JP2005508446A - Aluminum / silicon alloy with improved mechanical properties - Google Patents

Aluminum / silicon alloy with improved mechanical properties Download PDF

Info

Publication number
JP2005508446A
JP2005508446A JP2003542667A JP2003542667A JP2005508446A JP 2005508446 A JP2005508446 A JP 2005508446A JP 2003542667 A JP2003542667 A JP 2003542667A JP 2003542667 A JP2003542667 A JP 2003542667A JP 2005508446 A JP2005508446 A JP 2005508446A
Authority
JP
Japan
Prior art keywords
silicon
product
aluminum
eutectic phase
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003542667A
Other languages
Japanese (ja)
Inventor
オグリス エルハルト
ウッゴヴィッツェル ペーター
ヴェーラー ヨーゼフ
Original Assignee
ザルツブルガー アルミニウム アクチェンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザルツブルガー アルミニウム アクチェンゲゼルシャフト filed Critical ザルツブルガー アルミニウム アクチェンゲゼルシャフト
Publication of JP2005508446A publication Critical patent/JP2005508446A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Conductive Materials (AREA)
  • Silicon Compounds (AREA)
  • Heat Treatment Of Articles (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は共晶相を含有し,基本的にアルミニウム・シリコン合金又はこの合金に由来する製品を熱処理する方法である。材料の延性を改善し又は延伸率を向上するため,本発明では,400〜555℃の焼鈍温度までの迅速に加熱し,最大限14.8分間の間この温度に保持した後に急令する衝撃焼鈍処理を行ってから,製品を時効処理する。本発明に係る製品は共融相部分中に球状化された析出シリコンを含有し,その平均断面積Asiが4μm以下,及び/又はシリコン粒子間距離λsiが4μm以下,及び/又は平均球状化密度ξsiが10以上である。The present invention is a method for heat-treating an aluminum-silicon alloy or a product derived from this alloy that basically contains an eutectic phase. In order to improve the ductility of the material or to improve the draw ratio, the present invention provides a rapid impact after heating rapidly to an annealing temperature of 400-555 ° C. and holding at this temperature for a maximum of 14.8 minutes. After annealing, the product is aged. The product according to the present invention contains precipitated silicon spheroidized in the eutectic phase portion, the average cross-sectional area A si is 4 μm 2 or less, and / or the silicon particle distance λ si is 4 μm or less, and / or the average The spheroidization density ξ si is 10 or more.

Description

【技術分野】
【0001】
本発明はアルミニウム・シリコン合金の機械的特性を改善する方法に関するものである。特に,本発明は,好適には精製されたアルミニウム・シリコン・元素を含有し,所要に応じてその他の合金元素及び/又は不純物元素を含有し,共晶相部分を有する鋳造合金又は可鍛合金から構成された製品につき,焼鈍処理及び時効処理を行って該製品の材料延性を改善するための熱処理方法に関するものである。
【背景技術】
【0002】
更に本発明は少なくとも1つの精錬元素を有しており,所要に応じてマグネシウム及びその他の合金元素及び/又は不純物元素を含有し,実質的にαAlマトリックス及び析出シリコンからなる共晶相部分を有するアルミニウム・シリコン合金からなる製品に関するものである。
