JP2005332613A - Alkaline primary battery - Google Patents

Alkaline primary battery Download PDF

Info

Publication number
JP2005332613A
JP2005332613A JP2004147669A JP2004147669A JP2005332613A JP 2005332613 A JP2005332613 A JP 2005332613A JP 2004147669 A JP2004147669 A JP 2004147669A JP 2004147669 A JP2004147669 A JP 2004147669A JP 2005332613 A JP2005332613 A JP 2005332613A
Authority
JP
Japan
Prior art keywords
battery
alkaline
diameter
sealing body
resin sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004147669A
Other languages
Japanese (ja)
Inventor
Kenji Yamamoto
賢爾 山本
Takashi Mushiga
貴司 虫賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004147669A priority Critical patent/JP2005332613A/en
Publication of JP2005332613A publication Critical patent/JP2005332613A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Primary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To install explosion-proof construction stably operating without increasing cost in an alkaline primary battery of the smallest size having a diameter of 8±0.3 mm. <P>SOLUTION: A resin sealing body 2 sealing the opening end of a battery can 5 in which a power generation element is housed is capable of widening a pressure receiving area receiving inner pressure even in the battery having small diameter by regulating the inner diameter and the outer diameter of a shaft part 2a through which an electron collector 3 is passed and forming the pressure receiving part 2b connecting the shaft part 2a and the sealing part 2c in a cone having a prescribed angle, and by forming a thin part 2f in the pressure receiving part 2b, abnormal increase in the inner pressure in the battery can 5 is detected with the pressure receiving part 2b, the thin part 2f is broken to release the inner pressure to the outside. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルカリ電解液(水酸化カリウム水溶液)を用いたアルカリ一次電池に関し、特に、直径が非常に小さい円筒形電池に防爆構造を設けることを可能にしたアルカリ一次電池に関するものである。   The present invention relates to an alkaline primary battery using an alkaline electrolyte (potassium hydroxide aqueous solution), and more particularly to an alkaline primary battery that can provide an explosion-proof structure for a cylindrical battery having a very small diameter.

アルカリ乾電池あるいはニッケル乾電池、オキシライド乾電池と称されるアルカリ一次電池は、電解液として水酸化カリウム水溶液を使用している。この電解液は非常に腐食性が高く、しかも浸透性が強いので漏液しやすく、もし漏液すると機器や人間の皮膚に損傷を与える恐れがある。従って、従来広く用いられてきたマンガン乾電池より強固な密閉構造が要求される。また、マンガン乾電池に比して大きな放電電流を得ることができるため、外部短絡が生じた場合に大電流が流れて発熱し、電池の破裂に至る恐れがある。また、乾電池を充電するなどの間違った使い方がなされた場合にもガスの発生に伴って漏液や破裂を引き起こす恐れがある。   Alkaline primary batteries called alkaline dry batteries, nickel dry batteries, and oxyride dry batteries use an aqueous potassium hydroxide solution as an electrolyte. This electrolytic solution is very corrosive and has high permeability, so that it is easy to leak, and if it leaks, there is a risk of damaging equipment and human skin. Therefore, a stronger sealing structure is required than the manganese dry batteries that have been widely used heretofore. In addition, since a large discharge current can be obtained as compared with a manganese dry battery, when an external short circuit occurs, a large current flows and heat is generated, which may lead to battery explosion. In addition, even if the battery is used incorrectly, such as charging a dry cell, there is a risk of leakage or rupture with the generation of gas.

電池が漏液や破裂に陥ることを防止するため、円筒形のアルカリ一次電池においては防爆構造が設けられている。防爆構造は電池缶の開口部を封口する樹脂封口体に薄肉部を形成し、ガスの発生により電池缶の内圧が異常上昇したとき前記薄肉部を破断させてガスを外部放出するように構成される。現時点において我国において市販されている円筒形アルカリ一次電池では、例えば、直径:34.2mm、高さ:61.5mmの単1サイズから直径:12.0mm、高さ:30.2mmの単5サイズまで全てが防爆構造を備えている。   In order to prevent the battery from leaking or bursting, an explosion-proof structure is provided in the cylindrical alkaline primary battery. The explosion-proof structure is configured to form a thin part in the resin sealing body that seals the opening of the battery can, and when the internal pressure of the battery can abnormally rises due to the generation of gas, the thin part is broken to release the gas to the outside. The In the cylindrical alkaline primary battery marketed in Japan at present, for example, the diameter: 34.2 mm, the height: 61.5 mm, single size 1 to diameter: 12.0 mm, height: 30.2 mm, single size Everything has an explosion-proof structure.

電池の直径が小さくなるほどに防爆構造を設けることが困難になり、今日現在我国において製造されているアルカリ乾電池の中で最も直径が小さいものは、単4サイズのもので、その直径は10.5mmであるが、防爆構造が設けられている。これより直径が小さいサイズ、単6サイズとも称すべき円筒形アルカリ乾電池の存在があり、米国ではLR8D425のアルカリ乾電池として市販されているが欧米以外でも市販されている。我国においては公称電圧が9Vの角形アルカリ乾電池(6LR61)を構成する素電池として製造されているものの単体での製造はなされていない。このLR8D425サイズのアルカリ乾電池は、その直径が8.0mm(公差:0.3mm)、高さが42.5mm(最大:42.5mm)である。   As the diameter of the battery becomes smaller, it becomes difficult to provide an explosion-proof structure. Among the alkaline dry batteries manufactured in Japan today, the smallest one is the AAA size, and its diameter is 10.5 mm. However, an explosion-proof structure is provided. There is a cylindrical alkaline dry battery that should be referred to as a size having a smaller diameter or a single size, and is marketed as an LR8D425 alkaline battery in the United States, but is also commercially available outside of Europe and the United States. Although it is manufactured as a unit cell constituting a prismatic alkaline battery (6LR61) having a nominal voltage of 9 V in Japan, it is not manufactured as a single unit. The LR8D425 size alkaline battery has a diameter of 8.0 mm (tolerance: 0.3 mm) and a height of 42.5 mm (maximum: 42.5 mm).

