JP2008084845A - Cylindrical primary battery - Google Patents

Cylindrical primary battery Download PDF

Info

Publication number
JP2008084845A
JP2008084845A JP2007208500A JP2007208500A JP2008084845A JP 2008084845 A JP2008084845 A JP 2008084845A JP 2007208500 A JP2007208500 A JP 2007208500A JP 2007208500 A JP2007208500 A JP 2007208500A JP 2008084845 A JP2008084845 A JP 2008084845A
Authority
JP
Japan
Prior art keywords
ptc element
battery
sealing body
resin sealing
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007208500A
Other languages
Japanese (ja)
Inventor
Ichiro Matsuhisa
一朗 松久
Susumu Kato
丞 加藤
Yasushi Sumihiro
泰史 住廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JP2008084845A publication Critical patent/JP2008084845A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Thermistors And Varistors (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable cylindrical primary battery which keeps low a surface temperature of a body portion of a battery at a short circuit. <P>SOLUTION: A thermal conductivity λ(W/mK) of a resin sealing body 5 of a sealing assembly 11 provided with a PTC element 9 and a generated heat amount Q(W) at the time of tripping of the PTC element 9 are set up to satisfy a relational expression (1): 0.12≤λ≤0.27, a relational expression (2): 1.0≤Q≤1.5, and a relational expression (3): Q≤-3.33λ+1.9. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、PTC素子を備えた円筒型一次電池に関する。   The present invention relates to a cylindrical primary battery provided with a PTC element.

従来から、電池の安全性向上を目的として、短絡時の過電流による電池の発熱を防止するPTC素子を備えた円筒型一次電池について、種々の検討が行われている。
例えば、特許文献1では、負極集電体の表面を、ポリエチレンを主体とする、PTC機能を備えた電子伝導体で被覆することが提案されている。しかし、負極集電体表面に被覆された電子伝導体がアルカリ電解液によって分解されやすく、PTC機能が十分に発揮されない場合がある。
Conventionally, for the purpose of improving the safety of a battery, various studies have been made on a cylindrical primary battery including a PTC element that prevents heat generation of the battery due to an overcurrent during a short circuit.
For example, Patent Document 1 proposes that the surface of the negative electrode current collector is covered with an electronic conductor mainly composed of polyethylene and having a PTC function. However, the electron conductor coated on the surface of the negative electrode current collector is easily decomposed by the alkaline electrolyte, and the PTC function may not be sufficiently exhibited.

また、特許文献2では、外装缶の開口端部がガスケットを介して封口板周縁部の鍔部をかしめる構造のリチウム二次電池において、封口板の鍔部と、ガスケットとの間にPTC素子を配することが提案されている。しかし、リチウム二次電池は、アルカリ電池とは、集電体や防爆機構等の封口部の構造が異なる。よって、アルカリ電池の構造に適したPTC素子の組み込み方を新たに検討する必要がある。   Further, in Patent Document 2, in a lithium secondary battery having a structure in which an opening end portion of an outer can caulks a flange portion of a sealing plate peripheral portion via a gasket, a PTC element is provided between the flange portion of the sealing plate and the gasket. Has been proposed. However, the lithium secondary battery is different from the alkaline battery in the structure of a sealing portion such as a current collector or an explosion-proof mechanism. Therefore, it is necessary to newly examine how to incorporate a PTC element suitable for the structure of an alkaline battery.

さらに例えば特許文献3においては、PTC素子を備えた封口体をアルカリ電池やリチウム電池に用いることが提案されている。PTC素子は、過電流が流れた際にそれ自体が発熱して所定の温度に達すると、抵抗が急激に大きくなる(トリップ)機能を有する。電池が誤って短絡された場合に、PTC素子がトリップして過電流を遮断し、電池の異常発熱を抑えることができるとされている。
特開2003−217596号公報 特開平9−199106号公報 再表特97/006538号公報
Furthermore, for example, Patent Document 3 proposes that a sealing body including a PTC element is used for an alkaline battery or a lithium battery. When an overcurrent flows, the PTC element generates a heat (self trip) and when the temperature reaches a predetermined temperature, the PTC element has a function of rapidly increasing the resistance (trip). It is said that when a battery is accidentally short-circuited, the PTC element trips and an overcurrent is cut off, thereby suppressing abnormal heat generation of the battery.
JP 2003-217596 A JP-A-9-199106 No. 97/006538

しかしながら、上記特許文献3において提案されている構成では、以下のような問題がある。すなわち、ストロボの連続発光やデジタルスチールカメラの連続撮影などの通常の使用状態において、大きな電流をほぼ連続的に消費する場合、抵抗体であるPTC素子が徐々に発熱していき、意図せずPTC素子が作動してしまう場合がある。   However, the configuration proposed in Patent Document 3 has the following problems. That is, when a large current is consumed almost continuously in a normal use state such as continuous light emission of a strobe or continuous shooting of a digital still camera, the PTC element as a resistor gradually generates heat, and the PTC is not intended. The element may be activated.

短絡時にはできるだけ低い温度でPTC素子を作動させることが望ましいが、電池設計上、PTC素子の発熱温度と作動温度とをバランスよくすることが困難である。そのため、短絡時の過電流による電池の発熱を十分に抑制できず、使用者が電池の胴体部を熱いと感じる場合が少なくなかった。   Although it is desirable to operate the PTC element at the lowest possible temperature during a short circuit, it is difficult to balance the heat generation temperature and the operating temperature of the PTC element in terms of battery design. Therefore, the heat generation of the battery due to the overcurrent at the time of short circuit cannot be sufficiently suppressed, and the user often feels that the battery body is hot.

また、短絡時の過電流でトリップした際のPTC素子自体の発熱は、電池の構造上、当該PTC素子を覆う樹脂封口体に対して熱ダメージを与える。その結果、樹脂封口体が熱変形を起こしたり高温で炭化したりして、電池の封口性が低下し、液漏れを起こす場合もあった。   Moreover, the heat generation of the PTC element itself when tripped by an overcurrent at the time of a short circuit causes thermal damage to the resin sealing body covering the PTC element due to the structure of the battery. As a result, the resin sealing body may be thermally deformed or carbonized at a high temperature, which may deteriorate the sealing performance of the battery and cause liquid leakage.

そこで、本発明は、上記のような従来の問題を解決するものであり、短絡時の電池の胴体部の表面温度を低く抑えた信頼性の高い円筒型一次電池を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide a highly reliable cylindrical primary battery in which the surface temperature of the battery body during a short circuit is kept low. .

