JP2020095805A - Alkaline dry cell - Google Patents

Alkaline dry cell Download PDF

Info

Publication number
JP2020095805A
JP2020095805A JP2018231121A JP2018231121A JP2020095805A JP 2020095805 A JP2020095805 A JP 2020095805A JP 2018231121 A JP2018231121 A JP 2018231121A JP 2018231121 A JP2018231121 A JP 2018231121A JP 2020095805 A JP2020095805 A JP 2020095805A
Authority
JP
Japan
Prior art keywords
negative electrode
terminal plate
boss portion
gasket
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018231121A
Other languages
Japanese (ja)
Inventor
嘉晃 工藤
Yoshiaki Kudo
嘉晃 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018231121A priority Critical patent/JP2020095805A/en
Publication of JP2020095805A publication Critical patent/JP2020095805A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

To achieve high capacity of an alkaline dry cell, while stabilizing explosion-proof function by the thin wall part of a gasket.SOLUTION: An alkaline dry cell includes a battery case having an opening, an electricity generation element received in the battery case, and a sealing unit for sealing the opening. The sealing unit includes a negative electrode terminal plate, a negative electrode collector joined to the negative electrode terminal plate, and a gasket. The gasket includes a boss part penetrating the negative electrode collector, periphery in contact with the end part of the opening in the battery case, and a coupling part for coupling the boss part and the periphery. A thin wall part having explosion-proof function is provided in the inner region adjoining the boss part of the coupling part, height of the boss part is 1.5-3.2 mm, and the difference φ1-φ2 of the first diameter φ1 of a circle drawn by the inside coupling position of the thin wall part and the boss part on the electricity generation element side, and the second diameter φ2 of a circle drawn by the outside coupling position of the thin wall part and the boss part in the negative electrode terminal plate side is 0.03-0.2 mm.SELECTED DRAWING: Figure 2

Description

本発明は、アルカリ乾電池に関し、中でも電池ケースの開口を封口する封口ユニットの構造に関する。 The present invention relates to an alkaline dry battery, and more particularly to a structure of a sealing unit that seals an opening of a battery case.

アルカリ乾電池は、開口を有する電池ケースと、電池ケース内に収容された発電要素と、電池ケースの開口を封口する封口ユニットとを備える。封口ユニットは、負極端子板と、負極端子板に接合された負極集電子と、ガスケットとを備える。ガスケットは、負極集電子を貫通させるボス部と、電池ケースの開口端部に接する外周部と、ボス部と外周部とを連結する連結部とを備える。連結部のボス部に隣接する内周領域には、防爆機能を有する薄肉部が形成されている。 The alkaline dry battery includes a battery case having an opening, a power generation element housed in the battery case, and a sealing unit that seals the opening of the battery case. The sealing unit includes a negative electrode terminal plate, a negative electrode current collector joined to the negative electrode terminal plate, and a gasket. The gasket includes a boss portion that allows the negative electrode current collector to pass therethrough, an outer peripheral portion that contacts the open end of the battery case, and a connecting portion that connects the boss portion and the outer peripheral portion. A thin-walled portion having an explosion-proof function is formed in an inner peripheral region adjacent to the boss portion of the connecting portion.

電池が誤用されると、電池内圧が異常上昇し得る。電池内圧が異常上昇すると、連結部が負極端子板に向けて膨らみながら、薄肉部に張力がかかることにより破断する。これにより、電池内で発生したガスは、負極端子板に形成されたガス抜き孔から電池外に排出される。よって、電池の安全性が確保される。 If the battery is misused, the internal pressure of the battery may rise abnormally. When the internal pressure of the battery rises abnormally, the connecting portion swells toward the negative electrode terminal plate, and the thin portion is ruptured by the tension applied. As a result, the gas generated in the battery is discharged to the outside of the battery through the gas vent hole formed in the negative electrode terminal plate. Therefore, the safety of the battery is ensured.