【0003】
アルミニウムはこれにシリコンを加えることにより簡単に共晶系を形成し,その際,共融点は12.5重量%のシリコン濃度において577℃である。
【0004】
αAlマトリックス中に約550℃の温度下で0.47重量%の含有量まで溶解可能なマグネシウムを添加すると,熱処理及びこれと同時に行われるMgSi析出を用いてその材料強度を著しく強化することができる。
【0005】
Al−Si−Mg融解物を冷却する際,残りの融解物を析出硬化させることができ,その際,シリコン中にプレート類似の粗大形態で析出される。ナトリウム及びストロンチウムをこの種の合金に添加することにより,硬化の際にシリコン結晶の成長を阻止する方法は,熟成法又は精製法とも称されており,機械的特性,特に延伸性の改善方法として従来から既知である。
【0006】
アルミニウム合金の半製品又は最終製品の機械的特性は熱処理方法により顕著な影響を受けるものであり,欧州規格515中にはその熱処理状態が定義付けされている。同規格によれば,記号Fは製品状態,Tは熱処理された安定状態を意味している。各熱処理状態は記号Tに添字を付して詳細に規定されている。
【0007】
本明細書中では,更に,材料の下記熱処理状態を省略符号により表示する。すなわち:
F 最終製品状態
T5 製造温度から急冷され,温間状態で時効処理したもの
T6 溶体化処理し,温間状態で時効処理したもの
T6x 本発明に従って熱処理されたもの
T4x 本発明に従って熱処理されたもの
である。
【0008】
アルミニウム・シリコン合金製の製品を市販し又は工業的に使用可能とするためには,一方では材料特性を向上する必要があり,他方では,製造コストを低下し又は経済性を高めることが重要である。すなわち,長時間に亙り高温で行う焼鈍処理のみならず,長時間焼鈍の場合に比重クリープに起因して必要となり得る矯正工程によりコスト高となるからである。
【0009】
Fの状態では基本的にアルミニウム・シリコン合金の材料強度値Rpが大抵低く,しかも延伸率が比較的高いことが確認されている。
【0010】
T5の熱処理状態,すなわち製造温度から急冷して,例えば,155℃〜190℃の温度下で1〜12時間に亙る温間状態で時効処理を行った状態では,サンプルの延伸係数Aが低いにも拘わらず強度値Rpが確かに向上している。
【0011】
T6に対応する,例えば540℃の温度下で12時間に亙り溶体化処理し,続いて温間状態で時効処理を行う場合には,サンプルの延伸率又は材料の延性が同様に大きいので,Fの状態との比較において材料強度値を著しく高めることができる。溶体化処理時間を長くすると,例えば,材料中のマグネシウム原子が有効に混和されるため,製品の急冷後に温間状態で時効処理を行った状態ではαAl マトリックス中で微細なMgSi析出が均等に分散され,この析出により材料の強度が決定的に高められる。
【0012】
しかし,高温で長時間の溶体化処理には,上述したとおり,製品の比重クリープという問題,及び熱処理が煩雑であるという欠点が生じる。従って経済的見地からT6により材料に最高の強度と良好な延性を付与することを断念し,製品に応じてT5の処理状態を採択している。T5により材料強度が決定的に低い点は,所要に応じて部材の構造に変更を加えて相殺する必要がある。
【発明の開示】
【発明が解決しようとする課題】
【0013】
本発明の目的は,材料の延性を著しく高めることができ,同時にT6との比較において材料強度値を大きく低下させることなく,T5との比較において基本的に高めの延性及び高めの材料強度値を達成することのできる,経済性に優れた熱処理法を提供することにある。
【0014】
さらに本発明の他の目的は,冒頭に記載した形式の,好適な材料の機械的特性を発現させるための,製品の微細構造を提供することである。
【課題を解決するための手段】
【0015】
本発明に係る方法は,製品を400℃〜555℃の焼鈍温度まで急速に加熱し,この温度で最大限14.8分間保持してから,引き続き,通常の室温まで強制的に急冷する衝撃焼鈍処理法により溶体化処理を遂行するものである。
【0016】
本発明により達成される利点は,基本的に,高温の短時間の簡単な焼鈍法により材料の最高の延性値を達成できる点にある。更に,いわゆる衝撃焼鈍法に起因して部材乃至製品の収縮が全く又は僅かしか認められないから,材料を矯正する必要がないという点にある。焼鈍処理の時間が短いことは,非常に経済的であり,また,例えば,連続炉を通して簡単に大量生産に適合させることができ,それによると,所定の温間状態で時効処理を行うことにより,殆どの場合に材料強度を調整することができる。衝撃焼鈍処理における保持時間を6.8分間以内,好適には1.7分間〜5分間とすることにより,アルミニウム・シリコン合金の延性を顕著に向上することができる。
【0017】
衝撃焼鈍処理に続いて行われる製品の時効処理を150℃〜200℃の温度下で1時間〜14時間に亙って温間状態で行うのが有利である。
【0018】
衝撃焼鈍法に続く製品の時効処理を常温時効処理として室温下で行うことも,同様に材料技術上の利点となり得る。
【0019】
本発明の前記他の目的は,共晶相部分中の析出シリコンが球状化されており,また,平均断面積,すなわちAsiを4μm2以下にすることにより達成される。
【0020】
下記は,その断面積の算出方法を示し,その際,各係数は以下のとおりである,すなわち:
【数4】

