JP2005502039A - コリオリ流量計を利用した流体の主成分の比率決定 - Google Patents

コリオリ流量計を利用した流体の主成分の比率決定 Download PDF

Info

Publication number
JP2005502039A
JP2005502039A JP2003525238A JP2003525238A JP2005502039A JP 2005502039 A JP2005502039 A JP 2005502039A JP 2003525238 A JP2003525238 A JP 2003525238A JP 2003525238 A JP2003525238 A JP 2003525238A JP 2005502039 A JP2005502039 A JP 2005502039A
Authority
JP
Japan
Prior art keywords
temperature
ratio
concentration
flow meter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003525238A
Other languages
English (en)
Other versions
JP2005502039A5 (ja
JP4448329B2 (ja
Inventor
ケイルティー,マイケル・ジェイ
パテン,アンドリュー・ティー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Motion Inc
Original Assignee
Micro Motion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Motion Inc filed Critical Micro Motion Inc
Publication of JP2005502039A publication Critical patent/JP2005502039A/ja
Publication of JP2005502039A5 publication Critical patent/JP2005502039A5/ja
Application granted granted Critical
Publication of JP4448329B2 publication Critical patent/JP4448329B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)
  • Flow Control (AREA)

Abstract

コリオリ流量計(404)を流れる流体の主要成分の比率を決定するシステム、方法及びソフトウェアが開示される。回路(402)は、コリオリ流量計を流れる流体に応じて、コリオリ流量計からピックオフ信号(432)及び温度信号(434)を受け取る。回路はピックオフ信号及び温度信号を処理して、流体に対する主要成分の比率を決定する。一例において主要成分の比率を決定するために、回路は、流体の測定された質量流量及び主要成分の基準濃度に基づいて、第一の体積流量を決定する。回路は、次いで、測定された体積流量、温度により変動する濃度、及び基準濃度に基づいて第二の体積流量を決定する。回路は、第一の体積流量及び第二の体積流量に基づいて、主要成分の比率を決定する。