薄肉部が破断するためには、連結部が負極端子板に向けて膨らむための空間が必要である。しかし、電池が誤用されたときに電池温度が上昇し、ガスケットが軟化すると、軟化したボス部が負極集電子との摩擦力に抗して負極端子板側に押し上げられることがある。これにより、連結部と負極端子板との距離が近くなり、連結部が十分に膨らむことができず、薄肉部の破断が困難になる。 In order for the thin portion to break, a space is required for the connecting portion to expand toward the negative electrode terminal plate. However, when the battery temperature rises and the gasket softens when the battery is misused, the softened boss portion may be pushed up to the negative electrode terminal plate side against the frictional force with the negative electrode current collector. As a result, the distance between the connecting portion and the negative electrode terminal plate becomes short, the connecting portion cannot swell sufficiently, and it becomes difficult to break the thin portion.

そこで、特許文献1は、ボス部の中央部の内径とボス部の上下端部の最小内径との差を0.03mm以下とすることを提案している。この場合、ボス部と負極集電子との嵌合が強固になるため、ボス部の負極端子板側への移動が抑制され、ガスケットの防爆機能が安定する。 Therefore, Patent Document 1 proposes that the difference between the inner diameter of the central portion of the boss portion and the minimum inner diameter of the upper and lower end portions of the boss portion is 0.03 mm or less. In this case, since the boss portion and the negative electrode current collector are firmly fitted to each other, the movement of the boss portion to the negative electrode terminal plate side is suppressed, and the explosion-proof function of the gasket is stabilized.

国際公開第2018−123123号パンフレットInternational Publication No. 2018-123123 Pamphlet

一方、特許文献1の場合、ボス部に高い成形精度が要求されるため、より製造が容易で防爆機能が安定するガスケットの開発も望まれている。 On the other hand, in the case of Patent Document 1, high molding accuracy is required for the boss portion, and therefore development of a gasket that is easier to manufacture and has a stable explosion-proof function is also desired.

本発明の一側面は、開口を有する電池ケースと、前記電池ケース内に収容された発電要素と、前記開口を封口する封口ユニットと、を備え、前記封口ユニットは、負極端子板と、前記負極端子板に接合された負極集電子と、ガスケットと、を備え、前記ガスケットは、前記負極集電子を貫通させるボス部と、前記電池ケースの開口端部に接する外周部と、前記ボス部と前記外周部とを連結する連結部とを備え、前記連結部の前記ボス部に隣接する内周領域に、防爆機能を有する薄肉部を有し、前記ボス部の高さは、1.5mm以上、3.2mm以下であり、前記薄肉部と前記ボス部との前記発電要素側における内側連結位置が描く円の第1直径φ1と、前記薄肉部と前記ボス部との前記負極端子板側における外側連結位置が描く円の第2直径φ2との差:φ1−φ2が、0.03mm以上、0.2mm以下である、アルカリ乾電池に関する。 One aspect of the present invention includes a battery case having an opening, a power generation element housed in the battery case, and a sealing unit for sealing the opening, the sealing unit including a negative electrode terminal plate and the negative electrode. A negative electrode current collector joined to the terminal plate; and a gasket, wherein the gasket has a boss portion through which the negative electrode current collector penetrates, an outer peripheral portion in contact with an opening end of the battery case, the boss portion and the A connecting portion that connects the outer peripheral portion, and an inner peripheral region adjacent to the boss portion of the connecting portion has a thin portion having an explosion-proof function, and the height of the boss portion is 1.5 mm or more, It is 3.2 mm or less and has a first diameter φ1 of a circle drawn by an inner connecting position of the thin portion and the boss portion on the power generating element side, and an outer side of the thin portion and the boss portion on the negative electrode terminal plate side. The present invention relates to an alkaline dry battery in which a difference between a second diameter φ2 of a circle drawn by connecting positions: φ1-φ2 is 0.03 mm or more and 0.2 mm or less.

上記側面によれば、連結部が負極端子板に向けて適度に膨らみながら薄肉部が破断し得るため、防爆機能の安定性が向上する。 According to the above aspect, the thin portion can be broken while the connecting portion appropriately bulges toward the negative electrode terminal plate, so that the stability of the explosion-proof function is improved.

