JP2005349285A - 固液分離装置および運転方法 - Google Patents

固液分離装置および運転方法 Download PDF

Info

Publication number
JP2005349285A
JP2005349285A JP2004171949A JP2004171949A JP2005349285A JP 2005349285 A JP2005349285 A JP 2005349285A JP 2004171949 A JP2004171949 A JP 2004171949A JP 2004171949 A JP2004171949 A JP 2004171949A JP 2005349285 A JP2005349285 A JP 2005349285A
Authority
JP
Japan
Prior art keywords
flow
chamber
membrane
liquid
circulation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004171949A
Other languages
English (en)
Inventor
Taichi Kamisaka
太一 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2004171949A priority Critical patent/JP2005349285A/ja
Publication of JP2005349285A publication Critical patent/JP2005349285A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】上昇流を最大限利用して洗浄効果を高め、散気装置からの空気量を抑制することができる固液分離装置およびその運転方法を提供する。
【解決手段】ケーシング22の内部に、上端の開口25a、26aおよび下端の開口25b、26bを開放した複数のチャンバー25、26と、各チャンバーの上端の各開口を連通して複数のチャンバーを連環させる上部循環路27、および下端の各開口を連通して複数のチャンバーを連環させる下部循環路28とを形成し、上部循環路27と下部循環路28を連通してケーシング22の外部に外部循環路20を設け、各チャンバーのそれぞれに複数の膜カートリッジ29を充填し、各チャンバーの膜カートリッジの下方に散気管31、32を配置し、各散気管に備えた電動弁36、37により、一方の散気管31にのみ空気を供給する循環流・濾過工程と、双方の散気管31、32へ空気を供給する全散気工程とを間欠的に行う。
【選択図】 図1