上記LR8D425サイズのアルカリ乾電池は、図3に示すように、有底円筒形に形成された電池缶51内に、円筒形の正極合剤52の内側にセパレータ54を介して負極活物質と電解液とを混合してゲル状にした負極ゲル化剤53を収容し、負極ゲル化剤53に挿入した集電子56が中央に嵌挿された樹脂封口体55を電池缶51の開口端に配し、電池缶51の開口端をカシメ加工することにより電池缶51内が密閉され、樹脂封口体55を貫通して外部露出した集電子56の頭頂部を負極、電池缶51を正極とする円筒形乾電池に構成されている。このアルカリ乾電池は直径が小さく、樹脂封口体55の平面面積も小さいため、電池缶51内の内圧を受ける受圧面積が充分に得られず、異常内圧により破断する薄肉部、即ち防爆構造を設けることができなかった。   As shown in FIG. 3, the LR8D425 size alkaline battery has a negative electrode active material and an electrolyte solution in a battery can 51 formed in a bottomed cylindrical shape through a separator 54 inside a cylindrical positive electrode mixture 52. And a resin sealing body 55 in which a current collector 56 inserted into the negative electrode gelling agent 53 is inserted in the center is disposed at the opening end of the battery can 51. The inside of the battery can 51 is hermetically sealed by crimping the opening end of the battery can 51, and the top of the current collector 56 exposed through the resin sealing body 55 is a negative electrode, and the cylindrical shape with the battery can 51 as a positive electrode It is composed of dry batteries. Since this alkaline battery has a small diameter and a small planar area of the resin sealing body 55, a sufficient pressure-receiving area for receiving the internal pressure in the battery can 51 cannot be obtained, and a thin-walled portion that breaks due to abnormal internal pressure, that is, an explosion-proof structure is provided. I could not.

このLR8D425サイズのアルカリ乾電池は、これを素電池として6本を直列接続して金属ケース内に収容すると、前述した公称電圧が9Vの角形アルカリ乾電池に構成することができ、二重の封止構造により内圧の異常上昇により素電池に破裂が生じた際でも危険を伴う電解液含有物質が外部に漏れることを防止することができる。この6LR61の素電池に、正、負極の端子を付与することによりLR8D425サイズのアルカリ乾電池となる。しかし、LR8D425サイズのアルカリ乾電池を単6乾電池として単体で市販すると、防爆構造を備えていないため、外部短絡や充電などの間違った使用がなされた場合に内圧が異常上昇して破裂に至る恐れがあり、単体のアルカリ乾電池として市販することはできない。携帯機器など機器の小型軽量化、高機能化に伴って、その電源である電池の小型化、高容量化が要求されており、マンガン乾電池に比して高容量であるLR8D425サイズのアルカリ一次電池の製造が望まれている。   This LR8D425 size alkaline battery can be configured as a prismatic alkaline battery having a nominal voltage of 9 V as described above by connecting six batteries in series and accommodating them in a metal case. Thus, even when the unit cell is ruptured due to an abnormal increase in internal pressure, it is possible to prevent leakage of the electrolyte-containing material with danger. By adding positive and negative terminals to the 6LR61 unit cell, an LR8D425 size alkaline battery is obtained. However, if an alkaline battery of LR8D425 size is sold as a single battery as a single battery, it does not have an explosion-proof structure. Therefore, if an incorrect use such as an external short circuit or charging is performed, the internal pressure may rise abnormally and lead to a rupture. Yes, it cannot be marketed as a single alkaline battery. LR8D425 size alkaline primary batteries, which have higher capacity than manganese batteries, are demanded to reduce the size and weight of batteries that are power supplies as devices such as portable devices become smaller and lighter and have higher functionality. The manufacture of is desired.

LR8D425サイズのアルカリ乾電池の単体での製造を可能にすべく、防爆構造を設けたLR8D425サイズのアルカリ乾電池が提案されている(特許文献1参照)。この電池は、図4に示すように、電池缶61の開口端を封口する樹脂封口体65の1箇所に厚さ方向の両側から円形凹部68,69を形成し、円形凹部68,69が衝き合う間に破裂可能膜67を形成している。電池缶61の内圧が異常上昇すると、前記破裂可能膜67が破断してガスを外部放出するので、電池の破裂が防止できる。   An LR8D425 size alkaline dry battery provided with an explosion-proof structure has been proposed to enable the manufacture of a single LR8D425 size alkaline dry battery (see Patent Document 1). In this battery, as shown in FIG. 4, circular recesses 68 and 69 are formed from both sides in the thickness direction at one location of a resin sealing body 65 that seals the opening end of the battery can 61, and the circular recesses 68 and 69 are bumped. A rupturable membrane 67 is formed during the fit. When the internal pressure of the battery can 61 rises abnormally, the rupturable film 67 breaks and releases the gas to the outside, so that the battery can be prevented from bursting.

特表2002−516462号公報(第13〜16頁、図1)JP-T-2002-516462 (pages 13-16, FIG. 1)

上記従来技術において防爆構造とする破裂可能膜67は、内圧を受ける面積が小さい樹脂封口体65の一部に形成するために、小さい面積(開示された実施形態では1.5mmφ)にならざるを得ず、異常内圧によって確実に破断させるためには、極めて薄い膜(開示された実施形態では厚さ:0.1mm以下)に形成する必要がある。この破裂可能膜67は樹脂封口体65を樹脂成形によって製造する際に形成するとしている。   The rupturable film 67 having an explosion-proof structure in the above-described prior art must have a small area (1.5 mmφ in the disclosed embodiment) in order to form part of the resin sealing body 65 having a small area for receiving internal pressure. In order to ensure breakage due to abnormal internal pressure, it is necessary to form an extremely thin film (thickness: 0.1 mm or less in the disclosed embodiment). The rupturable film 67 is formed when the resin sealing body 65 is manufactured by resin molding.

しかしながら、樹脂封口体65を形成する材料がナイロン66又はナイロン612であり、それを射出成形により樹脂封口体65に形成する際に破裂可能膜67を同時成形することは、成形金型内での溶融樹脂の流動が可能な厚さを考慮すると一様な膜厚の形成は不可能といえる。実際には、樹脂封口体65を樹脂成形により形成した後に、破裂可能膜67をプレス加工により所要厚さになるように形成することが要求される。   However, the material forming the resin sealing body 65 is nylon 66 or nylon 612, and simultaneously forming the rupturable film 67 when forming the resin sealing body 65 on the resin sealing body 65 by injection molding is performed in the molding die. Considering the thickness at which the molten resin can flow, it can be said that it is impossible to form a uniform film thickness. Actually, after the resin sealing body 65 is formed by resin molding, the rupturable film 67 is required to be formed to a required thickness by pressing.