Figure 2005508446
siはシリコン粒子の平均断面積(μm2),
Aは画像一枚あたりのシリコン粒子の平均断面積(μm2),
nは測定回数である。
【0021】
この種の微細構造の利点は,基本的には,析出シリコンの球状化及びその微細さにより材料中の亀裂の開始が著しく改善され,また,材料の延性が改善される点にある。言い換えると,球状化及び微細さが,脆い共晶相部分を有するシリコンに好適な形態を付与し,材料の延伸率を基本的に高めるのである。機械的に荷重が負荷されると,荷重のピークはシリコン相とアルミニウム相との相・境界面で減少する。これに付随する実験によれば,材料の結晶粒界破壊が認められた。これは,延性が最高値に達したことを示すものである。
【0022】
材料の延伸率を向上させるため,並びにプロセス工学的見地から,好適には,析出シリコンが共晶相部分において球状化されており,また,平均断面積が2μm2以下である。
【0023】
研究開発の過程で判明したことであるが,本発明においては,共晶相中のシリコン粒子間の平均間隔λSiが,正方形の測定面積をその中に含まれているシリコン粒子数で除した値の平方根として規定されたときに4μm以下,好適には3μm以下,さらに好適には2μm以下以下であり,
【数5】
Figure 2005508446
λSiはシリコン粒子間の平均間隔,
Quadratは正方形の測定面積(μm2),
Siliziumはシリコン粒子数,
nは測定された画像数,
である。荷重が負荷された材料中の荷重ピーク値が最小値の場合には,特別均等な荷重分布が達成される。なぜならば小面積のシリコン粒子間の距離は対応する荷重状態における材料の流れ反応に基本的に影響を及ぼすからである。
【0024】
拡散のために有効な合金コンポーネントを硬化させて,混合結晶中でそれを強化させるために2時間〜12時間かけて長時間焼鈍するという溶体化法が従来の技術水準に従って企図されているが,副次的な効果としてシリコン粒子の球状化が確かにもたらされるが,これらの粒子はその長時間にわたる焼鈍に起因して非常に大きく且つ粗く分配され,これは材料の破損反応に悪影響を及ぼしかねない。本発明によれば,短時間の衝撃焼鈍法の場合,数分間という僅かな時間内に共晶相部分中のシリコンが球状化され得ること,及びこれにより材料の好都合な微細構造を達成可能であり,これは非常に驚異的であった。ここでは,衝撃焼鈍のための温度をなるべく高くするが,最も低く溶解する相の下部では5−20℃以下にすることが重要である。
【0025】
シリコン粒子は,焼鈍時間が長くなるほど拡散制御された成長を行うが,その際,初めに高かった球状化密度ξSi が低下する。
【0026】
アルミニウム・シリコン合金製品の延性が本発明に従って向上するのは,100μm2当たりの球状化された共融のシリコン粒子数が10個以上,好適には20個以上である場合であり,
【数6】
Figure 2005508446
ξSiは共晶相中のシリコン粒子の平均球状化密度,
Siliziumはシリコン粒子数,
Aは基準面積(μm2),
nは測定された画像数,
である。
【0027】
上述した検討の結果,アルミニウム・シリコン合金に含有されている共晶相部分は,何れも基本的に本発明に係る微細構造を有し,それに基づいて形成される製品は材料の高い延性値を有することが理解可能である。特に,製品をチクソ鋳造法で作る場合,品質の向上及び延伸率の改善は十分に達成可能である。
【発明を実施するための最良の形態】
【0028】
以下,本発明を添付図面に基づいて更に詳述する。
図1は,一部がチクソ鋳造法によって作られたAlSi7Mg0.3合金製の実験部材に基づくサンプルの伸び限界値Rp0,2及び延伸率Aを棒グラフとして示すものである。材料の熱処理状態T6の数値(540℃で12時間+160℃で4時間)は,本発明に記載されている通りの方法T6xに従って,540℃の温度により1分間(T6xl),3分間(T6x3)及び5分間(T6x6)の衝撃焼鈍時間後に達成された数値と比較されている。サンプルはすべて160℃の温度で熱い状態(4時間)で取り出された。引っ張り実験の結果によれば,それらのサンプルは衝撃焼鈍処理を受けると,その後は顕著に高めの延伸率を持つことになり,その際,T6x3の状態は,T6との比較においてAを約60%高める働きがあることが分かった。
【0029】
図2は,図1の場合と同じサンプルにおいて,伸び限界値Rp0,2及び延伸率Aに関するF,T4x3,T5,T6x3及びT6の状態値を棒グラフとして対比するものである。比較しつつ考察すると,延伸率が再び著しく上昇するのが理解できる。図2から明らかなとおり,3分間衝撃焼鈍を続けた後の材料は,本発明に係る延伸特性を維持するために常温時効処理を行うか(T4x3),温間状態(T6x3)で時効処置を行うことが可能である。
【0030】
図3及び図4はシリコン析出をラスター電子顕微鏡で撮影したREM写真である。撮影及び評価方法に関する留意点は下記のとおりである。すなわち,研磨画像を定量評価可能とするには,適当な二次元画像を準備する必要がある。全部で2時間以内の焼鈍であれば,撮影はラスター電子顕微鏡で行い,その後の研磨面を予め30秒間,99.5%の水と0.5%のフッ化水素酸を含有する溶液により腐食した。画像はすべてAdobe フォトショップのプログラム5.0により事後処理され,画像分析プログラムであるライカQwinV2.2を用いて評価した。その際の最小探知面積は0.1μm2であった。図3は12時間にわたる普通のT6焼鈍時間後にREM撮影により撮影された材料であるAlSi7Mg0.3を示す図である。図4は,同じ材料を3分間衝撃焼鈍処理した後のその微細構造を再現している。析出シリコンの球状化は,直後(図4)に明らかになり,また,拡散制御された成長が見られるのは長い焼鈍時間(図3)の経過後である。
【0031】
図5及び図6は約540℃の時の焼鈍時間と関係するシリコン粒子の平均断面積Asiを示すものである。時間軸を対数表示とした図4に準じて,平均断面積の増加が明確に理解でき,これが粒子サイズを特徴づけている。図6からは,中央のシリコン面の拡散に起因する増加が最初の60分間に生じることが認められる。焼鈍時間が長くなると,シリコン粒子の平均サイズは共晶相部分中のシリコン粒子の出発サイズと大いに関係するようになる。上記のケースでは極めて十分熟成され,厳密に分布されたシリコン析出を呈しているので,十分に熟成された,すなわち初めから大き目のシリコン粒子の場合には,所要に応じて,4μm2ほどの平均の臨界シリコン断面積Asiが達成される時間を短縮することもできる。
【0032】
図7は,シリコン粒子間の平均間隔の変化を焼鈍時間と関連付けて示すものである。封入シリコンの平均間隔の増加が明確に読み取り可能である。
【0033】
図8は平均球状化密度ξSiの低下を焼鈍時間と関連付けて示すものである。球状化密度のカーブの低下は1.7分近傍で始まり,また,ξSi<10の数値以降,延性の低下が顕在化する。焼鈍温度が高めの場合,この数値は14〜25分後に達成され,その際,はるかに高い延伸率に合わせて20以上の密度値を用意しなければならない。
【0034】
図9は,表1に記載したアルミニウム・シリコン合金の組成が異なる8種類の実施例(Varianten)につき,延伸限界と延伸に関する測定値を示す棒グラフである。これら全ての合金につき,本発明に従って材料延性を向上させることができた。
【表1】
Figure 2005508446