本発明の一実施形態に係るアルカリ乾電池の内部構造の一例を示す半断面図である。It is a half cross-sectional view showing an example of an internal structure of an alkaline dry battery according to an embodiment of the present invention. 同実施形態に係る封口ユニットの構造の一例を示す半断面図である。It is a half cross-sectional view showing an example of the structure of the sealing unit according to the embodiment. 図2の封口ユニットの寸法に関する説明図である。It is explanatory drawing regarding the dimension of the sealing unit of FIG. 内側連結位置における薄肉部とボス部との境界の拡大断面模式図である。It is an expanded cross-sectional schematic diagram of the boundary of a thin part and a boss part in an inner side connection position. 連結部が負極端子板に向けて膨らむ前(a)と後(b)の封口ユニットを示す半断面図である。It is a half cross-sectional view which shows the sealing unit before (a) and after (b) that a connection part expands toward a negative electrode terminal plate. 防爆作動圧とφ1−φ2との関係を示すグラフである。6 is a graph showing the relationship between explosion-proof operating pressure and φ1-φ2.

本発明の実施形態に係るアルカリ乾電池は、開口を有する電池ケースと、電池ケース内に収容された発電要素と、電池ケースの開口を封口する封口ユニットとを備える。封口ユニットは、負極端子板と、負極端子板に接合された負極集電子と、ガスケットとを備える。ガスケットは、負極集電子を貫通するボス部と、電池ケースの開口の端部に接する外周部と、ボス部と外周部とを連結する連結部とを備える。連結部のボス部に隣接する内周領域には、防爆機能を有する薄肉部が形成されている。 The alkaline dry battery according to the embodiment of the present invention includes a battery case having an opening, a power generation element housed in the battery case, and a sealing unit for sealing the opening of the battery case. The sealing unit includes a negative electrode terminal plate, a negative electrode current collector joined to the negative electrode terminal plate, and a gasket. The gasket includes a boss portion that penetrates the negative electrode current collector, an outer peripheral portion that contacts an end portion of the opening of the battery case, and a connecting portion that connects the boss portion and the outer peripheral portion. A thin-walled portion having an explosion-proof function is formed in an inner peripheral region adjacent to the boss portion of the connecting portion.

ここで、ボス部の高さHは、1.5mm以上、3.2mm以下であり、かつ薄肉部とボス部との発電要素側における内側連結位置が描く円の第1直径φ1と、薄肉部とボス部との負極端子板側における外側連結位置が描く円の第2直径φ2との差:φ1−φ2(以下、内外直径差Δφ)は、0.03mm以上、0.2mm以下に制限されている。 Here, the height H of the boss portion is 1.5 mm or more and 3.2 mm or less, and the first diameter φ1 of the circle drawn by the inner connecting position of the thin portion and the boss portion on the power generation element side, and the thin portion The difference between the boss and the boss and the second diameter φ2 of the circle drawn by the outer connecting position on the side of the negative electrode terminal plate: φ1-φ2 (hereinafter, the difference between the inner and outer diameters Δφ) is limited to 0.03 mm or more and 0.2 mm or less. ing.

ボス部の高さHを3.2mm以下に設定することで、ガスケット全体の体積が減少するため、電池ケース内に発電要素をより多く収容できるようになり、高容量化が達成されやすい。ボス部の高さHは3.2mm以下であればよいが、電池ケース内に発電要素をより多く収容する観点から3.0mm以下としてもよく、2.5mm以下としてもよく、2.0mm以下としてもよい。ただし、ボス部の高さHが1.5mmより小さくなると、ボス部と負極集電子との摩擦力が急激に減少し、ガスケットが軟化したときにボス部が負極端子板側へ移動しやすく、連結部が膨張し得る空間が過度に小さくなり得る。よって、ボス部の高さHは1.5mm以上とすればよい。 By setting the height H of the boss portion to 3.2 mm or less, the volume of the entire gasket is reduced, so that more power generating elements can be accommodated in the battery case, and high capacity can be easily achieved. The height H of the boss portion may be 3.2 mm or less, but may be 3.0 mm or less, 2.5 mm or less, or 2.0 mm or less from the viewpoint of accommodating more power generating elements in the battery case. May be However, when the height H of the boss portion is smaller than 1.5 mm, the frictional force between the boss portion and the negative electrode current collector sharply decreases, and the boss portion easily moves to the negative electrode terminal plate side when the gasket softens. The space in which the connection part can expand can be too small. Therefore, the height H of the boss portion may be 1.5 mm or more.

