JP2005529497A - 波長可変リング共振器 - Google Patents

波長可変リング共振器 Download PDF

Info

Publication number
JP2005529497A
JP2005529497A JP2004512248A JP2004512248A JP2005529497A JP 2005529497 A JP2005529497 A JP 2005529497A JP 2004512248 A JP2004512248 A JP 2004512248A JP 2004512248 A JP2004512248 A JP 2004512248A JP 2005529497 A JP2005529497 A JP 2005529497A
Authority
JP
Japan
Prior art keywords
optical path
wavelength
ring laser
laser device
path length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004512248A
Other languages
English (en)
Inventor
ネーベンダール,ベルント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agilent Technologies Inc
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Publication of JP2005529497A publication Critical patent/JP2005529497A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4294Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect in multispectral systems, e.g. UV and visible
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/143Littman-Metcalf configuration, e.g. laser - grating - mirror

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

閉ループに相当する光路を進行する光ビームを発生するようになっているリング・レーザ装置であって、このリング・レーザ装置には、誘導放出による光ビームの増幅のため、光路に結合されるレーザ利得媒質(10)と、光路に沿って進行する光ビームに波長選択を施すため、光路に結合される波長フィルタ(50)が含まれている。

Description

本発明は、波長可変レーザに関するものである。
光通信産業では、例えば、波長の異なるレーザによってコンポーネント及び増幅器をテストすることが必要とされている。このために、さまざまなタイプのレーザ空洞共振器が既知のところである。
波長可変レーザについては、例えば、いわゆるリットマン幾何学構成として、Liu及びLittman、「Novel geometry for single−mode scanning of tunable lasers」、Optical Society of America、1981年に、あるいは、いわゆるリトロー幾何学構成として、欧州特許第0 952 643A2号明細書に解説がある。ブラッグ反射器タイプの空洞共振器については、例えば、A.Nahata他、「Widely Tunable Semiconductor Laser Using Dynamic Holographically−Defined Distributed Bragg Reflector」、IEEE、2000年に示されている。これらの文献の教示は、参考までに本明細書において援用される。
本発明の目的は、波長可変レーザのための代替解決法を提供することにある。この目的は、独立請求項によって解決される。従属請求項によって、望ましい実施態様が示される。
本発明によるリング・レーザ装置は、閉ループに相当する光路を進行する光ビームを発生するようになっている。誘導放出による光ビームの増幅のため、レーザ利得媒質が、光路に結合される。レーザ媒質によって得られるビームが平行化済みでなければ、コリメート素子を設けることも可能である。リング・レーザには、さらに、光路に沿って進行する光ビームに対して波長選択を施すため、光路内に結合された波長フィルタも含まれている。
リング共振器内の共振条件は、閉ループに沿った1ラウンド・トリップにわたる光路長が、共振波長の整数倍にならなければならないということである(例えば、2つのエンド・ミラー間の光路長が波長の二分の一の整数倍にならなければならないエンド・ミラー・タイプのレーザ共振器の共振条件とは対照的に)。リング共振器内に進行波が存在するという事実によって、一部のレーザ利得媒質に生じる空間的なホール・バーニング効果が回避される(例えば、エンド・ミラー・タイプのレーザ共振器における定在波とは対照的に)。
望ましい実施態様の場合、リング・レーザには、さらに、光路の光路長(幾何学光路長及び光路内の各素子の屈折率によって決まる)を変更できるようにする光路長変更素子が含まれている。光路長変更素子は、波長フィルタによって施される波長選択の変更と光路長との調整及び/または同調を行うため、波長フィルタに結合されるのが望ましい。従って、例えば、光ビームの波長同調時に生じるモード・ホッピングを低減させるか、または、回避することさえ可能である。
波長フィルタと光路長変更素子との結合は、例えば、前述の幾何学構成の一方(リットマン幾何学構成またはリトロー幾何学構成が望ましい)の原理に従って、リング・レーザの幾何学構成を設計することによって、波長フィルタ並びに光路長変更素子の働きを制御する(できれば、両方の間の同期がとれるようにするため)制御ユニットを用いることによって、または、これらの組み合わせによって施すことが可能である。こうした制御ユニットは、例えば、モード・ホッピングのほとんどない同調を実現するため、例えば、リング・レーザの前回の動作から導き出された既定のパラメータ設定に基づくことが可能である。代わりに、または、それに加えて、制御ユニットは、その教示が参考までに本明細書において援用される、同じ出願人による国際特許出願第PCT/EP02/04736号に開示のように具現化することも可能である。
代わりに、または、それに加えて、制御ユニットは、発生する可能性のあるモード・ホッピングの兆候を検出するため、光ビームを直接モニタし、こうしたモード・ホッピングの発生を回避するため、適切な対抗措置に着手することが可能である。こうした対抗措置は、光路長を現在の波長フィルタ特性に合わせて調整することと、波長フィルタを現在の光路長に合わせて調整することの少なくとも一方とすることが可能である。さらに後述する望ましい実施態様の場合、光路長は、波長フィルタのフィルタ特性の波長(望ましくは、例えば、フィルタの局所的最大透過が生じる波長のような、フィルタ極値の波長)からの、光ビームの波長(望ましくは、主モードの波長)の偏差を表わす誤差信号を得るため、結果として、対応する光ビームの波長変調が生じるようように調整される。
光路のループに沿って進行する光ビームの向きに影響しないようにして、例えば、モード競合の影響下において、ある方向がより優勢になるようにすることが可能である。より理解しやすくするため、優勢な方向は、下記において、順方向と呼ばれ、劣勢な方向は、下記において逆方向と呼ばれるものとする。従って、順方向ビームは、順方向に進行する光ビームを表わし、逆方向ビームは、逆方向に進行する光ビームを表わすことになる。