上記目的を達成するため、本発明は、
内部に発電要素を含む有底円筒形の電池ケース;外部端子板、前記発電要素に電気的に接続された連絡板、前記外部端子板と前記連絡板との間に配置されたPTC素子、前記外部端子板に電気的に接続された負極集電子、および樹脂封口体を含み、前記電池ケースの開口部を塞ぐ封口組立体;を具備する円筒型一次電池であって、
前記樹脂封口体の熱伝導度をλ(W/m・K)、前記PTC素子のトリップ時の発熱量をQ(W)とした場合に、以下の関係式(1)〜(3)を満たすこと、を特徴とする円筒型一次電池を提供する。
(1)0.12≦λ≦0.27
(2)1.0≦Q≦1.5
(3)Q≦−3.33λ+1.9
In order to achieve the above object, the present invention provides:
A bottomed cylindrical battery case including a power generation element therein; an external terminal plate; a connection plate electrically connected to the power generation element; a PTC element disposed between the external terminal plate and the connection plate; A cylindrical primary battery comprising: a negative electrode current collector electrically connected to an external terminal plate; and a sealing assembly including a resin sealing body and closing an opening of the battery case;
The following relational expressions (1) to (3) are satisfied, where λ (W / m · K) is the thermal conductivity of the resin sealing body and Q (W) is the amount of heat generated when the PTC element is tripped. A cylindrical primary battery is provided.
(1) 0.12 ≦ λ ≦ 0.27
(2) 1.0 ≦ Q ≦ 1.5
(3) Q ≦ −3.33λ + 1.9

ここで、樹脂封口体の「熱伝導度λ」は以下のようにして測定することができる。すなわち、樹脂封口体を構成する樹脂を円盤状に成形して試験片を作製し、得られた試験片の一方からレーザー光を照射し、他方の面の温度応答を計測するレーザーフラッシュ法により、「熱伝導度λ」を測定することができる。例えば、NETZSCH社製LFA427を使用して、φ10mm、厚さ1mmの試験片を作製し、熱伝導率λを測定することができる。   Here, the “thermal conductivity λ” of the resin sealant can be measured as follows. That is, the resin constituting the resin sealing body is molded into a disk shape to produce a test piece, irradiated with laser light from one of the obtained test pieces, and a laser flash method for measuring the temperature response of the other surface, “Thermal conductivity λ” can be measured. For example, a test piece having a diameter of 10 mm and a thickness of 1 mm can be produced using LFA427 manufactured by NETZSCH, and the thermal conductivity λ can be measured.

また、PTC素子のトリップ時の「発熱量Q」は以下のようにして測定することができる。すなわち、PTC素子が組み込まれていない円筒型一次電池(例えば単3形アルカリ電池)に、PTC素子と電流計とを幅5.0mm、厚さ0.1mmのニッケルリード線で直列に接続して回路を形成する。得られた回路を閉じてから3分後と5分後に、PTC素子の電圧と回路の電流を測定し、得られた電圧値と電流値との積により、PTC素子の電力が得られる。3分後と5分後の電力の平均値から、発熱量Qを算出することができる。   Further, the “heat generation amount Q” at the time of trip of the PTC element can be measured as follows. In other words, a PTC element and an ammeter are connected in series with a nickel lead wire having a width of 5.0 mm and a thickness of 0.1 mm to a cylindrical primary battery in which no PTC element is incorporated (for example, an AA alkaline battery). Form a circuit. The voltage of the PTC element and the current of the circuit are measured 3 minutes and 5 minutes after the obtained circuit is closed, and the power of the PTC element is obtained by the product of the obtained voltage value and current value. The calorific value Q can be calculated from the average value of the power after 3 minutes and after 5 minutes.

また、本発明における発電要素とは、正極合剤、ゲル状負極およびアルカリ電解液のことをいう。したがって、上記連絡板は、正極合剤、ゲル状負極およびアルカリ電解液のうちのいずれかに電気的に接続されていればよい。   The power generating element in the present invention means a positive electrode mixture, a gelled negative electrode, and an alkaline electrolyte. Therefore, the connecting plate only needs to be electrically connected to any one of the positive electrode mixture, the gelled negative electrode, and the alkaline electrolyte.

以上のような構成によれば、PTC素子が、低い熱伝導度を有する樹脂封口体で覆われるように電池ケースに取り付けられている。よって、電池短絡時に、PTC素子の発熱を電池ケースに伝わりにくくすることができ、電池の胴体部の表面温度の上昇を防止することができる。   According to the above configuration, the PTC element is attached to the battery case so as to be covered with the resin sealing body having low thermal conductivity. Therefore, when the battery is short-circuited, the heat generated by the PTC element can be made difficult to be transmitted to the battery case, and an increase in the surface temperature of the body part of the battery can be prevented.

本発明によれば、短絡時の電池の胴体部の表面温度を低く抑えた信頼性の高い円筒型一次電池を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the highly reliable cylindrical primary battery which suppressed the surface temperature of the trunk | drum of the battery at the time of a short circuit can be implement | achieved.

本発明の一実施の形態を、図1および図2を参照しながら説明する。
図1は、本発明の円筒型一次電池の一実施の形態(単3形アルカリ電池(LR6))の一部を断面にした正面図である。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a front view of a cross section of a part of an embodiment (AA alkaline battery (LR6)) of a cylindrical primary battery according to the present invention.

図1に示すように、外部端子を兼ねた有底円筒形の電池ケース1には、複数個の中空円筒状の正極合剤(ペレット)2が内接するように収納されている。正極合剤2の中空部には有底円筒形のセパレータ4を介してゲル状負極3が配置されている。正極合剤2、セパレータ4およびゲル状負極3には、アルカリ電解液が含まれている。   As shown in FIG. 1, a plurality of hollow cylindrical positive electrode mixtures (pellets) 2 are accommodated inside a bottomed cylindrical battery case 1 that also serves as an external terminal. A gelled negative electrode 3 is disposed in the hollow portion of the positive electrode mixture 2 via a bottomed cylindrical separator 4. The positive electrode mixture 2, the separator 4 and the gelled negative electrode 3 contain an alkaline electrolyte.

前記電池ケース1は、例えば、ニッケルめっき鋼板を所定の寸法、形状にプレス成型して得られる。
また、セパレータ4には、例えば、ポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布が用いられる。
The battery case 1 is obtained, for example, by press-molding a nickel-plated steel sheet into a predetermined size and shape.
The separator 4 is made of, for example, a nonwoven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber.

前記正極合剤2には、例えば、二酸化マンガン粉末を含む正極活物質と、黒鉛粉末などの導電剤と、水酸化カリウム水溶液などのアルカリ電解液との混合物が用いられる。
また、ゲル状負極3には、例えば、亜鉛粉末または亜鉛合金粉末などの負極活物質と、ポリアクリル酸ナトリウムなどのゲル化剤と、水酸化カリウム水溶液などのアルカリ電解液との混合物が用いられる。
For the positive electrode mixture 2, for example, a mixture of a positive electrode active material containing manganese dioxide powder, a conductive agent such as graphite powder, and an alkaline electrolyte such as an aqueous potassium hydroxide solution is used.
For the gelled negative electrode 3, for example, a mixture of a negative electrode active material such as zinc powder or zinc alloy powder, a gelling agent such as sodium polyacrylate, and an alkaline electrolyte such as an aqueous potassium hydroxide solution is used. .

なお、負極活物質には、耐食性に優れた亜鉛合金粉末を用いるのが好ましく、さらには、環境に配慮して水銀、カドミウム、もしくは鉛、またはそれら全てが無添加であるものがより好ましい。上記亜鉛合金としては、例えば、インジウム、アルミニウムおよびビスマスを含む亜鉛合金が挙げられる。   In addition, it is preferable to use the zinc alloy powder excellent in corrosion resistance as the negative electrode active material, and more preferable that mercury, cadmium, lead, or all of them are not added in consideration of the environment. Examples of the zinc alloy include zinc alloys containing indium, aluminum, and bismuth.

