JP2002373711A - Button type air-zinc battery and its method of manufacture - Google Patents

Button type air-zinc battery and its method of manufacture

Info

Publication number
JP2002373711A
JP2002373711A JP2001178336A JP2001178336A JP2002373711A JP 2002373711 A JP2002373711 A JP 2002373711A JP 2001178336 A JP2001178336 A JP 2001178336A JP 2001178336 A JP2001178336 A JP 2001178336A JP 2002373711 A JP2002373711 A JP 2002373711A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
current collector
electrode current
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001178336A
Other languages
Japanese (ja)
Inventor
Hitoshi Koda
仁 甲田
Machi Ohashi
真智 大橋
Yuichi Kikuma
祐一 菊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2001178336A priority Critical patent/JP2002373711A/en
Publication of JP2002373711A publication Critical patent/JP2002373711A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a button type air-zinc battery enhancing leak preventive characteristics when it is stored for a long period. SOLUTION: The button type air-zinc battery has a cup-shaped positive electrode can serving also as a positive electrode current collector, a positive electrode catalyst layer, a cap-shaped negative electrode current collector with folded ends, a negative electrode working material, and a ring-shaped gasket. The outside diameter A of the portion of the battery where the catalyst layer is located, the outside diameter B of the battery at the lowermost end position of the negative electrode current collector, the outside diameter C of the negative electrode current collector at the end folding position of the negative electrode current collector, the outside diameter D of the negative electrode current collector at the folded end position of the negative electrode current collector, the wall thickness m of the gasket at the C position, and the wall thickness n of the gasket at the D position meet the relationships: A>B; C>D; and m=n. The leak preventive characteristic of the battery can thus be enhanced without causing deflection of the positive electrode catalyst layer. The battery can be manufactured by sealing it using a crimper shaped so that a portion below a round part R corresponding to a calked part is tapered or rounded, and so that the inside diameter of its middle part is smaller than the inside diameter of its lower end part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は長期貯蔵特性を向上
させたボタン型空気亜鉛電池に関する。
The present invention relates to a button-type zinc-air battery having improved long-term storage characteristics.

【0002】[0002]

【従来の技術】空気亜鉛電池は大気中の酸素を正極作用
物質とするため、正極作用物質を電池内に詰め込む必要
がなく、同じ大きさの電池であれば負極作用物質である
亜鉛をより多く詰め込むことが可能で、アルカリマンガ
ン電池や酸化銀電池に比較して大容量が得られるという
利点がある。
2. Description of the Related Art In a zinc-air battery, since oxygen in the atmosphere is used as a positive electrode active material, there is no need to pack the positive electrode active material into the battery. For batteries of the same size, more zinc is used as the negative electrode active material. Packing is possible, and there is an advantage that a large capacity can be obtained as compared with an alkaline manganese battery or a silver oxide battery.

【0003】以下に空気亜鉛電池の一般的な構造を簡単
に説明する。すなわち、空気亜鉛電池は、空気孔を有す
る正極缶の底部に、空気拡散層、撥水層、正極触媒層を
順次積層し、正極触媒層の上にセパレータを介してゲル
状亜鉛負極を装填した負極缶を載置し、絶縁ガスケット
を介して正極缶を内方へクリンプすることにより正極缶
および負極缶を嵌合し、密封口した構造となっている。
The general structure of a zinc-air battery will be briefly described below. That is, the zinc-air battery was formed by sequentially laminating an air diffusion layer, a water-repellent layer, and a cathode catalyst layer on the bottom of a cathode can having an air hole, and loading a gelled zinc anode on the cathode catalyst layer via a separator. The negative electrode can is placed, and the positive electrode can and the negative electrode can are fitted to each other by crimping the positive electrode can inward through an insulating gasket, thereby forming a sealed port.