リング共振器内において行われるモード選択の場合、順方向と逆方向の光路長が同じであると仮定すると、両方とも、同じ波長であるが、伝搬方向が逆の、順方向モード(すなわち、順方向に進行する主モード)及び逆方向モード(すなわち、逆方向に進行する主モード)が、生じる可能性がある。モード競合の影響下において、通常は、モードの一方が、優勢になり、もう一方よりも、強度がかなり高くなる。上記命名規則に従って、優勢なモードは、下記において、順方向モードと呼ばれ、劣勢なモードは、下記において、逆方向モードと呼ばれるものとする。
実施態様の1つでは、必ず同じ方向に順方向モードが生じるようにするため(または、換言すれば、順方向がある決められた方向になるように定義するため)、光路内に方向コントローラが設けられている。これは、例えば、順方向ビームに対して逆方向ビームを減衰させることによって実現可能である。
望ましい実施態様の1つでは、逆方向ビーム(できれば逆モード)を利用して、順方向ビームの少なくとも1つの特性が制御される。逆方向ビームと順方向ビームとの間には、既知の関係が存在するので、例えば、モード・ホッピングを低減させるか、回避するか、または、誘発するために、逆方向ビームを利用して、順方向ビームの特性をモニタすることもできるし、あるいは、その逆を行うことも可能である。制御目的には、光パワーの弱いビームを利用するのが望ましい。ここでは、解説のため、逆方向ビームは、光パワーが弱く、制御目的に用いられるものと仮定することにする。
実施態様の1つでは、順方向モードの光路長を調整せずに、逆方向モードの光路長が、調整されるので、結果として、逆方向モードの波長変調だけが行われることになり、結果生じる逆方向モードの強度変動から制御信号を導き出すことが可能になる。一般に、ある波長値において少なくとも1つの最大透過を生じ、波長範囲にわたって透過作用が弱まる、波長フィルタのフィルタ曲線の特性から、逆方向モードのこうした強度の相違が生じる。逆方向モードの波長を変調する場合、その強度が、相応に、波長フィルタの波長特性によって変調されることになる。従って、既知の制御機構(例えば、決定された偏差から制御または誤差信号を導き出す)を用いることによって、例えば、波長フィルタのフィルタ特性の最大からの順方向モードの波長の偏差を制御することが可能になる。こうした決定された偏差を利用して、波長フィルタの波長特性の現在の設定によって選択された主モード(例えば、順方向モード)の波長を変調するため(例えば、モード・ホッピングを回避するか、または、低減させるため)、例えば、光路長を変更することもできるし、あるいは、前記偏差を利用して、同じ目的のために、波長フィルタの最大透過点波長を変更することも可能である。
もう1つの実施態様では、逆方向モードの波長が、順方向モードの波長に対してオフセットしている。これは、例えば、順方向における光路長に対して逆方向における光路長を変更することによって実現可能である。これは、例えば、順方向と逆方向において光ビームを少なくとも部分的に分離し、分離したビームの少なくとも一方の光路長を変更することによって実現可能である。この分離は、空間的に実施することが可能であり、この変更は、屈折率または幾何学光路長を少なくとも部分的に変更することによって実施可能である。さらに、または、代わりに、この変更は、少なくとも部分的に異なる偏光を利用するが、逆方向及び順方向ビーム/モードに関して幾何学光路を同じに保つことによって、実施可能である。次に、光路長の変更は、例えば、両モードで異なる偏光が利用されるその光路部分における複屈折素子によって実現可能である。次に、光路長の差は、逆方向及び順方向ビーム/モードによって利用される偏光の屈折率の差によって生じる。
次に、順方向及び逆方向ビーム/モード間におけるこうした波長オフセットを利用して、フィルタの最大からの主モードの偏差の変化方向を検出することが可能である。順方向モードの波長がフィルタ最大の波長とほぼ一致する場合、逆方向モードの(オフセット)波長が、フィルタ特性が立ち下がりエッジまたは立ち上がりエッジを(従って、波長に対してより強い依存性を)示す範囲内で選択されるやり方で、順方向モードと逆方向モードの波長間のオフセットを選択するのが望ましい。従って、波長のわずかな変動が、立下りまたは立ち上がりエッジによって「増幅」されて、逆方向モードの変調強度または非変調強度になり、フィルタ最大からの偏差方向が、逆方向モード強度の変動推移から、または、順方向モードと逆方向モードの強度比の変化から明確に求めることが可能である。
望ましい実施態様の1つでは、リング共振器に、少なくとも1つの平行反射素子が含まれている。各平行反射素子は、入射ビームを受光して、ビームを反射するが、これにより、反射ビームは、入射ビームとほぼ平行になるが、空間的に分離される。各平行反射素子は、例えば、少なくとも2つの組み立て平面鏡、または、少なくとも1つの円形または円筒形レンズとミラーによる、または、当該技術において既知の固体素子としての、反射表面(例えば、ミラー)またはレンズ及びミラーの組み合わせを適切に配置することによって設けることが可能である。調整を容易にするため、互いに対してほぼ固定表面をなし、その結果、互いに対して、及び、ビームに対して、反射表面の角度のアライメントをとる労力が軽減されるという利点を備えた、二面体素子または三面体素子を利用することが可能である。二面体素子及び三面体素子は、反射メカニズムが、屈折率が高値から低値に変化する界面において全反射であり、入射角が全反射の角度を超えるプリズムとすることが可能である。あるいはまた、二面体素子及び三面体素子は、反射メカニズムとして金属または誘電体反射を用いて、光路の一部が屈折率の高い材料の内部になくてもすむようにすることも可能である。もう1つの望ましい実施態様の場合、平行反射素子は、その教示が参考までに本明細書において援用される、同じ出願人による国際出願第PCT/EP02/01433号に開示の再帰反射素子として設けることが可能である。
各平行反射素子の反射表面は、入射ビームと出射ビームとの空間的分離を確保するため、光ビームの入射面積に対して広い面積になるように設けるのが望ましい。
実施態様の1つでは、2つの平行反射素子が、平行反射素子の第1の素子から送り出されたビームが、平行反射素子の第2の素子によって受光され、空間的に分離された状態で、平行反射素子の第1の素子に戻されるように配置されており、その結果、リング共振器の閉ループが得られる。換言すれば、閉ループ全体にわたるように、2つの平行反射素子を設けることが可能である。言うまでもなく、こうして得られるループ内に、他のコンポーネントを配置することも可能である。
波長フィルタは、リング共振器内のループの1つを進行する光ビームが1回だけ波長フィルタを通過するように、光路内に配置されている。しかし、波長フィルタは、光ビームが、各ループ毎に、波長フィルタを2回通過するように配置するのが望ましい。これは、例えば、波長フィルタの両側で受光する両方のビームが互いにほぼ平行になるようにすることによって、及び、両方のビームを受光するに十分なほど大きい表面を波長フィルタに設けることによって実現可能である。これは、とりわけ、ループ全体にわたるように、2つの平行反射素子による前述の構成を利用する場合に、実現可能である。
光路内のほぼ任意の場所に、リング共振器内のレーザ・ビームの一部を外部に結合するための1つ以上の出力を設けることが可能である。レーザ・ビームの一部を外部に結合するため、1つ以上のビーム・スプリッタを光路内に導入することができるのが望ましい。望ましい実施態様の場合、順方向ビームの一部は、波長フィルタを少なくとも1度通過した後、レーザ媒質に戻る前に、外部に結合される。順方向ビームの方向を制御し、逆方向ビームを抑制することによって(例えば、モード競合によって自動的に行われない場合)、ビーム・スプリッタにおける外部との望ましくない逆方向の結合に起因して光ビームを弱めることなく、波長フィルタによる波長純化ビームが得られることになる。
外部との結合のもう1つのオプションは、波長フィルタとして用いられる回折格子によって得られる0次ビームを利用することである。もう1つのオプションは、少なくとも部分的に透過性の反射表面を少なくとも1つ設けることである。平行反射素子のうちの少なくとも1つの素子の少なくとも1つの反射表面は、外部との結合に用いることができるのが望ましい。しかし、機械的作業量を減らすため、外部との結合には、固定コンポーネントを用いるのが望ましい。