Description

【技術分野】
【0001】
本発明は、流量計に関するものであり、特に、コリオリ流量計を流れる流体について主成分の比率を決定する方法及びシステムに関するものである。
発明の課題
パイプラインを通して配送される流体が測定される際、配送される流体の量は体積流量として測定される。「流体」という用語は、液体又は固体の状態にある任意の流れる物質を表わす。体積流量は、配送された流体の量に対して顧客に請求するために利用される。タービン式流量計、容積式流量計又は何らかの他の測定システムは、流体が顧客に配送される際に、流体の体積を測定する。測定システムは、流体の温度をも測定する。測定システムは体積測定値を基準温度に対して調整する。顧客は、調整された体積測定値に基づいて請求を受ける。
【0002】
多くの流体は、標準状態に基づいて販売される。つまり、測定システムは、販売される流体が純粋であると想定する。しかし、流体は2つ以上の成分から構成され得る。主成分は、例えば販売される流体のような、測定される純粋な流体を意味する。副次成分は、主成分に混入した不純物を意味する。
【0003】
例えば、顧客に配送されるプロパンは、エタン、メタンなどの他の成分と混ぜられ得る。エタン及びメタンは、プロパンの純度に悪影響を与える不純物である。プロパン、エタン及びメタンの混合物は、別個のプロパン成分、別個のエタン成分及び別個のメタン成分を含む。残念なことに、タービン式及び容積式流量計は、顧客に配送される流体に対する主成分の比率を有効に決定することができない。そのため、顧客は、流体があたかも純粋なものであるかのようにして請求を受けている。
【0004】
流体の質量流量を測定する一つの方法は、コリオリ効果質量流量計を用いることである。コリオリ流量計は、流量計の流管を流れる流体の質量流量及び他の情報を測定する。コリオリ流量計の例は、全てJ.E.Smithらに対する1978年8月29日の米国特許第4,109,524号、1985年1月1日の米国特許第4,491,025号、及び1982年2月11日の米国再発行特許第31,450号に開示されている。流量計は、一つ又はそれ以上のまっすぐな又は曲がった構成の流管から成る。コリオリ流量計における個々の流管構成は一組の固有振動モードを有し、それらは単純な曲げ、ひねり、ねじれ又は結合された形式のものであり得る。個々の流管は、これらの固有振動モードの一つと共振して振動するように駆動される。流体は、流量計の入り口側に接続されたパイプラインから流量計に流れ込む。流体は流管に導かれ、流量計の出口側を通って流量計から流れ出る。流体で充填された振動システムの固有振動モードは、流管と流管内の流体とを組み合わせた質量により部分的に規定される。
【0005】
流体が流れ始める際、コリオリ力が流管上の点に異なる位相を持たせる。流管の入り口側の位相は一般にドライバーより遅れ、出口側の位相はドライバーより進む。流管の動きを測定し、流管の動きを表わすピックオフ信号を生成するために、ピックオフが流管に取り付けられる。
【0006】
流量計に接続された計器電子装置或いは任意の他の補助電子装置又は回路が、ピックオフ信号を受信する。計器電子装置はピックオフ信号を処理して、ピックオフ信号間の位相差を決定する。二つのピックオフ信号間の位相差は、流管を流れる流体の質量流量に比例する。そのため、計器電子装置は、ピックオフ信号に基づいて流量計を流れる流体の質量流量を決定することができる。
【0007】
コリオリ流量計及び振動管濃度計の重要な構成要素は、駆動又は励振システムである。駆動システムは、流管に対し、流管を振動させる周期的な物理力を加えるよう動作する。駆動システムは、流量計の流管に組み込まれた駆動メカニズムを含む。駆動システムは、また、駆動メカニズムを動作させる駆動信号を生成する駆動回路を含む。駆動メカニズムは、典型的に、例えば一つの流管に磁石を取り付け他の流管に磁石と対向するようにワイヤー・コイルを取り付けるような、多くの既知の構成の一つを含む。
【0008】
駆動回路は連続して、周期的な駆動電圧を駆動メカニズムに印加する。駆動電圧は、典型的に、正弦波形又は方形である。典型的な磁気コイル駆動メカニズムにおいて、周期的な駆動電圧によりコイルが連続的な交流磁界を作る。コイルの交流磁界と磁石により作り出された一定の磁場とが流管を正弦波パターンで振動させる。当業者が理解するように、電気信号を機械的な力に変換することができる任意の装置が、駆動メカニズムとしての利用に適する(Carpenterに発行され、Micro Mortion, Inc.に譲渡された米国特許第4,777,833号参照)。同様に、駆動信号は正弦波信号に限定されず、任意の周期的信号であり得る(Kalotayらに発行され、Micro Mortion, Inc.に譲渡された米国特許第5,009,109号参照)。
【0009】
上記のように、計器電子装置は、流量計を流れる流体の質量流量を決定する。計器電子装置は、また、ピックオフ信号に基づいて流体の濃度を推定する。既知の基準濃度と異なる任意の濃度変化は、温度によるものとみなされ、流体の純度によるものとはみなされない。流体の測定された質量流量及び推定された濃度に基づいて、計器電子装置は、流量計を流れる流体の体積流量を決定する。残念なことに、現在のコリオリ流量計は、流体に対する主成分の比率を測定するよう有効に適応されていない。そのため、顧客は、純粋ではない流体に対して請求を受けることがあり得る
課題の記述
本発明は上記の問題の解決を助けるものであり、コリオリ流量計を流れる流体に対する主成分の比率を決定するよう構成されたシステム、方法及びソフトウェアにより本技術分野における進歩がもたらされる。有利なことに、本発明は、配送される流体の量、純度及び品質の一層正確な測定を提供する。本発明は、また、顧客が、販売される流体について一層正確な請求を受けることを可能とする。
【0010】
本発明の一つの例において、回路は、コリオリ質量流量計と通信して本発明を実現するよう構成される。回路は、コリオリ流量計を流れる流体に応じてコリオリ流量計からピックオフ信号及び温度信号を受信するよう構成されたインターフェース手段を含む。流体は主成分を含む。インターフェース手段は、また、ピックオフ信号及び温度信号を処理手段に転送するよう構成される。処理手段は、ピックオフ信号及び温度信号を処理して流体に対する主成分の比率を決定するよう構成される。
【0011】
本発明の他の例において、回路は以下の処理を実行し、主成分の比率を決定する。まず、回路はピックオフ信号を処理して流体の質量流量を決定する。次に、回路は質量流量を主成分の基準濃度で除算して、第一の体積流量を求める。基準濃度は、基準温度における主成分の濃度を表わす。回路は、次いで、ピックオフ信号を処理し、コリオリ流量計を通る流体の測定された体積流量を決定する。次に回路は、温度により変動する濃度を決定する。回路は測定された体積流量に温度により変動する濃度を乗算した積を求める。回路はその積を基準濃度で割り、第二の体積流量を求める。第一の体積流量と第二の体積流量とが等しい場合、流体はほぼ純粋である。第一の体積流量が第二の体積流量と異なる場合、流体は主成分に加え、一つ又はそれ以上の副次成分を含む。
【0012】
本発明の更に他の例において、回路は以下の処理を実行して主成分の比率を決定する。まず、回路はピックオフ信号を処理し、流体の測定された濃度を決定する。次に、回路は温度信号を処理し、流体の温度を決定する。回路は、温度に基づいて、温度により変動する濃度を決定する。測定された濃度が温度により変動する濃度と等しい場合、流体はほぼ純粋である。測定された濃度が温度により変動する濃度と等しくない場合、流体は主成分に加え、一つ又はそれ以上の副次成分を含む。
【0013】
本発明の一つの態様は、コリオリ流量計と通信する回路を動作させる方法において、
コリオリ流量計を流れ且つ主成分を含む流体に応じてコリオリ流量計からピックオフ信号及び温度信号を受信する工程を含む方法であって、
ピックオフ信号及び温度信号を処理して流体に対する主成分の比率を決定する工程を含むことを特徴とする方法を含む。
【0014】
当該方法は、更に、ピックオフ信号を処理してコリオリ流量計を流れる流体の体積流量を決定する工程と、
主成分の比率に基づいて体積流量を調整する工程と、
を含むことが望ましい。
【0015】
当該方法は、更に、主成分の比率に基づいて或る量の流体に対するコストを調整する工程を含むことが望ましい。
主成分の比率は、流体の純度を表わすことが望ましい。
【0016】
主成分はプロパンを含むことが望ましい。
ピックオフ信号及び温度信号を処理して主成分の比率を決定する工程は、更に、
ピックオフ信号を処理してコリオリ流量計を流れる流体の質量流量を決定する工程と、
質量流量を主成分の基準濃度で除算して、第一の体積流量を決定する工程と、
を含むことが望ましい。
【0017】
ピックオフ信号及び温度信号を処理して主成分の比率を決定する工程は、更に、
ピックオフ信号を処理してコリオリ流量計を流れる流体の測定された体積流量を決定する工程と、