【0004】ところで、従来のボタン型電池では、長期
貯蔵の耐漏液特性を高めるために、クリンプ圧力を高く
したり、クリンプ後のパッキングの圧縮率を高めるよう
な方法が一般的であった。このような貯蔵漏液対策は、
ボタン型アルカリ電池やボタン型酸化銀電池などで適用
されている。
[0004] By the way, in the conventional button type battery, a method of increasing the crimp pressure or increasing the compression ratio of the packing after crimping is generally used in order to enhance the liquid leakage resistance during long-term storage. Such storage leakage countermeasures
It is applied to button type alkaline batteries and button type silver oxide batteries.

【0005】しかし、同じボタン型電池でも、ボタン型
空気亜鉛電池の場合は、このようにクリンプ圧力やパッ
キング圧縮率を高めるようにクリンプすると正極触媒層
(空気極)に反りが生じ、それによって亜鉛の利用率が
低下して放電特性が悪化したり、過放電漏液の発生率が
高くなったりする。このため、クリンプ圧力の上限値が
制約されており、充分なクリンプ圧を加えることができ
ないという問題があった。
However, in the case of the same button-type battery, in the case of a button-type air zinc battery, when the crimping is performed in such a manner as to increase the crimp pressure and the packing compression ratio, the positive electrode catalyst layer (air electrode) is warped, thereby causing the zinc And the discharge characteristics are deteriorated, and the rate of occurrence of over-discharge leakage is increased. For this reason, the upper limit of the crimp pressure is restricted, and there has been a problem that a sufficient crimp pressure cannot be applied.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記問題点に
対処してなされたもので、ボタン型空気亜鉛電池におい
て、クリンプによる空気極の変形が生じないようにしな
がら、長期貯蔵時の耐漏液特性を向上させることを目的
とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems and has been made in a button-type zinc-air battery to prevent leakage of liquid during long-term storage while preventing deformation of the air electrode due to crimping. The purpose is to improve the characteristics.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、正極
集電体を兼ねたカップ状の正極缶内に酸素を還元する正
極触媒層を有し、端部が折り返されたキャップ状負極集
電体に負極作用物質が装填されており、該正極缶と該負
極集電体との間にリング状ガスケットが介在することに
よって両者が絶縁されている構造を有するボタン型空気
亜鉛電池において、触媒層が位置する部分の電池外径を
A、負極集電体最下端位置の電池外径をB、負極集電体
の端部折り返し位置の負極集電体外径をC、負極集電体
の折り返し端部位置の負極集電体外径をD、上記C位置
のガスケット肉厚をm、上記D位置のガスケット肉厚を
n、としたとき、A>B、C>D、m=nであることを
特徴とする。
That is, the present invention provides a cap-shaped negative electrode current collector having a cathode catalyst layer for reducing oxygen in a cup-shaped positive electrode can also serving as a positive electrode current collector and having an end turned back. In a button-type zinc-air battery having a structure in which a negative electrode active material is loaded in a body and a ring-shaped gasket is interposed between the positive electrode can and the negative electrode current collector, the two are insulated from each other. Is the outer diameter of the battery at the portion where A is located, B is the outer diameter of the battery at the lowermost position of the negative electrode current collector, C is the outer diameter of the negative electrode current collector at the end folded position of the negative electrode current collector, A> B, C> D, m = n, where D is the outer diameter of the negative electrode current collector at the position, m is the gasket thickness at the C position, and n is the gasket thickness at the D position. Features.

【0008】なお、上記各寸法のA,B,C,D,m,
nを図2に示す。また、本発明は上記ボタン型空気亜鉛
電池の製造方法に係るものであって、カシメ部に相当す
る曲部Rの下方がテーパー状またはR状になつていて中
間部内径が下端部内径より小である形状のクリンパーを
使用して電池を封口することを特徴とする。
The above dimensions A, B, C, D, m,
n is shown in FIG. Further, the present invention relates to the method of manufacturing the button-type zinc-air battery, wherein the lower portion of the curved portion R corresponding to the caulking portion is tapered or R-shaped, and the inner diameter of the intermediate portion is smaller than the inner diameter of the lower end portion. The battery is sealed using a crimper having the following shape.