もう1つの望ましい実施態様では、リング共振器の設計は、前述のリットマンのアーキテクチャに従う。その実施態様では、波長フィルタは回折格子で構成される。回折格子からの回折ビームは、第1の平行反射素子の入力に送られ、第1の平行反射素子によって、回折格子からのビームとほぼ平行であるが、空間的に分離されたビームが回折格子に戻されることになる。
第1の平行反射素子によって受光されるビームと平行であるが、それに対して空間的に分離された、平行反射素子からのビームは、再び、回折格子に向かって送られ、回折格子が最初に受光したビームと平行であるが、伝搬方向が逆で、空間的に分離されているこのビームが、回折されることになる。第2の平行反射素子は、回折格子からこうして2度回折されたビームを受光して、それに対して平行であるが、空間的に分離されたビームを回折格子に向けて送り、この結果、リング共振器のループが閉じることになる。
リットマンの幾何学構成に従って、回転軸(2つの平行反射素子及び回折格子によって形成される光学面の交差によって決まる)まわりで2つの平行反射素子及び回折格子の少なくとも1つの素子を回転させると、理論的には、モード・ホッピングを生じることなくリング共振器の波長を連続して同調させることが可能になる。理論的に決まる回転軸からの実際の回転軸の偏差は、例えば、モードを選択するためのフィルタ曲線を変更することによって補償することが可能である。こうしたフィルタ曲線の変更は、例えば、少なくとも1つのレーザ・モードを選択するための分散素子を移動させること(例えば、前述の欧州特許出願第01113371.7号に開示のように)、例えば、分散素子の周期性を変更することによって、分散素子の分散特性を変更すること、再帰反射分散素子を移動させることによって、分散素子に入射するビームの方向を変更すること、等のうちの少なくとも1つによって実現可能である。
さらに、または、代わりに、理論的に決まる回転軸からの実際の回転軸の偏差は、例えば、リング共振器の光路長を変更することによって補償することが可能である。これは、例えば、空洞共振素子の1つを移動させて、幾何学光路長を変化させること(例えば、平行反射素子の少なくとも一方を移動させることによって)、光ビームに対してほぼ垂直な光学楔のような光学素子を移動させること、外部パラメータ(印加電界または磁界、温度、一軸圧または静水圧のような)によって、空洞共振素子の少なくとも1つの光路長を制御すること、外部パラメータによって、光学活性軸の配向を制御すること等のうちの少なくとも1つによって実施可能である。
もう1つの望ましい実施態様では、リング共振器の設計は、前述のリトローのアーキテクチャの原理に従う。その実施態様では、分散素子は、入射ビームを自身内へ反射する素子の働きをする。反射ビームを空間的にオフセットさせるため、望ましい実施態様の1つによれば、わずかに傾斜した反射格子を分散素子として利用して、三角形のループ幾何学形状が得られる。もう1つの実施態様では、ビームは、分散素子による反射後、空間的に分離される。あるいはまた、2つの分離されたビームは、互いにほぼπ/2だけ回転させ(できれば、ファラデー回転させ)、偏光ビーム・コンバイナによって結合させることが可能である。両方の分離ビームが結合した後、偏光がほぼ−π/4だけ逆回転させられ、リトロー幾何学構成をなす分散反射素子が用いられる。
本発明は、任意の種類のデータ・キャリアに記憶するか、または、それらによって別様に提供することが可能であり、任意の適合するデータ処理装置内で/によって実行することが可能な、1つ以上の適合するソフトウェア・プログラムによって部分的または完全に支援することが可能である。ソフトウェア・プログラムまたはルーチンは、光路長の偏差、及び/または、モード・ホッピングのない同調を支援する値から波長選択素子の選択波長を計算するため、及び、1つ以上の同調素子の補正値を計算して、光路長、及び/または、波長選択素子の選択波長を再調整するために用いるのが望ましい。
本発明の他の目的及び付随する利点の多くは、添付の図面と関連づけて検討すれば、下記の詳細な説明を参照することによって、評価が容易になり、理解が深まることであろう。ほぼ、または、機能的に等しいか、あるいは、同様の特徴については、同じ参照番号で言及されることになる。
(発明の詳細な説明)
図1の場合、レーザ媒質10は、その小端面のそれぞれの側からレーザ・ビームを放出する。2つのレーザ・ビームは、まだ平行化されていなければ、コリメート素子(レンズのような)20及び30によって平行化される。レーザ・ビーム媒質10は、半導体レーザ・チップが望ましいが、イオン・ドープした結晶または色素セルのような他のタイプを適宜用いることも可能である。
ここで、図1の機能を、レーザ媒質10から始めて、反時計廻り(順方向と呼ばれる)に進行する(順方向)レーザ・ビーム(図1A)に関して紹介する。コリメート素子20によって平行化された後、ビームは、その機能については後で例示される、オプションの方向コントローラ40を通過する。方向コントローラ40の後、ビームは、図1では、回折格子によって具現化されている、波長フィルタ50に入射する。しかし、プリズム、エタロンまたは複屈折フィルタのような一次元フィルタ(出射ビームと入射ビームが、ほぼ1つの直線内にある)、または、他の任意の分散素子のような、他のタイプの波長フィルタ50を適宜用いることが可能であるが、とりわけ、連続波長可変性が得られるようにするには、異なる幾何学構成が必要になる可能性がある。
方向コントローラ40からのビームは、回折格子50によって回折され、第1の平行反射素子60に対して送り出される。第1の平行反射素子60は、回折格子50からビームを受光すると、ビームを反射して回折格子50に向けて戻し、その結果、反射ビームは、入射ビームとほぼ平行になるが、空間的に分離されることになる。平行反射素子60は、図1に示す二面体素子、または、互いに直交するように配置された1組の平面ミラーのような、さまざまな種類の構成によって具現化することが可能である。
平行反射素子60から戻るビームは、再び、回折格子50によって回折される。平行反射素子60へのビーム及び平行反射素子60からのビームは、両方とも、互いにほぼ平行であるため、回折格子50における回折角も、図1Bに例示のようにほぼ等しくなる。
回折格子50によって2度回折された後、ビームは、第1の平行反射素子60とほぼ同じ特性を備えることが可能な第2の平行反射素子70に対して送り出される。第2の平行反射素子70は、レーザ媒質10に向かってビームを反射し、その結果、反射ビームは、第2の平行反射素子70によって受光される2度回折されたビームとほぼ平行になるが、伝搬方向が逆で、空間的に分離されることになる。従って、光リング共振器に相当する、光学閉ループが形成されることになる。
リング共振器からの光を外部に結合するため、さまざまなオプションが可能であり、図1に、その一部が例示されている。第1のオプションは、光路内のほぼ任意の場所に光ビーム・スプリッタ80を設けることである。スペクトル純度の高い出射ビーム90が得られるようにするため、ビーム・スプリッタ80は、図1Aに示すように、ビームが波長フィルタ50を2回通過した後、レーザ媒質10にもう一度入射する前の位置に配置される。入射順方向ビームに対する出射ビーム90の部分は、それぞれの要件に適合するように設計されたビーム・スプリッタ80の結合比によって決まる。
上述のところに従って、時計廻り方向(今後は逆方向と呼ぶ)に進行する(逆方向)ビームが、レーザ媒質10によって(オプションの)コリメート素子30に向かって放出され、第2の平行反射素子70によって空間的に分離されて、波長フィルタ50の最初の通過を行い、第1の平行反射素子60によって反射されて、空間的に分離され、波長フィルタ50の2度目の通過を行い、方向コントローラ40を通過すると、最終的には、コリメート素子20によってレーザ媒質10に焦点を合わせて、送り返される。