電池ケース1の開口部は、正極合剤2、ゲル状負極3等の発電要素を収納した後、封口組立体11により塞がれている。封口組立体11は、外部端子板7、負極集電体6と電気的に接続された連絡板8、PTC素子9および樹脂封口体5で構成されている。電池ケース1の外表面は、外装ラベル10により被覆されている。   The opening of the battery case 1 is closed by a sealing assembly 11 after storing power generation elements such as the positive electrode mixture 2 and the gelled negative electrode 3. The sealing assembly 11 includes an external terminal plate 7, a connecting plate 8 electrically connected to the negative electrode current collector 6, a PTC element 9, and a resin sealing body 5. The outer surface of the battery case 1 is covered with an exterior label 10.

図2は、図1に示す円筒型一次電池の封口部の要部を拡大した断面図である。図2に示すように、樹脂封口体5は、中央に負極集電体6を圧入する貫通孔を有し、その周囲に安全弁として働く環状薄肉部5bを有する。環状薄肉部5bの外周部においては、筒状の外周縁部5aが環状薄肉部5bに連続して形成されている。   FIG. 2 is an enlarged cross-sectional view of the main part of the sealing portion of the cylindrical primary battery shown in FIG. As shown in FIG. 2, the resin sealing body 5 has a through-hole into which the negative electrode current collector 6 is press-fitted in the center, and has an annular thin portion 5b that works as a safety valve around it. In the outer peripheral part of the annular thin part 5b, a cylindrical outer peripheral part 5a is formed continuously with the annular thin part 5b.

例えば、樹脂封口体5は、ポリプロピレン、ナイロンなどを所定の寸法、形状に射出成型して得られる。   For example, the resin sealing body 5 is obtained by injection molding polypropylene, nylon or the like into a predetermined size and shape.

外部端子板7は周縁部に鍔部7aを有し、連絡板8は周縁部に鍔部8aを有する。外部端子板7には、例えば、ニッケルめっき鋼板が用いられる。また、連絡板8には、接触抵抗が小さい点で、錫めっき鋼板やニッケルめっき鋼板を用いるのが好ましい。   The external terminal plate 7 has a flange portion 7a at the peripheral portion, and the connecting plate 8 has a flange portion 8a at the peripheral portion. For the external terminal board 7, for example, a nickel-plated steel sheet is used. Moreover, it is preferable to use a tin-plated steel plate or a nickel-plated steel plate for the connecting plate 8 in terms of low contact resistance.

外部端子板7の鍔部7aと、連絡板8の鍔部8aとの間にリング状のPTC素子9が配置されている。電池ケース1の開口部近傍に設けた段部1a上で、樹脂封口体5の外周縁部5aの上端を包み込むように、電池ケース1の開口端部が折り曲げられる。その折り曲げ部が内方へかしめられて、外部端子板7の鍔部7aと、開口部を有するディスク状(リング状)のPTC素子9と、連絡板8の鍔部8aとが、樹脂封口体5の外周縁部5aで覆われるように締め付けられている。   A ring-shaped PTC element 9 is disposed between the flange portion 7 a of the external terminal plate 7 and the flange portion 8 a of the connecting plate 8. The opening end of the battery case 1 is bent so as to wrap the upper end of the outer peripheral edge 5a of the resin sealing body 5 on the step portion 1a provided in the vicinity of the opening of the battery case 1. The bent portion is caulked inward, and the flange portion 7a of the external terminal plate 7, the disk-shaped (ring-shaped) PTC element 9 having an opening portion, and the flange portion 8a of the connecting plate 8 are formed into a resin sealing body. It is tightened so as to be covered with the outer peripheral edge 5a.

PTC素子9には、例えば、タイコエレクトロニクスレイケム(株)製のポリスイッチの名で販売されている材料などが用いられる。PTC素子9は、所定の温度(例えば90〜110℃)に達すると抵抗が急激に大きくなる(トリップ)機能を有し、電池の短絡時には、過電流によってそれ自体も激しく発熱する。また、単位面積あたり同じ抵抗値を有するPTC素子9であっても、封口組立体11を構成する際、例えばプレス打ち抜きなどでリング状に加工されたときの外径や内径が違うと、発熱量も異なってくる。すなわちリングの面積が大きい程、発熱量も多くなる。   For the PTC element 9, for example, a material sold under the name of a polyswitch manufactured by Tyco Electronics Raychem Co., Ltd. is used. The PTC element 9 has a function of rapidly increasing the resistance (trip) when a predetermined temperature (for example, 90 to 110 ° C.) is reached. Further, even if the PTC element 9 has the same resistance value per unit area, when the sealing assembly 11 is formed, if the outer diameter or inner diameter when processed into a ring shape, for example, by press punching, is different, Will also be different. That is, the larger the ring area, the greater the amount of heat generated.

ここで、本発明の最大の特徴は、前記樹脂封口体5の熱伝導度をλ(W/m・K)、前記PTC素子9のトリップ時の発熱量をQ(W)とした場合に、以下の関係式(1)〜(3)を満たすこと、にある。
(1)0.12≦λ≦0.27
(2)1.0≦Q≦1.5
(3)Q≦−3.33λ+1.9
Here, the greatest feature of the present invention is that when the thermal conductivity of the resin sealing body 5 is λ (W / m · K), and the amount of heat generated when the PTC element 9 is tripped is Q (W), The following relational expressions (1) to (3) are satisfied.
(1) 0.12 ≦ λ ≦ 0.27
(2) 1.0 ≦ Q ≦ 1.5
(3) Q ≦ −3.33λ + 1.9

上記関係式(1)〜(3)を満たすことによって、円筒型一次電池(特に側面部)の表面温度の上昇をより確実に抑制することができる。
さらに、樹脂封口体5の熱伝導度λを0.19W/m・K以下とし、PTC素子9のトリップ時の発熱量Qを1.25W以下とすれば、より効果的に円筒型一次電池の表面温度を低く抑えることができ、好ましい。
By satisfying the relational expressions (1) to (3), an increase in the surface temperature of the cylindrical primary battery (particularly the side surface portion) can be more reliably suppressed.
Further, if the thermal conductivity λ of the resin sealing body 5 is set to 0.19 W / m · K or less and the heat generation amount Q at the time of trip of the PTC element 9 is set to 1.25 W or less, the cylindrical primary battery can be more effectively used. The surface temperature can be kept low, which is preferable.

また、この樹脂封口体5は、ポリプロピレンで形成してもよい。このようにすると、PTC素子9の発熱に対する耐熱性が向上する。また、樹脂封口体5は、その熱伝導度λが0.23W/m・K以上の6,6ナイロンまたは6,12ナイロンで形成されていてもよく、この場合、耐アルカリ性を向上させることができる。   Further, the resin sealing body 5 may be formed of polypropylene. If it does in this way, the heat resistance with respect to the heat_generation | fever of the PTC element 9 will improve. In addition, the resin sealing body 5 may be formed of 6,6 nylon or 6,12 nylon having a thermal conductivity λ of 0.23 W / m · K or more. In this case, the alkali resistance can be improved. it can.

以上、本発明の代表的な実施の形態について説明したが、本発明はこれらのみに限定されるものではない。例えば、PTC素子は種々の形状を採ることができ、連続したリング状に限定されず、例えば一部に隙間を有する不連続なリング状であってもよい。また、例えば不連続の島状部分が含まれていてもよい。   As mentioned above, although typical embodiment of this invention was described, this invention is not limited only to these. For example, the PTC element can take various shapes, and is not limited to a continuous ring shape. For example, the PTC element may be a discontinuous ring shape having a gap in part. Further, for example, discontinuous island portions may be included.

