JP2006008438A - 光ファイバ母材の製造方法 - Google Patents
光ファイバ母材の製造方法 Download PDFInfo
- Publication number
- JP2006008438A JP2006008438A JP2004186347A JP2004186347A JP2006008438A JP 2006008438 A JP2006008438 A JP 2006008438A JP 2004186347 A JP2004186347 A JP 2004186347A JP 2004186347 A JP2004186347 A JP 2004186347A JP 2006008438 A JP2006008438 A JP 2006008438A
- Authority
- JP
- Japan
- Prior art keywords
- starting
- longitudinal direction
- optical fiber
- fiber preform
- rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01486—Means for supporting, rotating or translating the preforms being formed, e.g. lathes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/60—Relationship between burner and deposit, e.g. position
- C03B2207/66—Relative motion
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/70—Control measures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
【課題】 出発棒にガラス微粒子を堆積させて光ファイバ母材を製造する方法において、出発棒の長手方向に所望の特性を有する光ファイバ母材を製造する。
【解決手段】 本発明に係る光ファイバ母材の製造方法は、コア及びクラッドの一部を有する出発棒4をその軸回りに回転させつつ、バーナ5により生成したガラス微粒子を出発棒4に堆積させる光ファイバ母材の製造方法であり、出発棒4に新規に堆積させるガラス微粒子の目標堆積量を出発棒4の長手方向にわたって決定する工程と、堆積量が目標堆積量となるように出発棒4の目標回転速度を長手方向に設定する工程と、回転速度が目標回転速度となるように制御する工程とを有する。
【選択図】 図1
【解決手段】 本発明に係る光ファイバ母材の製造方法は、コア及びクラッドの一部を有する出発棒4をその軸回りに回転させつつ、バーナ5により生成したガラス微粒子を出発棒4に堆積させる光ファイバ母材の製造方法であり、出発棒4に新規に堆積させるガラス微粒子の目標堆積量を出発棒4の長手方向にわたって決定する工程と、堆積量が目標堆積量となるように出発棒4の目標回転速度を長手方向に設定する工程と、回転速度が目標回転速度となるように制御する工程とを有する。
【選択図】 図1
Description
本発明は、コア及びクラッドの一部を有する出発棒をその軸回りに回転させつつ、バーナにより生成したガラス微粒子を出発棒に堆積させてガラス微粒子堆積体を形成する光ファイバ母材の製造方法に関する。
石英ガラスの光ファイバを得るための光ファイバ母材を製造する方法として、出発棒にガラス微粒子(これをススと呼ぶ)を堆積させてガラス微粒子堆積体を形成するOVD法やVAD法が知られている。OVD法は、長尺状の出発棒の周囲にガラス微粒子を層状に堆積させ、ガラス微粒子の堆積体を形成するものである。また、VAD法は、出発棒の軸方向にガラス微粒子を堆積させ、ガラス微粒子の堆積体を形成するものである。得られたガラス微粒子堆積体は、焼結を行って透明なガラス体とする。このガラス体は、そのまま光ファイバ母材となるか、または、他のガラス体と組み合わせて光ファイバ母材とする。光ファイバ母材は、加熱して軟化させて引き取ること(所謂線引き)により、光ファイバとなる。
光ファイバは、光学特性を長手方向で安定させることが望まれており、そのために長手方向に均一な特性の光ファイバ母材を製造するための方法が提案されている(例えば、特許文献1,2参照。)。
特許文献1に記載された方法は、VAD法で光ファイバ母材を製造する方法であり、バーナで生成されたガラス微粒子を回転する出発棒の下端に軸方向に堆積させ、その堆積に応じて出発棒を引き上げることによりガラス微粒子堆積体を円柱状に形成するものである。その際、ガラス微粒子堆積体の下端位置を検出し、それに応じて出発棒の引き上げ速度を変化させて下端位置が一定となるようにしている。そして、引き上げ速度に応じてバーナに供給する水素ガス流量を制御し、堆積面の温度を変化させてガラス微粒子堆積体の成長速度を一定に制御している。
特許文献2に記載された方法は、OVD法で光ファイバ母材を製造する方法であり、回転している出発棒に対してガラス微粒子を発生させるバーナを出発棒の長手方向に複数回移動させて出発棒の周囲にガラス微粒子を堆積させる方法である。その際、出発棒のコア・クラッド比及び比屈折率差に応じて、ガラス原料ガスの流量またはバーナの移動速度を調整し、ガラス微粒子堆積量を長手方向に変化させている。