従って、ビーム・スプリッタ80を通過する逆方向ビームの一部は、順方向ビームの場合とほぼ同じ結合比で、出射ビーム100として外部に結合されることになる。
ビーム・スプリッタ80が図1Aに示すように配置された場合、順方向ビームは、波長フィルタ50を2度通過した後、レーザ媒質10にもう一度入射する前に、ビーム・スプリッタ80に入射する。対照的に、逆方向ビームは、波長フィルタリングの前に、レーザ媒質10から直接ビーム・スプリッタ80に入射する。従って、ビーム・スプリッタ80において、スペクトル純度の高い順方向ビームを外部と結合することができるが、パワーが低下することになり(レーザ媒質によって放出されるビームのパワーに対して)、一方、ビーム・スプリッタ80において、スペクトル純度の低い逆方向ビームを外部と結合することができるが、パワーが低下することはない(レーザ媒質によって放出されるビームのパワーに対して)。
リング・レーザ装置からの光を外部と結合するためのもう1つのオプションは、第2の平行反射素子70の表面の1つについて示すように、部分的に透過性になるようにして、平行反射素子60及び70のうちの少なくとも一方の表面の少なくとも1つを設けることである。順方向ビームは、結果として出射ビーム110になり、一方、逆方向ビームは、出射ビーム120になる。云うまでもないが、リング共振器からの光を外部に結合するため、代わりに、または、追加として、部分的に透過性になるように、平行反射素子60及び70の他の任意の反射表面を設けることも可能である。しかし、さらなる労力を制限するため、動かないようにして設けられた、または、外部との結合中に、少なくとも能動的に動作または移動しない、光路内のコンポーネントにおいて、外部との結合を行うのが望ましい。
逆方向ビームの外部と結合される部分をモニタするため、モニタ素子100A及び/又は120Aを設けることが可能である。
大部分の空洞共振装置では、通常、順方向ビームと逆方向ビームのいずれか一方の強度が、もう一方よりも優勢になる。必ずある伝搬方向において優勢なビームを実現するため、光路に方向コントローラ40を導入することが可能である。方向コントローラ40は、順方向に進行するビームと逆方向に進行するビームに異なる減衰を施す。従って、減衰の少ない方向がより優勢になるようにすることが実現可能である。図1の例の場合、順方向ビームは、逆方向ビームに対してかなり優勢になるものと仮定する。リング共振器の優勢な方向がこうして決まると、とりわけ、所望の特性を備えた光の外部との結合を形成することが可能になる。すなわち、スペクトル純度の高い優勢な順方向ビームは、結果として出射ビーム90になり、一方、ビーム・スプリッタ80における多少「望ましくない」出射ビーム100は、出射ビーム90よりかなり劣勢になる。
もう1つの望ましい実施態様では、方向制御は、劣勢な逆方向ビームを制御ビームとして用いて、優勢な順方向ビームの光学特性を制御するために利用される。従って、逆方向ビームの特性は、順方向ビームを制御するために、ただし、順方向ビームの光学特性に悪影響を及ぼさないように、変更することが可能である。実施態様の1つ(図1には示されていない)では、逆方向ビームは、波長フィルタ50の最大点波長からの優勢なモードの波長の偏差を制御するために、波長が変調される。こうした制御によって、モード・ホッピングを低減するか、または、回避することさえ可能である。偏差制御信号を導き出して、制御信号をフィードバックし、モードとフィルタ波長を同調させるための既知の制御機構を適用することが可能である。
図1Cには、リトローの幾何学構成を支援する構成が例示されている。図1A及び図1Bの構成要素50及び60の代わりに、図1Cの構成要素が利用されるが、図1A及び図1Bの残りの特徴を適宜用いることも可能である。この実施態様の場合、空間的に分離されたビーム(図1Cの左から入射する)が、結合されて、単一の、ただし、偏光の異なるビームになる。順方向ビーム/モードが、下方のビームの左から入射するものと仮定すると、偏光ビーム・コンバイナ140によって空間的にシフトされることになる。次に、順方向ビーム/モードの偏光が、ファラデー回転子150によってほぼπ/4だけ回転する。波長選択素子50によって反射された後、ビームは、ファラデー回転子150によってもう一度ほぼπ/4だけ回転することになる。従って、ビームの偏光は、入射偏光に対してほぼπ/2だけ回転する。そのため、ビームは、オフセットを生じることなく、偏光ビーム・コンバイナ140を通過し、偏光は、ファラデー回転子160によってほぼ−π/2だけ逆回転する。従って、順方向ビームは、その初期偏光状態(下方ビームの左からの入射時における)に対して偏光が回転することなく、これらの素子を通過したが、空間的にはシフトされている。
次に、逆方向ビームが、左から入射する(ただし、上方ビームにおいて)ものと仮定すると、ファラデー回転子160によってほぼ−π/2だけ回転し、空間的オフセットを生じることなく、偏光ビーム・コンバイナ140を通過する。ファラデー回転子150は、ビームが波長選択素子50に入射する前に、もう一度偏光をほぼπ/4だけ逆回転させる。ビームがファラデー回転素子150を2度目に通過した後、偏光は、再び初期状態になり、従って、ビームは、偏光ビーム・コンバイナ140によって空間的にシフトされることになる。従って、逆方向ビームは、その初期偏光状態(上方ビームの左からの入射時における)に対して偏光が回転することなく、これらの素子を通過したことになる。
実施態様の1つでは、ビームをどちらの方向に通過させるかについて、偏光依存性を有する波長選択素子50が設けられている。波長選択素子50の通過時における偏光状態が、順方向ビームと逆方向ビームでは異なるので、こうした偏光依存性を利用して、両方のビームに異なる減衰を施すことが可能になる。これは、後述するように、方向コントローラ40の方向制御に加えて、または、それに代わるものとして、方向制御を施すために適用することも可能である。回折格子が波長選択素子50として用いられる場合、回折格子50の刻線及び偏光ビーム・コンバイナ140の配向は、例えば、逆方向モードの減衰を施すように選択することが可能である。
図2Aには、方向コントローラ40に関する第1の望ましい実施態様が例示されている。まず、順方向ビーム(方向コントローラ40の左から入射する)について考察すると、π/4ファラデー回転子200によって、順方向ビームの偏光が回転し、順方向ビームは、偏光ビーム・スプリッタ220をほぼ(完全に)透過する(矢印240で示す)ので、結果として、空間的にオフセットした部分ビーム(矢印250と逆方向に図2Aの上方光路を進行する)が生じることはない。
図2Aの描写から明らかなように、偏光ビーム・スプリッタ220には、偏光状態に従って入射ビーム(左側からの)をいくつかの部分に分割するための偏光ビーム分割素子(この場合、下方の対角線)と、偏光ビーム分割素子によって生じる両方の(部分)ビームを平行であるが、互いに空間的にオフセットするように向けるための反射素子(この場合、上方の対角線)が含まれている。右側から入射するビームは、反射され、然るべく分割される。
順方向ビームは、次に、吸収素子270(逆方向光路における)の光路長を補償するために用いることが可能な、非吸収コンポーネント260を通って進行する。次の素子280、例えば、位相変調器は、光路長を調整することによって、連続同調が実施される場合に、順方向の光路長をわずかに調整するために用いることが可能である。あるいはまた、素子280は、粗調整素子の分解能が不足する場合に、順方向モードの波長に微調整を施すために用いることも可能である。あるいはまた、素子280は、素子290(逆方向光路における)の光路長を補償するために用いることも可能である。
次に、順方向ビーム(矢印240で表示された)が、第2の偏光ビーム・スプリッタ230(機能面で、第1の偏光ビーム・スプリッタ220に対応するが、ここでは、逆方向に用いられる)に送られ、結果として、今や矢印250に対して逆方向に図2Aの上方光路を進行する順方向ビームに空間的オフセットが生じることになる。順方向ビームの偏光は、第2の−π/4ファラデー回転子210によって逆回転するので、方向コントローラ40を通過する前の偏光が保持される。偏光ビーム・スプリッタ220及び230の配向は、上述の光路を形成するように設計される。