以下に、実施例を用いて本発明をより詳細に説明するが、本発明は以下に示す実施例に限定されるものではない。なお、以下の実施例においては、図1および図2に示す構造を有する円筒型一次電池を作製した。   Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to the examples shown below. In the following examples, cylindrical primary batteries having the structures shown in FIGS. 1 and 2 were produced.

《実施例1》
(1)正極合剤の作製
二酸化マンガンと黒鉛とを、90:10の重量比で混合した。そして、得られた混合物と、アルカリ電解液として水酸化カリウムの35重量%水溶液と、を100:3の重量比で混合し、充分に攪拌した後、フレーク状に圧縮成形してフレーク状の正極合剤を得た。ついで、フレーク状の正極合剤を粉砕して顆粒状とし、得られた粉末を篩によって分級し、10〜100メッシュの粉末を中空円筒状に加圧成形してペレット状の正極合剤2を得た。
Example 1
(1) Preparation of positive electrode mixture Manganese dioxide and graphite were mixed at a weight ratio of 90:10. Then, the obtained mixture and a 35% by weight aqueous solution of potassium hydroxide as an alkaline electrolyte were mixed at a weight ratio of 100: 3, sufficiently stirred, and then compression molded into flakes to form a flake-shaped positive electrode. A mixture was obtained. Next, the flaky positive electrode mixture is pulverized into granules, and the obtained powder is classified with a sieve, and a 10-100 mesh powder is pressure-formed into a hollow cylinder to obtain a pellet-shaped positive electrode mixture 2. Obtained.

(2)ゲル状負極の作製
ゲル化剤としてポリアクリル酸ナトリウムと、アルカリ電解液として水酸化カリウムの35重量%水溶液と、負極活物質と、を1:33:66の重量比で混合し、ゲル状負極3を得た。なお、負極活物質には、0.025重量%のインジウムと、0.015重量%のビスマスと、0.004重量%のアルミニウムと、を含む亜鉛合金粉末を用いた。
(2) Preparation of gelled negative electrode Sodium polyacrylate as a gelling agent, 35 wt% aqueous solution of potassium hydroxide as an alkaline electrolyte, and negative electrode active material were mixed at a weight ratio of 1:33:66, A gelled negative electrode 3 was obtained. As the negative electrode active material, a zinc alloy powder containing 0.025 wt% indium, 0.015 wt% bismuth, and 0.004 wt% aluminum was used.

(3)封口組立体の作製
ポリプロピレン(日本ポリプロ(株)製のBC4ASW。以下、同様。)とタルク(日本タルク(株)製のP3。以下、同様。)との混合物(タルクを0.2重量%含む。)を十分に混練した後、射出成型にて、所定の寸法およびリング状の形状を有する樹脂封口体5とを作製した。また、上記のポリプロピレンとタルクとの混合物を円盤状に成形して、熱伝導度λを測定するためのφ10mm、厚さ1mmの試験片を作製し、NETZSCH社製LFA427を使用して熱伝導度λを測定した。その結果、樹脂封口体5の熱伝導度λは、0.12W/m・Kであった。
(3) Production of Sealing Assembly Mixture of polypropylene (BC4ASW manufactured by Nippon Polypro Co., Ltd., hereinafter the same) and talc (P3 manufactured by Nihon Talc Co., Ltd., hereinafter the same) (with talc of 0.2 The resin sealing body 5 having a predetermined dimension and a ring shape was produced by injection molding. Further, a mixture of the above polypropylene and talc was formed into a disk shape to prepare a test piece having a diameter of 10 mm and a thickness of 1 mm for measuring the thermal conductivity λ, and the thermal conductivity was measured using LFA427 manufactured by NETZSCH. λ was measured. As a result, the thermal conductivity λ of the resin sealing body 5 was 0.12 W / m · K.

また、PTC素子9は、厚さが0.3mmで、20℃での固有抵抗値が0.03Ωで、120℃の高温下での固有抵抗値が10000Ωの材料を、リング状(外径12.3mm、内径9.7mm)にプレスにて打ち抜くことによって得た。PTC素子9のトリップ時の発熱量Qは、1.00Wであった。   The PTC element 9 is made of a ring-shaped material (outer diameter 12) having a thickness of 0.3 mm, a specific resistance value of 0.03Ω at 20 ° C., and a specific resistance value of 10,000Ω at a high temperature of 120 ° C. 3 mm and an inner diameter of 9.7 mm). The heat generation amount Q at the time of trip of the PTC element 9 was 1.00 W.

外部端子板7および連絡板8は、厚さ0.3mmのニッケルめっき鋼鈑をプレスにて所定の寸法および形状を有するように加工することによって得た。   The external terminal plate 7 and the connecting plate 8 were obtained by processing a nickel-plated steel plate having a thickness of 0.3 mm so as to have a predetermined size and shape with a press.

次に、真鍮線条を釘型にプレス加工し、表面にスズめっきして得られる負極集電体6を、連絡板8に電気溶接した。その後、樹脂封口体5の中心の貫通孔に負極集電体6を密着させて(樹脂封口体5によって負極集電体6が固定されるように)挿入した。連絡板8の鍔部8a上に、PTC素子9を配置し、さらにPTC素子9を挟むように外部端子板7を設置して、封口組立体11を得た。   Next, the negative electrode current collector 6 obtained by pressing a brass wire strip into a nail shape and plating the surface with tin was electrically welded to the connecting plate 8. Thereafter, the negative electrode current collector 6 was inserted into the through hole at the center of the resin sealing body 5 (so that the negative electrode current collector 6 was fixed by the resin sealing body 5). A PTC element 9 was placed on the flange 8 a of the connecting plate 8, and the external terminal plate 7 was placed so as to sandwich the PTC element 9 to obtain a sealing assembly 11.

(4)円筒形一次電池の組み立て
図1に示す構造の単3形アルカリ電池(LR6)を下記の手順により作製した。
上記で得られた正極合剤2を電池ケース1内に2個挿入し、加圧治具により正極合剤2を加圧して電池ケース1の内壁に密着させた。電池ケース1の内壁に密着させた正極合剤2の中央に有底円筒形のセパレータ4を配置した。セパレータ4内にアルカリ電解液として水酸化カリウムの36重量%水溶液を所定量注入した。所定時間経過した後、上記で得られたゲル状負極3をセパレータ4内に充填した。
(4) Assembly of Cylindrical Primary Battery An AA alkaline battery (LR6) having the structure shown in FIG. 1 was produced by the following procedure.
Two positive electrode mixtures 2 obtained as described above were inserted into the battery case 1, and the positive electrode mixture 2 was pressurized with a pressurizing jig and adhered to the inner wall of the battery case 1. A bottomed cylindrical separator 4 was disposed in the center of the positive electrode mixture 2 in close contact with the inner wall of the battery case 1. A predetermined amount of a 36 wt% aqueous solution of potassium hydroxide was injected into the separator 4 as an alkaline electrolyte. After a predetermined time had elapsed, the gelled negative electrode 3 obtained above was filled in the separator 4.