【0009】従来使用されていたクリンパーは下端から
曲部R付近までが同じ内径寸法のストレート型であった
が、本発明ではその部分をテーパー形状にしたりR部を
設けることによって、クリンプ時の触媒層の反りを防止
し、かつキャップ状負極集電体の変形による斥力を利用
して、封口強度を高めるようにしたものである。その結
果、上記寸法のA,B,C,Dの間にA>B,C>Dの
関係が成立し、その場合に長期貯蔵時の漏液発生率が低
下することがわかった。
Conventionally, the crimper used was a straight type having the same inner diameter from the lower end to the vicinity of the curved portion R. However, in the present invention, such a portion is formed into a tapered shape or an R portion is provided so that the catalyst at the time of crimping can be formed. The sealing strength is enhanced by preventing warpage of the layer and utilizing repulsion caused by deformation of the cap-shaped negative electrode current collector. As a result, it was found that the relationship of A> B, C> D was established among A, B, C, and D of the above dimensions, and in that case, the rate of occurrence of liquid leakage during long-term storage was reduced.

【0010】また、従来はガスケットを肉厚にして圧縮
力を高めるようにしており、その場合上記ガスケット肉
厚のmおよびnはm<nとなる傾向があったが、本発明
では上記圧縮力にはよらないで封口強度を高めたもの
で、ガスケツト肉厚を薄くしてm=nとなるようにする
ことによって耐漏液特性が向上することがわかった。
Conventionally, the thickness of the gasket is increased to increase the compressive force. In this case, the gasket thicknesses m and n tend to satisfy m <n. It was found that the leakage resistance was improved by increasing the sealing strength without depending on the gasket and by reducing the thickness of the gasket so that m = n.

【0011】[0011]

【発明の実施の形態】図1に示すボタン型空気亜鉛電池
PR44P(直径11.54mm、総高5.25mm)を作製した。
すなわち、空気孔8を有する正極缶2内に大気中の酸素
を取り込むための触媒層(空気極)5、撥水膜6、拡散
紙7を設置し、セパレータ4を介して負極集電体(負極
キャップ)3に収納した負極ゲル9を載置する。負極ゲ
ルは電解液と亜鉛粉とをゲル化剤を用いてゲル状にした
ものであり、亜鉛粉として1%の水銀と500ppmの鉛を合
金として含み粒度が100〜300μmの汞化亜鉛粉を用い
た。また、電解液は30重量%水酸化カリウム水溶液を用
い、ゲル化剤はポリアクリル酸を用いた。電解液と亜鉛
粉の混合比は亜鉛粉1kgに対して電解液250gである。負
極ゲルの負極容器への充填率は、負極ゲル中の亜鉛が放
電によりすべて酸化亜鉛に反応するとした場合の理論上
の体積が負極容器の容積の98%となるような割合であ
る。上記の空気亜鉛電池の封口部を封口するのに用いた
クリンプ型を次に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A button-type zinc-air battery PR44P (diameter 11.54 mm, total height 5.25 mm) shown in FIG. 1 was produced.
That is, a catalyst layer (air electrode) 5, a water-repellent film 6, and a diffusion paper 7 for taking in oxygen in the atmosphere into a positive electrode can 2 having an air hole 8 are provided, and a negative electrode current collector ( The negative electrode gel 9 housed in the negative electrode cap 3 is placed. The negative electrode gel is obtained by gelling an electrolytic solution and zinc powder using a gelling agent, and contains 1% mercury and 500 ppm lead as an alloy as a zinc powder, and has a particle size of 100 to 300 μm. Using. The electrolyte used was a 30% by weight aqueous solution of potassium hydroxide, and the gelling agent was polyacrylic acid. The mixing ratio of the electrolyte and the zinc powder is 250 g of the electrolyte with respect to 1 kg of the zinc powder. The filling rate of the negative electrode gel in the negative electrode container is such that the theoretical volume when all of the zinc in the negative electrode gel reacts with zinc oxide by discharging becomes 98% of the volume of the negative electrode container. Next, the crimp type used for sealing the sealing portion of the zinc-air battery will be described.