ボス部の高さHを1.5mm以上とする場合でも、ガスケットが軟化したときには、ボス部の負極端子板側への移動を十分に抑制できず、連結部が膨張するための空間が小さくなることがある。このような場合でも、内外直径差Δφを0.03mm以上、0.2mm以下に制限することで、連結部が適度に膨らんだとき、もしくは連結部が負極端子板に接する前に薄肉部が破断できるようになる。よって、防爆作動圧が高くなりすぎず、安定した防爆機能が得られるようになる。 Even when the height H of the boss portion is set to 1.5 mm or more, when the gasket softens, the movement of the boss portion toward the negative electrode terminal plate cannot be sufficiently suppressed, and the space for expanding the connecting portion becomes small. Sometimes. Even in such a case, by limiting the inner-outer diameter difference Δφ to 0.03 mm or more and 0.2 mm or less, the thin portion breaks when the connecting part swells appropriately or before the connecting part contacts the negative electrode terminal plate. become able to. Therefore, the explosion-proof operating pressure does not become too high, and a stable explosion-proof function can be obtained.

内外直径差Δφを0.03mm以上、0.2mm以下に制限すると、連結部が膨張したときの引っ張り応力が内側連結位置における薄肉部とボス部との境界Cbに集中しやすくなると考えられる。内外直径差Δφが0.03mm未満では、境界Cbに引っ張り応力が十分に集中しない。また、内外直径差Δφが0.2mmを超えると、防爆作動圧が低くなりすぎ、防爆動作による漏液の不都合が生じ得る。 It is considered that when the inner-outer diameter difference Δφ is limited to 0.03 mm or more and 0.2 mm or less, the tensile stress when the connecting portion expands tends to concentrate on the boundary Cb between the thin portion and the boss portion at the inner connecting position. When the inner-outer diameter difference Δφ is less than 0.03 mm, the tensile stress is not sufficiently concentrated on the boundary Cb. Further, if the inner-outer diameter difference Δφ exceeds 0.2 mm, the explosion-proof operating pressure becomes too low, which may cause a problem of liquid leakage due to the explosion-proof operation.

なお、ボス部が十分な高さを有する場合、内外直径差Δφは、通常、ほぼ0(ゼロ)になるように設計されている。金型等の公差を考慮する場合でも、大きくてもΔφは0.02mm以下である。 When the boss has a sufficient height, the inner-outer diameter difference Δφ is usually designed to be almost 0 (zero). Even when considering the tolerance of the mold, Δφ is 0.02 mm or less at the maximum.

ガスケットの軸方向の断面において、内側連結位置における薄肉部とボス部との境界Cbは面取りされていなくてもよい。例えば、境界Cbの曲率半径を0.1mm以下としてもよい。この場合、連結部が膨張したときに、境界Cbに引っ張り応力が更に集中しやすくなり、防爆機能が更に安定化する。 In the cross section of the gasket in the axial direction, the boundary Cb between the thin portion and the boss portion at the inner connecting position may not be chamfered. For example, the radius of curvature of the boundary Cb may be 0.1 mm or less. In this case, when the connecting portion expands, the tensile stress is more likely to concentrate on the boundary Cb, and the explosion-proof function is further stabilized.

ガスケットの主成分には、耐熱性を有する熱可塑性樹脂が用いられる。主成分とは、例えばガスケットの90質量%以上を占める材料をいう。具体的には、ガスケットの主成分には、ポリプロピレン樹脂等のポリオレフィン樹脂、ポリアミド樹脂等が好ましく用いられるが、これらに限定されない。ポリアミド樹脂としては、例えば6,6−ナイロン、6,10−ナイロン、6,12−ナイロンなどが用いられる。中でもコストと耐漏液性とのバランスに優れる点で6,10−ナイロンが好ましい。また、ガスケットは、必要に応じて、可塑剤、熱安定剤、酸化防止剤、潤滑材、充填剤、着色剤、燃焼防止剤等を含むことができる。 Thermoplastic resin having heat resistance is used as the main component of the gasket. The main component means, for example, a material that occupies 90% by mass or more of the gasket. Specifically, a polyolefin resin such as polypropylene resin, a polyamide resin, or the like is preferably used as the main component of the gasket, but is not limited thereto. As the polyamide resin, for example, 6,6-nylon, 6,10-nylon, 6,12-nylon or the like is used. Of these, 6,10-nylon is preferable because it has an excellent balance between cost and liquid leakage resistance. Further, the gasket may contain a plasticizer, a heat stabilizer, an antioxidant, a lubricant, a filler, a coloring agent, a combustion inhibitor, etc., if necessary.