【図面の簡単な説明】
【0035】
【図1】熱処理状態と依存関係にある機械的材料値を示す棒グラフである。
【図2】図1と同じ図である。
【図3】研磨サンプルのREM写真である。
【図4】図3と同様のREM写真である。
【図5】析出シリコンの中央面の焼鈍時間との関係を示すグラフである。
【図6】図5と同様のグラフである。
【図7】シリコン粒子間の平均間隔を示すグラフである。
【図8】平均球状化密度を示すグラフである。
【図9】組成の異なるアルミニウム・シリコン合金の機械的特性を示す棒グラフである。【Technical field】
[0001]
The present invention relates to a method for improving the mechanical properties of aluminum-silicon alloys. In particular, the present invention preferably includes a cast alloy or malleable alloy containing purified aluminum, silicon, and elements, and optionally containing other alloy elements and / or impurity elements, and having a eutectic phase portion. This invention relates to a heat treatment method for improving the material ductility of the product by performing an annealing treatment and an aging treatment on the product composed of the above.
[Background]
[0002]
Furthermore, the present invention has at least one refining element, optionally containing magnesium and other alloying elements and / or impurity elements, and comprising a eutectic phase portion consisting essentially of an α Al matrix and precipitated silicon. It relates to a product made of an aluminum-silicon alloy.
[0003]
Aluminum easily forms a eutectic system by adding silicon thereto, and the eutectic point is 577 ° C. at a silicon concentration of 12.5% by weight.
[0004]
Addition of magnesium, which can be dissolved to a content of 0.47% by weight in an α Al matrix at a temperature of about 550 ° C., remarkably strengthens the material strength by heat treatment and simultaneous Mg 2 Si precipitation. be able to.
[0005]
When the Al-Si-Mg melt is cooled, the remaining melt can be precipitated and hardened, in which case it is deposited in silicon in a coarse form similar to a plate. The method of preventing the growth of silicon crystals during hardening by adding sodium and strontium to this type of alloy is also called a ripening method or a purification method. Conventionally known.
[0006]
The mechanical properties of aluminum alloy semi-finished products or final products are significantly affected by the heat treatment method, and the heat treatment state is defined in European Standard 515. According to the standard, the symbol F means the product state and T means the heat-treated stable state. Each heat treatment state is defined in detail by adding a subscript to the symbol T.
[0007]
In the present specification, the following heat treatment state of the material is further indicated by an abbreviation code. Ie:
F Final product state T5 Quenched from manufacturing temperature, aged in warm state T6 Solution treated, aged in warm state T6x Heat-treated according to the present invention T4x Heat-treated according to the present invention is there.
[0008]
In order to make products made of aluminum and silicon alloys commercially available or industrially usable, it is necessary on the one hand to improve the material properties, and on the other hand, it is important to reduce production costs or increase economics. is there. In other words, not only the annealing process performed at a high temperature for a long time but also the correction process that may be necessary due to the specific gravity creep in the case of long-time annealing increases the cost.
[0009]
In the state of F, it has been confirmed that the material strength value R p of aluminum / silicon alloy is basically low and the stretch ratio is relatively high.
[0010]
In the heat treatment state of T5, that is, the sample is rapidly cooled from the production temperature, for example, the aging treatment is performed in a warm state for 1 to 12 hours at a temperature of 155 ° C. to 190 ° C., the sample has a low drawing coefficient A Nevertheless, the intensity value R p is certainly improved.
[0011]
For example, when the solution treatment is performed for 12 hours at a temperature of 540 ° C. corresponding to T6, and then the aging treatment is performed in a warm state, the elongation rate of the sample or the ductility of the material is similarly large. The material strength value can be remarkably increased in comparison with this state. When the solution treatment time is lengthened, for example, magnesium atoms in the material are effectively mixed, so fine Mg 2 Si precipitates in the α Al matrix when the product is quenched in a warm state after rapid cooling of the product. Evenly dispersed, the strength of the material is decisively increased by this precipitation.
[0012]
However, as described above, the solution treatment for a long time at a high temperature has the problem of specific gravity creep of the product and the disadvantage that the heat treatment is complicated. Therefore, from an economic point of view, we give up giving the material the highest strength and good ductility by T6, and adopt the T5 treatment state according to the product. The point where the material strength is critically low due to T5 needs to be offset by changing the structure of the member as required.
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0013]
The object of the present invention is to significantly increase the ductility of the material, and at the same time, basically increase the ductility and the higher material strength value in comparison with T5 without significantly reducing the material strength value in comparison with T6. The object is to provide an economical heat treatment method that can be achieved.
[0014]
Yet another object of the present invention is to provide a product microstructure for developing the mechanical properties of suitable materials of the type described at the outset.
[Means for Solving the Problems]
[0015]
The method according to the invention is an impact annealing in which the product is rapidly heated to an annealing temperature of 400 ° C. to 555 ° C., held at this temperature for a maximum of 14.8 minutes, and then forcedly cooled to normal room temperature. A solution treatment is performed by a treatment method.
[0016]
The advantage achieved by the present invention is basically that the highest ductility value of the material can be achieved by a simple annealing process at a high temperature for a short time. Furthermore, there is no need to correct the material because there is no or only slight shrinkage of the member or product due to the so-called impact annealing method. The short annealing time is very economical and can easily be adapted to mass production, for example through a continuous furnace, according to which aging treatment is carried out in a given warm condition. , In most cases, the material strength can be adjusted. The ductility of the aluminum-silicon alloy can be remarkably improved by setting the holding time in the impact annealing treatment to 6.8 minutes or less, preferably 1.7 minutes to 5 minutes.
[0017]
It is advantageous to carry out the aging treatment of the product carried out following the impact annealing treatment in a warm state at a temperature of 150 ° C. to 200 ° C. for 1 hour to 14 hours.
[0018]
Performing the aging treatment of the product following the shock annealing method at room temperature as a normal temperature aging treatment can be an advantage in the material technology as well.
[0019]
The other object of the present invention is achieved by making the precipitated silicon in the eutectic phase portion spheroidized and making the average cross-sectional area, that is, A si 4 μm 2 or less.
[0020]
The following shows how to calculate the cross-sectional area, where the coefficients are as follows:
[Expression 4]
Figure 2005508446
A si is the average cross-sectional area of silicon particles (μm 2 ),
A is the average cross-sectional area (μm 2 ) of silicon particles per image,
n is the number of measurements.
[0021]