【0012】図3はクリンプ型の縦断面説明図である。
図3におけるM部の形状により、クリンプ型は、ストレ
ートタイプのイ型、テーパー型のロ型、2段R型のハ
型、の3種に分けられる。イ型はa部位の内径寸法とc
部位の内径寸法が同一で、ともに11.52mm、ロ型はa部
位の寸法は11.52mmであるが、c部位の寸法が11.42mm
で、テーパーが形成されている。ハ型はa部位の寸法は
11.52mmで、c部位の寸法が11.37mmであり、このc部位
にRが設けられて、全体としてRが2段形成されている
ことになる。
FIG. 3 is an explanatory vertical cross-sectional view of a crimp type.
According to the shape of the M portion in FIG. 3, the crimp type is classified into three types: a straight type A type, a tapered type B type, and a two-step R type C type. In the case of type A, the inner diameter of part a and c
The inner diameter of the part is the same, both are 11.52 mm, and the size of the part a is 11.52 mm in the type B, but the dimension of the part c is 11.42 mm
Thus, a taper is formed. The shape of the c-shaped part is
It is 11.52 mm and the dimension of the c portion is 11.37 mm, and R is provided in this c portion, so that R is formed in two steps as a whole.

【0013】封口すべき電池へのクリンパー挿入口は下
端の線で表されている。ここから挿入して電池の上方か
ら下方へクリンパーを押し込むと、その肩部のR部で口
径が狭くなり、正極缶の封口部が内側へ圧されてクリン
プされる。従来のクリンプ型はイ型であるが、本発明で
はロ型およびハ型を用いる。
The crimper insertion opening in the battery to be sealed is indicated by the lower line. When the battery is inserted from here and the crimper is pushed downward from above the battery, the caliber becomes narrow at the R portion of the shoulder, and the sealing portion of the positive electrode can is pressed inward and crimped. The conventional crimp type is the A type, but in the present invention, the B type and the C type are used.

【0014】(実施例1)テーパークリンプ型(ロ型)
を用い、クリンプ圧を220kgfとして上記の電池をクリン
プした。クリンプ型のR部が正極缶の封口部に位置して
クリンプが行われるときには、a部は正極缶の底面から
全高の約2/3の位置にあり、その部位までの正極缶外径
はクリンプ型のa部内径11.52mmに規制される。その部
位から上はクリンプ型のM部(テーパー状)に相当する
ので、正極缶にテーパーが形成され、さらにその上にR
部がきて正極缶端部が内側に加締められる。以上によ
り、封口のクリンプが行われた後、クリンプ型をはずす
と、電池の仕上がり寸法は表1に示すように、図2のA
が11.54mm、Bが11.54mm、Cが10.76mm、Dは10.74mmと
なった。
(Example 1) Tape-crimp type (b type)
The battery was crimped at a crimp pressure of 220 kgf. When crimping is performed with the crimp-type R portion positioned at the sealing portion of the positive electrode can, the portion a is located at a position about 2/3 of the total height from the bottom surface of the positive electrode can, and the outer diameter of the positive electrode can to that portion is crimped. The inside diameter of the a part of the mold is regulated to 11.52 mm. Since the portion from above corresponds to a crimp-shaped M portion (tapered shape), a taper is formed in the positive electrode can, and further, R
The part comes and the end of the positive electrode can is crimped inward. As described above, when the crimp mold is removed after the sealing is crimped, the finished dimensions of the battery become as shown in FIG.
Was 11.54 mm, B was 11.54 mm, C was 10.76 mm, and D was 10.74 mm.

【0015】(実施例2)2段Rクリンプ型(ハ型)を
用い、クリンプ圧を220kgfとして上記の電池をクリンプ
した。この場合、実施例1のクリンプ型のテーパー部分
Mが直線であるのに対して曲線となっているが、実質的
な締めつけ効果はほぼ同じである。クリンプ後にクリン
プ型をはずすと、電池の仕上がり寸法は表1に示すよう
に、図2のAが11.54mm、Bが11.50mm、Cが10.78mm、
Dは10.72mmとなった。
Example 2 The above-mentioned battery was crimped using a two-stage R crimp type (C type) with a crimp pressure of 220 kgf. In this case, although the crimp-type tapered portion M of the first embodiment is a straight line but a curved line, the substantial tightening effect is almost the same. When the crimp type is removed after crimping, as shown in Table 1, the finished dimensions of the battery are 11.54 mm for A in FIG. 2, 11.50 mm for B, 10.78 mm for C,
D was 10.72 mm.