なお、セパレータ4には、ポリビニルアルコール繊維およびレーヨン繊維を主体として含む不織布を用いた。樹脂封口体5の外周縁部5aの上端を包み込むように、電池ケース1の開口端部を折り曲げ、その折り曲げ部を外部端子板7の鍔部7aにかしめ、電池ケース1の開口部を封口した。外装ラベル10で電池ケース1の外表面を被覆し、円筒型一次電池を作製した。   The separator 4 was a non-woven fabric mainly containing polyvinyl alcohol fibers and rayon fibers. The opening end portion of the battery case 1 is bent so as to wrap the upper end of the outer peripheral edge portion 5a of the resin sealing body 5, and the bent portion is crimped to the flange portion 7a of the external terminal plate 7 to seal the opening portion of the battery case 1. . The outer surface of the battery case 1 was covered with the exterior label 10 to produce a cylindrical primary battery.

《実施例2》
本実施例においては、PTC素子9を、外径12.3mm、内径8.7mmのリング状にプレスにて打ち抜いて得た。PTC素子9のトリップ時の発熱量Qは1.26Wであった。前記PTC素子9以外は、実施例1と同様の方法により円筒型一次電池を作製した。
Example 2
In this example, the PTC element 9 was obtained by stamping into a ring shape having an outer diameter of 12.3 mm and an inner diameter of 8.7 mm. The heat generation amount Q at the time of trip of the PTC element 9 was 1.26 W. A cylindrical primary battery was produced in the same manner as in Example 1 except for the PTC element 9.

《実施例3》
本実施例においては、PTC素子9を、外径12.3mm、内径7.8mmのリング状にプレスにて打ち抜いて得た。PTC素子9のトリップ時の発熱量Qは1.50Wであった。前記PTC素子9以外は、実施例1と同様の方法により円筒型一次電池を作製した。
Example 3
In this example, the PTC element 9 was obtained by stamping into a ring shape having an outer diameter of 12.3 mm and an inner diameter of 7.8 mm. The heat generation amount Q at the time of trip of the PTC element 9 was 1.50 W. A cylindrical primary battery was produced in the same manner as in Example 1 except for the PTC element 9.

《実施例4》
本実施例においては、ポリプロピレンに対してタルクを5重量%添加し、十分混練した後、射出成型にて所定の寸法および形状を有する樹脂封口体5と、熱伝導度測定のための試験片を作製した。この試験片の熱伝導度の測定結果から、樹脂封口体5の熱伝導度λは0.19W/m・Kであった。前記樹脂封口体5以外は、実施例1と同様の方法により円筒型一次電池を作製した。
Example 4
In this embodiment, 5% by weight of talc is added to polypropylene, kneaded sufficiently, and then a resin sealing body 5 having a predetermined size and shape by injection molding and a test piece for measuring thermal conductivity are provided. Produced. From the measurement result of the thermal conductivity of this test piece, the thermal conductivity λ of the resin sealing body 5 was 0.19 W / m · K. A cylindrical primary battery was produced in the same manner as in Example 1 except for the resin sealant 5.

《実施例5》
本実施例においては、PTC素子9は、外径12.3mm、内径8.7mmのリング状にプレスにて打ち抜いて得た。PTC素子9のトリップ時の発熱量Qは1.26Wであった。前記PTC素子9以外は、実施例4と同様の方法により円筒型一次電池を作製した。
Example 5
In this example, the PTC element 9 was obtained by stamping into a ring shape having an outer diameter of 12.3 mm and an inner diameter of 8.7 mm. The heat generation amount Q at the time of trip of the PTC element 9 was 1.26 W. A cylindrical primary battery was produced in the same manner as in Example 4 except for the PTC element 9.

《実施例6》
本実施例においては、ポリプロピレンに対してタルクを10重量%添加し、十分混練した後、射出成型にて所定の寸法および形状を有する樹脂封口体5と、熱伝導度測定のための試験片を作製した。この試験片の熱伝導度の測定結果から、樹脂封口体5の熱伝導度λは0.27W/m・Kであった。前記樹脂封口体5以外は、実施例1と同様の方法により円筒型一次電池を作製した。
Example 6
In this example, after adding 10% by weight of talc to polypropylene and kneading sufficiently, a resin sealing body 5 having a predetermined size and shape by injection molding and a test piece for measuring thermal conductivity are provided. Produced. From the measurement result of the thermal conductivity of this test piece, the thermal conductivity λ of the resin sealing body 5 was 0.27 W / m · K. A cylindrical primary battery was produced in the same manner as in Example 1 except for the resin sealant 5.

《実施例7》
本実施例においては、ナイロン6,6((株)旭化成製のレオナ1300S。以下同様。)に対してタルクを0.5重量%添加し、十分混練した後、射出成型にて所定の寸法および形状を有する樹脂封口体5と、熱伝導度測定のための試験片を作製した。この試験片の熱伝導度の測定結果から、樹脂封口体5の熱伝導度λは、0.25W/m・Kであった。前記樹脂封口体5以外は、実施例1と同様の方法により円筒型一次電池を作製した。
Example 7
In this example, 0.5% by weight of talc was added to nylon 6,6 (Leona 1300S manufactured by Asahi Kasei Co., Ltd., the same shall apply hereinafter), kneaded sufficiently, and then injection molding was carried out to predetermined dimensions and A resin sealing body 5 having a shape and a test piece for measuring thermal conductivity were prepared. From the measurement result of the thermal conductivity of this test piece, the thermal conductivity λ of the resin sealing body 5 was 0.25 W / m · K. A cylindrical primary battery was produced in the same manner as in Example 1 except for the resin sealant 5.

《実施例8》
本実施例においては、ナイロン6,6に対してタルクを1重量%添加し、十分混練した後、射出成型にて所定の寸法および形状を有する樹脂封口体5と、熱伝導度測定のための試験片を作製した。この試験片の熱伝導度の測定結果から、樹脂封口体5の熱伝導度λは、0.27W/m・Kであった。前記樹脂封口体5以外は、実施例1と同様の方法により円筒型一次電池を作製した。
Example 8
In this embodiment, 1% by weight of talc is added to nylon 6 and 6, and after kneading sufficiently, the resin sealing body 5 having a predetermined size and shape by injection molding, and for measuring the thermal conductivity A test piece was prepared. From the measurement result of the thermal conductivity of this test piece, the thermal conductivity λ of the resin sealing body 5 was 0.27 W / m · K. A cylindrical primary battery was produced in the same manner as in Example 1 except for the resin sealant 5.

《実施例9》
本実施例においては、ナイロン6,12(米国デュポン社製のザイテル(商品名))に対してタルクを0.5重量%添加し、十分混練した後、射出成型にて所定の寸法および形状を有する樹脂封口体5と、熱伝導度測定のための試験片を作製した。この試験片の熱伝導度の測定結果から、樹脂封口体5の熱伝導度λは、0.23W/m・Kであった。前記樹脂封口体5以外は、実施例1と同様の方法により円筒型一次電池を作製した。
Example 9
In this example, 0.5% by weight of talc was added to nylon 6,12 (Zytel (trade name) manufactured by DuPont, USA) and kneaded sufficiently, and then a predetermined size and shape were obtained by injection molding. The resin sealing body 5 which has, and the test piece for thermal conductivity measurement were produced. From the measurement result of the thermal conductivity of this test piece, the thermal conductivity λ of the resin sealing body 5 was 0.23 W / m · K. A cylindrical primary battery was produced in the same manner as in Example 1 except for the resin sealant 5.