The advantage of this type of microstructure is basically that the initiation of cracks in the material is significantly improved and the ductility of the material is improved due to the spheroidization of the deposited silicon and its fineness. In other words, spheroidization and fineness impart a suitable shape to silicon having a brittle eutectic phase portion and basically increase the stretch ratio of the material. When a mechanical load is applied, the load peak decreases at the phase / interface between the silicon phase and the aluminum phase. According to the experiment accompanying this, the grain boundary fracture of the material was recognized. This indicates that the ductility has reached its maximum value.
[0022]
In order to improve the stretch ratio of the material and from the viewpoint of process engineering, preferably, the precipitated silicon is spheroidized in the eutectic phase portion, and the average cross-sectional area is 2 μm 2 or less.
[0023]
In the present invention, the average interval λ Si between the silicon particles in the eutectic phase was divided by the number of silicon particles contained in the square measurement area. 4 μm or less, preferably 3 μm or less, more preferably 2 μm or less when defined as the square root of the value,
[Equation 5]
Figure 2005508446
λ Si is the average spacing between silicon particles,
A Quadrat is a square measurement area (μm 2 ),
N Silizium is the number of silicon particles,
n is the number of images measured,
It is. A special uniform load distribution is achieved when the load peak value in the loaded material is the minimum value. This is because the distance between the silicon particles of a small area basically affects the material flow reaction under the corresponding load condition.
[0024]
Although the solution treatment method of hardening an alloy component effective for diffusion and annealing for a long time in 2 to 12 hours to strengthen it in the mixed crystal is contemplated according to the state of the art, A side effect is certainly the spheroidization of the silicon particles, but these particles are very large and coarsely distributed due to their prolonged annealing, which can adversely affect the failure reaction of the material. Absent. According to the present invention, in the case of short-time impact annealing, the silicon in the eutectic phase can be spheroidized within a few minutes, and thus an advantageous microstructure of the material can be achieved. Yes, this was very amazing. Here, the temperature for impact annealing is made as high as possible, but it is important that the temperature be 5-20 ° C. or lower at the bottom of the lowest melting phase.
[0025]
Silicon particles undergo diffusion-controlled growth as the annealing time increases, and at that time, the initially high spheroidization density ξ Si decreases.
[0026]
The ductility of the aluminum-silicon alloy product is improved according to the present invention when the number of spheroidized eutectic silicon particles per 100 μm 2 is 10 or more, preferably 20 or more,
[Formula 6]
Figure 2005508446
ξ Si is the average spheroidization density of silicon particles in the eutectic phase,
N Silizium is the number of silicon particles,
A is the reference area (μm 2 ),
n is the number of images measured,
It is.
[0027]
As a result of the examination described above, the eutectic phase portion contained in the aluminum-silicon alloy basically has the microstructure according to the present invention, and the product formed based on the microstructure has a high ductility value of the material. It is understandable to have. In particular, when the product is made by thixocasting, improvement in quality and improvement in stretch ratio can be achieved sufficiently.
BEST MODE FOR CARRYING OUT THE INVENTION
[0028]
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
FIG. 1 shows, as a bar graph, the elongation limit value R p0,2 and the stretching ratio A of a sample based on an experimental member made of AlSi7Mg0.3 alloy partially made by thixocasting. The numerical value of the heat treatment state T6 of the material (12 hours at 540 ° C. + 4 hours at 160 ° C.) is 1 minute (T6 × 1), 3 minutes (T6 × 3) at a temperature of 540 ° C. according to the method T6x as described in the present invention. And compared to the value achieved after an impact annealing time of 5 minutes (T6 × 6). All samples were removed hot (4 hours) at a temperature of 160 ° C. According to the results of the tensile experiment, when the samples were subjected to the impact annealing treatment, the samples had a remarkably higher stretch ratio after that. In this case, the state of T6 × 3 is about 60% of A in comparison with T6. It has been found that there is a function to increase the
[0029]
FIG. 2 compares the state values of F, T4x3, T5, T6x3, and T6 related to the elongation limit value R p0,2 and the stretching ratio A as a bar graph in the same sample as in FIG. When considered while comparing, it can be understood that the stretch ratio increases significantly again. As is clear from FIG. 2, the material after impact annealing for 3 minutes is subjected to normal temperature aging treatment (T4 × 3) or aging treatment in a warm state (T6 × 3) in order to maintain the drawing characteristics according to the present invention. Is possible.
[0030]
3 and 4 are REM photographs obtained by photographing silicon deposition with a raster electron microscope. The following points should be noted regarding shooting and evaluation methods. That is, in order to be able to quantitatively evaluate the polished image, it is necessary to prepare an appropriate two-dimensional image. If the annealing is within 2 hours in total, the image is taken with a raster electron microscope, and the subsequent polished surface is previously corroded with a solution containing 99.5% water and 0.5% hydrofluoric acid for 30 seconds. did. All images were post processed by Adobe Photoshop program 5.0 and evaluated using Leica Qwin V2.2, an image analysis program. The minimum detection area at that time was 0.1 μm 2 . FIG. 3 is a diagram showing AlSi7Mg0.3, which is a material taken by REM photography after a normal T6 annealing time over 12 hours. FIG. 4 reproduces the microstructure of the same material after impact annealing for 3 minutes. The spheroidization of the precipitated silicon becomes apparent immediately (FIG. 4), and the diffusion-controlled growth is observed after a long annealing time (FIG. 3).
[0031]
5 and 6 show the average cross-sectional area Asi of silicon particles related to the annealing time at about 540 ° C. The increase in average cross-sectional area can be clearly understood according to FIG. 4 with the time axis as logarithmic display, which characterizes the particle size. It can be seen from FIG. 6 that the increase due to the diffusion of the central silicon surface occurs in the first 60 minutes. As the annealing time increases, the average size of the silicon particles becomes highly related to the starting size of the silicon particles in the eutectic phase. In the above case, it is very well aged and exhibits strictly distributed silicon precipitation, so in the case of well aged, ie large silicon particles from the beginning, an average of about 4 μm 2 as required It is also possible to shorten the time required to achieve the critical silicon cross section A si .
[0032]
FIG. 7 shows the change in the average interval between silicon particles in relation to the annealing time. An increase in the average spacing of the encapsulated silicon is clearly readable.
[0033]
FIG. 8 shows the decrease in the average spheroidization density ξ Si in relation to the annealing time. The decrease in the spheroidization density curve starts around 1.7 minutes, and after ξ Si <10, the decrease in ductility becomes apparent. If the annealing temperature is high, this value is achieved after 14-25 minutes, in which case a density value of 20 or more must be prepared for a much higher draw ratio.
[0034]
FIG. 9 is a bar graph showing stretch limits and measured values for stretch for eight examples (Varianten) having different compositions of aluminum-silicon alloys listed in Table 1. For all these alloys, the material ductility could be improved according to the present invention.
[Table 1]
Figure 2005508446