コリオリ流量計を流れる流体の温度を表わす温度信号を処理して温度により変動する濃度を決定する工程と、
コリオリ流量計を流れる流体の測定された体積流量に温度により変動する濃度を乗算して積を求める工程と、
当該積を基準濃度で除算して、第二の体積流量を求める工程と、
を含むことが望ましい。
【0018】
温度信号を処理して温度により変動する濃度を決定する工程は、更に、
コリオリ流量計を流れる流体の温度に基づいて基準濃度を調整する工程を含むことが望ましい。
【0019】
ピックオフ信号及び温度信号を処理して主成分の比率を決定する工程は、更に、
第一の体積流量を第二の体積流量で除算して主成分の比率を求める工程を含むことが望ましい。
【0020】
ピックオフ信号及び温度信号を処理して主成分の比率を決定する工程は、更に、
ピックオフ信号を処理してコリオリ流量計を流れる流体の測定された濃度を決定する工程と、
コリオリ流量計を流れる流体の温度を表わす温度信号を処理して、温度により変動する濃度を決定する工程と、
測定された濃度を温度により変動する濃度で除算して、主成分の比率を求める工程と、
を含むことが望ましい。
【0021】
本発明の他の態様は、コリオリ流量計と通信するよう構成された回路であって、コリオリ流量計を流れ且つ主成分を含む流体に応じてコリオリ流量計からピックオフ信号及び温度信号を受け取り、当該ピックオフ信号及び温度信号を転送するよう構成されたインターフェース手段を備え、
ピックオフ信号及び温度信号を受け取り、当該ピックオフ信号及び温度信号を処理して流体に対する主成分の比率を決定するよう構成された処理手段を備えることを特徴とする回路を含む。
【0022】
処理手段は、更に、
ピックオフ信号を処理して、コリオリ流量計を流れる流体の体積流量を決定し、
主成分の比率に基づいて前記体積流量を調整するように構成されることが望ましい。
【0023】
処理手段は、更に、
主成分の比率に基づいて、或る量の流体に対する費用を調整するように構成されることが望ましい。
【0024】
主成分の比率は、流体の純度を表わすことが望ましい。
主成分は、プロパンを含むことが望ましい。
処理手段は、更に、
ピックオフ信号を処理して、コリオリ流量計を流れる流体の質量流量を決定し、
質量流量を主成分の基準濃度で除算して第一の体積流量を決定するように構成されることが望ましい。
【0025】
処理手段は、更に、
ピックオフ信号を処理して、コリオリ流量計を流れる流体の測定された体積流量を決定し、
コリオリ流量計を流れる流体の温度を表わす温度信号を処理して、温度により変動する濃度を決定し、
コリオリ流量計を流れる流体の測定された体積流量に温度により変動する濃度を乗算した積を求め、
当該積を基準濃度で除算して第二の体積流量を求めるように構成されることが望ましい。
【0026】
処理手段は、更に、
コリオリ流量計を流れる流体の温度に基づいて基準濃度を調整し、温度により変動する濃度を決定するように構成されることが望ましい。
【0027】
処理手段は、更に、
第一の体積流量を第二の体積流量で除算して、主成分の比率を求めるように構成されることが望ましい。
【0028】
処理手段は、更に、
ピックオフ信号を処理して、コリオリ流量計を流れる流体の測定された濃度を決定し、
コリオリ流量計を流れる流体の温度を表わす温度信号を処理して、温度により変動する濃度を決定し、
測定された濃度を温度により変動する濃度で除算して、主成分の比率を求めるように構成されることが望ましい。
【0029】
本発明の他の態様は、コリオリ流量計とともに利用するためのソフトウェア製品であって、
プロセッサにより実行された場合に、コリオリ流量計を流れ且つ主成分を含む流体に応じて、コリオリ流量計からピックオフ信号及び温度信号を受け取るよう構成された比率ソフトウェアと、
比率ソフトウェアを蓄積するよう構成された記憶媒体と、
を備え、
比率ソフトウェアが、更に、プロセッサにより実行された場合に、ピックオフ信号及び温度信号を処理して流体に対する主成分の比率を決定することを特徴とするソフトウェア製品を含む。
【0030】
比率ソフトウェアは、更に、プロセッサにより実行された場合に、
ピックオフ信号を処理してコリオリ流量計を流れる流体の体積流量を決定し、
主成分の比率に基づいて体積流量を調整するように構成されることが望ましい。
【0031】
比率ソフトウェアは、更に、プロセッサにより実行された場合に、主成分の比率に基づいて或る量の流体の費用を調整するように構成されることが望ましい。
主成分の比率は、流体の純度を表わすことが望ましい。
【0032】
主成分は、プロパンを含むことが望ましい。
比率ソフトウェアは、更に、プロセッサにより実行された場合に、
ピックオフ信号を処理して、コリオリ流量計を流れる流体の質量流量を決定し、
質量流量を主成分の基準濃度で除算して、第一の体積流量を決定するように構成されることが望ましい。
【0033】
比率ソフトウェアは、更に、プロセッサにより実行された場合に、
ピックオフ信号を処理して、コリオリ流量計を流れる流体の測定された体積流量を決定し、
コリオリ流量計を流れる流体の温度を表わす温度信号を処理して、温度により変動する濃度を決定し、
コリオリ流量計を流れる流体の測定された体積流量に温度により変動する濃度を乗算して積を求め、
当該積を基準濃度で除算して第二の体積流量を求めるように構成されることが望ましい。
【0034】
比率ソフトウェアは、更に、プロセッサにより実行された場合に、
コリオリ流量計を流れる流体の温度に基づいて基準濃度を調整し、温度により変動する濃度を決定するように構成されることが望ましい。
【0035】
比率ソフトウェアは、更に、プロセッサにより実行された場合に、
第一の体積流量を第二の体積流量で除算して、主成分の比率を求めるように構成されることが望ましい。
【0036】
比率ソフトウェアは、更に、プロセッサにより実行された場合に、
ピックオフ信号を処理して、コリオリ流量計を流れる流体の測定された濃度を決定し、
コリオリ流量計を流れる流体の温度を表わす温度信号を処理して、温度により変動する濃度を決定し、
測定された濃度を温度により変動する濃度で除算して、主成分の比率を求めるように構成されることが望ましい。
【0037】
詳細な説明
本発明の上記及び他の特徴は、詳細な説明及び添付の図面を参照することにより理解され得る。
【0038】
図1〜3は、本発明を実現するために利用され得るシステムの例を示す。本発明の範囲は、図1〜3に示され説明された特定の構成要素に限定されず、本発明の範囲は特許請求の範囲により規定される。
【0039】
二重管形コリオリ流量計−図1
図1は、先行技術におけるコリオリ流量計5を示す。コリオリ流量計5は、コリオリ・センサー100及び計器電子装置20を備える。計器電子装置20は、導線100を介してコリオリ・センサー100に接続される。計器電子装置20は、濃度、質量流量、体積流量、全質量流量及び他の情報を、経路26に提供するよう構成される。コリオリ流量計5が記載されているが、本発明は、流体の属性を測定するための振動流管を有する任意の装置と共に実行され得ることが、当業者には明らかである。そのような装置の第二の例としては、コリオリ質量流量計により提供される追加の測定能力を有さない振動管濃度計がある。
【0040】
コリオリ・センサー100は、一組の処理接続部101及び101’、マニフォールド102及び流管103A及び103Bを含む。ドライバー104、ピックオフ105及びピックオフ105’は、流管103A及び103Bに接続される。ブレース・バー106及び106’は、個々の流管がそれに関して振動する軸W及びW’を規定するように動作する。当業者が理解するように、本発明を実現するために追加のピックオフが必要とされ得る。本発明は図1の構成に限定されるものではなく、図1は本発明を実現するシステムの一例を示すに過ぎない。
【0041】
コリオリ・センサー100が、測定される流体を運ぶパイプライン・システム(図示せず)に挿入されると、流体は処理接続部101を通ってコリオリ・センサー10に入る。流体はマニフォールド102を通過する。マニフォールド102は、流体を流管103A及び103Bに入るよう導く。流体は流管103A及び103Bを流れ、マニフォールド102に戻る。流体は処理接続部101’を通って、コリオリ・センサー10を出る。
【0042】
流管103A及び103Bは、曲げ軸W−W及びW’−W’のそれぞれについて実質的に同じ質量配分、慣性モーメント及び弾性率を持つように選択され、マニフォールド102に適切に取り付けられる。流管は本質的に平行な方法で、マニホールド102から外側へ伸びる。
【0043】
流管103A〜103Bは、ドライバー104により、流量計5のいわゆる第一逆相曲げモードで、それぞれの曲げ軸W及びW’に関して逆相で駆動される。ドライバー104は、例えば、流管103A〜103Bの両方を振動させる交流電流が通るよう流管103Aに磁石を取り付け流管103Bに対向コイルを取り付けるような、多数の既知の構成のうちの任意の一つを含み得る。計器電子装置は、導線110を介してドライバー104に駆動信号を印加する。
