縁層で被覆されている。コイル3の両端部はコア2の互に平行な2つの側面の高さ方向中間部から外に突出している。これらの両端部は、コア2の前記側面に沿って折り曲げられるとともに、コア2の裏面に沿って折り曲げられている。コア2の裏面に沿ったコイル3の両端部は端子3aとして使用される。これらの端子3aの絶縁層は除去されている。端子3aは図示しない電子機器のプリント配線基板のプリント配線にリフロー半田付けされる。したがって、チョークコイル1は表面実装部品としてプリント基板に実装できる。
このチョークコイル1のコア2は図示しない加圧成形装置の金型を用いて加圧成形された圧粉体である。コイル3は、コア2の成形前に金型内に位置決めして配置され、コア2の加圧成形に伴って一体にコア2内に埋設されたものである。したがって、このチョークコイル1は一体成形型コイル部品と称することができる。
コア2は、磁性粉末及びバインダーを混合した混合粉末からなる。バインダーは、無機材料又は有機材料からなる絶縁材であって、例えばエポキシ系樹脂、フェノール系樹脂、ポリアミド系樹脂などの絶縁性樹脂を好適に使用できる。磁性粉末には、強磁性体粉末、具体的には、粉体硬度が低く、飽和磁束密度が高く、かつ、低ロス特性であるという特長を有したカルボニル鉄粉末に、センダスト粉末を5〜20wt%混合した粉末、又は、前記カルボニル鉄粉末に、40〜60%のNiを含んだFe−Ni合金粉末(パーマロイ粉末)を5〜50wt%混合した粉末を使用している。
前記構成のチョークコイル1は、その磁性材料の組成によって、カルボニル鉄粉末の特長を有したまま、透磁率μを高めて、それにより高いインダクタンスを得ることができる。このことは以下の実施例1又は実施例2で確認できた。
(実施例1)
まず、以下の手順で最適なコア2の成形圧を選定するためにサンプル1〜6を作成した。つまり、図1(A)中の幅w及び奥行きdが夫々10mm、高さhが4mmのコア2を加圧成形できる加圧成形装置の金型内に、3.5ターンのコイル3をセットした後に、混合粉末の磁性材料を、以下のように調整して所定量充填するとともに、前記加圧成形装置でその成形圧を変えることにより、加圧成形してコイル3を一体に埋設した各種のサンプルを得た。
この場合、磁性材料の調整は、カルボニル鉄粉末に対するセンダスト粉末の混合量の加減で行い、サンプル1はセンダスト粉末の混合量が0wt%であって従来品に相当し、サンプル2ではセンダスト粉末の混合量を2.5wt%とし、サンプル3ではセンダスト粉末の混合量を5wt%とし、サンプル4ではセンダスト粉末の混合量を10wt%とし、サンプル5ではセンダスト粉末の混合量を20wt%とし、サンプル6ではセンダスト粉末の混合量を30wt%とした。又、加圧成形の成形圧は各サンプルについて3ton〜10tonの8段階とした。
そして、以上の条件で成形された各サンプルの夫々について、インパルス試験にてコア2とコイル3との間でのレアショートの数をn=10pcsで測定した。この測定結果を表1に示す。したがって、表1は各成形圧・センダスト粉末の各混合量におけるコイル−コア間のレアショート数を示している。なお、前記pcsは測定サンプル数であるので、10個のサンプル中にレアショートがあった数を表1は示している。
Figure 2006013066
この表1により、センダスト粉末の混合量の増加及び成形圧の増加に従い、レアショートの発生個数が増加する傾向が認められた。これとともに、成形圧が5ton以下ではセンダスト粉末の混合量の増加に拘わらずレアショートが発生しないことも認められた。なお、5tonを超える成形圧の増加に伴うレアショート数の増加は、5tonを超える成形圧によって金型内でコイル3の変形が大きくなり、このコイル3の絶縁層が破壊されたためである。
又、前記各サンプル1〜6について透磁率μを測定した結果を表2に示す。したがって、表2は各成形圧・センダスト粉末の各混合量に透磁率μを示している。この場合、測定サンプル数はn=2pcsである。
Figure 2006013066
この表2により、センダスト粉末の混合量の加減によらず、成形圧の増加に従い透磁率が増える傾向が認められた。しかし、その増加はいずれも微増である。したがって、成形圧の高圧化により透磁率を大きく高めて、製品のインダクタンスを大幅に向上することは期待できないことに加えて、前記表1の結果からしてレアショートの発生率が高まるので、実用的に採用することは適当ではないことが分かった。
以上の両測定結果に基づいて、透磁率の向上も僅かに期待できてレアショートを発生し難い成形圧を5tonとして、インダクタンス値を測定するための各種のサンプル1〜6を作成して、これらの直流重畳特性を測定した。この測定結果を図2に示す。