[Brief description of the drawings]
[0035]
FIG. 1 is a bar graph showing mechanical material values that are dependent on a heat treatment state.
FIG. 2 is the same view as FIG.
FIG. 3 is a REM photograph of a polished sample.
4 is a REM photograph similar to FIG.
FIG. 5 is a graph showing the relationship with the annealing time of the central surface of precipitated silicon.
6 is a graph similar to FIG.
FIG. 7 is a graph showing an average interval between silicon particles.
FIG. 8 is a graph showing average spheroidization density.
FIG. 9 is a bar graph showing mechanical properties of aluminum-silicon alloys having different compositions.

Claims (11)

好適には精製されたアルミニウム・シリコン元素を含有し,所要に応じてその他の合金元素及び/又は不純物元素,例えばマグネシウム,マンガン,鉄等を含有し,共晶相部分を有する鋳造合金又は可鍛合金からなる製品につき,焼鈍処理及び引き続く時効処理を行って材料延性を改善するための熱処理方法であって,該焼鈍処理を,400℃〜555℃の焼鈍温度まで迅速に加熱し,該温度下で好適には1.7分間〜14.8分間の保持時間に亙って保持した後,実質的に室温まで急速に強制冷却する衝撃焼鈍処理として実施することを特徴とする熱処理法。Cast alloys or malleable, preferably containing refined aluminum / silicon elements, optionally containing other alloying elements and / or impurity elements such as magnesium, manganese, iron, etc. and having a eutectic phase portion A heat treatment method for improving the material ductility by performing annealing treatment and subsequent aging treatment on a product made of an alloy, and rapidly heating the annealing treatment to an annealing temperature of 400 ° C. to 555 ° C. Preferably, the heat treatment method is carried out as an impact annealing treatment in which the material is held for a holding time of 1.7 minutes to 14.8 minutes and then is rapidly forcedly cooled to substantially room temperature. 前記衝撃焼鈍処理における保持時間を6.8分間以下,好適には1.7分間〜5分間とすることを特徴とする請求項1記載の方法。The method according to claim 1, wherein the holding time in the impact annealing treatment is 6.8 minutes or less, preferably 1.7 minutes to 5 minutes. 前記衝撃焼鈍処理に続いて行われる製品の時効処理を150℃〜200℃の温度下,1時間〜14時間に亙って行うことを特徴とする請求項1又は2に記載の方法。The method according to claim 1 or 2, wherein the aging treatment of the product performed after the impact annealing treatment is performed at a temperature of 150 ° C to 200 ° C for 1 hour to 14 hours. 前記衝撃焼鈍処理に続いて行われる製品の時効処理を常温時効処理として実質的に室温下で行うことを特徴とする請求項1〜3の何れか一項に記載の方法。The method according to any one of claims 1 to 3, wherein the aging treatment of the product performed following the shock annealing treatment is performed at room temperature as a normal temperature aging treatment. 好適には精製されたアルミニウム・シリコン元素を含有し,所要に応じてその他の合金元素及び/又は不純物元素,例えばマグネシウム,マンガン,鉄等を含有し,αAlマトリックスと析出シリコンとで構成された共晶相部分を有するアルミニウム・シリコン合金からなる製品であって,前記析出シリコンが共晶相部分において球状化されており,その平均断面積Asiが4μm2以下であり,
Figure 2005508446
siはシリコン粒子の平均断面積(μm2),
Aは画像一枚あたりのシリコン粒子の平均断面積(μm2),
nは測定回数,
であることを特徴とする製品。
Preferably contains purified aluminum / silicon elements, optionally containing other alloying elements and / or impurity elements such as magnesium, manganese, iron, etc., composed of α Al matrix and precipitated silicon A product comprising an aluminum-silicon alloy having a eutectic phase portion, wherein the precipitated silicon is spheroidized in the eutectic phase portion, and its average cross-sectional area A si is 4 μm 2 or less,
Figure 2005508446
A si is the average cross-sectional area of silicon particles (μm 2 ),
A is the average cross-sectional area (μm 2 ) of silicon particles per image,
n is the number of measurements,
Product characterized by being.