【0044】
ドライバー104は、駆動信号に応答して流管103A及び103Bを振動させる。ピックオフ105及び105’は、流管103A及び103Bの固有振動モードに応答して、ピックオフ信号を生成する。ピックオフ105及び105’は、それぞれ導線111及び111’で計器電子装置20にピックオフ信号を送信する。ピックオフ105からのピックオフ信号は左速度信号と呼ばれ、ピックオフ105’からのピックオフ信号は右速度信号と呼ばれ得る。計器電子装置20は、左右の速度信号を処理して、コリオリ・センサー100を通る流体の質量流量、体積流量、全質量流量及び濃度を計算する。計器電子装置20は、質量流量、体積流量、全質量流量及び濃度情報を経路26に加える。
【0045】
温度センサー140は、振動流管103A及び103Bの片方又は両方に接続される。温度センサー140は、流管103A及び103Bを流れる流体の温度を検知する。温度センサー140は温度信号を生成する。温度センサー140は、導線112を介して、温度信号を計器電子装置20に送信する。
【0046】
当業者が理解するように、コリオリ流量計5は、振動管濃度計と非常に似た構造である。振動管濃度計も、流体が流れる振動管を利用する。サンプル型の濃度計では、内部に流体が保持される振動管が利用される。振動管濃度計は、また、流管が振動するよう励振するための駆動システムを採用する。振動管濃度計は、典型的に、単一のフィードバック信号を用いる。なぜなら、濃度測定には周波数の測定のみが求められ、位相の測定は必要ないからである。本明細書における本発明の説明は、振動管濃度計にも等しく適用される。
【0047】
単一直管形コリオリ流量計−図2
図2は、先行技術におけるコリオリ流量計25を示す。コリオリ流量計25は、コリオリ・センサー200及び計器電子装置20を含む。計器電子装置20は、導線230を介してコリオリ・センサー200に接続される。計器電子装置20は、濃度、質量流量、体積流量、全質量流量及び他の情報を経路26に提供するよう構成される。
【0048】
流管201は、201Lと符号付けられた左端部と、201Rと符号付けられた右端部とを含む。流管201とその端部201L及び201Rとは、流管201の入力端から流管201の出力端までの流量計25の全長に伸びる。コリオリ・センサー200は、その端でブレース・バー221により流管201に接続されたバランス・バー220を含む。
【0049】
左端部201Lは、入口処理接続部202に設置される。右端部201Rは、出口処理接続部202’に設置される。入口処理接続部202及び出口処理接続部202’は、コリオリ・センサー200をパイプライン(図示せず)に接続するよう構成される。
【0050】
周知の従来の方法では、ドライバー204、左ピックオフ205及び右ピックオフ205’は、流管201及びバランス・バー220に結合される。計器電子装置20は、ドライバー204に駆動信号を送る。駆動信号に応答して、ドライバー204は、流体を充填した流管201の共振周波数において、流管201及びバランス・バー220を逆相で振動させる。振動流管101の振動は、流管201の周知のコリオリ偏向を含む。ピックオフ205及び205’はコリオリ偏向を検出し、コリオリ偏向を表わすピックオフ信号を導線211及び211’に送信する。
【0051】
温度センサー240は、流管201に接続される。温度センサー240は、流管201を流れる流体の温度を検出する。温度センサー240は温度信号を生成する。温度センサー240は、導線212を介して温度信号を計器電子装置20に送信する。
【0052】
計器電子装置−図3
図3は、本発明の一つの例における計器電子装置200を示す。この例において、計器電子装置20は、図1のコリオリ・センサー10とともに動作するよう示される。計器電子装置20は、アナログ・デジタル(A/D)変換器303及び303’と、処理ユニット301と、読み取り専用メモリ(ROM)320と、ランダム・アクセス・メモリ(RAM)330と、デジタル・アナログ(D/A)変換器302と、増幅器305とを備える。計器電子装置20は、濃度、質量流量、体積流量、全質量流量、及び他の情報を経路26に提供するよう構成される。経路26は、信号を入出力手段(図示せず)に運び、計器電子装置20がコンピュータのような補助電子装置と通信することを可能にする。
【0053】
動作において、A/D変換器303及び303’は、ピックオフ105から左速度信号を、ピックオフ105’から右速度信号をそれぞれ受け取る。A/D変換器303及び303’は、左右の速度信号を、処理ユニット301が利用可能なデジタル信号に変換する。A/D変換器303及び303’は、デジタル信号を、経路310及び310’を介して処理ユニット301に送信する。A/D変換器303及び303’は別個の構成要素として示されているが、例えばクリスタル・セミ社(Crystal Semi Inc.)により製造されたCS4218ステレオ16ビット・コーデック・チップのような単一の変換器であってもよい。当業者が理解するように、任意の数のピックオフ及び他のセンサーが処理ユニット301に接続され得る。処理ユニット301は、また、温度センサー140から導線112を介して温度信号を受信する。
【0054】
処理ユニット301は、記憶媒体から読み込んだ命令を実行して流量計5の様々な機能を遂行するマイクロ・プロセッサ、プロセッサ又はプロセッサのグループである。好ましい実施の形態において、処理ユニット301は、アナログ・デバイシーズ社(Analog Devices)により製造されたADSP−2185Lマイクロプロセッサである。遂行される機能には、流体の質量流量の計算、流体の体積流量の計算及び流体の濃度の計算が含まれるが、それらに限定されるものではない。処理ユニット301は、機能をROM320に記憶し、ROM320から経路321を介して当該機能を読み出す。処理ユニット301は、様々な機能を遂行するためのデータ及び命令をRAM330に記憶する。プロセッサ301は、経路331を介してRAM330の読み取り及び書き込み操作を行う。
【0055】
処理ユニット301はデジタル駆動信号を生成し、経路312に送信する。D/A変換器302はデジタル駆動信号を受け取ると共に、及びピックオフ105及び105’のうちの一つから経路340を介して電圧を受け取る。デジタル駆動信号は、経路340から受け取った電圧を修正してアナログ駆動信号を生成する命令を含む。D/A変換器302は、例えばアナログ・デバイシーズ社により製造されたAD7943チップのような一般的なD/A変換器である。D/A変換器302は、アナログ駆動信号を経路391を介して増幅器305に送信する。増幅器305は、アナログ駆動信号の振幅を増幅する。増幅器305は、アナログ駆動信号を経路110を介してドライバー104に送信する。増幅器305は、電流増幅器でも電圧増幅器でもよい。
【0056】
主成分比率決定−図4
図4は、本発明に従ってコリオリ流量計と通信する回路の特定の例を示す。当業者が理解するように、この例の多数の変形は本発明の範囲から外れることは無く、また、下記の様々な特徴は他の実施の形態と組み合わされて本発明の多数の変形を形成し得る。当業者が理解するように、図4のいくつかの従来の特徴は、わかりやすくするために単純化又は省略されている。
【0057】
図4は、本発明の一つの例においてコリオリ流量計404と通信する回路402を描く。回路402は、インターフェース手段414及び処理手段412を備える。流量計404は、流体の流れを受けるように構成される。流量計404は、図1の流量計5又は図2の流量計25であり得るが、それらに限定されるものではない。
【0058】
動作において、インターフェース手段414は、流量計404を流れる流体に応じて、流量計404からピックオフ信号432及び温度信号434を受け取る。流体は主成分を含む。インターフェース手段414は、ピックオフ信号432及び温度信号434を処理手段412に転送する。処理手段412は、ピックオフ信号432及び温度信号434を受け取る。処理手段412は、ピックオフ信号432及び温度信号434を処理して流体に対する主成分の比率を決定する。
【0059】
一つの例において、回路402の動作は、比率ソフトウェア424を実行する処理手段412により遂行される。処理手段412は、記憶媒体422から比率ソフトウェア424を取り出して実行し、上記の動作を遂行する。比率ソフトウェア424は、処理手段412をして、1)コリオリ流量計を流れ且つ主成分を含む流体に応じて、コリオリ流量計からピックオフ信号及び温度信号を受け取り、2)ピックオフ信号及び温度信号を処理して流体に対する主成分の比率を決定させるよう構成される。
【0060】