ところで、出発棒は、そのコアとクラッドの径の比やコアとクラッドの比屈折率差、外径等が長手方向で均一になるように作られているが、厳密には均一になっていない場合がある。そのため、コア及びクラッドの一部を有する出発棒の外周にクラッドとなるガラス微粒子を堆積させる際には、ガラス微粒子堆積体の成長速度を一定に制御しても、出発棒の特性が長手方向で変動している場合では、光ファイバの光学特性も長手方向で変動してしまう。また、OVD法では出発棒の径方向に層状にガラス微粒子を堆積させていくのに対して、VAD法では出発棒の軸方向にガラス微粒子を堆積させていくため、VAD法で引き上げ速度を制御しただけでガラス微粒子の堆積量を長手方向で調節していくことは難しい。
また、VAD法やOVD法で得られたガラス微粒子堆積体は、焼結することによって収縮して透明化するが、その際、ガラス微粒子が堆積した密度によって光ファイバ母材の外径が変わってくる。しかしながら、特許文献2に記載された方法のようにガラス原料ガスの流量またはバーナの移動速度を調整しても、ガラス微粒子堆積体の密度を正確に調整することは難しい。
本発明は、出発棒にガラス微粒子を堆積させて光ファイバ母材を製造する方法において、出発棒の長手方向にわたって所望の特性を有する光ファイバ母材の製造方法を提供することを目的としている。
上記目的を達成することのできる本発明に係る光ファイバ母材の製造方法は、コア及びクラッドの一部を有する出発棒をその軸回りに回転させつつ、バーナにより生成したガラス微粒子を前記出発棒に堆積させる光ファイバ母材の製造方法であり、前記出発棒に新規に堆積させるガラス微粒子の堆積量の目標値を前記出発棒の長手方向にわたって決定する工程と、前記堆積量が前記目標値となるように前記出発棒の回転速度を長手方向に設定する工程と、前記回転速度を設定された値に制御する工程とを有することを特徴としている。
また、本発明の光ファイバ母材の製造方法において、前記出発棒の前記バーナに対する相対移動速度を前記出発棒の長手方向にわたって一定とすることが好ましい。
また、上記目的を達成することのできる本発明に係る光ファイバ母材の製造方法は、コア及びクラッドの一部を有する出発棒をその軸回りに回転させつつ、バーナにより生成したガラス微粒子を前記出発棒に堆積させる光ファイバ母材の製造方法であり、前記出発棒に新規に堆積させるガラス微粒子の堆積量の目標値を前記出発棒の長手方向にわたって決定する工程と、前記出発棒を支持する荷重を測定して前記出発棒に堆積したガラス微粒子の堆積量をモニタし、モニタされた堆積量が前記出発棒の長手方向にわたって前記目標値と合致するように前記出発棒の回転速度を制御する工程とを有することを特徴としている。
また、上記目的を達成することのできる本発明に係る光ファイバ母材の製造方法は、コア及びクラッドの一部を有する出発棒をその軸回りに回転させつつ、バーナにより生成したガラス微粒子を前記出発棒に堆積させる光ファイバ母材の製造方法であり、前記ガラス微粒子が新規に堆積する堆積面の表面温度の目標値を前記出発棒の長手方向にわたって決定する工程と、前記堆積面の表面温度をモニタし、モニタされた表面温度が前記出発棒の長手方向にわたって前記目標値と合致するように前記出発棒の回転速度を制御する工程とを有することを特徴としている。
また、上記目的を達成することのできる本発明に係る光ファイバ母材の製造方法は、コア及びクラッドの一部を有する出発棒をその軸回りに回転させつつ、バーナにより生成したガラス微粒子の堆積体を前記出発棒の外周に長手方向に成長させる光ファイバ母材の製造方法であり、前記出発棒に新規に堆積させるガラス微粒子の堆積量の目標値を前記出発棒の長手方向にわたって決定する工程と、前記出発棒を支持する荷重を測定して前記出発棒に堆積したガラス微粒子の堆積量をモニタし、モニタされた堆積量が前記出発棒の長手方向にわたって前記目標値と合致するように、前記出発棒の前記バーナに対する相対移動速度を制御する工程とを有することを特徴としている。
本発明の光ファイバ母材の製造方法によれば、ガラス微粒子の堆積体を出発棒の軸方向に成長させるVAD法または径方向に成長させるOVD法の何れの場合でも、ガラス微粒子を堆積させる際の出発棒の回転速度を調節することで、ガラス微粒子堆積体の密度を容易に調節することができ、出発棒のコア・クラッド比等が長手方向に不均一であっても、長手方向に所望の特性を有する光ファイバ母材を製造することができる。また、ガラス微粒子を出発棒の軸方向に堆積させるVAD法の場合には、ガラス微粒子堆積体の外径及び密度を変化させることで、焼結した光ファイバ母材のコア・クラッド比を長手方向に均一にすることができる。
以下、本発明に係る光ファイバ母材の製造方法の実施の形態の例を、図面を参照して説明する。
(第1実施形態)
図1に、本発明に係る光ファイバ母材の製造方法の第1実施形態を実施することのできる製造装置を示す。図1に示す製造装置1は、所謂VAD法により、反応容器2の内側の空間内で出発棒4に対してガラス微粒子を堆積させるものである。
(第1実施形態)
図1に、本発明に係る光ファイバ母材の製造方法の第1実施形態を実施することのできる製造装置を示す。図1に示す製造装置1は、所謂VAD法により、反応容器2の内側の空間内で出発棒4に対してガラス微粒子を堆積させるものである。