【0016】(従来例)ストレートタイプのクリンプ型
(イ型)を用い、クリンプ圧を220kgfとして上記の電池
をクリンプした。パッキングの厚さは0.325mmである。
電池の仕上がり寸法は表1に示すように、図2のAが1
1.54mm、Bが11.54mm、Cが10.74mm、Dは10.74mmとな
る。
(Conventional example) The above-described battery was crimped using a straight type crimp type (a type) with a crimp pressure of 220 kgf. Packing thickness is 0.325mm.
As shown in Table 1, the finished dimensions of the battery are as follows.
1.54 mm, B is 11.54 mm, C is 10.74 mm, and D is 10.74 mm.

【0017】(比較例1)従来例と同様にストレートタ
イプのクリンプ型(イ型)を用い、クリンプ圧を260kgf
として上記の電池をクリンプした。パッキングの厚さは
0.325mmである。電池の仕上がり寸法は表1のとうりで
ある。
(Comparative Example 1) As in the conventional example, a straight type crimp type (a type) was used, and the crimp pressure was 260 kgf.
The above battery was crimped. Packing thickness is
0.325mm. The finished dimensions of the battery are as shown in Table 1.

【0018】(比較例2)従来例と同様にストレートタ
イプのクリンプ型(イ型)を用い、クリンプ圧を220kgf
として上記の電池をクリンプした。パッキングの厚さは
0.275mmである。電池の仕上がり寸法は表1のとうりで
ある。
(Comparative Example 2) As in the conventional example, a straight type crimp type (a type) was used, and the crimp pressure was 220 kgf.
The above battery was crimped. Packing thickness is
0.275mm. The finished dimensions of the battery are as shown in Table 1.

【0019】(比較例3)テーパークリンプ型(ロ型)
を用い、クリンプ圧を180kgfとして上記の電池をクリン
プした。パッキングの厚さは0.275mmである。電池の仕
上がり寸法は表1のとうりである。
(Comparative Example 3) Tape-crimp type (b type)
The battery was crimped at a crimp pressure of 180 kgf. Packing thickness is 0.275mm. The finished dimensions of the battery are as shown in Table 1.

【0020】(比較例4)2段Rクリンプ型(ハ型)を
用い、クリンプ圧を180kgfとして上記の電池をクリンプ
した。パッキングの厚さは0.275mmである。電池の仕上
がり寸法は表1のとうりである。
Comparative Example 4 The above battery was crimped using a two-stage R-crimp type (C type) at a crimp pressure of 180 kgf. Packing thickness is 0.275mm. The finished dimensions of the battery are as shown in Table 1.

【0021】上記各実施例、比較例および従来例の電池
を各200個作製し、過放電漏液試験を行った。まず、100
個について、温度25℃、相対湿度85%の環境下で250Ω
の負荷で放電を行い、作動電圧が0.9Vに達してからさ
らに100時間同じ条件で放電し、その時の漏液発生電池
数を調べた。発生率(%)を表2に、過放電漏液発生率
として示す。
200 batteries of each of the above Examples, Comparative Examples and Conventional Examples were manufactured and subjected to an overdischarge leakage test. First, 100
250Ω in an environment with a temperature of 25 ° C and a relative humidity of 85%
Was discharged under the same load, and the battery was discharged under the same conditions for an additional 100 hours after the operating voltage reached 0.9 V, and the number of leaked batteries at that time was examined. The rate of occurrence (%) is shown in Table 2 as the rate of occurrence of overdischarge leakage.