従って、樹脂封口体65を製造するための製造コストの増加が生じ、破裂可能膜67の膜厚を均一に形成する管理コストが発生し、使い捨てであるために低価格が要求される乾電池のコストアップになる課題がある。   Therefore, the manufacturing cost for manufacturing the resin sealing body 65 is increased, the management cost for uniformly forming the film thickness of the rupturable film 67 is generated, and the cost of the dry battery that requires a low price because it is disposable. There is a problem that will be up.

本発明は、上記従来技術の課題に鑑みて創案されたもので、その目的とするところは、直径8±0.3mmの円筒形電池にコストアップを生じさせることなく防爆構造を設けることを可能にしたアルカリ一次電池を提供することにある。   The present invention was devised in view of the above-described problems of the prior art, and the object of the present invention is to provide an explosion-proof structure without increasing the cost of a cylindrical battery having a diameter of 8 ± 0.3 mm. Another object of the present invention is to provide an alkaline primary battery.

上記目的を達成するために本発明は、有底円筒形に形成された電池缶内に発電要素を収容し、前記電池缶の開口端を樹脂封口体により封口して、直径8±0.3mmに形成されてなるアルカリ一次電池であって、前記樹脂封口体は、中心部に前記発電要素内に挿入された円柱形の集電子を嵌挿させる貫通穴を設けて直径が2.5〜3.5mmの円筒に形成された軸部と、この軸部の上方から120〜160度の傾斜角度で円錐状に下降し、その一部に厚さが0.15〜0.25mmの薄肉部が形成された受圧部と、この受圧部の下端から電池缶の内径に接する直径で円筒状に立ち上がる封口部と、を備えて平面形状が円形に形成されてなることを特徴とするものである。   In order to achieve the above object, the present invention accommodates a power generation element in a battery can formed in a bottomed cylindrical shape, and the opening end of the battery can is sealed with a resin sealing body, and the diameter is 8 ± 0.3 mm. The resin sealing body is provided with a through hole into which a cylindrical current collector inserted into the power generation element is inserted into a central portion, and has a diameter of 2.5 to 3. A shaft part formed in a cylinder of .5 mm and a conical shape descending from the upper part of this shaft part at an inclination angle of 120 to 160 degrees, and a thin part having a thickness of 0.15 to 0.25 mm is partly formed. The pressure receiving portion is formed, and a sealing portion that rises in a cylindrical shape with a diameter in contact with the inner diameter of the battery can from the lower end of the pressure receiving portion, and has a planar shape formed in a circular shape.

上記構成によれば、樹脂封口体の軸部の直径を小さくして所定傾斜角度に受圧部を設けることにより、電池缶の直径が小さいがために、その開口端を封口する樹脂封口体の直径も小さくなり、電池缶の内圧を受ける受圧面積を充分に確保できなかった課題を解決することができる。受圧面積が充分に確保できることから、前記受圧部に形成する薄肉部は樹脂成形可能な厚さが可能となり、樹脂封口体を射出成形によって製造することができ、アルカリ一次電池のコストアップを抑えることができる。受圧部に前記薄肉部が形成されていることにより、電池缶内圧が異常上昇したときに受圧部に内圧が加わると薄肉部が破断して内圧を外部放出することができるので、直径が8±0.3mmの小さい電池であっても防爆構造を備えることができる。携帯機器などの小型化、高機能化の進展に伴ってマンガン乾電池より電池容量が大きいアルカリ一次電池の小型化が望まれていたが、直径が8±0.3mmの小さいアルカリ一次電池であっても防爆構造を設けて一般使用に供することが可能となる。   According to the above configuration, the diameter of the resin sealing body that seals the opening end of the battery can is small because the diameter of the shaft portion of the resin sealing body is reduced and the pressure receiving portion is provided at a predetermined inclination angle. Therefore, it is possible to solve the problem that a sufficient pressure receiving area for receiving the internal pressure of the battery can cannot be secured. Since the pressure-receiving area can be sufficiently secured, the thin-walled portion formed in the pressure-receiving portion can have a resin-moldable thickness, the resin sealing body can be manufactured by injection molding, and the cost increase of the alkaline primary battery can be suppressed. Can do. By forming the thin wall portion in the pressure receiving portion, when the internal pressure is applied to the pressure receiving portion when the internal pressure of the battery can is abnormally increased, the thin wall portion can be broken and the internal pressure can be released to the outside. Even a small battery of 0.3 mm can have an explosion-proof structure. With the progress of miniaturization and high functionality of portable devices, etc., it was desired to reduce the size of the alkaline primary battery having a battery capacity larger than that of the manganese dry battery, but the alkaline primary battery having a diameter of 8 ± 0.3 mm is small. In addition, an explosion-proof structure can be provided for general use.

上記構成において、樹脂封口体の軸部に形成された貫通穴の内径は、集電子の直径の94〜97%とするのが好適である。アルカリ電解液は浸透性が高く、集電子と貫通穴との間に隙間があると電解液の這い上がり現象から漏液を発生させるので、集電子の直径より小さい内径の貫通穴に集電子を嵌挿させると、集電子と貫通穴との間に隙間が生じない。但し、貫通穴の内径を小さくし過ぎると、集電子を嵌挿させるときに軸部にクラックが生じる恐れがあり、クラックを通じた漏液が発生するので、貫通穴の内径は集電子の直径に対して前記比率とするのが望ましいものとなる。   In the above configuration, the inner diameter of the through hole formed in the shaft portion of the resin sealing body is preferably 94 to 97% of the diameter of the current collector. Alkaline electrolyte has high permeability, and if there is a gap between the current collector and the through-hole, leakage occurs due to the phenomenon of the electrolyte creeping up. When inserted, there is no gap between the current collector and the through hole. However, if the inner diameter of the through hole is too small, cracks may occur in the shaft when inserting the current collector, and leakage through the crack will occur, so the inner diameter of the through hole will be the same as the diameter of the current collector. On the other hand, it is desirable to set the ratio.

また、樹脂封口体は射出成形により形成され、そのゲート位置はアルカリ電解液に接しない位置に設けることが望ましく、不整面として残りやすいゲート跡からアルカリ電解液が樹脂封口体内に浸透することを防止することができる。   In addition, the resin sealing body is formed by injection molding, and it is desirable to provide the gate position at a position not in contact with the alkaline electrolyte, preventing the alkaline electrolyte from penetrating into the resin sealing body from the trace of the gate that tends to remain as an irregular surface. can do.