Description

本発明は固液分離装置および運転方法に関し、下水、産業排水、生活排水等の水処理技術に係るものである。
従来の水処理、例えば膜分離活性汚泥処理(MBR)においては、下水、産業排水、生活排水等を活性汚泥処理する反応槽内に浸漬型膜分離装置を浸漬している。この浸漬型膜分離装置には、例えば図9〜図11に示すものがある。この構成では、反応槽1に浸漬する浸漬型膜分離装置2が本体ケーシング3の内部に複数枚の有機平膜型の膜カートリッジ4を所定間隔で平行に配列して充填したものである。各膜カートリッジ4は樹脂製の濾板4aの表裏の両面に有機平膜からなる濾過膜4bを有するものであり、膜面を上下方向に沿わせて配置している。
本体ケーシング3の下端開口付近には膜カートリッジ4の下方に位置して散気装置5を配置しており、散気装置5より噴出する膜面洗浄気体の全量が本体ケーシング3に流入する。
上記した浸漬型膜分離装置2では、平行に配列した膜カートリッジ4の相互間に槽内混合液が流れる流路を形成し、散気装置5より噴出する空気のエアリフト作用により固気液混相の上昇流6を生じさせ、この上昇流6によって槽内混合液を膜カートリッジ4の相互間の流路に供給する。
膜カートリッジ4には吸引ポンプ7によって吸引圧を与えており、槽内混合液が膜カートリッジ4の膜面に沿ってクロスフローで流れる間に、濾過膜4bに作用する膜間差圧を駆動圧として濾過膜4bで槽内混合液を濾過し、濾過膜4bを透過した濾過液7を処理水として取り出している。
一般に、濾過膜4bを使用する固液分離では濾過によって分離した固形分やバイオフィルム(微生物がコロニー(集落)上に凝集して増殖し、それらが産出する粘液性物質)が膜面に付着する。このため、付着物による膜面の汚れの進行を抑制(制御)する手段が必要であり、従来では膜面に沿って水の流れを形成し、水流によって膜面に洗浄作用を与えている。しかし、コロイドサイズ以上のものを分離する場合には、十分な洗浄作用を膜面に及ぼす水流を形成するために必要なエネルギーが、濾過に必要なエネルギーより多くなる場合がある。
上述した構成では、図10に示すように、槽内混合液をクロスフローで供給することにより、膜カートリッジ4の膜面に固形分8が膜間差圧で押し付けられて付着することを抑制し、コロイド状の物質が強く膜面に押し付けられて濾過膜4bの微細孔を閉塞する可能性(時間的確率)をできる限り軽減しつつ、固気液混相の上昇流6で膜面の付着物を洗い流して洗浄している。この固気液混相の上昇流6による洗浄作用を微小時間で見ると固液相と気相とが交互に膜面に作用して膜面上に乱流を形成しており、この乱流が洗浄作用に大きな効果を与えている。
ところで、膜面上に供給する水流を供給する別法としてはポンプを利用するものがある。しかし、ポンプを利用して乱流を形成するためには複雑な機構を要し、またポンプの消費エネルギーは過大で実用的ではない。このため、実際には散気装置5を使用して気泡流を発生させ、気泡流によって固気液混相の上昇流6を形成することが一般的である。また、散気装置5を利用する場合にあって、乱流状態を制御するためにブロワ(図示省略)の散気量をモータの周波数制御等によって調整することも可能であるが、複雑な制御装置が必要なことやコストの点において問題がある。
特開平7−185271号公報 特開2003−305313公報
ところで、上記した反応槽1に浸漬型膜分離装置2を浸漬する構成において、濾過膜カートリッジ4の膜面に十分な洗浄作用を与える固気液混相の上昇流6を発生させるためには、散気装置5から多くの空気を散気する必要がある。
また、反応槽1において浸漬型膜分離装置2のケーシング3の内部を上昇流6で流れる槽内混合液は、ケーシング3の上端開口から反応槽1の上部領域に流れ出た後に、ケーシング3の外部を下降流9となって流れ、ケーシング3へ下端開口から循環する。この下降流9は膜面の洗浄に何ら寄与していない。
また、ケーシング3の内部に形成する上向流路およびケーシング3の外部に形成する下向流路において上昇流6および下降流9の流れを阻害する要因が存在する場合には、上昇流6および下降流9が有するエネルギーが膜面洗浄に寄与しないで無駄に消費されてエネルギー損失が大きくなり、結果として散気装置5から散気する空気量を増加させる要因となる。
また、浸漬型膜分離装置2では上昇流6による膜面洗浄を行っても経時的に膜カートリッジ4の膜面に固形分8が層状にケーキ層として付着することが避けられず、ケーキ層が上昇流6の流れの障害となる。このため、ケーキ層によって膜カートリッジ4の相互間の流路が閉塞する事態を防ぐために、特に槽内混合液の固形物濃度が高い場合には、隣接する膜カートリッジ4の間の間隙を大きくして対向する濾過膜4bの膜面間に余裕のある空間を形成することが必要であった。
しかし、膜カートリッジ4の間の間隙を大きくするにはケーシング3における膜カートリッジ4の充填密度を下げる必要がある。反応槽1の槽容量は流入する汚水に対する処理能力に応じて決まっており、できるだけ小型であることが望まれる。このため、反応槽1を拡張することなくケーシング3を大きくすると、下向流路が狭くなって下降流9の流れを阻害することになる。また、膜カートリッジ4の濾板4aは所定の強度を確保するための板厚を必要としており、薄肉化は困難である。
したがって、対向する濾過膜4bの膜面間に余裕のある空間を形成するためには、ケーシング3に充填する膜カートリッジ4の数量を削減して、膜カートリッジ4の充填密度を下げる必要がある。
しかし、膜カートリッジ4の数量の削減は濾過膜4bの総面積の減少となり、散気装置5から散気する単位時間当たりの空気量に対して濾過膜4bの単位面積当たりの空気量が洗浄に必要な量より過大となる。
ところで、図11に示すように、膜分離装置の濾過膜として中空糸膜10を使用して膜の充填密度を高めることは可能である。しかし、中空糸膜10は上昇流に対して十分な剛性を有しないので、上昇流が持つエネルギーが中空糸膜の運動エネルギーとして奪われ、上昇流6の中で中空糸膜10が揺れることで、上昇流6が膜面に沿って流れることで及ぼす洗浄作用が薄れるとともに、固気液混相の乱流による洗浄効果も低下する。