逆方向ビーム(方向コントローラの右から入射する)が、−π/4ファラデー回転子210に通される。順方向ビームと逆方向ビームの偏光は、素子210と230の間で直交し、そのため、逆方向ビームが、上方光路において矢印250の方向に偏光ビーム・スプリッタ230を通過する(従って、逆方向ビームには空間的オフセットが生じない)。
逆方向モード(矢印250によって表示)の光路長を調整するために、移相器290を挿入することが可能である。さらに、または、代わりに、モード競合によって、順方向モードが選ばれるが、光パワーが大幅に劣るものの、逆方向モードも存在するようなやり方で、減衰素子270を用いて、逆方向モードを減衰させることも可能である。順方向モード及び逆方向モードの光路長がただ異なりさえすればよく、変調が施されない場合には、位相変調器290及び280を省略することができるのは明白である。そのため、素子270及び260の光路長は、望ましい光路長差が得られるように選択することが可能である。これは、例えば、ただ単に素子260を省略するだけで実施可能である。
図2Bには、逆方向モード及び順方向モードの光路長が異なる場合に用いるのが望ましい、方向コントローラ40の第2の望ましい実施態様が例示されている。やはり、出射偏光に複屈折素子310の低速軸または高速軸(順方向モードの光路長が、逆方向モードより長くなるようにすべきか、あるいは、短くすべきかによって決まる)に沿った配向が施されるように、順方向ビーム(左側から入射する)がπ/4ファラデー回転子200を透過させられる。複屈折素子310を通過すると、引き続き、偏光子300が設けられているが、これは、順方向モードが、ほとんど減衰せずに、通過するような配向が施されている。再度、偏光を逆回転させて、もとの配向に戻すため、−π/4ファラデー回転子210が利用される。
逆方向ビーム(右側から入射する)が、素子210と300の間における偏光の配向が、この時点で、高速軸に向けられるように(順方向ビームが複屈折素子310の低速軸に向けられていた場合)、あるいは、その逆になるように、−π/4ファラデー回転子210を透過させられる。ただし、透過される偏光の配向が、逆方向ビームの偏光とほぼ直交するので、素子310を通って進行する前に、偏光子300によって、逆方向ビームは減衰させられる。逆方向ビームは、次に、複屈折素子310を透過させられ、偏光が、π/4ファラデー回転子200によって逆回転させられて、入射偏光に戻される。方向コントローラ40の光路長差は、素子310の幾何学光路長に低速軸と高速軸の屈折率の差を掛けたものとして表わすことが可能である。偏光子300の代わりに、他の任意のタイプの二色性素子を適宜用いることも可能である。二色性という用語は、入射ビームの2つの直交するP状態成分の一方の選択吸収を表わすものとする(例えば、Hecht、「Optics」、第3版、327頁参照)。
実施態様の1つでは、順方向または逆方向光路の一方の光路長がもう一方に対して変化させられる。従って、順方向ビームと逆方向ビームのモード間における波長のオフセットを実現することが可能である。望ましい実施態様の場合、こうした波長のオフセットは、調整できるように設計される。さて、これについては、図3に一例として示される。波長選択素子50は、波長λ0で最大となる特性形状400を備えている。変調に対するそれぞれのモード位置(特性形状400に関する)の影響が、リング共振器の3つの異なる順方向モード410、420、及び、430について描かれる。ここでのこの例におけるモード410は、波長選択素子50のλ0における最大透過に対してちょうど中心に位置することになるが、モード420及び430は、λ0に対してオフセットしている。
それぞれ、波長位置411及び412、421及び422、及び、431及び432間の時間にわたる逆方向モード(順方向モード410、420、及び、430に対応する410A、420A、及び、430A)の変調は、それに応じて、その時間にわたる逆方向モードのそれぞれの出射パワーの変調を生じることになる(グラフ410B、420B、及び、430Bによって表示)。
図3の下方図には、逆方向モードの復調出力信号440の振幅の例が示されている。変調の中心位置がフィルタ曲線400の中心波長λ0に正確に一致する場合、復調信号440は消失する。さらに、振幅符号が、ちょうどその点で変化し、振幅は、中心波長からの偏差に比例して単調に増大する。従って、例えば、動作中におけるモード・ホッピングを低減または回避するため、この信号440を利用して、波長フィルタの中心波長、または逆方向モード及び順方向モードの両モードの波長、のうちの少なくとも一方の変調を制御することが可能である。
もう1つの実施態様の場合、逆方向モードの波長が、その対応する順方向モードの波長に対してシフトされるので、例えば、順方向モード410に対応する逆方向モードの波長は、位置411または412に向かってわずかにシフトされる(及び/または、順方向モード420に対応する逆方向モードの波長は、位置421または422に向かってわずかにシフトされ、及び/または、順方向モード430に対応する逆方向モードの波長は、位置431または432に向かってわずかにシフトされる)。対応する順方向モード及び逆方向モードの(できれば、正規化された)出射パワー(最大値に関する)間の差は、結果として440と同様の形状を生じることになり、例えば、順方向モードが中心波長λ0の左右いずれにシフトしているかを検出するために利用可能である。再び、動作中におけるモード・ホッピングを低減または回避するため、対応する補正を施すことが可能である。上述の変調の代わりに、または、それに加えて、逆方向モードと順方向モード間におけるこうした波長シフトを適用することも可能であることは明らかである。
もう一度図1Bに戻ると、望ましい動作モードが例示されている。前述のリットマンのアーキテクチャに従うと、理論的に、回折格子50の光学面50A、第1の平行反射素子60の光学面60A、及び、第2の平行反射素子70の光学面70Aの交差によって形成される回転軸130まわりで、平行反射素子60及び70と、回折格子50の少なくともいずれか1つを回転させると、理論的にモード・ホッピングのない連続波長調整を実現することが可能になる。前述の文献のいくつかに詳述されているように、実際の回転軸の理論的回転軸130からの偏差は、結果として、波長掃引中にモード・ホッピングを生じる可能性がある。しかし、前述の文献のいくつかに詳述されている適正な補正を然るべく適用することによって、とりわけ、光路長または波長選択素子の最大透過波長を調整することが可能である。しかし、理想の幾何学構成を考慮すると、回転軸130まわりで第1及び第2の平行反射素子60及び70または回折格子50の少なくとも1つを回転させることによって、モード・ホッピングを生じることなく、光ビームの連続波長調整が可能になる。
リットマンの幾何学構成に従う代わりに、例えば、前述のリトローの幾何学構成のような他の幾何学構成を適宜用いることも可能である。モード・ホッピングを許容できる場合、及び/または、全波長調整範囲が制限される場合、及び/または、波長フィルタ50の特性と有効光路長によって決まるモード波長との同調が、別のやり方で実現される場合、他の任意のアーキテクチャまたは幾何学構成を適宜用いて、リング共振器の波長を調整することが可能である。
リットマンの幾何学構成に従った、本発明による望ましい実施態様を例示した主平面図である。 3次元構成を示す図1Aの実施態様の側面図である。 リトローの幾何学構成を利用した場合に適用可能な望ましい平行反射構成を示す図である。 方向コントローラに関する望ましい実施態様を表わした図である。 方向コントローラに関する望ましい実施態様を表わした図である。 変調または波長シフトを利用したモード制御を例示する図である。
符号の説明
10:レーザ利得媒質
40:方向コントローラ
50:波長フィルタ
60、70:平行反射素子
80:ビーム・スプリッタ