《比較例1》
本比較例においては、PTC素子9を、外径12.3mm、内径9.9mmのリング状にプレスにて打ち抜いて得た。PTC素子9のトリップ時の発熱量Qは、0.89Wであった。前記PTC素子9以外は、実施例1と同様の方法により円筒型一次電池を作製した。
<< Comparative Example 1 >>
In this comparative example, the PTC element 9 was obtained by stamping into a ring shape having an outer diameter of 12.3 mm and an inner diameter of 9.9 mm. The heat generation amount Q at the time of trip of the PTC element 9 was 0.89 W. A cylindrical primary battery was produced in the same manner as in Example 1 except for the PTC element 9.

《比較例2》
本比較例においては、ポリプロピレンを用いて、射出成型にて所定の寸法および形状の樹脂封口体5と、熱伝導度測定のための試験片と、を作製した。この試験片の熱伝導度の測定結果から、樹脂封口体5の熱伝導度λは0.11W/m・Kであった。前記樹脂封口体5以外は、実施例1と同様の方法により円筒型一次電池を作製した。
<< Comparative Example 2 >>
In this comparative example, polypropylene was used to produce a resin sealing body 5 having a predetermined size and shape and a test piece for measuring thermal conductivity by injection molding. From the measurement result of the thermal conductivity of this test piece, the thermal conductivity λ of the resin sealing body 5 was 0.11 W / m · K. A cylindrical primary battery was produced in the same manner as in Example 1 except for the resin sealant 5.

《比較例3》
本比較例においては、PTC素子9を、外径12.3mm、内径7.4mmのリング状にプレスにて打ち抜いて得た。PTC素子9のトリップ時の発熱量Qは1.59Wであった。前記PTC素子9以外は、実施例1と同様の方法により円筒型一次電池を作製した。
<< Comparative Example 3 >>
In this comparative example, the PTC element 9 was obtained by stamping into a ring shape having an outer diameter of 12.3 mm and an inner diameter of 7.4 mm. The heat generation amount Q at the time of trip of the PTC element 9 was 1.59 W. A cylindrical primary battery was produced in the same manner as in Example 1 except for the PTC element 9.

《比較例4》
本比較例においては、PTC素子9を、外径12.3mm、内径7.8mmのリング状にプレスにて打ち抜いて得た。PTC素子9のトリップ時の発熱量Qは1.50Wであった。前記PTC素子9以外は、実施例4と同様の方法により円筒型一次電池を作製した。
<< Comparative Example 4 >>
In this comparative example, the PTC element 9 was obtained by stamping into a ring shape having an outer diameter of 12.3 mm and an inner diameter of 7.8 mm. The heat generation amount Q at the time of trip of the PTC element 9 was 1.50 W. A cylindrical primary battery was produced in the same manner as in Example 4 except for the PTC element 9.

《比較例5》
本比較例においては、PTC素子9を、外径12.3mm、内径8.7mmのリング状にプレスにて打ち抜いて得た。PTC素子9のトリップ時の発熱量Qは1.26Wであった。前記PTC素子9以外は、実施例9と同様の方法により円筒型一次電池を作製した。
<< Comparative Example 5 >>
In this comparative example, the PTC element 9 was obtained by punching into a ring shape having an outer diameter of 12.3 mm and an inner diameter of 8.7 mm. The heat generation amount Q at the time of trip of the PTC element 9 was 1.26 W. A cylindrical primary battery was produced in the same manner as in Example 9 except for the PTC element 9.

《比較例6》
本比較例においては、ナイロン6,6に対してタルクを5重量%添加し、十分混練した後、射出成型にて所定の寸法および形状を有する樹脂封口体5と、熱伝導度測定のための試験片を作製した。この試験片の熱伝導度の測定結果から、樹脂封口体5の熱伝導度λは、0.29W/m・Kであった。前記樹脂封口体5以外は、実施例1と同様の方法により円筒型一次電池を作製した。
<< Comparative Example 6 >>
In this comparative example, 5% by weight of talc is added to nylon 6 and 6, after kneading sufficiently, the resin sealing body 5 having a predetermined size and shape by injection molding, and for measuring the thermal conductivity A test piece was prepared. From the measurement result of the thermal conductivity of this test piece, the thermal conductivity λ of the resin sealing body 5 was 0.29 W / m · K. A cylindrical primary battery was produced in the same manner as in Example 1 except for the resin sealant 5.

[評価試験]
(1)上述で得られた各電池について、各5個ずつを、厚さ0.1mmのニッケルリード線を介して、電池ケース1と外部端子板7とを接続させて電池を外部短絡させた。そして、このときの電池の胴体部の表面温度を熱電対にて測定し、最高温度を調べた。電池の胴体部の表面温度は70℃以下であることが好ましく、65℃以下であることがさらに好ましい。
[Evaluation test]
(1) For each of the batteries obtained above, five batteries were connected to the battery case 1 and the external terminal plate 7 via a nickel lead wire having a thickness of 0.1 mm to externally short-circuit the batteries. . The surface temperature of the battery body at this time was measured with a thermocouple, and the maximum temperature was examined. The surface temperature of the body part of the battery is preferably 70 ° C. or lower, and more preferably 65 ° C. or lower.

(2)さらに、電池を外部短絡させてから2時間後に、電池ケース1と封口組立体11の間から液漏れを起こしているか否かを目視にて調べた。 (2) Further, two hours after the battery was externally short-circuited, it was visually examined whether or not liquid leakage occurred between the battery case 1 and the sealing assembly 11.

(3)また、各電池4本ずつを、キャノン製ストロボ・スピードライター580EXを用い、10秒あたり1回の割合でストロボを発光させ続け、20回に至るまでに、PTC素子9が作動してストロボが発光できなくなるかどうかを確認した。
上記の評価結果を表1に示した。
(3) In addition, each of the four batteries was continuously fired at a rate of once per 10 seconds using a Canon strobe / speed lighter 580EX, and the PTC element 9 was activated by 20 times. I checked if the flash could not fire.
The evaluation results are shown in Table 1.

Figure 2008084845
Figure 2008084845

本発明の実施例1〜9では、樹脂封口体5の熱伝導度λとPTC素子9の発熱量Qとのバランスがよく、短絡時の電池の胴体部の表面温度が、全て70℃以下に抑えられた。また、ストロボ発光試験途中に意図せずPTC素子9が作動することもなく、電池の短絡時に液漏れに至るものもなかった。   In Examples 1 to 9 of the present invention, the thermal conductivity λ of the resin sealing body 5 and the calorific value Q of the PTC element 9 are well balanced, and the surface temperature of the body part of the battery at the time of short circuit is all 70 ° C. or less. It was suppressed. Further, the PTC element 9 did not operate unintentionally during the strobe light emission test, and there was nothing that caused liquid leakage when the battery was short-circuited.