また、特許文献1には、処理槽の液中に複数の膜ユニットを浸漬し、膜ユニット間に仕切板を配置し、個々の膜ユニットの下方に個々に散気装置を設け、散気装置を交互に作動可能にした構成が開示されている。
この構成においては、散気装置が交互に作動して、作動している散気装置の上の膜ユニットの膜間に気泡による上向流が生じ、気泡と上向水流とにより膜面に付着した非濾過物質を剥離する。作動を中止している散気装置の上の膜ユニットの膜間には下向流が生じ、この下向水流が膜面に付着した非濾過物質を剥離する。
特許文献2には、ろ過分離槽内の複数のろ過モジュール間に仕切り壁を設置し、各ろ過モジュール下部にそれぞれの散気管を有し、ろ過及び洗浄時に、仕切り壁を介して隣合った散気管中の一方のみの通気を交互に行うことが開示されている。
この構成においては、いずれかの散気管に対して通気すれば、通気側ろ過モジュール流路における気液混合汚泥の流れが上向流となり、反対側ろ過モジュール流路の流れは下向流となる。
しかし、特許文献1および2に記載する構成において、下向流は上向流が生起することで付随的に発生するものであり、上向流が流れる流路と下向流が流れる流路とは同じ流路抵抗および流路断面積を有している。このため、下向流が流れ難いと結果として上向流が流れ難くなり、十分な洗浄効果を得ることができない。
本発明は上記した課題を解決するものであり、上昇流を洗浄作用に最大限利用することができるとともに、洗浄効果を高めることができ、さらに散気装置から散気する空気量を抑制することができる固液分離装置およびその運転方法を提供することを目的とする。
上記した課題を解決するために、請求項1に記載する本発明の固液分離装置は、被処理液を貯留する膜分離槽の内部に上昇流路および下降流路を形成する複数のチャンバーを設け、各チャンバー内に膜濾過手段を配置し、各チャンバーの上端の開口を連通して上部循環路を形成し、各チャンバーの下端の開口を連通して下部循環路を形成し、上部循環路と下部循環路とを連通して下降流路を形成する外部循環路を設け、上昇流路をなすチャンバーの膜濾過手段の下方位置に散気手段を配置し、流路断面において下降流路を上昇流路より広く形成したものである。
上記した構成により、上昇流路のチャンバーにおいて散気管へ空気供給手段から空気を供給し、散気管から噴出する空気によってチャンバー内に上昇流を生起させ、この上昇流によって被処理液を気泡とともに固気液混相でチャンバー内の膜濾過手段にクロスフローで供給し、気泡による乱流作用によって膜濾過手段の膜面に強い洗浄効果を与えながら被処理液を濾過する。膜濾過手段を通過した被処理液はチャンバーから上端の開口を通して上部循環路へ流出し、新たに被処理液が下部循環路から下端の開口を通してチャンバーへ流入する。
この上昇流路のチャンバーにおいて生じる上昇流を駆動力として循環流が生じ、循環流は下降流路のチャンバーおよび外部循環路を下降流となって流れる。このとき、上昇流が流れる流路断面に比して下降流が流れる流路断面の面積が広くなることで下降流が円滑に流れ、上昇流路のチャンバーにおける上昇流の流れが促進される。このため、上昇流と下降流が同じ流路断面積の流路を流れる場合に比して同じ曝気空気量において上昇流の流速が大きくなり、上昇流路のチャンバーにおける洗浄効果が高まり、一定期間に膜濾過手段を透過する膜ろ液が多くなる。
また、下降流路のチャンバーでは、上部循環路から上端の開口を通して流入する被処理液が下降流となって膜濾過手段をクロスフローで通過し、膜濾過手段の膜面に水流による洗浄効果を与えながら被処理液を濾過する。膜濾過手段を通過した被処理液はチャンバーから下端の開口を通して下部循環路へ流出する。
したがって、上昇流路のチャンバーにおいて膜濾過手段の膜面に強い洗浄作用を与える上昇流を発生させ、その反作用的に生じる下降流で下降流路のチャンバーにおいて膜濾過手段の膜面に洗浄作用を与え、かつ下降流の円滑な流れによって上昇流の流速が大きくなることで、膜濾過手段の膜面洗浄に要する空気総量を抑制することができる。
請求項2に記載する本発明の固液分離装置は、各チャンバーに配置した膜濾過手段毎に駆動圧を調整する駆動圧調整手段を設けたものである。
上記した構成において、駆動圧調整手段は吸引ポンプを各チャンバー毎に設けるか、もしくは1台の吸引ポンプをそれぞれバルブを介して各チャンバー毎に接続することにより実現でき、上昇流路のチャンバーにおけるフラックスと下降流路のチャンバーにおけるフラックスとをそれぞれに独立して制御することで、上昇流路のチャンバーでは上昇流による洗浄作用に応じたフラックスとなし、下降流路のチャンバーでは下降流による洗浄作用に応じたフラックスとなす。
請求項3に記載する本発明の固液分離装置の運転方法は、被処理液を貯留する膜分離槽の内部に上昇流路および下降流路を形成する複数のチャンバーを設け、各チャンバー内に膜濾過手段を配置し、各チャンバーの上端の開口を連通して上部循環路を形成し、各チャンバーの下端の開口を連通して下部循環路を形成し、上部循環路と下部循環路とを連通して下降流路を形成する外部循環路を設け、各チャンバーの膜濾過手段の下方位置に散気手段を配置し、流路断面において下降流路を上昇流路より広く形成し、各チャンバーに配置した膜濾過手段毎に駆動圧を調整する駆動圧調整手段を設けた固液分離装置において、循環流・濾過工程を行い、間欠的に全散気工程を行うものであって、
循環流・濾過工程では、上昇流路のチャンバーの散気手段による散気によって上昇流を生じさせ、この上昇流を駆動力として、上昇流路のチャンバー、上部循環路、下降流路のチャンバーおよび外部循環流路、下部循環流路を通る被処理液の循環流を形成し、各チャンバーにおいて上昇流もしくは下降流の流速に応じて膜濾過手段の駆動圧を調整しつつ、膜濾過手段によって被処理液を濾過し、