Claims (41)

  1. 閉ループに相当する光路を進行する光ビームを発生するようになっているリング・レーザ装置であって、
    前記光路に結合され、誘導放出による光ビームの増幅を行うレーザ利得媒質(10)と、
    前記光路に結合され、該光路に沿って進行する前記光ビームに対して波長選択を施す波長フィルタ(50)と、
    を具備するリング・レーザ装置。
  2. 前記光路の光路長を変更するようになっている光路長変更素子(60)をさらに具備する、請求項1に記載のリング・レーザ装置。
  3. 前記光路長変更素子(60)が、前記波長フィルタによって施される波長選択の変更と前記光路長との調整及び/または同調を行うため、前記波長フィルタ(50)に結合されている、請求項2に記載のリング・レーザ装置。
  4. 前記波長フィルタ(50)と前記光路長変更素子(60)との結合が、リットマン幾何学構成またはリトロー幾何学構成の一方の原理に従って、リング・レーザの幾何学構成を設計することによって施される、請求項3に記載のリング・レーザ装置。
  5. 前記波長フィルタ(50)と前記光路長変更素子(60)との結合が、前記波長フィルタ(50)並びに前記光路長変更素子(60)の働きを制御する制御ユニットを用いて施される、請求項3または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  6. 前記制御ユニットの制御が、モード・ホッピングのほとんどない同調を実現するため、前記リング・レーザの前回の動作から導き出された所定のパラメータ設定に基づいている、請求項5に記載のリング・レーザ装置。
  7. 前記制御ユニットが、発生する可能性のあるモード・ホッピングの兆候を検出するため、前記光ビームを直接モニタし、こうしたモード・ホッピングの発生を回避するため、対抗措置に着手する、請求項5または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  8. 前記対抗措置が、前記光路長を現在の波長フィルタ特性に合わせて調整することと、前記波長フィルタを前記現在の光路長に合わせて調整することとの少なくとも1つである、請求項7に記載のリング・レーザ装置。
  9. 結果として、対応する光ビームの波長が変調されるように、前記光路長を調整するようになっている調整器と、
    前記波長フィルタ(50)の前記フィルタ特性の波長、できれば、局所的最大透過のようなフィルタ極値の波長からの、前記光ビームの波長の偏差を表わす誤差信号を得るようになっている信号解析ユニットと、
    をさらに具備する、請求項1または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  10. 前記光路の順方向に進行する主ビームが得られるようにするため、前記光路に結合された方向コントローラ(40)をさらに具備する、請求項1または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  11. 前記方向コントローラ(40)が、前記順方向の逆方向に進行する逆方向ビームを前記順方向ビームに対して減衰させる、請求項10に記載のリング・レーザ装置。
  12. 前記光路の一方向に進行する逆方向ビームが、前記光路の反対方向に進行する順方向ビームの少なくとも1つの特性を制御するために利用される、請求項1または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  13. 前記逆方向ビームが、できれば、モード・ホッピングを低減、回避、または、誘発するため、前記順方向ビームの特性のモニタに利用される、請求項12に記載のリング・レーザ装置。
  14. 前記逆方向ビームが、光パワーの弱いビームとして選択される、請求項12または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  15. 前記逆方向ビームの波長が変調されるように、前記逆方向ビームの前記光路長を調整するようになっている調整器と、
    結果生じる前記逆方向モードの強度変動から、制御信号を導き出すようになっている信号解析ユニットと、
    前記導き出された制御信号に基づいて、前記順方向ビームの波長に制御を施すため、前記導き出された制御信号を受信するようになっている順方向制御ユニットと、
    をさらに具備する、請求項12または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  16. 前記順方向制御ユニットが、前記光路長と前記波長フィルタの最大透過波長の少なくとも一方を、前者については、前記波長フィルタ(50)の波長特性の現在の設定によって前記順方向ビームの波長を変調するため、また、両者について、モード・ホッピングを回避または低減するために変更するようになっている、請求項15に記載のリング・レーザ装置。
  17. 前記順方向ビームの波長に対して、前記逆方向ビームの波長をオフセットさせるようになっている波長オフセット・ユニットをさらに具備する、請求項15または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  18. 前記波長オフセット・ユニットが、前記順方向の光路長に対して、前記逆方向の光路長を変更するようになっている、請求項17に記載のリング・レーザ装置。
  19. 前記波長オフセット・ユニットによって、前記光ビームが順方向および逆方向に少なくとも部分的に分離され、該分離されたビームの少なくとも一方の光路長が変更される、請求項18に記載のリング・レーザ装置。
  20. 前記分離が、空間的に分離することと、少なくとも部分的に異なる偏光を利用するが、前記逆方向ビーム及び前記順方向ビームに関して幾何学光路を同じに保つことのうちの少なくとも一方によって施される、請求項18に記載のリング・レーザ装置。
  21. 前記光路長の変更が、少なくとも部分的に屈折率または前記幾何学光路長を変更することと、両方のビームの偏光状態が異なるその光路部分に複屈折素子を利用することのうちの少なくとも一方によって施される、請求項18または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  22. 前記波長フィルタ(50)のフィルタ最大からの前記主ビームの偏差の変化方向を検出するようになっている方向検出器をさらに具備する、請求項17または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  23. 前記順方向モードの波長が前記波長フィルタのフィルタ最大点波長とほぼ一致する場合に、前記逆方向モードの波長が、前記フィルタ特性が波長に対してより強い依存性を示す範囲内で選択されるやり方で、前記順方向ビームと前記逆方向ビームの波長間におけるオフセットが選択される、請求項17または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  24. 