比率ソフトウェア424は、プログラム・コード及びファームウェアを含む。記憶媒体422の例には、メモリ装置、テープ、ディスク、集積回路及びサーバが含まれる。比率ソフトウェア424は、処理手段412によって実行された場合に動作して、当該処理手段を本発明に従って動作させる。処理手段412は、単一の処理装置又は相互に動作する処理装置のグループを示す。処理手段412の例としては、コンピュータ、集積回路及び論理回路がある。命令、プロセッサ及び記憶媒体は、当業者にとって周知である。
【0061】
体積流量決定−図5〜図8
図5〜図8は、本発明に従ってコリオリ流量計と通信する回路により用いられる論理の特定の例を示す。当業者が理解するように、この例の多数の変形は本発明の範囲を逸脱するものではなく、また、下記の様々な特徴は他の実施の形態と組み合わされて本発明の多数の変形を形成し得る。当業者が理解するように、図5〜図8のいくつかの従来の特徴は、わかりやすくするために単純化又は省略されている。
【0062】
図5は、本発明の一つの例において回路402により実行される処理500を表わす論理図を示す。この例において、流体は流量計404を流れると想定する。流体の主成分比率を決定するために、回路402は第一の体積流量及び第二の体積流量を決定し、当該流量を比較する。第一の体積流量を決定するため、回路402はステップ501においてピックオフ信号432を処理して、流体の質量流量を決定する。回路402は、次いで、ステップ503において、質量流量を主成分の基準濃度で除算して第一の体積流量を求める。第一の体積流量は、下記の数式[1]により表わされる。
【0063】
【数1】
Figure 2005502039
ただし、mは質量流量を表わし、ρrefは基準濃度を表わす。
【0064】
流体の濃度は、温度及び圧力に基づいて変化する。流体は本来、比較的圧縮ができない物質である。言い換えれば、圧力による濃度の変化は、温度による濃度の変化と比べると非常に小さい。従って、この例においては標準的な圧力を想定する。多くの流体について、濃度対温度の曲線が生成され得る。基準温度及び対応する基準濃度が、特定の主成分に対して選択される。
【0065】
第二の体積流量を決定するため、回路402はステップ505において、ピックオフ信号432を処理して、流量計404を流れる流体の測定された体積流量を決定する。回路402は、次いで、ステップ507において、温度により変動する濃度を決定する。以下の数式[2]は、温度により変動する濃度をもたらす。
【0066】
【数2】
Figure 2005502039
ただし、Tは温度信号434から決定された温度を表わす。
【0067】
回路402は、ステップ509において、測定された体積流量に温度により変動する濃度を乗算して積を求める。回路402は、次いで、ステップ511において、当該積を基準濃度で除算して第二の体積流量を求める。第二の体積流量は、以下の数式[3]により表わされる。
【0068】
【数3】
Figure 2005502039
ただし、Vmeasuredは、測定された体積流量、ρtempは温度により変動する濃度、ρrefは基準濃度を表わす。
【0069】
第一の体積流量(V)が第二の体積流量(V)と等しい場合、流体はほぼ純粋である。言い換えれば、流体は完全に主成分により構成されている。第一の体積流量(V)が第二の体積流量(V)と等しくない場合、流体は主成分に加えて副次成分を含む。
【0070】
図6は、本発明の一つの例において、流体が副次成分を含む場合に回路402により実行される処理600を表わすフロー図を示す。回路402は、ステップ601において、第一の体積流量(V)を第二の体積流量(V)で除算して体積差を求める。体積差は、流体全体に対する主成分の比率を表わす。回路402は、次いで、流体全体の測定された体積流量を、主成分の比率に基づいて調整する。測定された体積流量を調整するため、回路402は、ステップ603において、体積差を主成分の基準濃度で乗算して流体の実際の濃度を求める。回路402は、次いで、ステップ605において、実際の濃度に基づいて主成分の調整された体積流量を決定する。これにより顧客は、調整された体積流量に基づいて主成分に対する請求を受ける。
【0071】
図7は、本発明の一つの例において、流体が副次成分を含む場合に回路402により実行される処理700を表わすフロー図を示す。回路402は、ステップ701において、第一の体積流量(V)を第二の体積流量(V)で除算して体積差を求める。或る量の流体が顧客に配送される場合、回路402は、ステップ703において、体積差に基づいてその量の流体の費用を調整する。
【0072】
図8は、本発明の一つの例において回路402により実行される処理800を表わす論理図を示す。この例において、流体が流量計404を流れると想定する。流体の主成分の比率を決定するために、回路402は測定された濃度と温度により変動する濃度とを決定し、それらの濃度を比較する。まず、回路402はステップ801において、ピックオフ信号432を処理して流体の測定された濃度を決定する。回路402は、次いで、ステップ803において、数式[2]を用いて温度信号434を処理し、温度により変動する濃度を決定する。測定された濃度が温度により変動する濃度と等しい場合、流体はほぼ純粋である。測定された濃度が温度により変動する濃度と等しくない場合、流体は主成分に加えて副次成分を含む。
【0073】
流体が副次成分を含む場合、回路402はステップ805において、測定された濃度を温度により変動する濃度で除算して濃度差を求める。回路402は、体積差の代わりに濃度差を用いて、図6に描かれたのと同様に、濃度差に基づいて主成分の体積流量を調整することができる。回路402は、また、体積差の代わりに濃度差を用いて、図7に描かれたのと同様に、濃度差に基づいて或る量の流体の費用を調整することができる。
【0074】
プロパンを用いた主成分の比率決定の例
以下は、流量計404を流れる流体全体に対するプロパンの比率を決定する2つの例である。第一の例において、
【0075】
【数4】
Figure 2005502039
とおく。ただし、mは流量計404により測定される流体の質量流量を表わし、Tは流量計404を流れる流体の温度を表わし、Vmeasuredは流量計404により測定される流体の体積流量を表わす。また、プロパンの基準濃度を509kg/mと想定する。数式[1]を用いて、回路402は第一の体積流量を決定する。すなわち、
【0076】
【数5】
Figure 2005502039
数式[2]を用いて、回路402は温度により変動する濃度を決定する。すなわち、
【0077】
【数6】
Figure 2005502039
数式[3]を用いて、回路402は第二の体積流量を決定する。すなわち、
【0078】
【数7】
Figure 2005502039
数式[1]及び数式[3]は同じ結果をもたらすため、流体はほとんど完全にプロパンで構成されている。言い換えれば、流体は純粋なプロパンである。
【0079】
第二の例において、
【0080】
【数8】
Figure 2005502039
とおく。ただし、mは流量計404により測定される流体の質量流量を表わし、Tは流量計404を流れる流体の温度を表わし、Vmeasuredは流量計404により測定される流体の体積流量を表わす。また、プロパンの基準濃度は509kg/mと想定する。数式[1]を用いて、回路402は第一の体積流量を決定する。すなわち、
【0081】
【数9】
Figure 2005502039
数式[2]を用いて、回路402は温度により変動する濃度を決定する。すなわち、
【0082】
【数10】
Figure 2005502039
数式[3]を用いて、回路402は第二の体積流量を決定する。すなわち、
【0083】
【数11】
Figure 2005502039
数式[1]及び数式[3]は異なる結果をもたらす。そのため、回路402は、その差がプロパンに加えられた流体中の不純物によるものであり得ると決定する。言い換えれば、流体は純粋なプロパンではない。回路402は、図6の処理600を用いて、流体中の不純物を考慮に入れた実際の体積流量を計算することができる。
【図面の簡単な説明】
【0084】
【図1】図1は、先行技術における二重管形コリオリ流量計を示す。
【図2】図2は、先行技術における単一直管形コリオリ流量計を示す。
【図3】図3は、本発明の一つの例においてコリオリ流量計と通信するように構成された計器電子装置を示すブロック図である。
【図4】図4は、本発明の一つの例においてコリオリ流量計と通信するように構成された回路を示すブロック図である。
【図5】図5は、本発明の一つの例において、流体の主成分の比率を決定する処理を示す論理図である。
【図6】図6は、本発明の一つの例において、流体が副次成分を含む場合に回路により実行される処理を示すフロー図である。
【図7】図7は、本発明の一つの例において、流体が副次成分を含む場合に回路により実行される処理を示すフロー図である。
【図8】図8は、本発明の一つの例において、流体の主成分の比率を決定するもう一つ処理を示す論理図である。