前記共晶相分において球状化されている析出シリコンは,平均断面積が2μm2以下であることを更に特徴とする請求項5に記載の製品。The product according to claim 5, wherein the precipitated silicon spheroidized in the eutectic phase has an average cross-sectional area of 2 μm 2 or less. 好適には精製されたアルミニウム・シリコン元素を含有し,所要に応じてその他の合金元素及び/又は不純物元素,例えばマグネシウム,マンガン,鉄等を含有し,αAlマトリックスと析出シリコンとで構成された共晶相部分を有するアルミニウム・シリコン合金からなる製品であって,共晶相中のシリコン粒子間の平均間隔λSiが,正方形の測定面積をその中に含まれているシリコン粒子数で除した値の平方根として規定されたときに4μm以下,
Figure 2005508446
λSiはシリコン粒子間の平均間隔,
Quadratは正方形の測定面積(μm2),
Siliziumはシリコン粒子数,
nは測定された画像数,
であることを特徴とする製品。
Preferably contains purified aluminum / silicon elements, optionally containing other alloying elements and / or impurity elements such as magnesium, manganese, iron, etc., composed of α Al matrix and precipitated silicon The product is made of an aluminum-silicon alloy with a eutectic phase part, and the average interval λ Si between silicon particles in the eutectic phase is divided by the number of silicon particles contained in the square measurement area. 4 μm or less when specified as the square root of the value,
Figure 2005508446
λ Si is the average spacing between silicon particles,
A Quadrat is a square measurement area (μm 2 ),
N Silizium is the number of silicon particles,
n is the number of images measured,
Product characterized by being.
シリコン粒子間の前記平均間隔が3μm以下,好適には2μm以下であることを特徴とする請求項7記載の製品。8. Product according to claim 7, characterized in that the average spacing between the silicon particles is 3 [mu] m or less, preferably 2 [mu] m or less. 好適には精製されたアルミニウム・シリコン元素を含有し,所要に応じてその他の合金元素及び/又は不純物元素,例えばマグネシウム,マンガン,鉄等を含有し,αAlマトリックスと析出シリコンとで構成された共晶相部分を有するアルミニウム・シリコン合金からなる製品であって,100μm2当たりの共晶相中の球状化されたシリコン粒子の数として規定された平均球状化密度ξSiが10以上であり,
Figure 2005508446
ξSiは共晶相中のシリコン粒子の平均球状化密度,
Siliziumはシリコン粒子数,
Aは基準面積(μm2),
nは測定された画像数,
であることを特徴とする製品。
Preferably contains purified aluminum / silicon elements, optionally containing other alloying elements and / or impurity elements such as magnesium, manganese, iron, etc., composed of α Al matrix and precipitated silicon A product composed of an aluminum-silicon alloy having a eutectic phase portion, and an average spheroidization density ξ Si defined as the number of spheroidized silicon particles in the eutectic phase per 100 μm 2 is 10 or more,
Figure 2005508446
ξ Si is the average spheroidization density of silicon particles in the eutectic phase,
N Silizium is the number of silicon particles,
A is the reference area (μm 2 ),
n is the number of images measured,
Product characterized by being.
前記平均球状化密度が20以上であることを特徴とする請求項9記載の製品。The product according to claim 9, wherein the average spheroidization density is 20 or more. 前記製品がチクソ鋳造法で鋳造され,請求項1〜4の何れか一項に記載された方法に従う熱処理を行って得られたものであることを特徴とする請求項5〜10の何れか一項に記載の製品。11. The product according to any one of claims 5 to 10, wherein the product is obtained by a heat treatment according to the method described in any one of claims 1 to 4 which is cast by a thixocasting method. Product as described in section.
JP2003542667A 2001-11-05 2002-11-05 Aluminum / silicon alloy with improved mechanical properties Pending JP2005508446A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0173301A AT411269B (en) 2001-11-05 2001-11-05 ALUMINUM-SILICON ALLOYS WITH IMPROVED MECHANICAL PROPERTIES
PCT/AT2002/000309 WO2003040423A1 (en) 2001-11-05 2002-11-05 Aluminum-silicon alloys having improved mechanical properties