全散気工程では、全てのチャンバーにおいて各散気手段から散気して上昇流を生じさせるものである。
本発明によれば、上昇流路のチャンバーにおいて強い洗浄作用を与える上昇流を発生させ、その反作用的に生じる下降流で下降流路のチャンバーにおいて洗浄作用を与え、かつ下降流の円滑な流れによって上昇流の流速が大きくなることで、膜濾過手段の膜面洗浄に要する空気総量を抑制することができる。また、散気・濾過操作と全散気工程とを切り替えることにより、膜面上を流れる水流の反転および洗浄作用の強弱の変化によって、弱い洗浄作用の下降流のもとで膜面に付着する固形分を強い洗浄作用の上昇流で効率良く除去することができる。
以下、本発明の実施の形態を図面に基づいて説明する。図1において、固液分離装置21は膜分離槽をなすケーシング22を有しており、ケーシング22は被処理液供給系23から流入する被処理液23aとしての下水、産業排水、生活排水等を貯留する。
ケーシング22の内部には仕切板24を配置して仕切板24の両側にチャンバー25、26を形成しており、各チャンバー25、26は上端の開口25a、26aおよび下端の開口25b、26bをケーシング22の内部の所定水深下に開放している。
仕切板24は上端が越流堰24aをなし、下端が潜流堰24bをなしており、越流堰24aおよび潜流堰24bは抵抗の少ない曲面をなして円滑な流れを形成する。越流堰24aの上方域は各チャンバー25、26の上端の開口25a、26aを連環させる上部循環路27をなし、潜流堰24bの下方域は各チャンバー25、26の下端の開口25b、26bを連環させる下部循環路28をなしている。ケーシング22の側部には外部循環路20を設けており、外部循環路20は上端側がケーシング22の越流口をなすケーシング開口22aを介して上部循環路27に連通し、下端側がケーシング22の下端開口22bを介して下部循環路28に連通している。
各チャンバー25、26の内部には膜濾過手段として複数の有機平膜型の膜カートリッジ29を所定間隔で平行に配列して充填しており、カートリッジ29は樹脂製の濾板の表裏の両面に有機平膜からなる膜濾過膜を有し、膜面を上下方向に沿わせて配置している。各膜カートリッジ29は吸引ポンプ30に連通し、吸引ポンプ30で与える吸引圧を駆動圧として濾過作用を行う。吸引ポンプ30は各チャンバー25、26毎に設けることも可能であり、1台の吸引ポンプ30をそれぞれバルブを介して各チャンバー25、26毎の膜カートリッジ29に接続することも可能であり、膜濾過手段に中空糸膜を使用することも可能である。
各チャンバー25、26に充填した膜カートリッジ29の下方位置には散気管31、32を配置している。各散気管31、32は各散気管31、32へ空気を供給する空気供給手段に接続しており、空気供給手段は、ブロア33と、各散気管31、32のそれぞれに連通する空気供給系34、35と、各空気供給系34、35に介装した電動弁36、37を備えており、コントローラ38によって各電動弁36、37を開閉制御し、吸引ポンプ30の起動・停止を制御する。
コントローラ38に変えて各電動弁36、37をタイマー等で制御することも可能である。また、各散気管31、32にそれぞれブロア33を別途に設け、ブロア33の起動・停止をコントローラ38で制御することも可能である。さらに、コントローラ38による自動制御に代えて手動操作することも可能である。
ケーシング22の内部には双方のチャンバー25、26を隔てた両側位置にガイド手段をなすハンチ39を設けており、各ハンチ39は各チャンバー25、26の上端の開口25a、26aおよび下端の開口25b、26bに臨んで位置し、被処理液23aの流れをチャンバー25、26の流路方向と上部循環路27および下部循環路28の流路方向とにわたって転向させるガイド面(傾斜面)39aを有している。
以下、上記した構成における作用を説明する。循環流・濾過工程では、吸引ポンプ30を駆動しつつ、一方の電動弁36を開栓してブロア33から供給する空気を一方の空気供給系34を通して一方の散気管31に供給し、散気管31から空気が噴出す状態で一方のチャンバー25において散気・濾過操作を行う。
この間に、他方の電動弁37は閉栓した状態にあり、ブロア33から供給する空気は他方の散気管32には供給されず、散気管32から空気が噴出しない状態で他のチャンバー26において非散気・濾過操作を行う。
散気・濾過操作を行うチャンバー25では、散気管31から噴出する空気がチャンバー25の内部に上昇流40を生起させ、この上昇流40が被処理液23aを気泡とともに固気液混相でチャンバー25に充填した膜カートリッジ29の相互間にクロスフローで供給し、気泡による乱流作用によって膜カートリッジ29の膜面に強い洗浄効果を与えながら、吸引ポンプ30の吸引圧を駆動圧として膜カートリッジ29が被処理液を濾過する。
膜カートリッジ29の相互間の流路を通過した被処理液23aはチャンバー25から上端の開口25aを通して上部循環路27へ流出し、新たに被処理液23aが下部循環路28から下端の開口25bを通してチャンバー25へ流入する。
この散気・濾過操作を行うチャンバー25において生じる上昇流40を駆動力として膜分離槽内に循環流41が生じる。この循環流41は非散気・濾過操作を行う他のチャンバー26および外部循環路20を下降流42となって流れる。
よって、上昇流40が流れるチャンバー25における流量に比して下降流42が流れるチャンバー26における流量が少なくなり、下降流42の流速および抵抗が小さくなって下降流が円滑に流れ、散気・濾過操作を行うチャンバー25における上昇流40の流れが促進される。
このため、上昇流40と下降流42が同じ流路断面積の流路を流れる場合に比して同じ曝気空気量において上昇流40の流速が大きくなり、散気・濾過操作を行うチャンバー25における洗浄効果が高まり、一定期間に膜カートリッジ29を透過する膜ろ液が多くなる。