【0022】次に、別の各100個について、温度60℃、
相対湿度93%の高温多湿環境下で60日間貯蔵して目視で
検査し、漏液の発生した電池数を調べた。発生率(%)
を表2に、高温貯蔵漏液発生率として示す。
Next, for another 100 pieces, the temperature was 60 ° C.
The batteries were stored for 60 days in a high-temperature and high-humidity environment with a relative humidity of 93% and visually inspected to determine the number of batteries that had leaked. Incidence(%)
Is shown in Table 2 as a high-temperature storage leak rate.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】(電池性能評価結果)従来例は、A=B,
C=D,m=nであって、キャップの斥力が働かないた
め、パッキング圧縮が高められず、長期貯蔵漏液特性は
よくない。実施例1は、テーパータイプのクリンパーを
用いたので、A>Bであり、また負極キャップ3がハの
字型に変形し、C>Dとなった。また、実施例2も2段
Rタイプのクリンパーを用いたことで、A>B、C>D
となった。
(Results of Battery Performance Evaluation) In the conventional example, A = B,
Since C = D and m = n, and the repulsive force of the cap does not work, the packing compression cannot be increased and the long-term storage liquid leakage characteristics are poor. In Example 1, since the taper type crimper was used, A> B, and the negative electrode cap 3 was deformed into a C shape, and C> D. Also, in the second embodiment, a two-stage R-type crimper is used, so that A> B and C> D
It became.

【0026】しかし、比較例1は従来例および実施例に
比べてクリンプ圧力を高くしたため、空気極5の反りが
大きくなり、過放電漏液が発生した。また、従来例と同
じ厚さのパッキングを用いているので、パッキングの斥
力が有効に働かず、長期貯蔵の耐漏液特性も悪い結果と
なった。したがって、クリンプ圧力を上げても長期貯蔵
の耐漏液特性が必ずしも向上するわけではないことがわ
かる。
However, in Comparative Example 1, since the crimp pressure was higher than in the conventional example and the example, the warpage of the air electrode 5 was increased, and over-discharge leakage occurred. In addition, since the packing having the same thickness as that of the conventional example was used, the repulsion of the packing did not work effectively, and the liquid leakage resistance during long-term storage was poor. Therefore, it can be seen that increasing the crimp pressure does not necessarily improve the leakage resistance characteristics for long-term storage.

【0027】比較例2はパッキングを薄くしたため、従
来例と比べると貯蔵特性でいくらか改善がなされている
が、漏液は発生している。この場合はストレートタイプ
のクリンパーを用いているので、負極キャップの変形が
なく、C>Dとならないためパッキングの斥力が働かな
かったためである。
In Comparative Example 2, the packing was made thinner, so that the storage characteristics were somewhat improved as compared with the conventional example, but liquid leakage occurred. In this case, since the straight type crimper was used, the negative electrode cap was not deformed, and C> D was not satisfied, so that the repulsive force of the packing did not work.

【0028】比較例3ではテーパータイプのクリンパー
を用いたが、クリンプ圧力を下げたため、負極キャップ
の変形が小さく、C=Dとなり、結果的にキャップリバ
ースの外側への広がりがないため、パッキングの圧縮が
弱くなった。つまり、他のクリンプ方式や加圧力を上げ
る方法と比べると、貯蔵漏液特性がおとることがわかっ
た。比較例4も2段Rタイプのクリンパーを用いている
が同様にクリンプ圧力が弱いために、貯蔵漏液特性がよ
くないことがわかる。
In Comparative Example 3, a taper type crimper was used. However, since the crimping pressure was reduced, the deformation of the negative electrode cap was small, and C = D. As a result, there was no spread to the outside of the cap reverse. Compression weakened. That is, it was found that the storage leakage characteristics were lower than those of other crimping methods and methods of increasing the pressing force. Comparative Example 4 also used a two-stage R-type crimper, but it was also found that the crimp pressure was similarly low, so that the storage leakage characteristics were not good.

【0029】以上のことから、漏液対策として単にクリ
ンプ圧力を高くしても効果がなく、A>B,C>D,m
=nの関係が必要であり、そのためにクリンパーの改良
が必要であることがわかった。
From the above, simply increasing the crimp pressure as a measure against liquid leakage has no effect, and A> B, C> D, m
= N, and it was found that the crimper had to be improved for that.