Publications (1)

Publication Number Publication Date
JP2005508446A true JP2005508446A (en) 2005-03-31

Family

ID=3688773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003542667A Pending JP2005508446A (en) 2001-11-05 2002-11-05 Aluminum / silicon alloy with improved mechanical properties

Country Status (15)

Country Link
US (2) US20050000608A1 (en)
EP (1) EP1442150B1 (en)
JP (1) JP2005508446A (en)
KR (1) KR20050043748A (en)
CN (1) CN100366782C (en)
AT (2) AT411269B (en)
CA (1) CA2465683C (en)
DE (1) DE50209192D1 (en)
DK (1) DK1442150T3 (en)
ES (1) ES2280578T3 (en)
HK (1) HK1071171A1 (en)
HU (1) HUP0401962A2 (en)
PT (1) PT1442150E (en)
SI (1) SI1442150T1 (en)
WO (1) WO2003040423A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8950468B2 (en) 2007-05-11 2015-02-10 The Boeing Company Cooling system for aerospace vehicle components
DE102008024524A1 (en) * 2008-05-21 2009-11-26 Bdw Technologies Gmbh Method and plant for producing a cast component
DE102011105447B4 (en) * 2011-06-24 2019-08-22 Audi Ag Process for the production of aluminum die-cast parts
CN107586939A (en) * 2017-09-13 2018-01-16 中信戴卡股份有限公司 A kind of heat treatment method for aluminium alloy casting rotation wheel
CN109706411A (en) * 2019-02-18 2019-05-03 东莞宏幸智能科技有限公司 A kind of solid smelting furnace of aluminum alloy spare part production
CN115961223A (en) * 2022-12-19 2023-04-14 湖南中创空天新材料股份有限公司 Method for removing residual stress

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747807B2 (en) * 1992-03-17 1995-05-24 スカイアルミニウム株式会社 Method for producing rolled aluminum alloy plate for forming
JPH07166285A (en) * 1993-06-08 1995-06-27 Shinko Alcoa Yuso Kizai Kk Hardened al alloy sheet by baking and production thereof
JPH11613A (en) * 1997-06-13 1999-01-06 Kawasaki Steel Corp Manufacture of aluminum alloy plate with superior molding properties and coat baking/curing properties
US6040059A (en) * 1997-11-18 2000-03-21 Luk Gmbh & Co. Component made of an aluminium silicon cast alloy
US5985349A (en) * 1998-11-12 1999-11-16 Kraft Foods, Inc. Method for manufacture of grated cheese
DE19901508A1 (en) * 1999-01-16 2000-08-17 Bayerische Motoren Werke Ag Process for the production of castings from aluminum alloys
DE19925666C1 (en) * 1999-06-04 2000-09-28 Vaw Motor Gmbh Cast cylinder head and engine block component is made of an aluminum-silicon alloy containing aluminum-nickel, aluminum-copper, aluminum-manganese and aluminum-iron and their mixed phases
JP2001316747A (en) * 1999-08-31 2001-11-16 Asahi Tec Corp NON-Cu CAST Al ALLOY AND HEAT TREATING METHOD THEREFOR
JP3857503B2 (en) * 2000-07-26 2006-12-13 大同メタル工業株式会社 Aluminum bearing alloy
ATE503982T1 (en) * 2002-01-11 2011-04-15 Gen Hospital Corp DEVICE FOR OCT IMAGE ACQUISITION WITH AXIAL LINE FOCUS FOR IMPROVED RESOLUTION AND DEPTH OF FIELD

Also Published As

Publication number Publication date
EP1442150A1 (en) 2004-08-04
CA2465683A1 (en) 2003-05-15
CA2465683C (en) 2011-01-18
EP1442150B1 (en) 2007-01-03
ATE350507T1 (en) 2007-01-15
SI1442150T1 (en) 2007-06-30
HK1071171A1 (en) 2005-07-08
KR20050043748A (en) 2005-05-11
DK1442150T3 (en) 2007-05-14
DE50209192D1 (en) 2007-02-15
US20050000608A1 (en) 2005-01-06
US20100193084A1 (en) 2010-08-05
HUP0401962A2 (en) 2005-01-28
ES2280578T3 (en) 2007-09-16
PT1442150E (en) 2007-04-30
AT411269B (en) 2003-11-25
ATA17332001A (en) 2003-04-15
CN100366782C (en) 2008-02-06
WO2003040423A1 (en) 2003-05-15
CN1602368A (en) 2005-03-30

Similar Documents

Publication Publication Date Title
JP5236948B2 (en) Heat treatment of aluminum alloy high pressure die castings.
JP4285916B2 (en) Manufacturing method of aluminum alloy plate for structural use with high strength and high corrosion resistance
EP3009525A1 (en) Aluminium alloy forging and method for producing the same
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
JP2009013479A (en) High strength aluminum alloy material having excellent stress corrosion cracking resistance, and method for producing the same
WO2012169317A1 (en) Aluminum alloy having excellent high-temperature characteristics
JP2010196112A (en) HIGH STRENGTH Al-Cu-Mg ALLOY EXTRUDED MATERIAL AND METHOD FOR PRODUCING THE SAME
TW201224171A (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP2003518557A (en) Heat treatment of age hardenable aluminum alloy
JP2009167464A (en) Method for producing aluminum alloy material having excellent toughness
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
US20100193084A1 (en) Aluminum-silicon alloys having improved mechanical properties
JP2002348630A (en) Aluminum forged component and manufacturing method therefor
JP2009203516A (en) Aluminum alloy
JP4712159B2 (en) Aluminum alloy plate excellent in strength and corrosion resistance and method for producing the same
EP1366206A2 (en) Aluminum alloys and methods of making the same
Mandal et al. Chemical modification of morphology of Mg2Si phase in hypereutectic aluminium–silicon–magnesium alloys
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JP2011256443A (en) Spinal fixation rod made of titanium alloy, having superior fatigue strength and low elastic modulus and method for producing the same
JP3516566B2 (en) Aluminum alloy for cold forging and its manufacturing method
EP3486340B1 (en) Aluminum alloy plastic working material and production method therefor
WO2021214890A1 (en) Magnesium alloy plate, press compact, and method for manufacturing magnesium alloy plate
JP3942505B2 (en) Titanium copper alloy material and manufacturing method thereof
JP5415739B2 (en) Magnesium alloy for forging
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070926

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081015

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081119

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090417

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101006

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101012