前記方向検出器が、前記逆方向ビームの強度変動の推移、または、順方向ビームと逆方向ビームの強度比の変化のうちの少なくとも一方に基づいて、前記フィルタ最大からの偏差の方向変化を検出するようになっている、請求項22または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  25. 入射ビームを受光し、それに応えてビームを反射するようになっている平行反射素子(60、70)さらに備え、その結果、反射ビームが、前記入射ビームとほぼ平行であるが、前記入射ビームから空間的に分離される、請求項1または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  26. 前記平行反射素子(60、70)が、適切な配置を施された反射表面、レンズと反射表面の組み合わせ、少なくとも2つの組み立て平面鏡、少なくとも1つの円形または円筒形レンズ、及びミラー、二面体素子、三面体素子、反射メカニズムが、屈折率が高値から低値に変化する界面において全反射であり、入射角が全反射の角度を超えるプリズム、及び/または、3つの反射板を有し、そのうちの2つが平行に配置され、1つが該平行反射板に対して垂直に配置されて、前記反射ビームが、前記入射ビームに対して平行であるが、逆方向に伝搬するようになっている再帰反射体、のうちの少なくとも1つを含む、請求項25に記載のリング・レーザ装置。
  27. 前記平行反射素子(60、70)の反射表面が、入射ビームと出射ビームとの間の空間的分離を確保するため、前記光ビームの入射面積に対して、広い面積になるように設けられる、請求項25または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  28. 2つの平行反射素子(60、70)が、該平行反射素子(60、70)の第1の素子から送り出されるビームが、前記平行反射素子の第2の素子によって受光され、空間的に分離された状態で、前記平行反射素子の前記第1の素子に戻されるように配置されており、その結果、前記リング共振器の閉ループが得られる、請求項25または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  29. 前記閉ループ全体にわたるように配置された2つの平行反射素子(60、70)を具備する、請求項25または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  30. 前記波長フィルタ(50)が、前記光路内に配置されており、前記リング共振器内の1つのループを進行する前記光ビームが、少なくとも1回は、前記波長フィルタを通過するようになっている、請求項1または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  31. 前記リング共振器の前記光路内の前記レーザ・ビームの一部を外部と結合するための出力(90、100、110、120)をさらに具備する、請求項1または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  32. 前記出力(90、100、110、120)が、前記レーザ・ビームの一部を外部と結合するため、前記光路に導入されるビーム・スプリッタ(80)を含む、請求項31に記載のリング・レーザ装置。
  33. 前記波長フィルタを少なくとも1度通過した後、前記レーザ媒質(10)に戻る前に、前記順方向ビームの一部を外部と結合するため、前記ビーム・スプリッタ(80)が前記光路に導入される、請求項32に記載のリング・レーザ装置。
  34. 前記出力(90、100、110、120)が、前記波長フィルタとして用いられる回折格子によって生じる0次ビームと、少なくとも部分的に透過性の少なくとも1つの反射表面との少なくとも一方によって得られる、請求項31に記載のリング・レーザ装置。
  35. 前記平行反射素子(60、70)が、前記光路を進行する前記ビームの一部を外部と結合するための少なくとも1つの反射表面を備えている、請求項25または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  36. 前記波長フィルタが、回折格子(50)から構成されることと、
    前記回折格子(50)からの第1の回折ビームが、該第1の回折ビームに対してほぼ平行であるが、それから空間的に分離されている、前記回折格子(50)に向かう第1の戻りビームを生じるようになっている前記第1の平行反射素子(60)の入力に送られることと、
    前記第1の戻りビームが、前記回折格子(50)に向かって送られ、前記回折格子によって回折されて、2度回折されたビームとして、第2の平行反射素子(70)に送られることと、
    前記第2の平行反射素子(70)が、前記2度回折されたビームを受光して、それに対して平行であるが、空間的にそれから分離されたビームを前記回折格子に送ることによって、前記リング共振器のループを閉じるように構成されている、
    請求項1または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  37. 前記2つの平行反射素子(60、70)及び前記回折格子(50)の少なくとも1つの素子が、前記2つの平行反射素子と前記回折格子によって形成される光学面の交差によって理論的に決まる回転軸まわりを少なくとも部分的に回転することができるように設けられる、請求項36に記載のリング・レーザ装置。
  38. 前記理論的に決まる回転軸からの実際の回転軸の偏差を補償するようになっている少なくとも1つの補償器をさらに具備する、請求項36または上述の請求項のいずれか1項に記載のリング・レーザ装置。
  39. 前記補償が、モードを選択するためのフィルタ曲線の変更と、リング共振器の光路長の変更の少なくとも一方によって施される、請求項38に記載のリング・レーザ装置。
  40. 前記フィルタ曲線の変更が、少なくとも1つのレーザ・モードを選択するための分散素子を移動させること、分散素子の分散特性を変更すること、前記分散素子の周期性を変更すること、前記分散素子に入射するビームの方向を変更すること、再帰反射分散素子を移動させること、のうちの少なくとも1つによって施される、請求項39に記載のリング・レーザ装置。
  41. 前記光路長の変更が、空洞共振構成要素の1つを移動させて、前記幾何学光路長を変化させること、前記平行反射素子の少なくとも1つを移動させること、前記光ビームに対してほぼ垂直に光学楔のような光学素子を移動させること、外部パラメータによって、前記空洞共振構成要素の少なくとも1つの光路長を制御すること、外部パラメータによって、光学アクティブ軸の配向を制御すること、のうちの少なくとも1つによって施される、請求項39に記載のリング・レーザ装置。
JP2004512248A 2002-06-05 2002-06-05 波長可変リング共振器 Pending JP2005529497A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2002/006123 WO2003105293A1 (en) 2002-06-05 2002-06-05 Wavelength tunable ring-resonator

