JP2005344790A - 空気熱源液化天然ガス気化器 - Google Patents

空気熱源液化天然ガス気化器 Download PDF

Info

Publication number
JP2005344790A
JP2005344790A JP2004163685A JP2004163685A JP2005344790A JP 2005344790 A JP2005344790 A JP 2005344790A JP 2004163685 A JP2004163685 A JP 2004163685A JP 2004163685 A JP2004163685 A JP 2004163685A JP 2005344790 A JP2005344790 A JP 2005344790A
Authority
JP
Japan
Prior art keywords
air
temperature
natural gas
liquefied natural
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004163685A
Other languages
English (en)
Other versions
JP4610932B2 (ja
Inventor
Yoshinori Hisakado
喜徳 久角
Yasuhiro Fukuyoshi
保弘 福吉
Hideji Sakaguchi
秀司 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Osaka Gas Co Ltd
Nippon Gas Co Ltd
Original Assignee
Seibu Giken Co Ltd
Osaka Gas Co Ltd
Nippon Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd, Osaka Gas Co Ltd, Nippon Gas Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP2004163685A priority Critical patent/JP4610932B2/ja
Publication of JP2005344790A publication Critical patent/JP2005344790A/ja
Application granted granted Critical
Publication of JP4610932B2 publication Critical patent/JP4610932B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

【課題】 装置の小型化と運転費用の軽減が可能な空気熱源液化天然ガス気化器を提供する。
【解決手段】 気化用熱交換器2でLNGと熱交換する処理空気は、加熱器9で常温以上の所定温度に加熱されているので、LNGを気化させて、さらに常温まで充分に昇温させることができる。処理空気は除湿器3で除湿されるので、気化用熱交換器2を着霜で閉塞させないようにすることができる。再生空気ヒータ19での除湿器3の再生に用いる再生空気、および加熱器9での空気の加熱用の熱源として、高温水または蒸気が利用可能であるので、比較的低廉な熱源を利用することができ、運転費用の軽減を図ることができる。気化用熱交換器2のみで天然ガスを常温まで昇温させることができるので、装置の小型化を図ることができる。
【選択図】 図1