比較例2では、ストロボ発光試験中、途中の14回目でストロボが発光しなくなり、電池を短絡してから液漏れが発生した。すなわち、樹脂封口体5の熱伝導度λが0.12W/m・K未満では熱が伝わりにくく、PTC素子9自体の発熱で意図せずPTC素子9が作動したり、樹脂封口体5の外周縁部5aが蓄熱によるダメージを受けて変形や炭化を起こし、液漏れが発生したりする。また、比較例6では、短絡時の電池の胴体部の表面温度が93℃と極めて高かった。すなわち、樹脂封口体5の熱伝導度λが0.27W/m・Kを超える場合は、PTC素子9の発熱が、電池ケース1に伝わりやすく、電池の胴体部の表面温度を低く抑えることができない。   In Comparative Example 2, during the stroboscopic light emission test, the stroboscope stopped emitting light at the 14th time, and liquid leakage occurred after the battery was short-circuited. That is, when the thermal conductivity λ of the resin sealing body 5 is less than 0.12 W / m · K, heat is not easily transmitted, and the PTC element 9 is unintentionally activated by the heat generated by the PTC element 9 itself, or the outside of the resin sealing body 5 The peripheral edge portion 5a is damaged by heat accumulation, causes deformation and carbonization, and liquid leakage occurs. Moreover, in the comparative example 6, the surface temperature of the battery trunk | drum part at the time of a short circuit was as high as 93 degreeC. That is, when the thermal conductivity λ of the resin sealing body 5 exceeds 0.27 W / m · K, heat generated by the PTC element 9 is easily transmitted to the battery case 1, and the surface temperature of the body portion of the battery can be kept low. Can not.

比較例1では、ストロボ発光試験中、途中の17回目でストロボが発光できなくなった。すなわち、PTC素子9のトリップ時の発熱量Qが1.0W未満のものは、小さな発熱量で、意図せずPTC素子9が作動しやすい。また、比較例3では、電池を短絡してから液漏れが発生した。すなわち、PTC素子9のトリップ時の発熱量Qが1.5Wを超える場合は、樹脂封口体5の外周縁部5aが熱ダメージを受けて変形や炭化を起こし、液漏れが発生する。   In Comparative Example 1, the strobe could not emit light at the 17th time during the strobe light emission test. That is, when the heat generation amount Q at the time of trip of the PTC element 9 is less than 1.0 W, the PTC element 9 is likely to operate unintentionally with a small heat generation amount. In Comparative Example 3, liquid leakage occurred after the battery was short-circuited. That is, when the heat generation amount Q at the time of trip of the PTC element 9 exceeds 1.5 W, the outer peripheral edge portion 5a of the resin sealing body 5 is damaged by heat and is deformed or carbonized to cause liquid leakage.

比較例3〜5では、樹脂封口体5の熱伝導度λに対して、PTC素子9の発熱量Qが多く、十分に短絡時の電池の胴体部の表面温度を抑えきれず、またその発熱によって樹脂封口体5の外周縁部5aが変形や炭化を起こして液漏れに至った。   In Comparative Examples 3 to 5, the heat generation amount Q of the PTC element 9 is large with respect to the thermal conductivity λ of the resin sealing body 5, and the surface temperature of the body portion of the battery at the time of short circuit cannot be sufficiently suppressed, and the heat generation As a result, the outer peripheral edge 5a of the resin sealing body 5 was deformed and carbonized, leading to liquid leakage.

ここで、図3は、上述の本発明の実施例1〜9と比較例1〜6とを、横軸に樹脂封口体5の熱伝導度λ、縦軸にPTC素子9のトリップ時の発熱量Qとした座標上に示した説明図である。図3に示すように、本発明者らが実験した結果、発熱量が高いPTC素子9を用いる場合ほど熱伝導度が低い樹脂封口体5を用いることが好ましく、樹脂封口体5の熱伝導度λとPTC素子9のトリップ時の発熱量Qとは、負の相関関係を有する。すなわち、短絡時に電池の胴体部の表面温度を十分に低く抑え得る臨界線は、Q=−3.33λ+1.9で表される直線であることを見出した。すなわち、樹脂封口体5の熱伝導度λとPTC素子9のトリップ時の発熱量Qの範囲内で、Q≦−3.33λ+1.9を満たすのが好ましい。   Here, FIG. 3 shows Examples 1 to 9 and Comparative Examples 1 to 6 of the present invention, the thermal conductivity λ of the resin sealing body 5 on the horizontal axis, and the heat generated when the PTC element 9 is tripped on the vertical axis. It is explanatory drawing shown on the coordinate made into quantity Q. FIG. As shown in FIG. 3, as a result of experiments conducted by the present inventors, it is preferable to use the resin sealing body 5 having a lower thermal conductivity as the PTC element 9 having a higher calorific value is used, and the thermal conductivity of the resin sealing body 5. There is a negative correlation between λ and the heat generation amount Q when the PTC element 9 is tripped. That is, it has been found that a critical line that can suppress the surface temperature of the body of the battery sufficiently low during a short circuit is a straight line represented by Q = −3.33λ + 1.9. That is, it is preferable that Q ≦ −3.33λ + 1.9 is satisfied within the range of the thermal conductivity λ of the resin sealing body 5 and the calorific value Q when the PTC element 9 is tripped.

さらに、樹脂封口体5の熱伝導度λが0.12W/m・K≦λ≦0.19W/m・Kで、PTC素子9の発熱量Qが1.0W≦Q≦1.25Wである本発明の実施例1、2、4および5においては、短絡時の電池の胴体部の表面温度が65℃以下に抑えられた。   Further, the thermal conductivity λ of the resin sealing body 5 is 0.12 W / m · K ≦ λ ≦ 0.19 W / m · K, and the heat generation amount Q of the PTC element 9 is 1.0 W ≦ Q ≦ 1.25 W. In Examples 1, 2, 4 and 5 of the present invention, the surface temperature of the body part of the battery at the time of short circuit was suppressed to 65 ° C. or less.

なお、上述の実施例では、ポリプロピレン、ナイロン6,6およびナイロン6,12の樹脂封口体5を使用した場合について説明したが、ポリプロピレン以外のポリオレフィン系樹脂(例えば、ポリエチレン、ポリスチレン等)や、ナイロン6,6、およびナイロン6,12以外のポリアミド系樹脂からなる樹脂封口体5を用いた場合に本発明を適用することも勿論可能である。   In the above-described embodiment, the case of using the resin sealing body 5 of polypropylene, nylon 6,6 and nylon 6,12 has been described. However, polyolefin resins other than polypropylene (for example, polyethylene, polystyrene, etc.), nylon, Of course, the present invention can be applied to the case where the resin sealing body 5 made of a polyamide resin other than 6, 6 and nylon 6, 12 is used.

また、本発明の効果は、発電要素の相違による影響を受けることはなく、上述の実施例の亜鉛−二酸化マンガン系に限らず、亜鉛−ニッケル系、リチウム−二硫化鉄系、リチウム−マンガン系、リチウム−フッ化黒鉛系などの各種の円筒型一次電池に適応可能であり、同様の効果を得ることができる。   In addition, the effect of the present invention is not affected by the difference in power generation elements, and is not limited to the zinc-manganese dioxide system of the above-described embodiment, but is also zinc-nickel system, lithium-iron disulfide system, lithium-manganese system. It can be applied to various types of cylindrical primary batteries such as lithium-fluorinated graphite, and the same effect can be obtained.

本発明の円筒型一次電池は高い信頼性を有し、電子機器や携帯機器の電源等に安心して好適に用いられる。   The cylindrical primary battery of the present invention has high reliability and can be suitably used with peace of mind for power supplies of electronic devices and portable devices.