Publications (1)

Publication Number Publication Date
JP2005529497A true JP2005529497A (ja) 2005-09-29

Family

ID=29724358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004512248A Pending JP2005529497A (ja) 2002-06-05 2002-06-05 波長可変リング共振器

Country Status (6)

Country Link
US (2) US20050213632A1 (ja)
EP (1) EP1514333B8 (ja)
JP (1) JP2005529497A (ja)
AU (1) AU2002320818A1 (ja)
DE (1) DE60214441T2 (ja)
WO (1) WO2003105293A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7218443B2 (en) * 2003-02-25 2007-05-15 Toptica Photonics Ag Generation of tunable light pulses
DE102004053136B4 (de) * 2004-10-29 2008-04-03 Raab, Volker, Dr. Laserresonator mit internem Strahlteiler
US9195113B2 (en) 2012-05-25 2015-11-24 Honeywell International Inc. Tunable multispectral laser source
WO2014142832A1 (en) 2013-03-13 2014-09-18 1Hewlett-Packard Development Company, L.P. Coupled ring resonator system
CN116047782B (zh) * 2022-12-22 2023-10-17 武汉光谷航天三江激光产业技术研究院有限公司 一种用于超快激光的精密调谐光栅滤波器装置和调谐方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE405298B (sv) * 1977-04-28 1978-11-27 Bofors Ab Laserresonator
US5377010A (en) * 1989-12-22 1994-12-27 Litton Systems, Inc. Air path beam combining optics for a ring laser
US5956355A (en) * 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US5377101A (en) * 1992-02-21 1994-12-27 Rollema; Harm J. Urinary flow classification system and method
US5289493A (en) * 1992-04-21 1994-02-22 Hughes Aircraft Company Cavity modulated linear chirp laser
US5265108A (en) * 1992-09-24 1993-11-23 United Technologies Corporation Output phase shifter for coupled multiple-output ring lasers
US5276548A (en) * 1992-12-01 1994-01-04 Eli Margalith Ring cavity optical parametric apparatus
US5537432A (en) * 1993-01-07 1996-07-16 Sdl, Inc. Wavelength-stabilized, high power semiconductor laser
US5351252A (en) * 1993-02-26 1994-09-27 The Board Of Trustees Of The Leland Stanford University Technique of reducing the Kerr effect and extending the dynamic range in a Brillouin fiber optic gyroscope
EP0921614B1 (en) * 1997-12-09 2001-03-14 Hewlett-Packard Company Low noise and wide power range laser source
FR2789812B1 (fr) * 1999-02-15 2001-04-27 Photonetics Reflecteur optique et source laser a cavite externe incorporant un tel reflecteur
EP1202408B1 (en) * 2001-06-01 2003-02-12 Agilent Technologies, Inc. (a Delaware corporation) Tuning a laser

Also Published As

Publication number Publication date
US20050213632A1 (en) 2005-09-29
DE60214441T2 (de) 2006-12-21
EP1514333B1 (en) 2006-08-30
US20090003403A1 (en) 2009-01-01
WO2003105293A1 (en) 2003-12-18
DE60214441D1 (de) 2006-10-12
EP1514333B8 (en) 2007-02-28
AU2002320818A1 (en) 2003-12-22
EP1514333A1 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
US5559816A (en) Narrow-band laser apparatus
US9059564B2 (en) Short-pulse fiber-laser
US3628173A (en) Laser mode selection and stabilization apparatus employing a birefringement etalon
KR20180016404A (ko) 가변적인 피드백 제어를 갖는 고밀도 파장 빔 결합
JP2005340359A (ja) 波長可変レーザ装置
KR100363237B1 (ko) 제2고조파 발생 방법 및 장치
US8385376B2 (en) Compact laser source with reduced spectral width
US20090003403A1 (en) Wavelength tunable ring-resonator
US20130044778A1 (en) Optical sources having a cavity-matched external cavity
US4897843A (en) Frequency-agile laser systems
US8427769B1 (en) Multi-stage Lyot filter and method
JPH08213686A (ja) 波長安定化光源
US5870415A (en) Lasers
KR100363238B1 (ko) 제2고조파 발생 방법 및 장치
JP3176682B2 (ja) 波長可変レーザー装置
JP3391229B2 (ja) 外部共振器型半導体レーザ光源
JP2005064519A (ja) 外部空洞レーザシステム
US6785305B1 (en) Tuneable, adjustment-stable semiconductor laser light source and a method for the optically stable, largely continuous tuning of semiconductor lasers
US11283237B2 (en) Laser wavelength stabilization apparatus
US11978996B2 (en) Tunable external cavity laser with dual gain chips
WO2022264791A1 (ja) 波長可変レーザ装置
JP3237763B2 (ja) レーザ光発生装置
US20080019404A1 (en) Mode Selection and Frequency Tuning of a Laser Cavity
JP2627599B2 (ja) 波長可変レーザー発振器へのレーザー光導入方法および波長可変レーザー発振器
JP3021358B2 (ja) リングレーザ装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071003

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120