Description

本発明は、液化天然ガス(以下、「LNG」と略称する)を、空気を熱源として昇温気化させるとともに、冷却された空気を低温源として利用可能にする空気熱源液化天然ガス気化器に関する。
従来から、LNGは都市ガスの原料や、火力発電所の燃料などに利用されている。LNGは、天然ガスを産地で−160℃以下に冷却して低温液化させた状態で、LNGタンカなどで運搬され、臨海部に設置されるLNGタンクに受入れられ、LNGタンクから需要に応じて供給される。LNGを使用する際には、海水などを熱源として、気化させて常温まで昇温させている。LNGを気化昇温させる際には熱を必要とするけれども、この必要とする熱を供給する側は冷却されるので、LNGは気化させるための潜熱と低温であることによる顕熱とを含む冷熱源と考えることができる。LNGと空気とを直接熱交換すれば、LNG冷熱を有効に利用することができる(たとえば、特許文献1および特許文献2参照。)。
特許文献1には、LNGを冷熱源とする空気冷却装置が開示されている。この空気冷却装置では、押込送風機4で周囲の大気中の空気を全熱交換器に押込む。全熱交換器は、蓄熱回転式であり、シリカを材料とするハニカム構造のロータが回転しながら、ハニカム構造を通る空気から水分を吸着して除湿し、露点を−30℃まで低下させることができる。除湿された空気は、気化器でLNGと熱交換し、−30℃〜−100℃程度に冷却されるとともに、LNGを昇温気化させる。全熱交換器では、ロータの一部を気化器で冷却した空気の一部を用いて冷却し、冷却した部分に周囲の大気中からの空気を押込んで、空気中の水分を冷却されているハニカム構造のフィンの表面に霜として付着させ、水分を除去する。
特許文献2には、空気を熱源としてLNGを気化させる空気熱源LNG気化器が開示されている。この空気熱源LNG気化器では、外気から水分を除去するための除湿器として、特許文献1の全熱交換器と同様な吸着器を用いる。外気は予冷器で予冷された後で吸着器に導入されて除湿され、さらに深冷器で低温まで冷却される。深冷器でLNGは気化するけれども、常温よりは低温の状態にとどまる。LNGが気化した低温の天然ガス(以下、「NG」と略称する)は、予冷器で導入される外気と熱交換して、外気を5℃程度に冷却するとともに、常温まで昇温する。
特開2001−317847号公報 特開2003−148845号公報
特許文献1の空気冷却装置では、全熱交換器が外気を冷却して除湿し、全熱交換器の除湿能力を再生するために、ロータを乾燥させてさらに冷却する必要がある。ロータの冷却のために気化器でのLNGとの熱交換で冷却された空気が多く使用されてしまう。除湿後の空気は低温であり、気化器ではLNGを常温まで昇温させることができず、気化天然ガスを燃料とした高温燃焼空気やコージェネレーションシステムの排ガスなどを熱源とする再生用の空気を用いて、気化天然ガスを昇温させるとともに、ロータの再生も行うように制御する必要がある。このことは、LNGの気化の熱源として外気のみでは充分でなく、燃料を要して、運転費用が増大する問題がある。
特許文献2の空気熱源LNG気化器においては、吸着器の除湿用ロータに導入する空気を低温天然ガスにより熱交換器を用いて冷却するとともに、外気温度に応じて、除湿用ロータ再生後の排ガスや発生冷気を熱交換器の前後に投入することで、天然ガスの常温昇温と導入外気の所定温度までの冷却とを行う。また除湿用ロータの再生は、気化天然ガスを燃料とする高温燃焼空気やコージェネレーション装置の排ガスを熱源とする再生空気を用いて、所定の温度に制御している。深冷器では、LNGを気化させることはできても、常温まで昇温させることはできないので、吸着器の前に予冷器を設け、天然ガスの昇温と空気の予冷とを行う。予冷器は低温の天然ガスが導入されるので、伝熱管やフィンが冷却され、天然ガスの温度を上げるための伝熱特性が悪くなる問題があり、予冷器を深冷器と同様に構成する必要があるので、空気熱源LNG気化器としての装置が大型化してしまう。
本発明の目的は、装置の小型化と運転費用の軽減が可能な空気熱源液化天然ガス気化器を提供することである。
本発明は、空気を液化天然ガスの有する冷熱で冷却しながら、液化天然ガスを空気によって加熱して気化させる空気熱源液化天然ガス気化器であって、
外気中から導入される空気から水分を吸着して除湿するとともに、吸着した水分を脱着させて除湿機能の再生が可能な除湿器と、
除湿器で除湿された空気を常温以上の所定温度に加熱する加熱器と、
加熱器で加熱された空気を液化天然ガスと熱交換して、空気が冷却されるとともに液化天然ガスが昇温気化される気化用熱交換器とを、含むことを特徴とする空気熱源液化天然ガス気化器である。
本発明に従えば、気化用熱交換器で液化天然ガスと熱交換する空気は、加熱器で常温以上の所定温度に加熱されているので、液化天然ガスを気化させて、さらに常温まで充分に昇温させることができる。空気は除湿器で除湿されるので、気化用熱交換器を着霜で閉塞させないようにすることができる。除湿器での再生用、および加熱器での空気の加熱用の熱源として、比較的低温の熱源を使用可能であり、高温水または蒸気なども利用可能となるなど、比較的低廉な熱源を利用することができ、運転費用の軽減を図ることができる。気化熱交換器のみで天然ガスを常温まで昇温させることができるので、装置の小型化を図ることができる。
また本発明で、前記気化用熱交換器は、冷却された空気を低温空気として外部に供給するとともに、冷却途中の空気の一部を抽気することが可能であり、
気化用熱交換器から抽気した空気を、前記除湿器に導入される空気に混合して、除湿器で除湿する空気の温度を予め定める温度以下に低下させる混合冷却手段を、さらに含むことを特徴とする。