また、樹脂封口体の材質は、6,6−ナイロンもしくは6,12−ナイロンを用いることにより、アルカリ電解液に対する化学的耐性や封口時の圧縮性、薄肉部の成形精度など樹脂封口体として好適である。   Moreover, the material of the resin sealing body is suitable as a resin sealing body by using 6,6-nylon or 6,12-nylon, such as chemical resistance to an alkaline electrolyte, compressibility at the time of sealing, and molding accuracy of a thin portion. It is.

本発明によれば、直径が8±0.3mmの小さいアルカリ一次電池であっても電池内圧を受ける受圧面積を充分に得ることができる樹脂封口体が形成できるので、異常内圧によって破断する薄肉部を設けた防爆構造を設けて一般需要に供することができるアルカリ一次電池を製造することができる。   According to the present invention, since the resin sealing body capable of sufficiently obtaining the pressure receiving area for receiving the battery internal pressure can be formed even in the case of a small alkaline primary battery having a diameter of 8 ± 0.3 mm, the thin-walled portion that breaks due to the abnormal internal pressure It is possible to manufacture an alkaline primary battery that can be provided for general demand by providing an explosion-proof structure provided with

本実施形態は、アルカリ一次電池の代表例であるアルカリ乾電池に本発明の構成を適用した実施例を示すものであるが、アルカリ乾電池の正極作用物質である電解二酸化マンガンをオキシ水酸化ニッケルに置き換えたニッケル乾電池あるいはオキシライド乾電池と称されるアルカリ一次電池に適用しても同様の効果が得られる。   This embodiment shows an example in which the configuration of the present invention is applied to an alkaline dry battery which is a representative example of an alkaline primary battery, but the electrolytic manganese dioxide which is a positive electrode active substance of the alkaline dry battery is replaced with nickel oxyhydroxide. The same effect can be obtained even when applied to an alkaline primary battery called a nickel battery or an oxyride battery.

また、本実施形態に示す直径が8±0.3mmの円筒形アルカリ乾電池は、我国においては現時点で単一商品としては製造されておらず、前述したように9V角形アルカリ乾電池(6LR61)を構成して製造されている(近年、IEC、JISでLR8D425と規格化された。従って、単一電池として規格化されていないので、JIS呼称は現時点においてなく、従来JISであり一般的呼称である単1(UM−1)〜単5(UM−5)の呼称もないので、ここではIEC規格として表示されているLR8D425サイズなる呼称を採用する。)。   In addition, the cylindrical alkaline battery having a diameter of 8 ± 0.3 mm shown in the present embodiment is not currently manufactured as a single product in Japan and constitutes a 9V prismatic alkaline battery (6LR61) as described above. (In recent years, it has been standardized as LR8D425 by IEC and JIS. Therefore, since it is not standardized as a single battery, the JIS designation is not present, but it is a conventional JIS and a general designation. Since there is no designation of 1 (UM-1) to 5 (UM-5), the designation LR8D425 size displayed as the IEC standard is adopted here.

図1は、実施形態に係るアルカリ乾電池1の構成を示すもので、有底円筒形に形成された電池缶5内に発電要素を収容し、電池缶5の開口端を樹脂封口体2によって封口し、樹脂封口体2を貫通させた集電子3に接続された負極端子キャップ4を負極端子、電池缶5の底部に設けた正極突起6を正極端子とするアルカリ乾電池1に構成されている。   FIG. 1 shows a configuration of an alkaline dry battery 1 according to an embodiment. A power generation element is accommodated in a battery can 5 formed in a bottomed cylindrical shape, and an open end of the battery can 5 is sealed by a resin sealing body 2. The alkaline dry battery 1 has a negative electrode terminal cap 4 connected to a current collector 3 penetrating the resin sealing body 2 as a negative electrode terminal and a positive electrode protrusion 6 provided at the bottom of the battery can 5 as a positive electrode terminal.

前記電池缶5は鋼板をプレス加工して形成され、この電池缶5内には、二酸化マンガンと黒鉛とを主成分とする正極作用物質を円筒形に成形した正極合剤11が挿入され、その内側にセパレータ13を介してアルカリ電解液(水酸化カリウム水溶液)と亜鉛合金粉末とにゲル化剤を加えて混合したゲル状負極物質12が充填される。この電池缶5の開口端側には円周上を内側に絞り込んだ段部5aが形成され、この段部5a上に、樹脂封口体2に集電子3を嵌挿し、集電子3の頭頂部に負極端子キャップ4を接続した封口部材が配置され、電池缶5の開口端を内側に折り曲げて樹脂封口体2の封口部2cを圧縮するカシメ加工によって電池缶5は封口される。   The battery can 5 is formed by pressing a steel plate, and a positive electrode mixture 11 in which a positive electrode active material mainly composed of manganese dioxide and graphite is formed into a cylindrical shape is inserted into the battery can 5. A gelled negative electrode material 12 obtained by adding a gelling agent to an alkaline electrolyte (potassium hydroxide aqueous solution) and zinc alloy powder and mixing them through a separator 13 is filled inside. On the opening end side of the battery can 5, a step portion 5 a that is narrowed inward on the circumference is formed. On the step portion 5 a, the current collector 3 is fitted into the resin sealing body 2, and the top of the current collector 3 is placed. A sealing member to which the negative electrode terminal cap 4 is connected is disposed, and the battery can 5 is sealed by caulking that folds the opening end of the battery can 5 inward and compresses the sealing portion 2 c of the resin sealing body 2.

前記樹脂封口体2は、6,6−ナイロンもしくは6,12−ナイロンを用いた射出成形により、図2に示すような形状に形成されている。中心位置には集電子3が嵌挿される貫通穴2dを設けて円筒状に軸部2aが形成され、その上方から傾斜角度θ=125〜160度で下向き傾斜させて受圧部2bが形成され、この受圧部2bから段差2eを設けて上方に円筒状に立ち上がる封口部2cが形成されている。   The resin sealing body 2 is formed into a shape as shown in FIG. 2 by injection molding using 6,6-nylon or 6,12-nylon. A through hole 2d into which the current collector 3 is inserted is provided at the center position, and the shaft portion 2a is formed in a cylindrical shape. The pressure receiving portion 2b is formed by being inclined downward at an inclination angle θ = 125 to 160 degrees from above. A sealing portion 2c is formed from the pressure receiving portion 2b so as to rise upward in a cylindrical shape by providing a step 2e.