非散気・濾過操作を行うチャンバー26では、散気管32への空気供給を停止する状態で、上部循環路27から上端の開口26aを通して流入する被処理液23aが下降流42となってチャンバー26に充填した膜カートリッジ29の相互間をクロスフローで通過して、膜カートリッジ29の膜面に被処理液23aの水流による洗浄効果を与えながら、吸引ポンプ30の吸引圧を駆動圧として膜カートリッジ29が被処理液を濾過する。膜カートリッジ29の相互間の流路を通過した被処理液23aはチャンバー26から下端の開口26bを通して下部循環路28へ流出し、外部循環路20を流れる被処理液23aも下端開口22bを通して下部循環路28へ合流する。
散気・濾過操作を行うチャンバー25の曝気空気量は、例えば膜カートリッジ29の一枚当たりで5L/min以上、循環流量は膜カートリッジ29の一枚当たりで3L/sec以上であり、この条件を満たすことで、循環流41が非散気・濾過操作を行うチャンバー26および外部循環路20を下降流42となって流れ、外部循環路20を流れる被処理液23aが下端開口22bを通して下部循環路28へ流入する。
各チャンバー25、26から上昇流40もしくは下降流42が流出する際に、ハンチ39がガイド面39aで上昇流40もしくは下降流42を案内する。このことで、渦の発生を抑制しつつ上昇流40もしくは下降流42の流れが円滑に上部循環路27および下部循環路28の流路方向に転向されて循環流41が形成され、渦による流れエネルギーの損失を最小化できる。つまり、図2に示すように、ハンチ39が無い場合には、各チャンバー25、26から上昇流40もしくは下降流42が流出する際に、水面付近および各チャンバー25、26の境界付近において渦43が発生し、渦43が流れを阻害する。
ところで、上昇流40に含まれる空気の気泡が循環流41に連行されて下降流42にまで達すると、気泡が下降流42の流れを阻害するので、上部循環路27には十分なヘッドスペース(水深)が必要である。ヘッドスペースに変えて気泡分離手段(阻流壁)を設けることも可能である。気泡分離手段は越流堰24aの側面を傾斜させるなどによって実現できる。
このように、散気・濾過操作を行うチャンバー25において膜カートリッジ29の膜面に強い洗浄作用を与える上昇流40を発生させ、その反作用的に生じる下降流42で非散気・濾過操作を行うチャンバー26において膜カートリッジ29の膜面に洗浄作用を与え、かつ下降流42の円滑な流れによって上昇流40の流速が大きくなることで、ブロア33によって膜面洗浄のために供給する空気総量を抑制することができ、少ない空気総量で全ての膜カートリッジ29の膜面洗浄を行える。
また、上述したように、吸引ポンプ30を各チャンバー25、26毎に設けるか、もしくは1台の吸引ポンプ30をそれぞれバルブを介して各チャンバー25、26毎の膜カートリッジ29に接続する構成においては、散気・濾過操作を行うチャンバー25におけるフラックスと非散気・濾過操作を行うチャンバー26におけるフラックスとをそれぞれに独立して制御することが可能となる。このため、散気・濾過操作を行うチャンバー25では上昇流40による洗浄作用に応じたフラックスとなし、非散気・濾過操作を行うチャンバー26では下降流42による洗浄作用に応じたフラックスとなすことができる。
次に、コントローラ38による制御によって、所定時間経過する毎に双方の電動弁36、37が開栓する全散気工程を行う。循環流・濾過工程と全散気工程の各継続時間は、膜面に汚れが強固に付着しない時間とし、この時間は実験等によって求める。
このように、循環流・濾過工程と全散気工程とを切り替えることにより、非散気・濾過操作を行うチャンバー26の膜カートリッジ29の膜面上を流れる水流の状態が、固液混相の下降流42から固気液混相の上昇流40へ変化する。この膜面上を流れる水流の反転および洗浄作用の強弱の変化によって、弱い洗浄作用の下降流42のもとで膜面に付着する固形分を強い洗浄作用の上昇流40で効率良く除去することができる。循環流・濾過工程と全散気工程との切り換えは任意の時に行うことも可能である。
本実施の形態では、ケーシング22および外部循環路20で生物学的処理の反応槽を形成しており、被処理液23aはケーシング22の内部を循環する間に微生物によって生物学的処理し、膜カートリッジ29で濾過した処理水を吸引ポンプ30を通して外部へ取り出し、ケーシング22に残る微生物濃度を高く維持する。余剰汚泥は汚泥引抜系43を通して外部へ取り出す。ケーシング22の容量(反応時間)および散気管31、32から供給する空気量が被処理液23aの性状に対して不足する場合には別途に槽体を設ける。
図3は、ケーシング22とは別体の反応槽51を設けて反応時間および空気量を確保する構成を示すものである。
ケーシング22はケーシング開口22aが反応槽51の内部の液面上に位置し、ケーシング開口22aの口縁にハンチ39を形成しており、ケーシング22の被処理液23aがケーシング開口22aからハンチ39を越流して反応槽51に流入する。すなわち、反応槽51が先の実施の形態における外部循環路20を兼ねている。
反応槽51には循環ポンプ52および反応槽用散気管53を設置しており、循環ポンプ52はケーシング22の周囲において反応槽51の内部に滞留する被処理液(槽内混合液)23aをケーシング22の下部循環路28に供給し、反応槽用ブロア54が反応槽用散気管53へ空気(補助曝気)を供給する。
反応槽51に供給した被処理液23aは、反応槽用散気管53から生物学的処理に必要な空気を供給しつつ、ケーシング22と反応槽51とを循環する間に十分な反応時間の下で生物学的処理する。
ケーシング22における作用は先に述べたものと同様であり、散気管31から膜面洗浄および生物学的処理に必要な空気(膜曝気)を供給することで、各チャンバー25、26を循環する被処理液23aの一部がケーシング開口22aからハンチ39を越流して反応槽51へ流れ、反応槽51から循環ポンプ52によって被処理液23aがケーシング22の下部循環路28に循環する。