本発明に従えば、混合冷却手段で、除湿器に導入する外気に低温の空気を混合することが可能なので、外気の温度が高いときに冷却することができる。この冷却用の空気は、気化用熱交換器で低温空気として外部に供給するまで冷却する途中の空気を抽出するので、低温過ぎることがなく、外気の冷却を円滑に行うことができる。
また本発明は、前記気化用熱交換器で気化させる液化天然ガスの流量の変動と、昇温気化される天然ガスの温度とに応じて、前記外気中から導入される空気の導入量、および前記除湿器での除湿と再生とに対し、予め設定される最適化制御を行う制御手段を、さらに含むことを特徴とする。
本発明に従えば、気化熱交換器の熱源としての外気中から導入される空気の導入量、および除湿器での除湿と再生とに対して、液化天然ガスの流量の変動と、気化した天然ガスの温度に応じて、予め設定される最適化制御が行われるので、液化天然ガスの流量等が変動しても一定温度以上に天然ガスを気化昇温させることができ、しかも運転費用を軽減することができる。
また本発明で、前記制御手段は、前記気化用熱交換器への液化天然ガス導入開始時に、液化天然ガスの流量に対して前記最適化制御で対応する空気の導入量よりも該導入量を抑えて、気化用熱交換器からの空気の出口温度を急速に低下させて予め定める温度以下に下げた後に、液化天然ガスの流量を増大させるように制御することを特徴とする。
本発明に従えば、気化用熱交換器への液化天然ガス導入開始時に、液化天然ガスの流量に対して最適化制御で対応する空気の導入量よりも導入量を抑えて外気中から空気を導入するので、外気を急速に冷却し、気化用熱交換器の出口での空気温度を急速に低下させることができる。起動時に外気中からの空気の導入量が多いと、気化用熱交換器の伝熱管の内壁付近で液化天然ガスが急激に沸騰し、沸騰膜によって伝熱管の中心部には熱が伝わりにくくなり、液化天然ガスが急速に高温側の領域にも進出するような現象が生じるおそれがある。起動時には、少量の空気を導入して、空気の出口温度が急速に低下してから液化天然ガスの流量を増大させるように制御するので、気化用熱交換器での液化天然ガスと空気との熱交換を確実に行わせて、安定に天然ガスの気化昇温を行うことができる。
本発明によれば、除湿器の再生用、および加熱器での空気の加熱用の熱源として、比較的低廉な熱源を利用し、気化用熱交換器のみで天然ガスを常温まで昇温させることができるので、装置の小型化を図ることができ、運転費用も軽減することができる。
また本発明によれば、外気の温度が高いときに、外気の冷却を円滑に行うことができる。
また本発明によれば、液化天然ガスの流量等が変動しても一定温度以上に天然ガスを気化昇温させることができ、しかも運転費用を軽減することができる。
また本発明よれば、気化用熱交換器への液化天然ガス導入開始時に、外気中から少量の空気を導入して、空気の出口温度が急速に低下してから液化天然ガスの流量を増大させるように制御するので、気化用熱交換器での液化天然ガスと空気との熱交換を確実に行わせて、安定に天然ガスの気化昇温を行うことができる。
図1は、本発明の実施の一形態としての空気熱源LNG気化器1の概略的な構成を示す。LNGは、気化用熱交換器2に導入され、空気との間で熱交換を行う。この空気は、除湿器3で除湿される。除湿器3へは、処理ブロワ(D.B.)4が吸引する外気が導入される。処理ブロワ4に吸引される外気は、エアフィルタ(A.F.)5で除塵され、ミストセパレータ6で水分の除去が行われる。エアフィルタ5とミストセパレータ6との間には、分散器7が設けられ、冷気を混合することができる。処理ブロワ4と除湿器3との間にも、ミストセパレータ8が設けられる。除湿器3と気化用熱交換器2との間には、加熱器9が設けられる。加熱器9では、気化用熱交換器2に導入する空気を、常温以上の温度、たとえば40〜50℃程度に過熱する。
気化用熱交換器2では、過熱された空気との熱交換によってLNGが気化昇温され、空気は冷却されて、出口温度が−100℃の低温空気として外部に供給することができる。気化用熱交換器2で空気を冷却する経路の途中には、抽気部10が設けられ、たとえば−80℃程度に冷却された空気を外部に取出すことができる。このような気化用熱交換器2は、空気の冷却装置としても機能し、抽気部10よりも高温側を予冷器(PAC)、抽気部10よりも低温側を深冷器(MAC)とみなすことができる。
気化用熱交換器2には、入口管11を介してLNGが導入され、気化昇温後に、出口管12を介して、常温付近の天然ガスを外部に取出すことができる。出口管12には流量検出部13が設けられ、流量指示制御器14で流量の計測が行われる。出口管12には、温度指示制御器15および圧力計16も設けられる。入口管11には、流量制御弁17および遮断弁18が設けられる。流量制御弁17は、温度と圧力とが補正された気化天然ガス流量に応じて、流量指示制御器14によって開度が制御され、導入されるLNGが流量制御される。
一方、外気は、エアフィルタ5で除塵された後、一部、たとえば約1/5は再生用空気として再生空気ヒータ(R.A.H.)19に供給され、残りの約4/5の空気は、外気温度がたとえば8℃以上の場合、気化用熱交換器2を通過し、抽気部10で抽気された約−80℃冷気を分散器7に導入して混合し、除湿器3の出口空気露点が−30℃以下となるのに必要な温度である10℃〜2℃まで冷却される。除湿器3は、特許文献2と同様な蓄熱回転式熱交換器を使用することができる。蓄熱回転式熱交換器に導入して除湿する空気の冷却温度を下げれば、蓄熱回転式熱交換器の除湿能力を回復させるための再生温度を下げることができるけれども、夏季では気化用熱交換器2からの発生冷気量が減少してしまう。分散器7への冷気の導入による冷却過程で凝縮した水分は、1次のミストセパレータ(M.S.)6で除去され、その後処理ブロワ4でゲージ圧で1.5kPa前後に昇圧され、さらに2次のミストセパレータ8でドレンを除かれる。ミストセパレータ8でドレンを除かれた空気は、水蒸気で飽和している。