反応容器2は、ガラス微粒子を生成して堆積させる際の高温の環境条件においても、塩素ガス等による腐食が極めて起こりにくい、二酸化ケイ素、炭化ケイ素、ニッケル、ニッケル合金等の材料を用いて形成されている。
反応容器2の中には、垂直方向に昇降可能な把持具3が収容されている。この把持具3は、出発棒である長尺状の出発棒4の上端を把持して、出発棒4を垂直方向に支持している。また、把持具3は、その上方で回転引き上げ装置14に接続されている。回転引き上げ装置14は、把持具3及び把持した出発棒4をその軸回りに回転させることができる。出発棒4は、光ファイバのコアとなる部分を中心に有し、その周囲にクラッドとなる部分の一部分が設けられている。コアとなる部分は、例えばシリカ(SiO2)にゲルマニウム(Ge)が添加されたガラスであり、クラッドとなる部分は、例えばシリカにフッ素(F)が添加されたガラスである。
反応容器2の中には、垂直方向に昇降可能な把持具3が収容されている。この把持具3は、出発棒である長尺状の出発棒4の上端を把持して、出発棒4を垂直方向に支持している。また、把持具3は、その上方で回転引き上げ装置14に接続されている。回転引き上げ装置14は、把持具3及び把持した出発棒4をその軸回りに回転させることができる。出発棒4は、光ファイバのコアとなる部分を中心に有し、その周囲にクラッドとなる部分の一部分が設けられている。コアとなる部分は、例えばシリカ(SiO2)にゲルマニウム(Ge)が添加されたガラスであり、クラッドとなる部分は、例えばシリカにフッ素(F)が添加されたガラスである。
また、反応容器2の中には、ガラス微粒子生成用のバーナ5が設けられている。バーナ5は、ガスを吹き出す複数のポートを有しており、そのポートからそれぞれ燃焼ガスとガラス原料ガスを吹き出し、燃焼ガスの燃焼により生じる酸水素火炎中においてガラス原料を加水分解反応させて、ガラス微粒子を生成するものである。また、バーナ5は、生成したガラス微粒子を出発棒4に堆積させるように、出発棒4に向けて斜め上方向に配置されている。なお、バーナ5は複数用いても良い。
バーナ5は、ガス供給装置11からガスを導入するガス管9に接続されている。また、ガス供給装置11とバーナ5の間のガス管9には、流量調節器10が設けられている。この流量調節器10により、バーナ5に供給されるガスの流量は適宜調整される。
燃焼ガスには、水素(H2)と酸素(O2)が含まれる。ガラス原料ガスには、四塩化ケイ素(SiCl4)が含まれる。なお、ガラス原料ガスに屈折率調整用添加物を含有させることもできる。本実施形態では、光ファイバのクラッドとなる純シリカガラスの微粒子を出発棒4に堆積させるように、ガラス原料ガスとして四塩化ケイ素のみを使用する。
さらに、反応容器2は、側壁部分に排気口7を備えており、出発棒4に堆積されなかった余剰のガラス微粒子を含む内部の排気ガスが排気口7から送り出される。
また、本実施形態の製造装置1は、長手方向に所望の特性を有する光ファイバ母材を得ることのできる制御を行うための構成を備えている。ここで、所望の特性とは、例えば長手方向に均一なカットオフ波長を得るためにコアとクラッドの径の比を長手方向に均一とするものや、長手方向において複数のカットオフ波長が設定されてコアとクラッドの径の比を適宜変化させるもの、等を指す。
反応容器2の内側には、非接触式の位置検出器12が設けられており、ガラス微粒子が堆積しつつある部分6a(これをガラス微粒子堆積部と呼ぶ)の位置を検出できる。位置検出器12としては、レーザ投受光装置やCCDカメラを使用できる。また、位置検出器12は、移動制御用コンピュータ13aと接続されており、ガラス微粒子堆積部6aの位置データがこの移動制御用コンピュータ13aに送られる。また、移動制御用コンピュータ13aは、出発棒4の引き上げ移動速度及び回転速度を調節する回転引き上げ装置14に接続されている。移動制御用コンピュータ13aは、位置検出器12の測定データに基づいて、回転引き上げ装置14の引き上げ移動速度を制御する。
また、回転引き上げ装置14には、回転速度制御用コンピュータ13bが接続されている。この回転速度制御用コンピュータ13bは、把持部3に把持された出発棒4の目標回転速度が、出発棒4の長手方向に沿って設定されており、その設定された目標回転速度に従って出発棒4の長手方向の所望の箇所にガラス微粒子を堆積させる際の出発棒4の回転速度を制御する。
ここで、堆積させたガラス微粒子を加熱して透明化(焼結)して得られた光ファイバ母材の屈折率分布を図2に示す。
図中、Aはコアの外径、Bは出発棒4の外径、Cは光ファイバ母材の外径、Dは製造装置1により堆積させたガラス微粒子を透明化して形成したクラッドの厚さ、Δnは出発棒4のコアとクラッドの比屈折率差を示している。出発棒4のコアとクラッドの外径の比=B/A、光ファイバ母材のコアとクラッドの外径の比=C/Bより、光ファイバのカットオフ波長λcを母材の寸法で表すと、次の式(1)に示す通りである。
式(1): λc=k×Δn/{(B/A)×(C/B)}
なお、式(1)中のkは定数である。
図中、Aはコアの外径、Bは出発棒4の外径、Cは光ファイバ母材の外径、Dは製造装置1により堆積させたガラス微粒子を透明化して形成したクラッドの厚さ、Δnは出発棒4のコアとクラッドの比屈折率差を示している。出発棒4のコアとクラッドの外径の比=B/A、光ファイバ母材のコアとクラッドの外径の比=C/Bより、光ファイバのカットオフ波長λcを母材の寸法で表すと、次の式(1)に示す通りである。