この図2により、センダスト粉末の混合量が2.5wt%のサンプル2のインダクタンスの値及び直流重畳特性は、センダスト粉末の混合量が0wt%で従来品に相当するサンプル1と殆ど差異がないことが分かった。
センダスト粉末の混合量が5wt%のサンプル3、同混合量が10wt%のサンプル4、同混合量が20wt%のサンプル5では、それらのインダクタンスの値が、いずれも従来品に相当するサンプル1に対して大幅に高くなったことが認められたとともに、電流値が増えて高電流領域に至っても直流重畳特性が大きく低下しないことが認められた。
しかし、センダスト粉末の混合量が30wt%のサンプル6では、インダクタンスの値が従来品に相当するサンプル1に対して一層大幅に高くなったことが認められたが、約34アンペア以上の高電流領域では直流重畳特性がサンプル1より劣化することが認められた。この劣化の原因は、センダスト粉末の飽和磁束密度がカルボニル鉄粉末に比べて低いために、その影響が顕在化したもの推測されている。
以上のようにカルボニル鉄粉末にセンダスト粉末を5wt%未満混合することは、インダクタンスの値を高める効果が殆ど認められず、又、カルボニル鉄粉末にセンダスト粉末を20wt%を超えて混合することは、インダクタンスの向上には効果的であるが高電流域での直流重畳特性が劣化する。
したがって、コア2の磁性粉末として、カルボニル鉄粉末にセンダスト粉末を5〜20wt%混合した粉末を用いることで、カルボニル鉄粉末の特長を有したままで、透磁率を向上できて大電流まで良好な直流重畳特性を有したチョークコイル1を提供できることが分かった。又、表1により、製造においてはコア2の成形圧を5ton以下とすることは、コア2とこれに一体に埋設されたコイル3との間のレアショートの発生を抑制でき、製品の歩留まりを向上できる点で好ましいことが分かった。
(実施例2)
まず、以下の手順で最適なコア2の成形圧を選定するためにサンプル11〜19を作成した。つまり、図1(A)中の幅w及び奥行きdが夫々10mm、高さhが4mmのコア2を加圧成形できる加圧成形装置の金型内に、3.5ターンのコイル3をセットした後に、混合粉末の磁性材料を、以下のように調整して所定量充填するとともに、前記加圧成形装置でその成形圧を変えることにより、加圧成形してコイル3を一体に埋設した各種のサンプルを得た。
この場合、磁性材料の調整は、50%のNiを含んだFe−Ni合金粉末(以下Ni50%パーマロイ粉末と称する。)のカルボニル鉄粉末に対する混合量の加減で行い、サンプル11はNi50%パーマロイ粉末の混合量が0wt%であって従来品に相当し、サンプル12ではNi50%パーマロイ粉末の混合量を2.5wt%とし、サンプル13ではNi50%パーマロイ粉末の混合量を5wt%とし、サンプル14ではNi50%パーマロイ粉末の混合量を10wt%とし、サンプル15ではNi50%パーマロイ粉末の混合量を20wt%とした。更に、サンプル16ではNi50%パーマロイ粉末の混合量を30wt%とし、サンプル17ではNi50%パーマロイ粉末の混合量を40wt%とし、サンプル18ではNi50%パーマロイ粉末の混合量を50wt%とし、サンプル19ではNi50%パーマロイ粉末の混合量を60wt%とした。又、加圧成形の成形圧は各サンプルについて3ton〜10tonの8段階とした。
そして、以上の条件で成形された各サンプルの夫々について、インパルス試験にてコア2とコイル3との間でのレアショートの数をn=10pcsで測定した。この測定結果を表
に示す。
Figure 2006013066
この表3により、Ni50%パーマロイ粉末の混合量の増加及び成形圧の増加に従い、レアショートの発生個数が増加する傾向が認められた。これとともに、成形圧が7ton以下ではNi50%パーマロイ粉末の混合量の増加に拘わらずレアショートが発生しないことも認められた。なお、7tonを超える成形圧の増加に伴うレアショート数の増加は、7tonを超える成形圧によって金型内でコイル3の変形が大きくなり、このコイル3の絶縁層が破壊されたためである。
又、前記各サンプル11〜19について透磁率μを測定した結果を表4に示す。この場合、測定サンプル数はn=2pcsである。
Figure 2006013066
この表4により、Ni50%パーマロイ粉末の混合量の加減によらず、成形圧の増加に従い透磁率が増える傾向が認められた。しかし、その増加はいずれも微増である。したがって、成形圧の高圧化により透磁率を大きく高めて、製品のインダクタンスを大幅に向上することは期待できないことに加えて、前記表3の結果からしてレアショートの発生率が高まるので、実用的に採用することは適当ではないことが分かった。