よって、上昇流40が流れるチャンバー25における流量に対して下降流42が流れるチャンバー26における流量が少なくなり、下降流の流速および抵抗が小さくなって下降流が円滑に流れ、散気・濾過操作を行うチャンバー25における上昇流40の流れが促進され、先の実施の形態と同様の作用効果を得ることができるとともに、ヘッドスペースを十分に形成することが可能となる。
本実施の形態では、反応槽51に循環ポンプ52を設けたが、図4に示すように反応槽51をケーシング22の下端開口22bにおいて連通させ、散気・濾過操作を行うチャンバー25における上昇流40を循環動力して利用することも可能である。
ここで、本実施の形態と従来の構成との比較実験の結果を示す。図5は実験に使用した従来の構成を示すものであり、同様の作用を行う部材には同一番号を付して説明を省略し、表1に示す諸元において性能比較を行った結果を図6に示す。
Figure 2005349285
表1および図6に示す事項において、従来は単位水量当たり(m/h)40倍の空気量が必要であるが、本形態では30倍未満となった。また、従来に比べて本形態では膜カートリッジ29において所定のフラックス(流束)を維持するに必要な膜間差圧の経時的な変化は少なく、膜間差圧がほぼ実質的に一定の安定した運転を行える。
次に、図7に示すように、容積規模が大きくなる場合には、ケーシング22の内部に形成するチャンバー61a、61b、61cの数量を増加させ、各チャンバー61a、61b、61c毎に散気管62a、62b、62cを配置し、散気管62a、62b、62c毎に電動弁63a、63b、63cを設けることも可能である。各チャンバー61a、61b、61cは両側の対向するハンチ39の間に列状に配置する。ケーシング22は十分な面積をもつ開口部等の返送系64を通して反応槽51に連通している。
各チャンバー61a、61b、61cはケーシング22の内部に開放した上端の開口65a、65b、65cおよび下端の開口66a、66b、66cを有し、上端の開口65a、65b、65cの上方には十分なヘッドスペース(水深)を設けている。
上記した構成により、散気・濾過操作を行うチャンバー61bにおいて散気管62bから噴出する空気によって生じる上昇流40はチャンバー61bに充填した膜カートリッジ29の相互間の流路を通過し、上部循環路27を通って非散気・濾過操作を行う各チャンバー61a、61cに流入し、各チャンバー61a、61cに充填した膜カートリッジ29の相互間の流路を下降流42で通過し、下部循環路28を通って循環する。
ケーシング22の内部を循環する被処理液23aの一部は返送系64を通して反応槽51に流入し、反応槽51の被処理液23aは循環ポンプ52によってケーシング22の下部循環路28に循環し、ケーシング22および反応槽51を循環する間に生物学的処理される。
よって、上昇流40が流れるチャンバー61bにおける流量に比して下降流42が流れるチャンバー61a、61cにおける流量が少なくなり、下降流42の流速および抵抗が小さくなって下降流が円滑に流れ、散気・濾過操作を行うチャンバー61bにおける上昇流40の流れが促進され、先の実施の形態と同様の作用効果を得ることができる。
各電動弁63a、63b、63cを全て開栓して各チャンバー61a、61b、61cにおいて全散気工程を間欠的に行う。
上述した実施の形態では、ケーシング22および反応槽51によって循環路を形成したが、図8に示すように、ケーシング22の内部に3つのチャンバー61a、61b、61cを配置する場合には、反応槽51を設ける必要は必ずしもない。
この構成においては、散気・濾過操作を行うチャンバー61bにおいて散気管62bから噴出する空気によって生じる上昇流40はチャンバー61bに充填した膜カートリッジ29の相互間の流路を通過し、上部循環路27を通って非散気・濾過操作を行う各チャンバー61a、61cに流入し、各チャンバー61a、61cに充填した膜カートリッジ29の相互間の流路を下降流42で通過し、下部循環路28を通って循環する。
この際、上昇流40が流れるチャンバー61bが1つで下降流42が流れるチャンバー61a、61cが2つとなることで、上昇流40が流れるチャンバー61bにおける流量に比して下降流42が流れるチャンバー61a、61cにおける流量が少なくなり、下降流42の流速および抵抗が小さくなって下降流が円滑に流れ、散気・濾過操作を行うチャンバー61bにおける上昇流40の流れが促進され、先の実施の形態と同様の作用効果を得ることができる。
本発明の実施の形態における固液分離装置を示す断面図 ハンチを設けない場合の渦の発生を説明する模式図 本発明の他の実施の形態における固液分離装置を示す断面図 本発明の他の実施の形態における固液分離装置を示す断面図 従来の固液分離装置の使用形態を示す断面図 本発明の効果を示すグラフ図 本発明の他の実施の形態における固液分離装置を示す断面図 本発明の他の実施の形態における固液分離装置を示す断面図 従来の固液分離装置を示す断面図 膜カートリッジ間を上昇流が流れる状態を示す模式図 中空糸膜を使用した固液分離装置を示す断面図
符号の説明
20 外部循環路
21 固液分離装置
22 ケーシング
22a ケーシング開口
22b 下端開口
23 被処理液供給系
23a 被処理液
24 仕切板
24a 越流堰
24b 潜流堰
25、26 チャンバー
25a、26a 上端の開口
25b、26b 下端の開口
27 上部循環路
28 下部循環路
29 膜カートリッジ
30 吸引ポンプ
31、32 散気管
33 ブロア
34、35 空気供給系
36、37 電動弁
38 コントローラ
39 ハンチ
39a ガイド面(傾斜面)
40 上昇流
41 循環流
42 下降流
43 汚泥引抜系
51 反応槽
52 循環ポンプ
53 反応槽用散気管
54 反応槽用ブロア
61a、61b、61c チャンバー
62a、62b、62c 散気管
63a、63b、63c 電動弁
64 返送系
65a、65b、65c 上端の開口
66a、66b、66c 下端の開口