式(1): λc=k×Δn/{(B/A)×(C/B)}
なお、式(1)中のkは定数である。
製造装置1によるガラス微粒子の堆積量を一定にしてC/Bを一定に保っても、出発棒のコアの外径と出発棒の外径の比であるB/Aや比屈折率差Δnに長手方向で変動がある場合には、カットオフ波長λcは長手方向で変動してしまう。そのため、本実施形態では、カットオフ波長λcを長手方向で一定にするために、長手方向にわたって予め測定されたコアの外径Aと、出発棒4の外径Bと、コアとクラッドの比屈折率差Δnから、出発棒4の長手方向にわたってガラス微粒子の目標堆積量を設定し、この目標堆積量を実現するための出発棒4の長手方向にわたる目標回転速度を計算して、この目標回転速度が回転速度制御用コンピュータ13bに記憶される。
上記構成の製造装置1によって光ファイバ母材を製造する方法について説明する。
まず、ガラス微粒子を堆積させようとする出発棒4のコアの外径Aと、出発棒4の外径Bと、コアとクラッドの比屈折率差Δnとを、長手方向にわたって測定し、出発棒4に新規に堆積させるガラス微粒子の目標堆積量を出発棒4の長手方向にわたって決定する。なお、このとき、コアとクラッドの比屈折率差Δnを測定する代わりに出発棒4の屈折率分布を測定して、目標堆積量を決定しても良い。また、ここで決定する目標堆積量は、得られた光ファイバのカットオフ波長を長手方向で一定にするためのものや、得られた光ファイバのカットオフ波長を長手方向で所望の値に変化させるためのものであっても良い。
まず、ガラス微粒子を堆積させようとする出発棒4のコアの外径Aと、出発棒4の外径Bと、コアとクラッドの比屈折率差Δnとを、長手方向にわたって測定し、出発棒4に新規に堆積させるガラス微粒子の目標堆積量を出発棒4の長手方向にわたって決定する。なお、このとき、コアとクラッドの比屈折率差Δnを測定する代わりに出発棒4の屈折率分布を測定して、目標堆積量を決定しても良い。また、ここで決定する目標堆積量は、得られた光ファイバのカットオフ波長を長手方向で一定にするためのものや、得られた光ファイバのカットオフ波長を長手方向で所望の値に変化させるためのものであっても良い。
そして、実際にガラス微粒子を堆積させる量が目標堆積量となるように、出発棒4の目標回転速度を、ガラス微粒子を堆積させる箇所に応じて長手方向にわたって設定する。そして、この目標回転速度を回転速度制御用コンピュータ13bに記憶させる。
次いで、把持具3によって出発棒4を把持し、回転引き上げ装置14を駆動させて出発棒4を反応容器2内に吊り下げ、出発棒4をその軸回りに回転させる。そして、バーナ5に四塩化ケイ素、水素、酸素を導入し、回転している出発棒4に向かって、酸水素火炎を発生させる。酸水素火炎中では、加水分解反応によりガラス微粒子が生成される。さらに、出発棒4を、軸回りに回転させながら、上方向に徐々に引き上げて移動させていく。なお、本実施形態ではバーナ5を固定して出発棒4を移動させる態様としたが、これとは逆にバーナ5を出発棒4の長手方向に移動させることで、バーナ5と出発棒4とを相対移動させても良い。
このように、バーナ5からガラス微粒子を生成して、出発棒4を回転させつつその長手方向に移動させることで、生成されたガラス微粒子を出発棒4の周囲に堆積させてガラス微粒子堆積体6を形成し、出発棒4の長手方向に成長させていく。
このように、バーナ5からガラス微粒子を生成して、出発棒4を回転させつつその長手方向に移動させることで、生成されたガラス微粒子を出発棒4の周囲に堆積させてガラス微粒子堆積体6を形成し、出発棒4の長手方向に成長させていく。
ここで、ガラス微粒子を出発棒4に堆積させていく際に、位置検出器12の測定データに基づいて、ガラス微粒子堆積体6の外径が一定となるように、移動制御用コンピュータ13aにより出発棒4の引き上げ移動速度を制御する。また、出発棒4の長手方向におけるガラス微粒子の堆積箇所に対して、設定された目標回転速度となるように、回転速度制御用コンピュータ13bにより出発棒4の回転速度を制御する。例えば、回転速度が遅くなると、バーナ5の火炎が堆積部6aの同じ箇所に当たる時間が長くなって、堆積部6aの温度が上がる。そして、堆積部6aに堆積するガラス微粒子の堆積密度が高くなる。ガラス微粒子の密度が高い部分は、焼結する際の収縮率が小さいため、ガラス微粒子堆積体6の外径が一定であっても、焼結した光ファイバ母材の外径は長手方向で変化する。このように、式(1)で示したCの値は、出発棒4の回転速度により調整することができるため、コア外径A、出発棒外径B、比屈折率差Δnの値の長手方向の変動に応じて、カットオフ波長λcが長手方向で所望の値となるように出発棒4の回転速度を制御し、光ファイバ母材の外径Cを長手方向で調節させる。
また、移動制御用コンピュータ13aによる引き上げ移動速度の制御を行わずに、出発棒4の引き上げ移動速度を出発棒4の長手方向にわたって一定としても良い。
(第2実施形態)
図3に、本発明に係る光ファイバ母材の製造方法の第2実施形態を実施することのできる製造装置を示す。図3に示す製造装置1aは、上記の第1実施形態と同様に、所謂VAD法により、反応容器2の内側の空間内で出発棒4に対してガラス微粒子を堆積させるものである。なお、この第2実施形態の説明において、第1実施形態と同様の構成については同じ符号を付して説明を省略する。