除湿器3では、蓄熱回転式熱交換器としての除湿ロータ20が飽和空気から水蒸気を吸着して除去し、露点を−30℃以下に低下させる除湿処理が行われる。除湿ロータ20は、空気の導入方向とほぼ平行な回転軸まわりに回転し、水蒸気を吸着して吸湿を行う処理部20aと、吸着している水蒸気を加熱によって脱着して吸湿能力を再生する再生部20bと、再生部bを冷却するパージ部20cとに区画される。ミストセパレータ8を出た飽和空気は、除湿ロータ20の処理部20aとパージ部20cとに導入される。除湿ロータ20のパージ部20cに導入される風量は、全量の1/6程度である。除湿ロータ20のパージ部20cを通過した空気は、再生部20bで加熱された除湿ロータ20を冷却するので80℃前後に加熱される。この加熱された空気と、エアフィルタ5で除塵された外気とは、合流して再生空気となる。再生空気は、再生空気ヒータ19に供給される。
除湿ロータ20の処理部20aには、処理空気の流路に沿って、ロータ差圧計(PDI)21が設けられる。ロータ差圧計21によって計測されるロータ差圧は、通過風量の増加とともに増加し、定格風量に対する値は約500Paである。除湿ロータ20の再生温度は、ロータ差圧に応じて決められ、その温度制御は、再生空気ヒータ19に供給する高温水の流量を、温度制御弁22で調整して行う。温度制御弁22の開度制御は、再生空気ヒータ19で高温水と熱交換して加熱される再生空気の出側での温度を、温度指示制御器23で計測しながら行う。再生空気は、除湿ロータ20の再生部20bを、処理空気が処理部20aを通過する方向とは逆方向に通過する。再生空気に関して再生部20bの下流側には、再生ブロワ(R.B.)24が設けられ、再生空気を再生部20bから吸引して大気中に放出させる。
処理空気の定格風量での必要再生温度は、130℃前後であり、定格風量の2/3および1/2では、それぞれ再生温度を110℃および90℃と下げても、所定の処理空気露点が得られる。したがって、再生用の高温水(HW)に必要な温度は、約140℃である。この程度の温度は、比較的容易に得られる。たとえば、出口管12から取り出す天然ガスの一部を燃料とするコージェネレーションシステムを設置し、マイクロガスタービン、ガスエンジン、または燃料電池などで電力とともに発生する熱を利用する場合でも、他の用途に利用した後で充分に利用することができる。また高温水に代えて、水蒸気を用いることもできる。さらに燃焼や電気ヒータで直接加熱することもできる。
処理空気の流路には、温度指示制御器25および温度計26,27が設けられる。温度指示制御器25は、処理ブロワ4に吸引される空気の温度を計測し、前述の温度範囲となるように、気化用熱交換器2の抽気部10から抽気する低温空気の流量を温度制御弁28の開度調整で制御して、分散器7に供給する。温度計26は、加熱器9から気化用熱交換器2に導入する処理空気の温度を計測する。温度計27は、気化用熱交換器2で冷却される空気の温度を、出口29で計測する。
流量指示制御器14が計測する気化した天然ガスの流量、温度指示制御器15,25が計測する温度、およびロータ差圧計21が計測するロータ差圧などのデータは、CPU30に入力され、CPU30を含むコンピュータによる最適化制御が行われる。最適化制御の出力は、CPU30から、処理ブロワ4、除湿ロータ20、温度指示制御器23,25、および再生ブロワ24に与えられる。最適化制御では、後述するようにして、所定の再生空気温度が得られるように高温水の流量が調整される。除湿ロータ20の再生部20bに導入された90℃〜130℃の再生空気は、再生部20bを通過すると30℃前後となり、再生ブロワ24により吸引され、外気に放出される。次に、除湿ロータ20の処理部20aを通過して露点を−30℃以下に下げられた20℃〜35℃の処理空気は、再生空気ヒータ19で再生空気と熱交換して温度が低下した高温水と加熱器9で熱交換し、約45℃まで加熱される。
図2は、図1の空気熱源LNG気化器1についてのコンピュータシミュレーションによる運転解析結果の一例を示す。なお、圧力は、絶対圧で示し、流量は、1時間当たりの体積流量を標準状態での換算値(Nm3 /h)で示す。外気温度が32℃のときに、気化用熱交換器2の出口管12に気化された天然ガス(NG)を、温度20℃、圧力485kPa、および流量1255Nm3 /h得るためには、入口管11にLNGを、温度−142.2℃、圧力540kPa、および流量1255Nm3 /hで供給すればよい。エアフィルタ5から導入する外気の圧力は101.3kPaで流量は4335Nm3 /hとなる。気化用熱交換器2の出口29からは、温度−106.3℃、圧力101.8kPa、流量2456Nm3 /hの冷却空気が得られる。気化用熱交換器2に導入する処理空気の温度は45℃であり、抽気部10から抽気する空気の温度は−80℃であり、処理ブロワ4が吸引する空気の温度は、7℃となる。この空気は、大気と抽気部10で抽気した空気とを分散器7で混合して得るようにしている。前述のように外気温度が8℃以上で低温空気を外気に混合するようにしているけれども、低温空気の温度が低過ぎると、特に外気温度が8℃よりもあまり高くないときに、低温空気の混合時には急激に温度が低下し、混合を停止すると温度が上昇するような変動を生じやすくなる。抽気による中間の低温空気を使用することによって、処理ブロワ4に吸引させる空気の温度を円滑に制御することが可能になる。