Claims (30)

  1. コリオリ流量計(404)と通信する回路(402)を動作させる方法であって、
    前記コリオリ流量計を流れ且つ主成分を含む流体に応じて、前記コリオリ流量計からピックオフ信号(432)及び温度信号(434)を受け取る工程を含む方法において、
    前記ピックオフ信号及び前記温度信号を処理して前記流体に対する前記主成分の比率を決定する工程を含むことを特徴とする方法。
  2. 請求項1記載の方法であって、更に、
    前記ピックオフ信号(432)を処理して前記コリオリ流量計(404)を流れる前記流体の体積流量を決定する工程と、
    前記主成分の比率に基づいて前記体積流量を調整する工程と、
    を含む方法。
  3. 請求項1記載の方法であって、更に、前記主成分の比率に基づいて、或る量の前記流体の費用を調整する工程を含む方法。
  4. 請求項1記載の方法であって、前記主成分の比率が前記流体の純度を表わす方法。
  5. 請求項1記載の方法であって、前記主成分がプロパンを含む方法。
  6. 請求項1記載の方法であって、前記ピックオフ信号(432)及び前記温度信号(434)を処理して前記主成分の比率を決定する前記工程が、更に、
    前記ピックオフ信号を処理して前記コリオリ流量計(404)を流れる前記流体の質量流量を決定する工程と、
    前記質量流量を前記主成分の基準濃度で除算して第一の体積流量を決定する工程と、
    を備える方法。
  7. 請求項6記載の方法であって、前記ピックオフ信号(432)及び前記温度信号(434)を処理して前記主成分の比率を決定する前記工程が、更に、
    前記ピックオフ信号を処理して、前記コリオリ流量計(404)を流れる前記流体の測定された体積流量を決定する工程と、
    前記温度信号を処理して温度により変動する濃度を決定する工程であって、前記温度信号が前記コリオリ流量計を流れる前記流体の温度を表わす工程と、
    前記コリオリ流量計を流れる前記流体の測定された体積流量を前記の温度により変動する濃度で乗算した積を求める工程と、
    前記積を前記基準濃度で除算して第二の体積流量を求める工程と、
    を含む方法。
  8. 請求項7記載の方法であって、前記温度信号(434)を処理して温度により変動する濃度を決定する前記工程が、更に、
    前記コリオリ流量計(404)を流れる前記流体の温度に基づいて、前記基準濃度を調整する工程を含む方法。
  9. 請求項7記載の方法であって、前記ピックオフ信号(432)及び前記温度信号(434)を処理して前記主成分の比率を決定する工程が、更に、
    前記第一の体積流量を前記第二の体積流量で除算して前記主成分の比率を求める工程を含む方法。
  10. 請求項1記載の方法であって、前記ピックオフ信号(432)及び前記温度信号(434)を処理して前記主成分の比率を決定する工程が、更に、
    前記ピックオフ信号を処理して、前記コリオリ流量計(404)を流れる前記流体の測定された濃度を決定する工程と、
    前記温度信号を処理して温度により変動する濃度を決定する工程であって、前記温度信号が前記コリオリ流量計を流れる前記流体の温度を表わす工程と、
    前記の測定された濃度を前記の温度により変動する濃度で除算して前記主成分の比率を求める工程と、
    を含む方法。
  11. コリオリ流量計(404)と通信するよう構成された回路(402)であって、
    前記コリオリ流量計を流れ且つ主成分を含む流体に応じて前記コリオリ流量計からピックオフ信号(432)及び温度信号(434)を受け取り、前記ピックオフ信号及び前記温度信号を転送するよう構成されたインターフェース手段(414)を備える回路において、
    前記ピックオフ信号及び前記温度信号を受け取り、前記ピックオフ信号及び前記温度信号を処理して前記流体に対する前記主成分の比率を決定するよう構成された処理手段(412)を備えることを特徴とする回路。
  12. 請求項11記載の回路(402)であって、前記処理手段(412)が、更に、
    前記ピックオフ信号(432)を処理して前記コリオリ流量計(404)を流れる前記流体の体積流量を決定し、
    前記主成分の比率に基づいて前記体積流量を調整するように構成される回路。
  13. 請求項11記載の回路(402)であって、前記処理手段(412)が、更に、
    前記主成分の比率に基づいて、或る量の前記流体に対する費用を調整するように構成される回路。
  14. 請求項11記載の回路(402)であって、前記主成分の比率が前記流体の純度を表わす回路。
  15. 請求項11記載の回路(402)であって、前記主成分がプロパンを含む回路。
  16. 請求項11記載の回路(402)であって、前記処理手段(412)が、更に、
    前記ピックオフ信号(432)を処理して、前記コリオリ流量計(404)を流れる前記流体の質量流量を決定し、
    前記質量流量を前記主成分の基準濃度で除算して第一の体積流量を決定するように構成される回路。
  17. 請求項16記載の回路(402)であって、前記処理手段(412)が、更に、
    前記ピックオフ信号(432)を処理して、前記コリオリ流量計(404)を流れる前記流体の測定された体積流量を決定し、
    前記コリオリ流量計を流れる前記流体の温度を表わす前記温度信号(434)を処理して、温度により変動する濃度を決定し、
    前記コリオリ流量計を流れる前記流体の測定された体積流量に前記の温度により変動する濃度を乗算した積を求め、
    前記積を前記基準濃度で除算して第二の体積流量を求めるように構成される回路。
  18. 請求項17記載の回路(402)であって、前記処理手段(412)が、更に、
    前記コリオリ流量計(404)を流れる前記流体の温度に基づいて前記基準濃度を調整し、前記の温度により変動する濃度を決定するように構成される回路。
  19. 請求項17記載の回路(402)であって、前記処理手段(412)が、更に、
    前記第一の体積流量を前記第二の体積流量で除算して、前記主成分の比率を求めるように構成される回路。
  20. 請求項11記載の回路(402)であって、前記処理手段(412)が、更に、
    前記ピックオフ信号(432)を処理して、前記コリオリ流量計(404)を流れる前記流体の測定された濃度を決定し、
    前記コリオリ流量計を流れる前記流体の温度を表わす前記温度信号(434)を処理して、温度により変動する濃度を決定し、
    前記の測定された濃度を前記の温度により変動する濃度で除算して、前記主成分の比率を求めるように構成される回路。
  21. コリオリ流量計(404)とともに利用するためのソフトウェア製品であって、
    プロセッサ(412)により実行された場合に、前記コリオリ流量計を流れ且つ主成分を含む流体に応じて、前記コリオリ流量計からピックオフ信号(432)及び温度信号(434)を受け取るよう構成された比率ソフトウェア(424)と、
    前記比率ソフトウェアを蓄積するよう構成された記憶媒体と、
    を備え、
    前記比率ソフトウェアが、更に、前記プロセッサにより実行された場合に、前記ピックオフ信号及び前記温度信号を処理して前記流体に対する前記主成分の比率を決定するように構成されることを特徴とするソフトウェア製品。
  22. 請求項21記載のソフトウェア製品であって、前記比率ソフトウェア(424)が、更に、前記プロセッサ(412)により実行された場合に、
    前記ピックオフ信号(432)を処理して、前記コリオリ流量計(404)を流れる前記流体の体積流量を決定し、
    前記主成分の比率に基づいて前記体積流量を調整するように構成されるソフトウェア製品。
  23. 請求項21記載のソフトウェア製品であって、前記比率ソフトウェア(424)が、更に、前記プロセッサ(412)により実行された場合に、
    前記主成分の比率に基づいて或る量の前記流体の費用を調整するように構成されるソフトウェア製品。
  24. 請求項21記載のソフトウェア製品であって、前記主成分の比率が前記流体の純度を表わすソフトウェア製品。
  25. 請求項21記載のソフトウェア製品であって、前記主成分がプロパンを含むソフトウェア製品。
  26. 請求項21記載のソフトウェア製品であって、前記比率ソフトウェア(424)が、更に、前記プロセッサ(412)により実行された場合に、
    前記ピックオフ信号(432)を処理して、前記コリオリ流量計(404)を流れる前記流体の質量流量を決定し、
    前記質量流量を前記主成分の基準濃度で除算して、第一の体積流量を決定するように構成されるソフトウェア製品。
  27. 請求項26記載のソフトウェア製品であって、前記比率ソフトウェア(424)が、更に、前記プロセッサ(412)により実行された場合に、
    前記ピックオフ信号(432)を処理して、前記コリオリ流量計(404)を流れる前記流体の測定された体積流量を決定し、
    前記コリオリ流量計を流れる前記流体の温度を表わす前記温度信号(434)を処理して、温度により変動する濃度を決定し、
    前記コリオリ流量計を流れる前記流体の測定された体積流量に前記の温度により変動する濃度を乗算して積を求め、
    前記積を前記基準濃度で除算して第二の体積流量を求めるように構成されるソフトウェア製品。
  28. 請求項27記載のソフトウェア製品であって、前記比率ソフトウェア(424)が、更に、前記プロセッサ(412)により実行された場合に、
    前記コリオリ流量計(404)を流れる前記流体の温度に基づいて前記基準濃度を調整し、前記の温度により変動する濃度を決定するように構成されるソフトウェア製品。
  29. 請求項27記載のソフトウェア製品であって、前記比率ソフトウェア(424)が、更に、前記プロセッサ(412)により実行された場合に、
    前記第一の体積流量を前記第二の体積流量で除算して、前記主成分の比率を求めるように構成されるソフトウェア製品。
  30. 請求項21記載のソフトウェア製品であって、前記比率ソフトウェア(424)が、更に、前記プロセッサ(412)により実行された場合に、
    前記ピックオフ信号を処理して、前記コリオリ流量計(404)を流れる前記流体の測定された濃度を決定し、
    前記コリオリ流量計を流れる前記流体の温度を表わす前記温度信号(434)を処理して、温度により変動する濃度を決定し、
    前記の測定された濃度を前記の温度により変動する濃度で除算して、前記主成分の比率を求めるように構成されるソフトウェア製品。
JP2003525238A 2001-08-29 2002-08-26 コリオリ流量計を利用した流体の主成分の比率決定 Expired - Lifetime JP4448329B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/941,333 US6636815B2 (en) 2001-08-29 2001-08-29 Majority component proportion determination of a fluid using a coriolis flowmeter
PCT/US2002/027100 WO2003021204A1 (en) 2001-08-29 2002-08-26 A majority component proportion determination of a fluid using a coriolis flowmeter