本発明の円筒型一次電池の一実施の形態(単3形アルカリ電池)の一部を断面にした正面図である。It is the front view which made a part of one embodiment (AA alkaline battery) of the cylindrical primary battery of the present invention a section. 図1に示す円筒型一次電池の封口部分の要部を拡大した縦断面図である。It is the longitudinal cross-sectional view which expanded the principal part of the sealing part of the cylindrical primary battery shown in FIG. 本発明の実施例と比較例とを(樹脂封口体の熱伝導度λ−PTC素子のトリップ時の発熱量Q)の座標上に示した説明図(グラフ)である。It is explanatory drawing (graph) which showed the Example and comparative example of this invention on the coordinate of (The calorific value Q at the time of the trip of the thermal conductivity (lambda) -PTC element of a resin sealing body).

符号の説明Explanation of symbols

1 電池ケース
2 正極合剤
3 ゲル状負極
4 セパレータ
5 樹脂封口体
5a 外周縁部
5b 環状薄肉部
6 負極集電体
7 外部端子板
8 連絡板
7a、8a 鍔部
9 PTC素子
10 外装ラベル
11 封口組立体
DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode mixture 3 Gel-like negative electrode 4 Separator 5 Resin sealing body 5a Outer peripheral edge part 5b Annular thin part 6 Negative electrode collector 7 External terminal board 8 Connection board 7a, 8a Eave part 9 PTC element 10 Exterior label 11 Sealing Assembly

Claims (4)

内部に発電要素を含む有底円筒形の電池ケース;
外部端子板、前記発電要素に電気的に接続された連絡板、前記外部端子板と前記連絡板との間に配置されたPTC素子、前記外部端子板に電気的に接続された負極集電子、および樹脂封口体を含み、前記電池ケースの開口部を塞ぐ封口組立体;
を具備する円筒型一次電池であって、
前記樹脂封口体の熱伝導度をλ(W/m・K)、前記PTC素子のトリップ時の発熱量をQ(W)とした場合に、以下の関係式(1)〜(3)を満たすこと、を特徴とする円筒型一次電池。
(1)0.12≦λ≦0.27
(2)1.0≦Q≦1.5
(3)Q≦−3.33λ+1.9
A cylindrical battery case with a bottom that contains a power generation element inside;
An external terminal plate, a connecting plate electrically connected to the power generation element, a PTC element disposed between the external terminal plate and the connecting plate, a negative electrode current collector electrically connected to the external terminal plate, And a sealing assembly that closes an opening of the battery case;
A cylindrical primary battery comprising:
The following relational expressions (1) to (3) are satisfied, where λ (W / m · K) is the thermal conductivity of the resin sealing body and Q (W) is the amount of heat generated when the PTC element is tripped. A cylindrical primary battery characterized by that.
(1) 0.12 ≦ λ ≦ 0.27
(2) 1.0 ≦ Q ≦ 1.5
(3) Q ≦ −3.33λ + 1.9
前記λが0.12≦λ≦0.19を満たし、前記Qが1.0≦Q≦1.25を満たすこと、を特徴とする請求項1記載の円筒型一次電池。   2. The cylindrical primary battery according to claim 1, wherein λ satisfies 0.12 ≦ λ ≦ 0.19, and Q satisfies 1.0 ≦ Q ≦ 1.25. 前記樹脂封口体がポリプロピレンで構成されていること、を特徴とする請求項1または2記載の円筒型一次電池。   The cylindrical primary battery according to claim 1 or 2, wherein the resin sealing body is made of polypropylene. 前記樹脂封口体が6,6ナイロンまたは6,12ナイロンで構成されており、前記λが0.23≦λ≦0.27を満たすこと、を特徴とする請求項1記載の円筒型一次電池。   2. The cylindrical primary battery according to claim 1, wherein the resin sealing body is made of 6,6 nylon or 6,12 nylon, and the λ satisfies 0.23 ≦ λ ≦ 0.27.
JP2007208500A 2006-09-25 2007-08-09 Cylindrical primary battery Pending JP2008084845A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84675706P 2006-09-25 2006-09-25

Publications (1)

Publication Number Publication Date
JP2008084845A true JP2008084845A (en) 2008-04-10

Family

ID=39355450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007208500A Pending JP2008084845A (en) 2006-09-25 2007-08-09 Cylindrical primary battery

Country Status (1)

Country Link
JP (1) JP2008084845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174621A3 (en) * 2017-03-23 2019-01-03 주식회사 엘지화학 Cap assembly comprising guide member for preventing escape of safety vent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117540A (en) * 1983-11-04 1985-06-25 デユラセル インターナシヨナル インコーポレーテツド Galvanic cell and seal
JPS6380760U (en) * 1986-11-17 1988-05-27
JPH05151944A (en) * 1991-11-26 1993-06-18 Sanyo Electric Co Ltd Seal for battery
JPH07201308A (en) * 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd Sealing plate for sealed battery
JPH0927305A (en) * 1995-07-11 1997-01-28 Unitika Ltd Gasket material for sealing alkaline battery
JP2005332613A (en) * 2004-05-18 2005-12-02 Matsushita Electric Ind Co Ltd Alkaline primary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117540A (en) * 1983-11-04 1985-06-25 デユラセル インターナシヨナル インコーポレーテツド Galvanic cell and seal
JPS6380760U (en) * 1986-11-17 1988-05-27
JPH05151944A (en) * 1991-11-26 1993-06-18 Sanyo Electric Co Ltd Seal for battery
JPH07201308A (en) * 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd Sealing plate for sealed battery
JPH0927305A (en) * 1995-07-11 1997-01-28 Unitika Ltd Gasket material for sealing alkaline battery
JP2005332613A (en) * 2004-05-18 2005-12-02 Matsushita Electric Ind Co Ltd Alkaline primary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174621A3 (en) * 2017-03-23 2019-01-03 주식회사 엘지화학 Cap assembly comprising guide member for preventing escape of safety vent
US11024922B2 (en) 2017-03-23 2021-06-01 Lg Chem, Ltd. Cap assembly comprising guide member for preventing escape of safety vent

Similar Documents

Publication Publication Date Title
JP4619221B2 (en) Can-type secondary battery
JP2008530757A (en) End cap assembly and ventilation for high power batteries
US10535860B2 (en) Nonaqueous electrolyte secondary battery
WO2012042743A1 (en) Alkaline secondary battery
JP4435801B2 (en) Alkaline battery
US8338023B2 (en) AA alkaline battery
EP2979314A1 (en) End cap assembly for an electrochemical cell
JP5707568B2 (en) Alkaline battery
US20090181307A1 (en) Aa alkaline battery
US8017266B2 (en) Battery having positive temperature coefficient element
JP2006012604A (en) Non-aqueous electrolyte secondary battery
JP2008084845A (en) Cylindrical primary battery
CN102386370B (en) Battery
US7537860B2 (en) Alkaline battery
US7534526B2 (en) Alkaline battery
JP2008041490A (en) Alkaline battery
JP2010010012A (en) Alkaline battery
JPH0256849A (en) Organic electrolytic battery
JP2012054099A (en) Battery
JP5019634B2 (en) Alkaline battery
JP2008004428A (en) Alkaline dry battery
CN219086117U (en) Lithium battery cap
JP2007141827A (en) Alkaline battery
US20070092789A1 (en) Alkaline battery
JP2002134073A (en) Flattened non-aqueous electrolytic secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120906