図3は、図1の気化用熱交換器2で、処理空気である除湿空気とLNGとの間の熱交換特性を示す。上側のHot Composite が除湿空気に対応し、下側のCold CompositeがLNGに対応する。LNGの気化条件は、流量が1時間当たりの質量として1t/hであり、圧力は500kPaとする。外気の温度は32℃であり、相対湿度は65%である場合を想定する。気化用熱交換器2に導入された除湿空気の45%が−80℃に冷却されて抽気部10から抽気され、分散器7で外気と混合することで、処理ブロワ4が吸引する外気を7℃まで冷却することができる。気化用熱交換器2に導入された除湿空気の残り55%は、さらにLNGと熱交換して、−100℃以下に冷却される。抽気することで、正圧で冷気を取り出すことができ、外気を所定温度に冷却するための制御性を高めることができる。また、冷却空気温度を下げることで、伝熱管内でのLNGの膜沸騰の抑制に寄与させることもできる。また、抽気温度を−80℃まで下げることで、抽気して前段側の分散器7に戻す冷気循環量を減らすことができ、除湿ロータ20や処理ブロワ4の容量を抑えることができるとともに、除湿ロータ20の再生に要する熱を減らすこともできる。
図4は、図1の空気熱源LNG気化器1で、LNGの気化圧力が5.5MPaと0.4MPaとの場合について、外気温度と発生冷気量および冷気循環量との関係を示す。外気の相対湿度は65%とし、処理ブロワ4が吸引する空気は、予冷空気温度7℃に冷却されるものとする。外気温度の上昇とともに発生冷気量が減少する。外気温度の上昇とともに、抽気部10で抽気して分散器7に戻す冷気循環量は増加する。外気温度が上昇すれば、空気予冷用の冷気の必要量も多くなるからである。外気温度が38℃になると、ほぼ発生冷気の50%が空気予冷に使用される。空気予冷用に−80℃の冷気を抽気部10から抽出して分散器7に戻すように循環させるのに対し、発生冷気の温度は−100℃である。熱バランス的に外気温度の上昇とともに、冷気循環量と発生冷気量との合計は増える。
図5は、空気熱源LNG気化器1での空気予冷温度と発生冷気量および冷気循環量との関係を示す。LNG気化圧力は5.5MPa、外気温度38℃、相対湿度65%の場合を想定する。予冷空気温度を下げれば、温度38℃での相対湿度65%に対応する同一露点の処理空気でも、除湿ロータ20の再生に必要な再生空気温度を下げることができるけれども、図5からは発生冷気量が低減することが判る。このため、空気熱源LNG気化器1は、予冷空気温度として7℃程度で運転している。
図6は、図1のCPU30による最適化制御の概略的な風量STEP制御ロジックを示す。風量STEP制御では、予め設定されるプログラムに従い、処理ブロワ4および再生ブロワ24について、駆動用インバータの周波数をそれぞれ段階的に変化させる。除湿器3での除湿ロータ20の回転速度も、風量STEP制御に応じて段階的に変化させる。気化用熱交換器2としてのLNG気化能力は1250Nm3 /hとする。気化した天然ガス(NG)の流量は、たとえば30秒毎に判定され、流量に応じて風量STEP制御ロジックが変更される。
この場合の風量STEP制御ロジックに従う運転制御は、起動後の通常運転時に行われ、たとえば一定の時間毎にステップa0からの手順を実行する。CPU30は、温度指示制御器15が計測する気化用熱交換器2の出口管12での天然ガスの温度に応じて、処理ブロワ4、除湿ロータ20および再生ブロワ24の回転速度を上下させる。
ステップa1では、天然ガスの温度が0℃以下であるか否かを判断する。0℃以下であると判断するときには、ステップa2で全速運転を行う。ステップa1で天然ガスの温度が0℃以下ではない、すなわち0℃より高いと判断するときは、ステップa3で、天然ガスの温度が5℃以下であるか否かを判断する。5℃以下であると判断するときには、ステップa4で制御を2段階下げるようにする。ステップa3で天然ガスの温度が5℃以下ではない、すなわち5℃より高いと判断するときは、ステップa5で、天然ガスの温度が10℃以下であるか否かを判断する。10℃以下であるときは、ステップa6で制御を1段階下げるようにする。ステップa5で、天然ガスの温度が10℃よりも高いと判断するときは、ステップa7で、天然ガスの温度が20℃以下であるか否かを判断する。20℃以下であると判断するときには、ステップa8で基準速度運転を行う。ステップa7で天然ガスの温度が20℃以下ではない、すなわち20℃よりも高いと判断するときは、ステップa9で天然ガスの温度が25℃以下か否かを判断する。25℃以下であると判断するときは、ステップa10で制御を1段階上げるようにする。ステップa9で天然ガスの温度が25℃以上であるときは、ステップa11で制御を2段階上げるようにする。
ステップa2、a4、a6、a8、a10およびa11が終了すると、ステップa12で運転終了か否かを判断し、終了でないと判断するときは、ステップa1に戻る。ステップa12で、運転終了と判断するときは、ステップa13で運転を停止する。
図8は、図7の風量STEP制御を8段階で行う場合の制御パラメータの例を示す。前述のように、気化用熱交換器2でのLNG気化能力が一定の値の場合の制御パラメータであり、気化能力が他の値になると、この制御パラメータも変ることは当然である。