以上の両測定結果に基づいて、透磁率の向上も僅かに期待できてレアショートを発生し難い成形圧を7ton以下例えば5tonとして、インダクタンス値を測定するための各種のサンプル11〜19を作成して、これらの直流重畳特性を測定した。この測定結果を図3に示す。
この図3により、Ni50%パーマロイ粉末(つまり、50%Ni−50%Feパーマロイ粉末)の混合量が2.5wt%のサンプル12のインダクタンスの値及び直流重畳特性は、Ni50%パーマロイ粉末の混合量が0wt%で従来品に相当するサンプル11と殆ど差異がないことが分かった。
Ni50%パーマロイ粉末の混合量が5wt%のサンプル13、同混合量が10wt%のサンプル14、同混合量が20wt%のサンプル15、同混合量が30wt%のサンプル16、同混合量が40wt%のサンプル17、同混合量が50wt%のサンプル18、同混合量が60wt%のサンプル19では、それらのインダクタンスの値が、いずれも従来品に相当するサンプル11に対して大幅に高く、かつ、混合量が増えるほどインダクタンス値が高くなったことが認められた。又、電流値が増えて高電流領域に至っても直流重畳特性が大きく低下しないことが認められた。
次に、サンプル11〜19の夫々についてロス特性を測定した。この測定は、測定時の飽和磁束密度を例えば30mTに指定した条件で、入力側と出力側での電流・電圧を測定して、それらのデータから算出した。測定されたロス特性の結果を図4に示す。
この図4により、カルボニル鉄粉末に対するNi50%パーマロイ粉末の混合量が増えるに従ってロスが次第に増加することが認められ、特に、Ni50%パーマロイ粉末の混合量が50wt%以上になると増加率が急増して、混合量が60wt%ではロスが最大に増加したことが認められた。又、周波数が100kHzの場合でも300kHzの場合でも同様の傾向があるが、Ni50%パーマロイ粉末の混合量が50wt%以上では、周波数が高いほどロスの増加率がより急に増える傾向があることも認められた。なお、ロスの増加は、ロス特性の劣化と言い換えることができる。こうした、ロス特性の劣化の原因は、パーマロイ粉末のロス特性がカルボニル鉄粉末に比べて悪いために、その影響が顕在化したものと推測されている。
以上のようにカルボニル鉄粉末にNi50%パーマロイ粉末を5wt%未満混合することは、インダクタンスの値を高める効果が殆ど認められず、又、カルボニル鉄粉末に50wt%を超えるNi50%パーマロイ粉末を混合することは、ロス特性が劣化する。
したがって、コア2の磁性粉末として、カルボニル鉄粉末にNi50%パーマロイ粉末を5〜50wt%混合した粉末を用いることで、カルボニル鉄粉末の特長を有したままで、透磁率を向上できて大電流まで良好な直流重畳特性を有したチョークコイル1を提供できることが分かった。なお、以上の結果は、パーマロイ粉末を40〜60%のNiを含んだFe−Ni合金粉末として、これをカルボニル鉄粉末に5〜50wt%の割合で混合した場合も同等であることが分かった。又、表3により、製造においてはコア2の成形圧を7ton以下とすることは、コア2とこれに一体に埋設されたコイル3との間のレアショートの発生を抑制でき、製品の歩留まりを向上できる点で好ましいことが分かった。
以上のように磁性粉末及びバインダーを混合した混合粉末を加圧して成形されたコア2にコイル3が一体に埋設されたチョークコイル1において、カルボニル鉄粉末にセンダスト粉末を5〜20wt%混合した粉末を磁性粉末として用いるか、若しくは、カルボニル鉄粉末に40〜60%のNiを含んだFe−Ni合金粉末を5〜50wt%混合した粉末を磁性粉末として用いることによって、低ロス特性の劣化がなく直流重畳特性及びインダクタンスを向上できるインダクタを提供することができたものである。
なお、本発明は、コイルと端子とが別々であって、これらが溶接などで接続されている構成のチョークコイルなどのインダクタにも適用できるとともに、コイルが平角銅線ではなく断面円形の導電性金属線である場合に、これを単層巻きではなく複層巻きとした構成のチョークコイルなどのインダクタにも適用できる。
(A)は本発明に係るチョークコイルを例示する斜視図。(B)は図1(A)のチョークコイルを示す平面図。(C)は図1(A)のチョークコイルを示す断面図。 本発明の一実施形態に係るチョークコイルの直流重畳特性を示すグラフ。 本発明の他の実施形態に係るチョークコイルの直流重畳特性を示すグラフ。 本発明の他の実施形態に係るチョークコイルのロス特性とパーマロイ粉末混合量との関係を示すグラフ。
符号の説明
1…チョークコイル(インダクタ)、2…コア、3…コイル