図3に、本発明に係る光ファイバ母材の製造方法の第2実施形態を実施することのできる製造装置を示す。図3に示す製造装置1aは、上記の第1実施形態と同様に、所謂VAD法により、反応容器2の内側の空間内で出発棒4に対してガラス微粒子を堆積させるものである。なお、この第2実施形態の説明において、第1実施形態と同様の構成については同じ符号を付して説明を省略する。
この第2実施形態の製造装置1aも、第1実施形態と同様に、長手方向に所望の特性を有する光ファイバ母材を得ることのできる制御を行うための構成を備えている。ただし、第2実施形態の製造装置1aは、回転引き上げ装置14を制御するための構成として、ガラス微粒子の堆積量を測定するための重量計15を備えている。重量計15は、回転引き上げ装置14と把持部3との間に設けられており、出発棒4にガラス微粒子が堆積していくと、その堆積量に応じた出発棒4を支持する荷重の変化を測定することができる。この重量計15として、例えばロードセルを用いることができ、測定された荷重の値は、回転速度制御用コンピュータ13cによりモニタされる。
本実施形態では、カットオフ波長λcを長手方向で一定にするために、長手方向にわたって予め測定されたコアの外径Aと、出発棒4の外径Bと、コアとクラッドの比屈折率差Δnから、出発棒4の長手方向にわたってガラス微粒子の目標堆積量を設定し、この目標堆積量が回転速度制御用コンピュータ13cに記憶される。
重量計15により測定された荷重の変化はガラス微粒子の堆積量の変化であり、回転速度制御用コンピュータ13cは、設定された目標堆積量とモニタされた実際の堆積量が出発棒4の長手方向にわたって合致するように出発棒4の回転速度を制御する。
重量計15により測定された荷重の変化はガラス微粒子の堆積量の変化であり、回転速度制御用コンピュータ13cは、設定された目標堆積量とモニタされた実際の堆積量が出発棒4の長手方向にわたって合致するように出発棒4の回転速度を制御する。
上記構成の製造装置1aによって光ファイバ母材を製造する方法について説明する。
まず、第1実施形態と同様に、出発棒4に新規に堆積させるガラス微粒子の目標堆積量を出発棒4の長手方向にわたって決定する。そして、そして、この目標堆積量を回転速度制御用コンピュータ13cに記憶させる。
まず、第1実施形態と同様に、出発棒4に新規に堆積させるガラス微粒子の目標堆積量を出発棒4の長手方向にわたって決定する。そして、そして、この目標堆積量を回転速度制御用コンピュータ13cに記憶させる。
次いで、反応容器2内に吊り下げた出発棒4をその軸回りに回転させ、バーナ5からガラス微粒子を生成して、出発棒4を引き上げていく。これにより、生成されたガラス微粒子を出発棒4の周囲に堆積させてガラス微粒子堆積体6を形成し、出発棒4の長手方向に成長させていく。
ここで、ガラス微粒子を出発棒4に堆積させていく際に、位置検出器12の測定データに基づいて、ガラス微粒子堆積体6の外径が一定となるように、移動制御用コンピュータ13aにより出発棒4の引き上げ移動速度を制御する。また、出発棒4の長手方向におけるガラス微粒子の堆積箇所に対して、設定された目標堆積量となるように、重量計15により測定した堆積量をモニタして回転速度制御用コンピュータ13cにより出発棒4の回転速度を制御する。これにより、カットオフ波長λcが長手方向で所望の値となるように出発棒4の回転速度を制御し、光ファイバ母材の外径Cを長手方向で調節させる。
(第3実施形態)
図4に、本発明に係る光ファイバ母材の製造方法の第3実施形態を実施することのできる製造装置を示す。図4に示す製造装置1bは、上記の第1,第2実施形態と同様に、所謂VAD法により、反応容器2の内側の空間内で出発棒4に対してガラス微粒子を堆積させるものである。なお、この第3実施形態の説明において、第1,第2実施形態と同様の構成については同じ符号を付して説明を省略する。
図4に、本発明に係る光ファイバ母材の製造方法の第3実施形態を実施することのできる製造装置を示す。図4に示す製造装置1bは、上記の第1,第2実施形態と同様に、所謂VAD法により、反応容器2の内側の空間内で出発棒4に対してガラス微粒子を堆積させるものである。なお、この第3実施形態の説明において、第1,第2実施形態と同様の構成については同じ符号を付して説明を省略する。
この第3実施形態の製造装置1bも、第1,第2実施形態と同様に、長手方向に所望の特性を有する光ファイバ母材を得ることのできる制御を行うための構成を備えている。ただし、第3実施形態の製造装置1bは、回転引き上げ装置14を制御するための構成として、ガラス微粒子が新規に堆積する堆積面の表面温度を測定するための温度計16を備えている。温度計16は、バーナ5の火炎が当たる位置のガラス微粒子堆積体6の表面温度を非接触で測定する位置に設けられており、出発棒4にガラス微粒子が堆積していく際に、常時その堆積面の表面温度を測定することができる。この温度計16として、例えば放射温度計を用いることができ、測定された温度の値は、回転速度制御用コンピュータ13dによりモニタされる。
本実施形態では、カットオフ波長λcを長手方向で一定にするために、長手方向にわたって予め測定されたコアの外径Aと、出発棒4の外径Bと、コアとクラッドの比屈折率差Δnから、出発棒4の長手方向にわたってガラス微粒子の目標堆積量を設定し、この目標堆積量を実現するための出発棒4の長手方向にわたる目標表面温度を計算して、この目標表面温度が回転速度制御用コンピュータ13dに記憶される。