前記軸部2aに設けられた貫通穴2dの内径d2は、それに嵌挿される集電子3の直径の94〜97%に形成されている。即ち、集電子3はその直径より小さい穴に嵌挿されるので、集電子3の外周面に貫通穴2dの内周面が密着した状態が得られる。アルカリ電解液は浸透性が高く、集電子3と貫通穴2dとの間に僅かな隙間でもあると、ゲル状負極物質12内に挿入された集電子3の周面を伝ってアルカリ電解液が外部に漏出する這い上がり現象が生じる恐れがあるが、貫通穴2dの内径d2を上記寸法になるように設定することにより漏液が確実に防止される。貫通穴2dの内径d2を更に小さくすると、集電子3との密着性はより高くなるが、集電子3を嵌挿させたときに軸部2aに無理な拡幅応力が加わりやすく、軸部2aにストレスクラックが生じ、クラックを通じた漏液が発生することになる。   An inner diameter d2 of the through hole 2d provided in the shaft portion 2a is formed to be 94 to 97% of the diameter of the current collector 3 inserted therein. That is, since the current collector 3 is inserted into a hole smaller than its diameter, a state in which the inner peripheral surface of the through hole 2d is in close contact with the outer peripheral surface of the current collector 3 is obtained. The alkaline electrolyte has a high permeability, and if there is a slight gap between the current collector 3 and the through hole 2d, the alkaline electrolyte passes along the peripheral surface of the current collector 3 inserted into the gelled negative electrode material 12. Although a creeping phenomenon that leaks to the outside may occur, liquid leakage is surely prevented by setting the inner diameter d2 of the through hole 2d to the above dimensions. If the inner diameter d2 of the through hole 2d is further reduced, the adhesion to the current collector 3 is further increased. However, when the current collector 3 is fitted and inserted, an excessively widening stress is easily applied to the shaft portion 2a. Stress cracks occur and leakage through the cracks occurs.

また、軸部2aの直径d1は、アルカリ乾電池1の直径が8±0.3mmであるとき、2.5〜3.5mmに形成される。軸部2aの直径d1をより小さく形成することにより、アルカリ乾電池1の限られた小さい直径内で前記受圧部2bの面積、即ち、電池缶5内の内圧を受ける受圧面積をより大きく確保することができる。軸部2aの直径d1は、集電子3の直径を小さく形成することにより、より小さくすることができるが、集電子3の加工や封口部材に組み立てることが困難となり、アルカリ乾電池1を製造する歩留まりを低下させる。また、軸部2aの直径d1を徒に小さくすると強度が低下し、集電子3を嵌挿させる際にストレスクラックが生じやすくなる。   Further, the diameter d1 of the shaft portion 2a is formed to be 2.5 to 3.5 mm when the diameter of the alkaline battery 1 is 8 ± 0.3 mm. By forming the diameter d1 of the shaft portion 2a smaller, the area of the pressure receiving portion 2b, that is, the pressure receiving area for receiving the internal pressure in the battery can 5 can be secured within a limited small diameter of the alkaline dry battery 1. Can do. The diameter d1 of the shaft portion 2a can be made smaller by forming the current collector 3 smaller in diameter, but it becomes difficult to process the current collector 3 and assemble it into a sealing member, and the yield of manufacturing the alkaline dry battery 1 is thus reduced. Reduce. Further, if the diameter d1 of the shaft portion 2a is made small, the strength decreases, and stress cracks are likely to occur when the current collector 3 is inserted.

前記受圧部2bは、図示するように軸部2aの上方から傾斜角度θ=125〜160度で下向き傾斜する円錐状に形成されているので、電池缶5内の圧力を受ける受圧面積をより大きく確保することができ、少なくともその一部に厚さ0.15〜0.25mmの薄肉部2fを形成することにより、電池缶5内の圧力が異常上昇したとき薄肉部2fが破断して内圧を外部に放出するので、電池缶5が異常内圧により破裂にいたることが防止できる。受圧部2bの受圧面積を大きく確保できることから前記薄肉部2fの厚さは、射出成形可能な厚さに設定することができ、樹脂封口体2の製造をより簡易にしてコストダウンを図ることができる。   Since the pressure receiving portion 2b is formed in a conical shape inclined downward at an inclination angle θ = 125 to 160 degrees from above the shaft portion 2a as shown in the drawing, the pressure receiving area for receiving the pressure in the battery can 5 is larger. By forming a thin portion 2f having a thickness of 0.15 to 0.25 mm at least at a part thereof, when the pressure in the battery can 5 rises abnormally, the thin portion 2f breaks and the internal pressure is reduced. Since the battery can 5 is discharged to the outside, the battery can 5 can be prevented from bursting due to abnormal internal pressure. Since the pressure-receiving area of the pressure-receiving portion 2b can be secured large, the thickness of the thin-walled portion 2f can be set to a thickness that can be injection-molded, and the manufacturing of the resin sealing body 2 can be simplified and the cost can be reduced. it can.

前記受圧部2bの下端から上方に立ち上がる封口部2cは、段差2eを設けて電池缶5の形成される段部5a上に封口部材が安定して配置できるようにしている。また、段差2eの内側には上部段差2gが形成され、図1に示すように、負極端子キャップ4の周縁部が載り、カシメ加工された際の加圧により上部段差2gに周縁部が圧接して封口性が強化される。封口部2cは電池缶5の開口端を内側に折り曲げるカシメ加工により圧縮され、図1に示すように、負極端子キャップ4の周囲外面に密着するので、電池缶5の開口端は確実に封口される。   The sealing portion 2c rising upward from the lower end of the pressure receiving portion 2b is provided with a step 2e so that the sealing member can be stably disposed on the step portion 5a where the battery can 5 is formed. Further, an upper step 2g is formed inside the step 2e. As shown in FIG. 1, the peripheral portion of the negative terminal cap 4 is placed, and the peripheral portion is pressed against the upper step 2g by pressurization when crimped. The sealing performance is enhanced. The sealing portion 2c is compressed by caulking that bends the opening end of the battery can 5 inward, and is in close contact with the outer peripheral surface of the negative terminal cap 4, as shown in FIG. 1, so that the opening end of the battery can 5 is securely sealed. The

上記構成になる樹脂封口体2は、前述したように射出成形により形成されるが、その際のゲート位置は、アルカリ電解液と接しない部位に設定することが望ましい。ゲートは離型時に切断されるが、切断跡が残りやすく、表面に凹凸が生じやすいので、ゲート跡にアルカリ電解液が接すると、浸透力の大きいアルカリ電解液が樹脂封口体2内に浸透して加水分解により樹脂封口体2にクラックや変質を生じさせる恐れがある。従って、ゲート位置はアルカリ電解液と接しない外面側に設けることにより、樹脂封口体2による封口性能の低下を防止して漏液のないアルカリ乾電池1に構成することができる。   The resin sealing body 2 having the above-described configuration is formed by injection molding as described above, and the gate position at that time is preferably set at a site that does not contact the alkaline electrolyte. The gate is cut at the time of mold release, but the cut trace is likely to remain and the surface is likely to be uneven. Therefore, when the alkaline electrolyte is in contact with the gate trace, the alkaline electrolyte having a large penetrating power penetrates into the resin sealing body 2. Thus, there is a risk of causing cracks and alterations in the resin sealing body 2 due to hydrolysis. Therefore, by providing the gate position on the outer surface side that does not come into contact with the alkaline electrolyte, it is possible to prevent the sealing performance from being lowered by the resin sealing body 2 and configure the alkaline battery 1 without leakage.