以上のような段階的な変化は、LNGの流量に応じて予め設定されるプログラムに従って行われる。この機能により、気化用熱交換器2の出口での天然ガス温度を、ほぼ10〜20℃の範囲に制御することができる。ステップa2〜11の制御では、処理ブロワ4を駆動するインバータの周波数設定を20Hzから60Hzまでで8段階に分割しているけれども、15段階程度に分割するようにしてもよい。8段階から15段階程度に分割することで、処理空気の露点が一時的に−30℃以上に上がり、気化用熱交換器2のフィンや伝熱管に着霜して風量が低下しても、処理空気の風量低下は天然ガスの温度下降となるので、風量が増加するように制御される。この天然ガス出口温度に基づく段階的な制御により、風量の増加で着霜を解消させて、長期的には連続してLNG気化器としての安定運転を行うことができる。また、風量が過大になると天然ガスの出口温度が上昇して風量が減少するように制御され、必要以上に風量を増加させないために、出口29での冷気温度を−100℃前後に維持することができる。
図9、図1の空気熱源LNG気化器1で、起動時に行われる制御手順を概略的に示す。CPU30に対して設定されるプログラムには、起動時に処理空気の風量とLNG流量との比率の最適化を図り、気化用熱交換器2での伝熱管内での膜沸騰とLNG流量との大きな変動を抑える運転システムが組み込まれている。
初期状態では、空気熱源LNG気化器1の運転は停止しているものとする。ステップb0で作業者が起動スイッチ(SW)を投入してONにすると、本運転システムが動作を開始する。ステップb1では、再生ブロワ24および除湿ロータ20の駆動モータをONにする。処理ブロワ4は停止しているので、再生ブロワ24による吸引で、再生空気の流路は負圧となる。このため、負圧となっても動作異常でないことを示すように、再生ライン負圧スイッチをONにする。さらに高温水の熱源として設けるバーナのファンをONにする。LNGの入口管11に設けられる遮断弁18を自動で「開」とする。さらに90秒経過後に、バーナプロテクトリレーの電源をONにする。また、流量制御弁17を徐開して、5分程度の時間をかけて定格流量の30〜40%を流すようにする。
次に、ステップb2に移行し、バーナのパイロット電磁弁を「開」とし、イグニッションをONとしてパイロットバーナを点火し、バーナ主電磁弁を「開」とする。ステップb3では、バーナの点火を確認する。点火が確認されないときは、ステップb4で、バーナ異常情報を表示や通知し、バーナ主電磁弁を「閉」とし、プロテクトリレー電源をOFFとし、パイロット電磁弁を「閉」とし、バーナを消火して、バーナファンを停止する。
ステップb4でバーナの点火を確認すると、ステップb5での5分間の待機時間が終了していれば、ステップb6で処理ブロワ4を図6のステップa12に示す「1速」でONにする。次のステップb7では、処理ブロワ4から空気が除湿ロータ20の処理部20aに供給されて除湿運転が開始される。気化用熱交換器2に導入される処理空気の風量は最小の状態であるので、クールダウン運転となり、出口29での空気温度を急速に−100℃以下まで低下させることができる。ステップb6での処理ブロワ4の「1速」でのONの後、ステップb8で40分間待機すれば、ステップb9で処理ブロワ4を自動的に「2速」へ移行させ、図6のステップa0以下の風量STEP制御運転に移行する。
図9は、図8の起動時運転システムによる運転実績の例を示す。四角印のプロットは、流量指示制御器14が計測する天然ガスの流量を示し、図8のステップb1に従い、起動後5分程度で徐々に増加させているのが判る。菱形印のプロットは、ロータ差圧計21によって計測されるロータ差圧から換算される処理空気の風量であり、ステップb6で処理ブロワ4がONになるまでは風量が負の値になっている。ステップb6での1速と、ステップb9での2速への切換えとに従って、処理空気風量が段階的に増加していることが判る。×印のプロットは、温度指示制御器25によって計測される予冷空気の温度を示す。起動時には20℃以上の温度が10℃以下まで低下することが判る。三角印のプロットは、温度計27が計測する冷気の出口温度を示す。起動時には20℃以上であっても、クールダウン運転で、−100℃以下に低下するのが判る。丸印のプロットは、温度指示制御器15が計測する天然ガスの出口温度を示す。起動時には、処理空気の風量が少ないので熱源が不足し、10℃以下まで低下するけれども、風量STEP制御運転に移行して、処理空気の風量が増大して比率が適切になれば、10℃〜20℃の範囲に制御することができる。
本発明の実施の一形態としての空気熱源LNG気化器1の概略的な構成を示す配管系統図である。 図1の空気熱源LNG気化器1についてのコンピュータシミュレーションによる運転解析結果の一例を示す図である。 図1の気化用熱交換器2で、処理空気である除湿空気とLNGとの間の熱交換特性を示すグラフである。 図1の空気熱源LNG気化器1で、LNGの気化圧力が5.5MPaと0.4MPaとの場合について、外気温度と発生冷気量および冷気循環量との関係を示すグラフである。 図1の空気熱源LNG気化器1での空気予冷温度と発生冷気量および冷気循環量との関係を示すグラフである。 図1のCPU30による最適化制御の概略的な風量STEP制御ロジックを示すフローチャートである。 図6の各段階での制御パラメータの例を示す図表である。 図1の空気熱源LNG気化器1で、起動時運転システムの制御手順を概略的に示す図である。 図8の起動時運転システムによる運転実績の例を示すグラフである。
符号の説明
1 空気熱源LNG気化器
2 気化用熱交換器
3 除湿器
4 処理ブロワ
9 加熱器
10 抽気部
14 流量指示制御器
15,23,25 温度指示制御器
17 流量制御弁
19 再生空気ヒータ
20 除湿ロータ
21 ロータ差圧計
22,28 温度制御弁
24 再生ブロワ
30 CPU