Claims (2)

  1. 磁性粉末及びバインダーを混合した混合粉末を加圧して成形されたコア内にコイルが一体に埋設されたインダクタにおいて、カルボニル鉄粉末にセンダスト粉末を5〜20wt%混合した粉末を、前記磁性粉末として用いたインダクタ。
  2. 磁性粉末及びバインダーを混合した混合粉末を加圧して成形されたコア内にコイルが一体に埋設されたインダクタにおいて、カルボニル鉄粉末に40〜60%のNiを含んだFe−Ni合金粉末を5〜50wt%混合した粉末を、前記磁性粉末として用いたインダクタ。
JP2004186764A 2004-06-24 2004-06-24 インダクタ Pending JP2006013066A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186764A JP2006013066A (ja) 2004-06-24 2004-06-24 インダクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186764A JP2006013066A (ja) 2004-06-24 2004-06-24 インダクタ

Publications (1)

Publication Number Publication Date
JP2006013066A true JP2006013066A (ja) 2006-01-12

Family

ID=35779946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186764A Pending JP2006013066A (ja) 2004-06-24 2004-06-24 インダクタ

Country Status (1)

Country Link
JP (1) JP2006013066A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100808888B1 (ko) 2006-09-14 2008-03-03 주식회사 쎄라텍 표면 실장형 칩 타입 전자 부품 및 그 제조 방법
KR101495237B1 (ko) 2013-03-08 2015-02-24 알프스 그린 디바이스 가부시키가이샤 인덕턴스 소자 및 그 제조 방법
KR101495235B1 (ko) 2013-03-11 2015-02-24 알프스 그린 디바이스 가부시키가이샤 인덕턴스 소자
KR20150090839A (ko) 2014-01-29 2015-08-06 알프스 그린 디바이스 가부시키가이샤 전자 부품 및 전자 기기
KR20150090838A (ko) 2014-01-29 2015-08-06 알프스 그린 디바이스 가부시키가이샤 전자 부품 및 전자 기기
KR20160087375A (ko) 2014-01-29 2016-07-21 알프스 그린 디바이스 가부시키가이샤 전자 부품 및 전자 기기
KR20170133488A (ko) 2015-05-19 2017-12-05 알프스 덴키 가부시키가이샤 압분 코어, 당해 압분 코어의 제조 방법, 그 압분 코어를 구비하는 인덕터, 및 그 인덕터가 실장된 전자·전기 기기
US20180090259A1 (en) * 2016-09-29 2018-03-29 Tdk Corporation Coil device
US10283266B2 (en) 2016-04-25 2019-05-07 Alps Alpine Co., Ltd. Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100808888B1 (ko) 2006-09-14 2008-03-03 주식회사 쎄라텍 표면 실장형 칩 타입 전자 부품 및 그 제조 방법
KR101495237B1 (ko) 2013-03-08 2015-02-24 알프스 그린 디바이스 가부시키가이샤 인덕턴스 소자 및 그 제조 방법
KR101495235B1 (ko) 2013-03-11 2015-02-24 알프스 그린 디바이스 가부시키가이샤 인덕턴스 소자