Publications (3)

Publication Number Publication Date
JP2005502039A true JP2005502039A (ja) 2005-01-20
JP2005502039A5 JP2005502039A5 (ja) 2008-12-18
JP4448329B2 JP4448329B2 (ja) 2010-04-07

Family

ID=25476298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003525238A Expired - Lifetime JP4448329B2 (ja) 2001-08-29 2002-08-26 コリオリ流量計を利用した流体の主成分の比率決定

Country Status (17)

Country Link
US (2) US6636815B2 (ja)
EP (2) EP1421346B1 (ja)
JP (1) JP4448329B2 (ja)
KR (1) KR100615484B1 (ja)
CN (1) CN1549917B (ja)
AR (1) AR036313A1 (ja)
AT (1) ATE447162T1 (ja)
AU (1) AU2002323396B2 (ja)
BR (1) BRPI0211866B1 (ja)
CA (1) CA2446743C (ja)
DE (1) DE60234192D1 (ja)
DK (1) DK1421346T3 (ja)
HK (1) HK1070126A1 (ja)
MX (1) MXPA04001806A (ja)
PL (1) PL208408B1 (ja)
RU (1) RU2275606C2 (ja)
WO (1) WO2003021204A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636815B2 (en) * 2001-08-29 2003-10-21 Micro Motion, Inc. Majority component proportion determination of a fluid using a coriolis flowmeter
AU2003252154A1 (en) * 2002-07-25 2004-02-16 Brent L. Carpenter Precise pressure measurement by vibrating an oval conduit along different cross-sectional axes
US7152460B2 (en) * 2003-07-15 2006-12-26 Cidra Corporation Apparatus and method for compensating a coriolis meter
US7134320B2 (en) * 2003-07-15 2006-11-14 Cidra Corporation Apparatus and method for providing a density measurement augmented for entrained gas
US7299705B2 (en) * 2003-07-15 2007-11-27 Cidra Corporation Apparatus and method for augmenting a Coriolis meter
US7040181B2 (en) 2004-03-19 2006-05-09 Endress + Hauser Flowtec Ag Coriolis mass measuring device
US7284449B2 (en) * 2004-03-19 2007-10-23 Endress + Hauser Flowtec Ag In-line measuring device
DE102004018326B4 (de) 2004-04-13 2023-02-23 Endress + Hauser Flowtec Ag Vorrichtung und Verfahren zum Messen einer Dichte und/oder einer Viskosität eines Fluids
US7380438B2 (en) 2004-09-16 2008-06-03 Cidra Corporation Apparatus and method for providing a fluid cut measurement of a multi-liquid mixture compensated for entrained gas
US7389687B2 (en) * 2004-11-05 2008-06-24 Cidra Corporation System for measuring a parameter of an aerated multi-phase mixture flowing in a pipe
US7644632B2 (en) * 2005-01-15 2010-01-12 Best John W Viscometric flowmeter
KR101206381B1 (ko) * 2005-03-29 2012-11-29 마이크로 모우션, 인코포레이티드 가스 유동 물질 내의 액체 유동 분율을 결정하기 위한 방법 및 계측 전자장치
DE102005046319A1 (de) 2005-09-27 2007-03-29 Endress + Hauser Flowtec Ag Verfahren zum Messen eines in einer Rohrleitung strömenden Mediums sowie Meßsystem dafür
US7360452B2 (en) * 2005-12-27 2008-04-22 Endress + Hauser Flowtec Ag In-line measuring devices and method for compensation measurement errors in in-line measuring devices
JP5114427B2 (ja) 2005-12-27 2013-01-09 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト インライン測定装置、およびインライン測定装置における測定誤差を補正するための方法
US7360453B2 (en) * 2005-12-27 2008-04-22 Endress + Hauser Flowtec Ag In-line measuring devices and method for compensation measurement errors in in-line measuring devices
DE102006062600B4 (de) 2006-12-29 2023-12-21 Endress + Hauser Flowtec Ag Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts
US20090107218A1 (en) * 2007-10-30 2009-04-30 Chesapeake Operating, Inc. Test separator
DE102007062908A1 (de) * 2007-12-21 2009-06-25 Endress + Hauser Flowtec Ag Verfahren und System zur Bestimmung mindestens einer Prozessgröße eines strömenden Mediums
US8061186B2 (en) 2008-03-26 2011-11-22 Expro Meters, Inc. System and method for providing a compositional measurement of a mixture having entrained gas
DE102008016235A1 (de) 2008-03-27 2009-10-01 Endress + Hauser Flowtec Ag Verfahren zum Betreiben eines auf einer rotierenden Karussell-Abfüllmachine angeordneten Meßgeräts
JP5097658B2 (ja) * 2008-09-17 2012-12-12 アークレイ株式会社 流量センサの調整方法
JP4469008B1 (ja) * 2008-11-18 2010-05-26 株式会社オーバル コリオリ流量計
EP2435800A1 (en) * 2009-05-26 2012-04-04 Micro Motion, Inc. A flow meter including a balance member
TWI410611B (zh) * 2009-12-11 2013-10-01 Oval Corp Coriolis flowmeter
US10041870B2 (en) * 2011-06-21 2018-08-07 Halliburton Energy Services, Inc. Fluid densitometer with temperature sensor to provide temperature correction
US8671733B2 (en) * 2011-12-13 2014-03-18 Intermolecular, Inc. Calibration procedure considering gas solubility
JP6105156B2 (ja) 2013-04-30 2017-03-29 マイクロ モーション インコーポレイテッド 質量流量メーターおよび密度メーターを備えた体積流量センサーシステム
US9500576B2 (en) 2013-10-08 2016-11-22 Yokogawa Corporation Of America Systems and methods for determining a volumetric flow of a liquid portion of a multiphase fluid flow
DE102013111586A1 (de) 2013-10-21 2015-04-23 Gea Mechanical Equipment Gmbh Verfahren zur kontinuierlichen Klärung einer fließfähigen Suspension mit schwankendem Feststoffgehalt mit einer Zentrifuge, insbesondere einem selbstentleerenden Separator
US10473512B2 (en) * 2015-04-14 2019-11-12 Micro Motion, Inc. Detecting an inaccurate flow rate measurement by a vibratory meter
DE102020131649A1 (de) 2020-09-03 2022-03-03 Endress + Hauser Flowtec Ag Vibronisches Meßsystem
DE102021131866A1 (de) 2021-12-03 2023-06-07 Endress+Hauser Flowtec Ag Verfahren zum Detektieren eines Fremdkörpers in einem Medium