Claims (4)

  1. 空気を液化天然ガスの有する冷熱で冷却しながら、液化天然ガスを空気によって加熱して気化させる空気熱源液化天然ガス気化器であって、
    外気中から導入される空気から水分を吸着して除湿するとともに、吸着した水分を脱着させて除湿機能の再生が可能な除湿器と、
    除湿器で除湿された空気を常温以上の所定温度に加熱する加熱器と、
    加熱器で加熱された空気を液化天然ガスと熱交換して、空気が冷却されるとともに液化天然ガスが昇温気化される気化用熱交換器とを、含むことを特徴とする空気熱源液化天然ガス気化器。
  2. 前記気化用熱交換器は、冷却された空気を低温空気として外部に供給するとともに、冷却途中の空気の一部を抽気することが可能であり、
    気化用熱交換器から抽気した空気を、前記除湿器に導入される空気に混合して、除湿器で除湿する空気の温度を予め定める温度以下に低下させる混合冷却手段を、さらに含むことを特徴とする請求項1記載の空気熱源液化天然ガス気化器。
  3. 前記気化用熱交換器で気化させる液化天然ガスの流量の変動と、昇温気化される天然ガスの温度とに応じて、前記外気中から導入される空気の導入量、および前記除湿器での除湿と再生とに対し、予め設定される最適化制御を行う制御手段を、さらに含むことを特徴とする請求項2記載の空気熱源液化天然ガス気化器。
  4. 前記制御手段は、前記気化用熱交換器への液化天然ガス導入開始時に、液化天然ガスの流量に対して前記最適化制御で対応する空気の導入量よりも該導入量を抑えて、気化用熱交換器からの空気の出口温度を急速に低下させて予め定める温度以下に下げた後に、液化天然ガスの流量を増大させるように制御することを特徴とする請求項3記載の空気熱源液化天然ガス気化器。
JP2004163685A 2004-06-01 2004-06-01 空気熱源液化天然ガス気化器 Expired - Lifetime JP4610932B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004163685A JP4610932B2 (ja) 2004-06-01 2004-06-01 空気熱源液化天然ガス気化器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004163685A JP4610932B2 (ja) 2004-06-01 2004-06-01 空気熱源液化天然ガス気化器