温度計16により測定された表面温度は、上述したようにガラス微粒子の堆積密度と関係しており、モニタした表面温度から堆積量が分かる。回転速度制御用コンピュータ13dは、設定された目標表面温度とモニタされた実際の表面温度が出発棒4の長手方向にわたって合致するように出発棒4の回転速度を制御する。
上記構成の製造装置1bによって光ファイバ母材を製造する方法について説明する。
まず、第1,第2実施形態と同様に、出発棒4に新規に堆積させるガラス微粒子の目標堆積量を出発棒4の長手方向にわたって決定する。そして、この目標堆積量を実現するための出発棒4の長手方向にわたる目標表面温度を計算して、目標表面温度を回転速度制御用コンピュータ13dに記憶させる。
まず、第1,第2実施形態と同様に、出発棒4に新規に堆積させるガラス微粒子の目標堆積量を出発棒4の長手方向にわたって決定する。そして、この目標堆積量を実現するための出発棒4の長手方向にわたる目標表面温度を計算して、目標表面温度を回転速度制御用コンピュータ13dに記憶させる。
次いで、反応容器2内に吊り下げた出発棒4をその軸回りに回転させ、バーナ5からガラス微粒子を生成して、出発棒4を引き上げていく。これにより、生成されたガラス微粒子を出発棒4の周囲に堆積させてガラス微粒子堆積体6を形成し、出発棒4の長手方向に成長させていく。
ここで、ガラス微粒子を出発棒4に堆積させていく際に、位置検出器12の測定データに基づいて、ガラス微粒子堆積体6の外径が一定となるように、移動制御用コンピュータ13aにより出発棒4の引き上げ移動速度を制御する。また、出発棒4の長手方向におけるガラス微粒子の堆積箇所に対して、設定された目標表面温度となるように、温度計16により測定した表面温度をモニタして回転速度制御用コンピュータ13dにより出発棒4の回転速度を制御する。これにより、カットオフ波長λcが長手方向で所望の値となるように出発棒4の回転速度を制御し、光ファイバ母材の外径Cを長手方向で調節させる。
このように、出発棒4の回転速度を制御してガラス微粒子の堆積を行う方法は、上記の第1〜第3実施形態のようにVAD法において特に有効であるが、OVD法において採用することも可能である。
(第4実施形態)
また、ガラス微粒子を出発棒4の軸方向に堆積させるVAD法においては、出発棒4の回転速度を一定とし、カットオフ波長λcが長手方向で均一となるように設定した目標堆積量に実際の堆積量が合致するように出発棒4の引き上げ速度を制御して、ガラス微粒子堆積体6の外径及び密度を長手方向で変化させても良い。その際、一定の回転速度でバーナ5のガス流量も一定であれば、引き上げ速度と堆積量との関係を予め調べておき、その関係に基づいて出発棒4の引き上げ速度を制御することができる。また、第2実施形態で説明したように重量計15を用いて実際の堆積量をモニタして、目標堆積量と実際の堆積量が合致するように出発棒4の引き上げ速度を制御することもできる。
また、ガラス微粒子を出発棒4の軸方向に堆積させるVAD法においては、出発棒4の回転速度を一定とし、カットオフ波長λcが長手方向で均一となるように設定した目標堆積量に実際の堆積量が合致するように出発棒4の引き上げ速度を制御して、ガラス微粒子堆積体6の外径及び密度を長手方向で変化させても良い。その際、一定の回転速度でバーナ5のガス流量も一定であれば、引き上げ速度と堆積量との関係を予め調べておき、その関係に基づいて出発棒4の引き上げ速度を制御することができる。また、第2実施形態で説明したように重量計15を用いて実際の堆積量をモニタして、目標堆積量と実際の堆積量が合致するように出発棒4の引き上げ速度を制御することもできる。
これにより、光ファイバ母材の外径Cを長手方向で変化させて、得られる光ファイバの特性を長手方向で所望の値とすることができる。なお、ガラス微粒子堆積体6の外径の変化をモニタするには、図1に示した製造装置1の位置検出器12を距離検出器に置き換えて、ガラス微粒子堆積部6aの外径を測定すると良い。
次に、本発明に係る実施例と、従来方法に係る比較例とについて説明する。
(実施例)
図1に示した製造装置1を用いて、VAD法によりガラス微粒子堆積体を製造した。ガラス微粒子堆積体6の外径は150mm(一定)、長さは500mmとした。その際、用いた出発棒のコア外径A、出発棒外径B、コアとクラッドの比屈折率差Δnの値を長手方向にわたって測定し、式(1)によりカットオフ波長λcが所望の値で一定となるためのVAD法により形成されるクラッドの厚さDを算出しておく。この算出したクラッドの厚さDの長手方向の変化率(%)のグラフを図5に示す。
また、ガラス微粒子堆積体の外径を一定としたときの出発棒の回転速度と焼結後の厚さDとの関係を求めておく。この関係のグラフを図6に示す。
(実施例)
図1に示した製造装置1を用いて、VAD法によりガラス微粒子堆積体を製造した。ガラス微粒子堆積体6の外径は150mm(一定)、長さは500mmとした。その際、用いた出発棒のコア外径A、出発棒外径B、コアとクラッドの比屈折率差Δnの値を長手方向にわたって測定し、式(1)によりカットオフ波長λcが所望の値で一定となるためのVAD法により形成されるクラッドの厚さDを算出しておく。この算出したクラッドの厚さDの長手方向の変化率(%)のグラフを図5に示す。
また、ガラス微粒子堆積体の外径を一定としたときの出発棒の回転速度と焼結後の厚さDとの関係を求めておく。この関係のグラフを図6に示す。