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304766A (en) * 1964-01-17 1967-02-21 Texaco Inc Method for measuring two-phase fluid flow
US4020330A (en) * 1976-05-03 1977-04-26 International Telephone And Telegraph Corporation Densitometer
US4238825A (en) 1978-10-02 1980-12-09 Dresser Industries, Inc. Equivalent standard volume correction systems for gas meters
US4773257A (en) * 1985-06-24 1988-09-27 Chevron Research Company Method and apparatus for testing the outflow from hydrocarbon wells on site
US4735097A (en) 1985-08-12 1988-04-05 Panametrics, Inc. Method and apparatus for measuring fluid characteristics using surface generated volumetric interrogation signals
US4876879A (en) 1988-08-23 1989-10-31 Ruesch James R Apparatus and methods for measuring the density of an unknown fluid using a Coriolis meter
US4872351A (en) * 1988-08-23 1989-10-10 Micro Motion Incorporated Net oil computer
US5103181A (en) * 1988-10-05 1992-04-07 Den Norske Oljeselskap A. S. Composition monitor and monitoring process using impedance measurements
US5259239A (en) 1992-04-10 1993-11-09 Scott Gaisford Hydrocarbon mass flow meter
WO1995010028A1 (en) 1993-10-05 1995-04-13 Atlantic Richfield Company Multiphase flowmeter for measuring flow rates and densities
US5602346A (en) * 1994-06-06 1997-02-11 Oval Corporation Mass flowmeter converter
US5654502A (en) * 1995-12-28 1997-08-05 Micro Motion, Inc. Automatic well test system and method of operating the same
RU2181477C2 (ru) * 1996-01-17 2002-04-20 Майкро Моушн, Инк. Расходомер перепускного типа
US5661232A (en) 1996-03-06 1997-08-26 Micro Motion, Inc. Coriolis viscometer using parallel connected Coriolis mass flowmeters
US5687100A (en) 1996-07-16 1997-11-11 Micro Motion, Inc. Vibrating tube densimeter
US6032539A (en) 1996-10-11 2000-03-07 Accuflow, Inc. Multiphase flow measurement method and apparatus
US6327914B1 (en) * 1998-09-30 2001-12-11 Micro Motion, Inc. Correction of coriolis flowmeter measurements due to multiphase flows
US6360579B1 (en) * 1999-03-26 2002-03-26 Micro Motion, Inc. Flowmeter calibration system with statistical optimization technique
US6604051B1 (en) * 2000-04-17 2003-08-05 Southwest Research Institute System and method to determine thermophysical properties of a multi-component gas
US6471487B2 (en) * 2001-01-31 2002-10-29 Micro Motion, Inc. Fluid delivery system
US6636815B2 (en) * 2001-08-29 2003-10-21 Micro Motion, Inc. Majority component proportion determination of a fluid using a coriolis flowmeter

Also Published As

Publication number Publication date
US6745135B2 (en) 2004-06-01
DE60234192D1 (de) 2009-12-10
EP1421346B1 (en) 2009-10-28
ATE447162T1 (de) 2009-11-15
EP1421346A1 (en) 2004-05-26
EP1840537A2 (en) 2007-10-03
CA2446743A1 (en) 2003-03-13
RU2004109150A (ru) 2005-02-10
RU2275606C2 (ru) 2006-04-27
US6636815B2 (en) 2003-10-21
KR100615484B1 (ko) 2006-08-25
KR20040031030A (ko) 2004-04-09
AU2002323396A2 (en) 2003-03-18
MXPA04001806A (es) 2004-07-23
US20030055581A1 (en) 2003-03-20
WO2003021204A1 (en) 2003-03-13
DK1421346T3 (da) 2010-03-15
HK1070126A1 (en) 2005-06-10
CN1549917A (zh) 2004-11-24
AR036313A1 (es) 2004-08-25
PL367731A1 (en) 2005-03-07
JP4448329B2 (ja) 2010-04-07
US20030208325A1 (en) 2003-11-06
EP1840537B1 (en) 2019-10-09
BR0211866A (pt) 2004-09-21
AU2002323396B2 (en) 2007-02-15
CA2446743C (en) 2010-02-09
BRPI0211866B1 (pt) 2018-12-04
PL208408B1 (pl) 2011-04-29
EP1840537A3 (en) 2008-06-04
CN1549917B (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4448329B2 (ja) コリオリ流量計を利用した流体の主成分の比率決定
JP2005502039A5 (ja)
AU2002323396A1 (en) A majority component proportion determination of a fluid using a coriolis flowmeter
RU2140068C1 (ru) Денсиметр с вибрирующей трубкой
CA2424348C (en) Apparatus and method for compensating mass flow rate of a material when the density of the material causes an unacceptable error in flow rate
JP3679752B2 (ja) コリオリ流量計の駆動制御のための形状識別
JP2000505894A (ja) 振動管形密度計
AU742211B2 (en) Combined pickoff and oscillatory driver for use in coriolis flowmeters and method of operating the same
AU2002228947A1 (en) Apparatus and method for compensating mass flow rate of a material when the density of the material causes an unacceptable error in flow rate
JP2004521319A5 (ja)
JP2850556B2 (ja) コリオリ質量流量計

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080529

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080828

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080926

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081003

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20081029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4448329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term