【0030】[0030]

【発明の効果】本発明によれば、ボタン型空気亜鉛電池
において、正極触媒層の変形を生じさせないようにしな
がら、長期貯蔵時の耐漏液特性を向上させることができ
る。
According to the present invention, in a button-type zinc-air battery, the leakage resistance during long-term storage can be improved while preventing the positive electrode catalyst layer from being deformed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例であるボタン型空気亜鉛電池
の部分断面図。
FIG. 1 is a partial cross-sectional view of a button-type zinc-air battery according to one embodiment of the present invention.

【図2】本発明における寸法値A,B,C,D,m,n
を説明する図。
FIG. 2 shows dimension values A, B, C, D, m, and n according to the present invention.
FIG.

【図3】本発明で使用するクリンパーを説明する図。FIG. 3 is a diagram illustrating a crimper used in the present invention.

【符号の説明】[Explanation of symbols]

1…ガスケット、2…正極缶、3…キャップ状負極集電
体、4…セパレータ、5…正極触媒層、6…撥水膜、7
…拡散紙、8…空気孔、9…負極ゲル。
DESCRIPTION OF SYMBOLS 1 ... Gasket, 2 ... Positive electrode can, 3 ... Cap-shaped negative electrode current collector, 4 ... Separator, 5 ... Positive catalyst layer, 6 ... Water-repellent film, 7
... diffusion paper, 8 ... air holes, 9 ... negative electrode gel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊間 祐一 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H011 AA17 CC06 DD15 DD26 FF03 GG02 KK01 KK03 KK04 5H032 AA01 AS03 AS11 BB10 CC01 CC04 CC11 HH01 HH04 HH06 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yuichi Kikuma 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation F-term (reference) 5H011 AA17 CC06 DD15 DD26 FF03 GG02 KK01 KK03 KK04 5H032 AA01 AS03 AS11 BB10 CC01 CC04 CC11 HH01 HH04 HH06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体を兼ねたカップ状の正極缶内
に酸素を還元する正極触媒層を有し、端部が折り返され
たキャップ状負極集電体に負極作用物質が装填されてお
り、該正極缶と該負極集電体との間にリング状ガスケッ
トが介在することによって両者が絶縁されている構造を
有するボタン型空気亜鉛電池において、触媒層が位置す
る部分の電池外径をA、負極集電体最下端位置の電池外
径をB、負極集電体の端部折り返し位置の負極集電体外
径をC、負極集電体の折り返し端部位置の負極集電体外
径をD、上記C位置のガスケット肉厚をm、上記D位置
のガスケット肉厚をn、としたとき、A>B、C>D、
m=nであることを特徴とするボタン型空気亜鉛電池。
1. A negative electrode active material is loaded on a cap-shaped negative electrode current collector having a positive electrode catalyst layer for reducing oxygen in a cup-shaped positive electrode can also serving as a positive electrode current collector and having an end turned back. In a button-type air-zinc battery having a structure in which a ring-shaped gasket is interposed between the positive electrode can and the negative electrode current collector so that both are insulated, the outer diameter of the battery where the catalyst layer is located is reduced. A, the outer diameter of the battery at the lowermost position of the negative electrode current collector is B, the outer diameter of the negative electrode current collector at the end turning position of the negative electrode current collector is C, and the outer diameter of the negative electrode current collector at the turning end position of the negative electrode current collector is D, when the gasket thickness at the C position is m and the gasket thickness at the D position is n, A> B, C> D,
A button-type zinc-air battery, wherein m = n.
【請求項2】 カシメ部に相当する曲部Rの下方がテー
パー状またはR状になつていて、中間部内径が下端部内
径より小である形状のクリンパーを使用して電池を封口
することを特徴とする請求項1記載のボタン型空気亜鉛
電池の製造方法。
2. A method for sealing a battery using a crimper having a tapered or R-shaped portion below a curved portion R corresponding to a caulking portion and having a middle portion inner diameter smaller than a lower end portion inner diameter. The method for producing a button-type zinc-air battery according to claim 1.
【請求項3】 クリップ圧が220kgfである請求項2記載
のボタン型空気亜鉛電池の製造方法。
3. The method according to claim 2, wherein the clip pressure is 220 kgf.
JP2001178336A 2001-06-13 2001-06-13 Button type air-zinc battery and its method of manufacture Withdrawn JP2002373711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001178336A JP2002373711A (en) 2001-06-13 2001-06-13 Button type air-zinc battery and its method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001178336A JP2002373711A (en) 2001-06-13 2001-06-13 Button type air-zinc battery and its method of manufacture