Claims (3)

  1. 被処理液を貯留する膜分離槽の内部に上昇流路および下降流路を形成する複数のチャンバーを設け、各チャンバー内に膜濾過手段を配置し、各チャンバーの上端の開口を連通して上部循環路を形成し、各チャンバーの下端の開口を連通して下部循環路を形成し、上部循環路と下部循環路とを連通して下降流路を形成する外部循環路を設け、上昇流路をなすチャンバーの膜濾過手段の下方位置に散気手段を配置し、流路断面において下降流路を上昇流路より広く形成したことを特徴とする固液分離装置。
  2. 各チャンバーに配置した膜濾過手段毎に駆動圧を調整する駆動圧調整手段を設けたことを特徴とする請求項1に記載の固液分離装置。
  3. 被処理液を貯留する膜分離槽の内部に上昇流路および下降流路を形成する複数のチャンバーを設け、各チャンバー内に膜濾過手段を配置し、各チャンバーの上端の開口を連通して上部循環路を形成し、各チャンバーの下端の開口を連通して下部循環路を形成し、上部循環路と下部循環路とを連通して下降流路を形成する外部循環路を設け、各チャンバーの膜濾過手段の下方位置に散気手段を配置し、流路断面において下降流路を上昇流路より広く形成し、各チャンバーに配置した膜濾過手段毎に駆動圧を調整する駆動圧調整手段を設けた固液分離装置において、循環流・濾過工程を行い、間欠的に全散気工程を行うものであって、
    循環流・濾過工程では、上昇流路のチャンバーの散気手段による散気によって上昇流を生じさせ、この上昇流を駆動力として、上昇流路のチャンバー、上部循環路、下降流路のチャンバーおよび外部循環流路、下部循環流路を通る被処理液の循環流を形成し、各チャンバーにおいて上昇流もしくは下降流の流速に応じて膜濾過手段の駆動圧を調整しつつ、膜濾過手段によって被処理液を濾過し、
    全散気工程では、全てのチャンバーにおいて各散気手段から散気して上昇流を生じさせることを特徴とする固液分離装置の運転方法。
JP2004171949A 2004-06-10 2004-06-10 固液分離装置および運転方法 Pending JP2005349285A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004171949A JP2005349285A (ja) 2004-06-10 2004-06-10 固液分離装置および運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004171949A JP2005349285A (ja) 2004-06-10 2004-06-10 固液分離装置および運転方法