上記構成になる樹脂封口体2を用いて図1に示すように組み立てられたアルカリ乾電池1の周面は、負極端子キャップ4及び正極突起6を外部露出させて樹脂フィルムによって被覆され、その直径が8±0.3mmのLR8D425サイズのアルカリ乾電池1として完成される。   The peripheral surface of the alkaline dry battery 1 assembled as shown in FIG. 1 using the resin sealing body 2 having the above-described configuration is covered with a resin film with the negative electrode terminal cap 4 and the positive electrode protrusion 6 exposed to the outside, and its diameter is The LR8D425 size alkaline dry battery 1 of 8 ± 0.3 mm is completed.

アルカリ乾電池1は大きな放電電流を取り出すことができるので、外部短絡などが生じたとき大きな短絡電流が流れて電池温度が上昇し、ガスの発生により電池缶5内の内圧が上昇して電池破裂に至る恐れがある。本実施形態に係るアルカリ乾電池1では、内圧の異常上昇は樹脂封口体2に設けた受圧部2bによって受圧され、それに形成された薄肉部2fの耐圧強度を上回る内圧になったとき、薄肉部2fは破断してガスが放出され、負極端子キャップ4に形成された排気孔9から外部に排出されるので、異常上昇した内圧は沈静化されて電池破裂に陥ることが防止される。即ち、樹脂封口体2に設けられた受圧部2b及び薄肉部2fにより、直径が小さいLR8D425サイズのアルカリ乾電池1であっても防爆構造を備えることが可能となる。   Since the alkaline dry battery 1 can take out a large discharge current, when an external short circuit or the like occurs, a large short circuit current flows and the battery temperature rises, and the internal pressure in the battery can 5 rises due to the generation of gas, resulting in a battery burst. There is a fear. In the alkaline battery 1 according to the present embodiment, the abnormal increase in internal pressure is received by the pressure receiving portion 2b provided in the resin sealing body 2, and when the internal pressure exceeds the pressure resistance strength of the thin portion 2f formed thereon, the thin portion 2f. Ruptures and releases gas, and is discharged to the outside through the exhaust hole 9 formed in the negative electrode terminal cap 4, so that the abnormally increased internal pressure is calmed and prevented from rupturing the battery. That is, the pressure-receiving part 2b and the thin part 2f provided in the resin sealing body 2 can provide an explosion-proof structure even for the LR8D425-sized alkaline dry battery 1 with a small diameter.

アルカリ乾電池1は従来から広く用いられてきたマンガン乾電池との互換性があり、マンガン乾電池に比して電池容量が大で、大きな放電電流を取り出すことができるので、より広範囲の電池電源機器に適用することができるが、機器や人体に悪影響を及ぼすアルカリ電解液を使用しているため、漏液対策が重要な構成要件となる。機器の故障やポケットやハンドバッグ内で金属物が接触することや故意の短絡などの原因による外部短絡、複数のアルカリ乾電池1を機器に装填する際に1個が逆向きに装填されてしまう逆装填、一次電池であるにもかかわらず充電する乾電池充電、機器又は電池が高温状態に曝される高温環境など、ユーザが間違った使用を行った場合でも電池破裂や漏液が発生しないように、防爆構造や漏液防止構造が必須である。本願発明が対象とする直径サイズのアルカリ乾電池1より大きな直径のアルカリ一次電池においては前記防爆構造、漏液防止構造が設けられているが、本実施形態で示した直径が極めて小さいLR8D425サイズのアルカリ乾電池1に設けた防爆構造、漏液防止構造が正常に機能するかについて検証を行った。   The alkaline battery 1 is compatible with the conventionally widely used manganese battery, has a larger battery capacity than the manganese battery, and can extract a large discharge current, so it can be applied to a wider range of battery power supply devices. However, since an alkaline electrolyte that adversely affects equipment and the human body is used, measures against leakage are an important component. External short-circuit due to equipment failure, contact with metal objects in pockets or handbags, intentional short-circuit, etc., reverse loading when one or more alkaline batteries 1 are loaded in reverse Explosion-proof so that battery rupture or leakage does not occur even if the user misuses it, such as dry battery charging that charges even though it is a primary battery, high temperature environment where the device or battery is exposed to high temperature Structure and leakage prevention structure are essential. In the alkaline primary battery having a diameter larger than the alkaline dry battery 1 having a diameter size which is the subject of the present invention, the explosion-proof structure and the leakage preventing structure are provided. However, the LR8D425-sized alkali having a very small diameter shown in the present embodiment is provided. Verification was made as to whether the explosion-proof structure and the liquid leakage prevention structure provided in the dry battery 1 function normally.