KR20150090839A (ko) 2014-01-29 2015-08-06 알프스 그린 디바이스 가부시키가이샤 전자 부품 및 전자 기기
KR20150090838A (ko) 2014-01-29 2015-08-06 알프스 그린 디바이스 가부시키가이샤 전자 부품 및 전자 기기
KR20160087375A (ko) 2014-01-29 2016-07-21 알프스 그린 디바이스 가부시키가이샤 전자 부품 및 전자 기기
KR20170133488A (ko) 2015-05-19 2017-12-05 알프스 덴키 가부시키가이샤 압분 코어, 당해 압분 코어의 제조 방법, 그 압분 코어를 구비하는 인덕터, 및 그 인덕터가 실장된 전자·전기 기기
US11529679B2 (en) 2015-05-19 2022-12-20 Alps Alpine Co., Ltd. Dust core, method for manufacturing dust core, inductor including dust core, and electronic/electric device including inductor
US10283266B2 (en) 2016-04-25 2019-05-07 Alps Alpine Co., Ltd. Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein
US20180090259A1 (en) * 2016-09-29 2018-03-29 Tdk Corporation Coil device

Similar Documents

Publication Publication Date Title
US7864015B2 (en) Flux channeled, high current inductor
KR102070077B1 (ko) 면실장 인덕터
JP5974803B2 (ja) 軟磁性合金粉末、圧粉体、圧粉磁芯および磁性素子
KR101659248B1 (ko) 인덕터 및 이의 제조방법
TW200531094A (en) Improved inductive devices and methods
JP2007012686A (ja) 磁性素子
JP2009224745A (ja) インダクタ及びその製作方法
US8896407B2 (en) Inductor
JP2007128951A (ja) リアクトル
JP2008135674A (ja) 軟磁性合金粉末、圧粉体及びインダクタンス素子
JP2007165779A (ja) コイル封入型磁性部品
JP2007134381A (ja) 複合磁性材料、それを用いた圧粉磁心および磁性素子
JP2010272604A (ja) 軟磁性粉末及びそれを用いた圧粉磁芯、インダクタ並びにその製造方法
JP2006013066A (ja) インダクタ
KR20020041773A (ko) 입자 표면이 내산화성 금속으로 피복된 자기 분말을포함하는 본드 자석으로 이루어진 자기 코어 및 그 자기코어를 포함하는 인덕턴스 부품
JP2014067991A (ja) 面実装インダクタ
JP2007214425A (ja) 圧粉磁心およびそれを用いたインダクタ
JP2004281778A (ja) チョークコイル及びその製造方法
JP2006286658A (ja) 複合コアを用いたコイル部品
JP2006319020A (ja) インダクタンス部品
JP6579269B2 (ja) コイル部品の製造方法、コイル部品、並びにdc−dcコンバータ
JP2006237398A (ja) コイル部品
KR100805275B1 (ko) 마이크로 카보닐 철 분말과 철계 나노결정립 분말을 이용한에스엠디 파워 인덕터
JP2008270438A (ja) インダクタおよびその製造方法
JP2003224017A (ja) 圧粉磁心およびその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403