Publications (1)

Publication Number Publication Date
JP2005349285A true JP2005349285A (ja) 2005-12-22

Family

ID=35584180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004171949A Pending JP2005349285A (ja) 2004-06-10 2004-06-10 固液分離装置および運転方法

Country Status (1)

Country Link
JP (1) JP2005349285A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161791A (ja) * 2011-01-20 2012-08-30 Kubota Corp 膜分離設備および膜分離装置および膜分離設備の運転方法
JP2013202467A (ja) * 2012-03-28 2013-10-07 Kubota Corp 膜分離設備
CN104843861A (zh) * 2015-06-10 2015-08-19 北京坎普尔环保技术有限公司 双向液流冲刷的浸没式膜过滤装置及膜过滤方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161791A (ja) * 2011-01-20 2012-08-30 Kubota Corp 膜分離設備および膜分離装置および膜分離設備の運転方法
JP2013202467A (ja) * 2012-03-28 2013-10-07 Kubota Corp 膜分離設備
CN104843861A (zh) * 2015-06-10 2015-08-19 北京坎普尔环保技术有限公司 双向液流冲刷的浸没式膜过滤装置及膜过滤方法

Similar Documents

Publication Publication Date Title
CA2425167A1 (en) System and method for withdrawing permeate through a filter and for cleaning the filter in situ
JP5803293B2 (ja) 散気装置
JP4361432B2 (ja) 水処理装置
JP4588043B2 (ja) 膜分離方法および装置
JPH07155758A (ja) 廃水処理装置
AU2009310485A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JP2006212505A (ja) 排水処理装置とそれを用いた排水処理システム
JP2006205119A (ja) 浸漬型膜分離装置の使用方法および浸漬型膜分離装置
JP4439149B2 (ja) 浸漬型膜分離活性汚泥処理設備
JP6848642B2 (ja) 膜分離活性汚泥装置、および水処理方法
JP2010069359A (ja) 水処理装置及び水処理方法
WO2010101152A1 (ja) 膜分離式活性汚泥処理装置及びその方法
JP2005349285A (ja) 固液分離装置および運転方法
JP3659833B2 (ja) 多段積み浸漬型膜分離装置の運転方法
JP2006247498A (ja) 膜洗浄方法および装置
JP2004337787A (ja) 膜分離活性汚泥処理槽
JP2001047046A (ja) 膜分離式水処理装置
JP5712453B2 (ja) 排水処理装置
WO2018221088A1 (ja) 水浄化システム
JP2008212930A (ja) 膜分離装置
JPH07256294A (ja) 生活排水処理装置
JP2001252679A (ja) 排水処理装置及び方法
JP2003305313A (ja) 固液分離方法及び装置
JP6997479B1 (ja) 水浄化処理システム
JP2003260478A (ja) 浄化槽および浄化槽の使用方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070327

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Effective date: 20080430

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929