Publications (1)

Publication Number Publication Date
JP2002373711A true JP2002373711A (en) 2002-12-26

Family

ID=19019052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001178336A Withdrawn JP2002373711A (en) 2001-06-13 2001-06-13 Button type air-zinc battery and its method of manufacture

Country Status (1)

Country Link
JP (1) JP2002373711A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126831A1 (en) * 2005-05-27 2006-11-30 E.M.W. Energy Co., Ltd. Battery and method for producing the same
WO2011040692A1 (en) 2009-09-30 2011-04-07 주식회사 엘지화학 Double-sealed cap assembly and cylindrical secondary battery comprising same
WO2011046261A1 (en) 2009-10-13 2011-04-21 주식회사 엘지화학 Cap assembly for preventing gasket sag, and cylindrical secondary battery having the same
US8277978B2 (en) 2006-02-17 2012-10-02 E.M.W. Energy Co., Ltd. Cylinder type zinc-air cell and method for producing the same
WO2018059845A1 (en) 2016-09-27 2018-04-05 Varta Microbattery Gmbh Zinc-air button cell
EP3742515A1 (en) 2019-05-23 2020-11-25 VARTA Microbattery GmbH Button cell and method for the production of button cells

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126831A1 (en) * 2005-05-27 2006-11-30 E.M.W. Energy Co., Ltd. Battery and method for producing the same
US8277978B2 (en) 2006-02-17 2012-10-02 E.M.W. Energy Co., Ltd. Cylinder type zinc-air cell and method for producing the same
WO2011040692A1 (en) 2009-09-30 2011-04-07 주식회사 엘지화학 Double-sealed cap assembly and cylindrical secondary battery comprising same
WO2011046261A1 (en) 2009-10-13 2011-04-21 주식회사 엘지화학 Cap assembly for preventing gasket sag, and cylindrical secondary battery having the same
WO2018059845A1 (en) 2016-09-27 2018-04-05 Varta Microbattery Gmbh Zinc-air button cell
EP3742515A1 (en) 2019-05-23 2020-11-25 VARTA Microbattery GmbH Button cell and method for the production of button cells

Similar Documents

Publication Publication Date Title
JP5935013B2 (en) Cylindrical alkaline storage battery
JP4491208B2 (en) Battery can, manufacturing method thereof, and battery
US20090263710A1 (en) Aa alkaline battery
JPWO2012042743A1 (en) Alkaline secondary battery
JP5707568B2 (en) Alkaline battery
US8546015B2 (en) Battery can and alkaline battery
JP2009170157A (en) Aa alkaline battery
JP2002373711A (en) Button type air-zinc battery and its method of manufacture
EP1611623A1 (en) Zinc/air cell
EP1629550B1 (en) Zinc/air cell assembly
JP5108356B2 (en) Metal parts for batteries, manufacturing method thereof, batteries
EP1611622B1 (en) Zinc/air cell
JPH10255733A (en) Small-sized battery
JPH11185835A (en) Cylindrical electrode and air zinc battery using it
JP2008004428A (en) Alkaline dry battery
JP2003045395A (en) Hermetically sealed storage battery
JP2006202637A (en) Alkaline battery
JP4028700B2 (en) Alkaline battery
JPS59132558A (en) Battery
JP2009146846A (en) Air-zinc battery
JPH11307106A (en) Power generation element filling method for cylindrical alkaline battery
JP4292431B2 (en) Cylindrical alkaline battery
JP2001068070A (en) Button cell
JP2004079398A (en) Coin-shaped lithium primary battery
JP2002093383A (en) Battery and manufacturing method of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080611

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100616