防爆構造の評価方法として、4個のアルカリ乾電池1のうち1個を正極、負極の向きを逆向きにして4個直列に接続して短絡させ、逆向き接続されたアルカリ乾電池1を強制的に充電状態とし、ガスの発生により電池缶5内の圧力が異常上昇したとき、防爆構造及び漏液防止構造が正常に作動するかについて各温度条件で検証した。また、電池缶5内の内圧が異常上昇したとき、樹脂封口体2に設けた受圧部2bが内圧を受圧し、それに形成された薄肉部2fが破断して内圧を外部放出する防爆構造と、内圧変化及び温度変化により隙間が発生して漏液が生じることを防止する漏液防止構造とを構成する各部の最適数値の検証を行った。尚、漏液試験評価を実施するヒートサイクルは、12時間サイクルで0℃から120℃まで温度変化させた雰囲気中にアルカリ乾電池1を放置し、耐漏液性能の評価を実施した。   As an evaluation method of the explosion-proof structure, one of the four alkaline dry batteries 1 is connected in series with the positive electrode and the negative electrode in the reverse direction and connected in series, and the alkaline dry battery 1 connected in the reverse direction is forcibly The battery was charged, and when the pressure in the battery can 5 increased abnormally due to the generation of gas, it was verified at each temperature condition whether the explosion-proof structure and the liquid leakage prevention structure would operate normally. In addition, when the internal pressure in the battery can 5 abnormally increases, the pressure receiving portion 2b provided in the resin sealing body 2 receives the internal pressure, and the thin portion 2f formed thereon breaks to release the internal pressure to the outside. The optimum numerical value of each part constituting the liquid leakage prevention structure that prevents the occurrence of liquid leakage due to the internal pressure change and temperature change was verified. In addition, the heat cycle which implements liquid leakage test evaluation left the alkaline dry battery 1 in the atmosphere changed in temperature from 0 degreeC to 120 degreeC in the 12-hour cycle, and implemented leakage resistance performance evaluation.

表1に示すように、薄肉部2fの厚さ及び軸部2aの直径を変えた樹脂封口体2によりアルカリ乾電池1を作製し、それぞれについて短絡試験とヒートサイクル試験とを行って破裂及び漏液の発生を検証した。表1に示す検証結果からもわかるように、受圧部2bの傾斜角度を140度としたとき、薄肉部2fの厚さは0.15〜0.25mm、軸部2aの直径は2.5〜3.5mmが最適であることが示されている。   As shown in Table 1, the alkaline dry battery 1 was produced with the resin sealing body 2 in which the thickness of the thin part 2f and the diameter of the shaft part 2a were changed, and the short circuit test and the heat cycle test were performed for each to cause rupture and leakage. The occurrence of this was verified. As can be seen from the verification results shown in Table 1, when the inclination angle of the pressure receiving portion 2b is 140 degrees, the thickness of the thin portion 2f is 0.15 to 0.25 mm, and the diameter of the shaft portion 2a is 2.5 to 2.5. 3.5 mm has been shown to be optimal.

Figure 2005332613
また、受圧部2bの傾斜角度の最適値を検証するために、表2に示すように、受圧部2bの傾斜角度を変化させた樹脂封口体2を用いてアルカリ乾電池1を作製し、短絡試験を実施した。表2からもわかるように、軸部2aの直径を3.0mm、薄肉部2fの厚さを0.23mmとしたとき、受圧部2bの傾斜角度は125〜160度が最適であることが示されている。
Figure 2005332613
Further, in order to verify the optimum value of the inclination angle of the pressure receiving portion 2b, as shown in Table 2, the alkaline dry battery 1 was produced using the resin sealing body 2 in which the inclination angle of the pressure receiving portion 2b was changed, and a short circuit test was performed. Carried out. As can be seen from Table 2, when the shaft portion 2a has a diameter of 3.0 mm and the thin portion 2f has a thickness of 0.23 mm, the inclination angle of the pressure receiving portion 2b is optimally 125 to 160 degrees. Has been.

Figure 2005332613
以上説明した実施形態では、アルカリ一次電池としてアルカリ乾電池の場合について説明したが、前述したようにアルカリ乾電池の正極作用物質である電解二酸化マンガンをオキシ水酸化ニッケルに置き換えると、デジタルカメラのように比較的大きな放電電流を要求する機器に対応させるのに適したアルカリ一次電池に構成することができる。このオキシ水酸化ニッケルを正極作用物質として採用したアルカリ一次電池は、ニッケル乾電池あるいはオキシライド乾電池の名称で単3(UM−3)サイズのものが市販されているが、JISなどに未だ規格化されていない。本実施形態に示した構成は、このオキシ水酸化ニッケルを採用したアルカリ一次電池をLR8D425サイズの乾電池に構成する場合においても同様に適用することができる。
Figure 2005332613
In the embodiment described above, the case of an alkaline battery as an alkaline primary battery has been described. However, as described above, when electrolytic manganese dioxide, which is a positive electrode active substance of an alkaline battery, is replaced with nickel oxyhydroxide, a comparison is made like a digital camera. It is possible to configure an alkaline primary battery suitable for adapting to a device that requires a large discharge current. Alkaline primary batteries employing nickel oxyhydroxide as the positive electrode active substance are commercially available as AA (UM-3) size under the name of nickel or oxyride batteries, but are still standardized by JIS and others. Absent. The configuration shown in the present embodiment can be similarly applied to the case where the alkaline primary battery employing this nickel oxyhydroxide is configured as an LR8D425 size dry battery.

以上の説明の通り本発明によれば、直径が8±0.3mmの極めて小さいアルカリ一次電池であってもコストアップを生じさせることなく、安定した性能の防爆構造を備えることができる。従って、携帯機器など電池を電源とする機器の小型化、高機能化の要求に応える小型で且つ高容量のアルカリ一次電池を提供することが可能となる。   As described above, according to the present invention, even an extremely small alkaline primary battery having a diameter of 8 ± 0.3 mm can be provided with an explosion-proof structure with stable performance without causing an increase in cost. Therefore, it is possible to provide a small-sized and high-capacity alkaline primary battery that meets the demand for downsizing and high-functionality of a device such as a portable device that uses a battery as a power source.

実施形態に係るアルカリ乾電池の構成を示す要部断面図。FIG. 3 is a cross-sectional view of a main part showing the configuration of the alkaline dry battery according to the embodiment. 同上乾電池に適用した樹脂封口体の構成を示す断面図。Sectional drawing which shows the structure of the resin sealing body applied to the dry battery same as the above. 従来技術に係るアルカリ乾電池の構成を示す要部断面図。Sectional drawing which shows the principal part which shows the structure of the alkaline dry battery which concerns on a prior art. 従来技術に係るアルカリ乾電池の構成を示す要部断面図。Sectional drawing which shows the principal part which shows the structure of the alkaline dry battery which concerns on a prior art.