Publications (2)

Publication Number Publication Date
JP2005344790A true JP2005344790A (ja) 2005-12-15
JP4610932B2 JP4610932B2 (ja) 2011-01-12

Family

ID=35497360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004163685A Expired - Lifetime JP4610932B2 (ja) 2004-06-01 2004-06-01 空気熱源液化天然ガス気化器

Country Status (1)

Country Link
JP (1) JP4610932B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040940A1 (fr) * 2008-10-10 2010-04-15 Gea Batignolles Technologies Thermiques Procede de regazeification du gaz naturel liquefie avec de l'air ambiant prealablement deshumidifie

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55168800U (ja) * 1979-05-23 1980-12-04
JP2001116198A (ja) * 1999-08-09 2001-04-27 Osaka Gas Co Ltd 空気冷却装置
JP2001317847A (ja) * 2000-02-28 2001-11-16 Osaka Gas Co Ltd 空気冷却装置
JP2003148845A (ja) * 2001-08-27 2003-05-21 Osaka Gas Co Ltd 空気熱源液化天然ガス気化器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55168800U (ja) * 1979-05-23 1980-12-04
JP2001116198A (ja) * 1999-08-09 2001-04-27 Osaka Gas Co Ltd 空気冷却装置
JP2001317847A (ja) * 2000-02-28 2001-11-16 Osaka Gas Co Ltd 空気冷却装置
JP2003148845A (ja) * 2001-08-27 2003-05-21 Osaka Gas Co Ltd 空気熱源液化天然ガス気化器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040940A1 (fr) * 2008-10-10 2010-04-15 Gea Batignolles Technologies Thermiques Procede de regazeification du gaz naturel liquefie avec de l'air ambiant prealablement deshumidifie
FR2937115A1 (fr) * 2008-10-10 2010-04-16 Gea Batignolles Technologies T Procede de regazeification du gaz naturel avec de l'air ambiant prealablement deshumidifie.

Also Published As

Publication number Publication date
JP4610932B2 (ja) 2011-01-12

Similar Documents

Publication Publication Date Title
JP5635886B2 (ja) デシカント空調システムおよびその運転方法
JP5543660B2 (ja) 化石燃料発電所設備の排ガスから二酸化炭素を分離するための方法及び装置
JP2012026700A (ja) デシカント空調システム
JP2009216330A (ja) 空調装置および空調装置の使用方法
JP6238020B2 (ja) 排ガス浄化設備及びその運転制御方法
JP5250362B2 (ja) 除湿装置及びその運転制御方法
JP2003021378A (ja) 除湿空調システム
JP4610932B2 (ja) 空気熱源液化天然ガス気化器
JP5550461B2 (ja) ガスタービンコンバインドサイクルプラント及びガスタービンコンバインドサイクルプラントのパージ方法
JP5360893B2 (ja) デシカント空調機
JP2006177213A (ja) ガスエンジンシステム
JP2002004813A (ja) Lng冷熱を利用したコンバインドサイクル発電装置
JP2007322032A (ja) デシカント空調システム
JP2012137269A (ja) 石炭火力発電プラント及び石炭火力発電プラントの制御方法
JP6967912B2 (ja) ガスタービンシステム内のシャットダウンパージ流を改善するシステムおよび方法
KR101971960B1 (ko) 히터와 폐열을 활용한 제습 시스템
JP2007278619A (ja) 空調装置
CN108072234B (zh) 空气分离装置的控制方法
JP2005291094A (ja) 液化ガス気化装置利用発電設備
JPH1054586A (ja) 空調システム
JP2002129980A (ja) コンバインドサイクル発電装置
JP2010110736A (ja) 乾式減湿装置の運転方法
JP2009210159A (ja) ガスヒートポンプ式空気調和装置の制御方法およびガスヒートポンプ式空気調和装置
JP4642189B2 (ja) デシカント空調システム
JP2001317847A (ja) 空気冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250