これらの図6に示したデータを基にして、図5に示した厚さDの目標値となるように出発棒の回転速度を長手方向にわたって変化させ、ガラス微粒子堆積体を形成した。そして、これを焼結した光ファイバ母材における厚さDを測定したところ、図7の破線に示すような結果が得られた。なお、この図7における実線で示したデータは、図5に示した目標値を重ねて示したものである。このように、実際に製造した光ファイバ母材における厚さDのデータと目標値がほぼ一致していることが確認できた。そして、この光ファイバ母材を線引きして得られた外径125μmの光ファイバのカットオフ波長を測定した。その結果を図8に示す。なお、この図8では、線引きした光ファイバの測定箇所を母材の長手方向の位置に換算して表している。図8に示すように、本発明に係る光ファイバ母材の製造方法により製造された光ファイバ母材から得られた光ファイバは、長手方向でほぼ均一なカットオフ波長の光学特性を示しており、長手方向の変動は0.02μmの範囲内に留まっている。
(比較例)
図1に示した製造装置1を用いて、VAD法によりガラス微粒子堆積体を製造した。ガラス微粒子堆積体6の外径は150mm(一定)、長さは500mmとした。その際、上記の実施例とは異なり回転速度は一定とした。そして、得られたガラス微粒子堆積体を焼結した光ファイバ母材における厚さDを測定したところ、図9の破線に示すような結果が得られた。なお、この図9における実線で示したデータは、図5に示した目標値を重ねて示したものである。このように、実際に製造した光ファイバ母材における厚さDのデータと目標値が大きく異なっている。そして、この光ファイバ母材を線引きして得られた外径125μmの光ファイバのカットオフ波長を測定した。その結果を図8に示す。なお、この図8では、図6と同様に、線引きした光ファイバの測定箇所を母材の長手方向の位置に換算して表している。図10に示すように、出発棒の回転速度を一定として製造した厚さが一定の光ファイバ母材から得られた光ファイバは、長手方向でカットオフ波長が0.06μm程度変動していた。
図1に示した製造装置1を用いて、VAD法によりガラス微粒子堆積体を製造した。ガラス微粒子堆積体6の外径は150mm(一定)、長さは500mmとした。その際、上記の実施例とは異なり回転速度は一定とした。そして、得られたガラス微粒子堆積体を焼結した光ファイバ母材における厚さDを測定したところ、図9の破線に示すような結果が得られた。なお、この図9における実線で示したデータは、図5に示した目標値を重ねて示したものである。このように、実際に製造した光ファイバ母材における厚さDのデータと目標値が大きく異なっている。そして、この光ファイバ母材を線引きして得られた外径125μmの光ファイバのカットオフ波長を測定した。その結果を図8に示す。なお、この図8では、図6と同様に、線引きした光ファイバの測定箇所を母材の長手方向の位置に換算して表している。図10に示すように、出発棒の回転速度を一定として製造した厚さが一定の光ファイバ母材から得られた光ファイバは、長手方向でカットオフ波長が0.06μm程度変動していた。
1,1a,1b 製造装置
2 反応容器
3 把持具
4 出発棒
5 バーナ
6 ガラス微粒子堆積体
6a ガラス微粒子堆積部
7 排気口
9 ガス管
10 流量調節器
11 ガス供給装置
12 位置検出器
13a 移動制御用コンピュータ
13b,13c,13d 回転速度制御用コンピュータ
14 回転引き上げ装置
2 反応容器
3 把持具
4 出発棒
5 バーナ
6 ガラス微粒子堆積体
6a ガラス微粒子堆積部
7 排気口
9 ガス管
10 流量調節器
11 ガス供給装置
12 位置検出器
13a 移動制御用コンピュータ
13b,13c,13d 回転速度制御用コンピュータ
14 回転引き上げ装置
Claims (5)
- コア及びクラッドの一部を有する出発棒をその軸回りに回転させつつ、バーナにより生成したガラス微粒子を前記出発棒に堆積させる光ファイバ母材の製造方法であり、
前記出発棒に新規に堆積させるガラス微粒子の堆積量の目標値を前記出発棒の長手方向にわたって決定する工程と、
前記堆積量が前記目標値となるように前記出発棒の回転速度を長手方向に設定する工程と、
前記回転速度を設定された値に制御する工程とを有することを特徴とする光ファイバ母材の製造方法。 - 前記出発棒の前記バーナに対する相対移動速度を前記出発棒の長手方向にわたって一定とすることを特徴とする請求項1に記載の光ファイバ母材の製造方法。
- コア及びクラッドの一部を有する出発棒をその軸回りに回転させつつ、バーナにより生成したガラス微粒子を前記出発棒に堆積させる光ファイバ母材の製造方法であり、
前記出発棒に新規に堆積させるガラス微粒子の堆積量の目標値を前記出発棒の長手方向にわたって決定する工程と、
前記出発棒を支持する荷重を測定して前記出発棒に堆積したガラス微粒子の堆積量をモニタし、モニタされた堆積量が前記出発棒の長手方向にわたって前記目標値と合致するように前記出発棒の回転速度を制御する工程とを有することを特徴とする光ファイバ母材の製造方法。 - コア及びクラッドの一部を有する出発棒をその軸回りに回転させつつ、バーナにより生成したガラス微粒子を前記出発棒に堆積させる光ファイバ母材の製造方法であり、
前記ガラス微粒子が新規に堆積する堆積面の表面温度の目標値を前記出発棒の長手方向にわたって決定する工程と、