符号の説明Explanation of symbols

1 アルカリ乾電池(アルカリ一次電池)
2 樹脂封口体
2a 軸部
2b 受圧部
2c 封口部
2d 貫通穴
2f 薄肉部
3 集電子
4 負極端子キャップ
5 電池缶
1 Alkaline battery (Alkaline primary battery)
2 resin sealing body 2a shaft portion 2b pressure receiving portion 2c sealing portion 2d through hole 2f thin wall portion 3 current collector 4 negative electrode terminal cap 5 battery can

Claims (4)

有底円筒形に形成された電池缶内に発電要素を収容し、前記電池缶の開口端を樹脂封口体により封口して、直径が8±0.3mmに形成されてなるアルカリ一次電池であって、
前記樹脂封口体は、中心部に前記発電要素内に挿入された円柱形の集電子を嵌挿させる貫通穴を設けて直径が2.5〜3.5mmの円筒に形成された軸部と、この軸部の上方から120〜160度の傾斜角度で円錐状に下降し、その一部に厚さが0.15〜0.25mmの薄肉部が形成された受圧部と、この受圧部の下端から電池缶の内径に接する直径で円筒状に立ち上がる封口部と、を備えて平面形状が円形に形成されてなることを特徴とするアルカリ一次電池。
An alkaline primary battery in which a power generation element is accommodated in a battery can formed in a bottomed cylindrical shape, and the opening end of the battery can is sealed with a resin sealing body, and the diameter is 8 ± 0.3 mm. And
The resin sealing body has a shaft portion formed in a cylinder having a diameter of 2.5 to 3.5 mm by providing a through hole into which a cylindrical current collector inserted into the power generation element is inserted in the center portion, A pressure receiving portion in which a cone portion is lowered from above the shaft portion at an inclination angle of 120 to 160 degrees, and a thin portion having a thickness of 0.15 to 0.25 mm is formed in a part thereof; And a sealing portion that rises in a cylindrical shape with a diameter in contact with the inner diameter of the battery can, and the planar shape is formed in a circular shape.
樹脂封口体の軸部に形成された貫通穴の内径は、集電子の直径の94〜97%である請求項1に記載のアルカリ一次電池。 The alkaline primary battery according to claim 1, wherein an inner diameter of the through hole formed in the shaft portion of the resin sealing body is 94 to 97% of a diameter of the current collector. 樹脂封口体は樹脂成形により形成され、そのゲート位置はアルカリ電解液に接しない位置に設けられてなる請求項1又は2に記載のアルカリ一次電池。 The alkaline primary battery according to claim 1 or 2, wherein the resin sealing body is formed by resin molding, and the gate position thereof is provided at a position not in contact with the alkaline electrolyte. 樹脂封口体の材質は、6,6−ナイロンもしくは6,12−ナイロンである請求項1〜3いずれか一項に記載のアルカリ一次電池。


The alkaline primary battery according to any one of claims 1 to 3, wherein a material of the resin sealing body is 6,6-nylon or 6,12-nylon.


JP2004147669A 2004-05-18 2004-05-18 Alkaline primary battery Withdrawn JP2005332613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004147669A JP2005332613A (en) 2004-05-18 2004-05-18 Alkaline primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004147669A JP2005332613A (en) 2004-05-18 2004-05-18 Alkaline primary battery

Publications (1)

Publication Number Publication Date
JP2005332613A true JP2005332613A (en) 2005-12-02

Family

ID=35487117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004147669A Withdrawn JP2005332613A (en) 2004-05-18 2004-05-18 Alkaline primary battery

Country Status (1)

Country Link
JP (1) JP2005332613A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084845A (en) * 2006-09-25 2008-04-10 Matsushita Electric Ind Co Ltd Cylindrical primary battery
JP2010232071A (en) * 2009-03-27 2010-10-14 Panasonic Corp Gasket for battery and alkaline battery using the same
WO2014034017A1 (en) * 2012-08-28 2014-03-06 パナソニック株式会社 Alkaline battery
JP2014135242A (en) * 2013-01-11 2014-07-24 Fdk Energy Co Ltd Gasket for alkaline battery and alkaline battery
WO2018123123A1 (en) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 Alkali dry cell
JP2019053934A (en) * 2017-09-18 2019-04-04 タイガースポリマー株式会社 Explosion-proof valve body for sealed electrochemical device
CN110165120A (en) * 2019-05-15 2019-08-23 广东微电新能源有限公司 Battery structure with deformation decompression function

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084845A (en) * 2006-09-25 2008-04-10 Matsushita Electric Ind Co Ltd Cylindrical primary battery
JP2010232071A (en) * 2009-03-27 2010-10-14 Panasonic Corp Gasket for battery and alkaline battery using the same
WO2014034017A1 (en) * 2012-08-28 2014-03-06 パナソニック株式会社 Alkaline battery
JP2014135242A (en) * 2013-01-11 2014-07-24 Fdk Energy Co Ltd Gasket for alkaline battery and alkaline battery
WO2018123123A1 (en) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 Alkali dry cell
JP2019053934A (en) * 2017-09-18 2019-04-04 タイガースポリマー株式会社 Explosion-proof valve body for sealed electrochemical device
CN110165120A (en) * 2019-05-15 2019-08-23 广东微电新能源有限公司 Battery structure with deformation decompression function
CN110165120B (en) * 2019-05-15 2022-04-08 广东微电新能源有限公司 Battery structure with deformation pressure release function

Similar Documents

Publication Publication Date Title
EP2541639B1 (en) Cylindrical battery and gasket for use in same
JP2008502120A (en) Alkaline battery with planar housing
WO2012042743A1 (en) Alkaline secondary battery
JP2007080598A (en) Sealed square battery
JP5707568B2 (en) Alkaline battery
WO2005099004A1 (en) Liquid action substance battery
JP2005332613A (en) Alkaline primary battery
JP5416939B2 (en) Alkaline battery and battery pack
JP2007234305A (en) Cylindrical cell
JP2005347130A (en) Exhaust valve for sealed type storage battery, sealed storage battery using it,and sealed nickel-hydrogen storage battery
WO2018123123A1 (en) Alkali dry cell
JP5226165B2 (en) Coin battery
JP2008004428A (en) Alkaline dry battery
JP2006202637A (en) Alkaline battery
JP2002373711A (en) Button type air-zinc battery and its method of manufacture
JPH11111244A (en) Sealed storage battery
WO2011027502A1 (en) Alkaline dry battery
JP3380693B2 (en) Method of manufacturing explosion-proof sealing plate for battery
CN116706361B (en) Cylindrical battery and preparation method thereof
JP2004063254A (en) Sealed type battery
CN110100327A (en) Alkaline secondary cell
JP2006092828A (en) Battery pack
JP2005216776A (en) Sealed storage battery and charger for the same
JP2007287625A (en) Sealed battery and its manufacturing method
JP2020095805A (en) Alkaline dry cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060710

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080513