前記堆積面の表面温度をモニタし、モニタされた表面温度が前記出発棒の長手方向にわたって前記目標値と合致するように前記出発棒の回転速度を制御する工程とを有することを特徴とする光ファイバ母材の製造方法。 - コア及びクラッドの一部を有する出発棒をその軸回りに回転させつつ、バーナにより生成したガラス微粒子の堆積体を前記出発棒の外周に長手方向に成長させる光ファイバ母材の製造方法であり、
前記出発棒に新規に堆積させるガラス微粒子の堆積量の目標値を前記出発棒の長手方向にわたって決定する工程と、
前記出発棒を支持する荷重を測定して前記出発棒に堆積したガラス微粒子の堆積量をモニタし、モニタされた堆積量が前記出発棒の長手方向にわたって前記目標値と合致するように、前記出発棒の前記バーナに対する相対移動速度を制御する工程とを有することを特徴とする光ファイバ母材の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004186347A JP2006008438A (ja) | 2004-06-24 | 2004-06-24 | 光ファイバ母材の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004186347A JP2006008438A (ja) | 2004-06-24 | 2004-06-24 | 光ファイバ母材の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006008438A true JP2006008438A (ja) | 2006-01-12 |
Family
ID=35776087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004186347A Pending JP2006008438A (ja) | 2004-06-24 | 2004-06-24 | 光ファイバ母材の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006008438A (ja) |
-
2004
- 2004-06-24 JP JP2004186347A patent/JP2006008438A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100507622B1 (ko) | 외부기상증착법을 이용한 광섬유 프리폼의 제조방법 및 장치 | |
JP4239806B2 (ja) | マルチモード光ファイバ母材の製造方法、マルチモード光ファイバの製造方法 | |
KR100640466B1 (ko) | 기상 축 증착 장치 및 방법 | |
US20070151298A1 (en) | Vapor axial deposition apparatus and method for fabricating soot preform using the same | |
US20040007025A1 (en) | Production process for porous glass preform | |
JP4057304B2 (ja) | 光ファイバ母材の製造方法 | |
JP2006008438A (ja) | 光ファイバ母材の製造方法 | |
WO2007054961A2 (en) | Optical fiber preform having large size soot porous body and its method of preparation | |
JP2005075682A (ja) | 多孔質ガラス母材の製造方法 | |
JP2012006791A (ja) | 光ファイバ母材の製造方法 | |
US20080053155A1 (en) | Optical fiber preform having large size soot porous body and its method of preparation | |
JP2005139042A (ja) | 多孔質ガラス母材の製造方法 | |
JP6431349B2 (ja) | 光ファイバ母材の製造方法 | |
JP2006096608A (ja) | ガラス母材の製造方法 | |
US20070157674A1 (en) | Apparatus for fabricating optical fiber preform and method for fabricating low water peak fiber using the same | |
JP4404214B2 (ja) | 光ファイバ用ガラス母材の製造方法 | |
JP2003277069A (ja) | 多孔質母材の製造方法 | |
JP5087929B2 (ja) | ガラス微粒子堆積体の製造方法 | |
JPH054825A (ja) | ガラス物品の製造方法 | |
JP3826839B2 (ja) | ガラス母材の製造方法 | |
JPH03242341A (ja) | シングルモード光ファイバ用多孔質ガラス母材の製造方法 | |
JP2000063147A (ja) | 光ファイバ母材およびその製造方法 | |
JP3687625B2 (ja) | ガラス母材の製造方法 | |
JP4506681B2 (ja) | ガラス母材の製造方法 | |
JP2017226569A (ja) | 光ファイバ母材の製造方法、及びガラス微粒子堆積体の製造方法 |