本実施形態に係るアルカリ乾電池は、例えば単四形(AAA型)電池に好適に適用し得る。サイズが小さい電池のガスケットであるほど、薄肉部に高い成型精度が要求される。本実施形態によれば、サイズの小さいアルカリ乾電池において防爆機能が安定するガスケットをより容易に製造可能となるため、ガスケットのボス部の高さを低減しやすく、高容量化を達成しやすくなる。 The alkaline dry battery according to the present embodiment can be suitably applied to, for example, a AAA battery. The smaller the size of the battery gasket, the higher the molding precision required for the thin portion. According to the present embodiment, it is possible to more easily manufacture a gasket having a stable explosion-proof function in a small size alkaline dry battery, so that it is easy to reduce the height of the boss portion of the gasket and to easily achieve high capacity.

薄肉部の負極端子板側の面と、ボス部の高さ方向とが成す発電要素側の角度(以下、スカート角度)θは、45度以上であることが好ましい。スカート角度θが大きいほど、ガスケットが軟化したときに、ボス部が負極端子板側に移動する際の抵抗が大きくなる。スカート角度θは、50度以上がより好ましく、90度以上でもよい。ただし、ガスケットの薄肉部による防爆機能の安定化の観点から、スカート角θの上限は130度程度であり、120度以下が好ましい。スカート角θが130度を超えると、連結部が十分に膨らむための空間の確保が困難になることがある。 The angle (hereinafter, skirt angle) θ on the power generation element side formed by the surface of the thin portion on the negative electrode terminal plate side and the height direction of the boss portion is preferably 45 degrees or more. The larger the skirt angle θ, the larger the resistance when the boss moves toward the negative electrode terminal plate side when the gasket is softened. The skirt angle θ is more preferably 50 degrees or more, and may be 90 degrees or more. However, from the viewpoint of stabilizing the explosion-proof function due to the thin portion of the gasket, the upper limit of the skirt angle θ is about 130 degrees, and preferably 120 degrees or less. If the skirt angle θ exceeds 130 degrees, it may be difficult to secure a space for the connecting portion to swell sufficiently.

ガスケットの寸法等は、例えば電池のCTスキャンで封口ユニットの断面写真を撮影して各部の寸法、曲率半径、角度等を測定すればよい。 The dimensions of the gasket may be obtained by, for example, taking a cross-sectional photograph of the sealing unit by a CT scan of the battery and measuring the dimensions, radius of curvature, angle, etc. of each part.

以下に、図面を参照しながら本発明の実施形態について更に説明するが、本発明は以下の実施形態に限定されるものではない。 Embodiments of the present invention will be further described below with reference to the drawings, but the present invention is not limited to the following embodiments.

図1に、本発明の一実施形態に係るアルカリ乾電池の内部構造の一例を半断面図で示す。図2には、同実施形態に係る封口ユニットの構造を半断面図で示す。有底円筒状の電池ケース1内には、セパレータ4を介して、正極2およびゲル状負極3が収納されている。電池ケース1は、例えばニッケルめっき鋼板を所定形状にプレス成形して得られる。電池ケース1の内面には、導電性被膜を形成してもよい。 FIG. 1 is a half sectional view showing an example of the internal structure of an alkaline dry battery according to an embodiment of the present invention. FIG. 2 is a half sectional view showing the structure of the sealing unit according to the embodiment. A positive electrode 2 and a gelled negative electrode 3 are housed in a cylindrical battery case 1 having a bottom via a separator 4. The battery case 1 is obtained, for example, by pressing a nickel-plated steel plate into a predetermined shape. A conductive coating may be formed on the inner surface of the battery case 1.

電池ケース1の開口は、負極端子板5と、負極集電子6と、ガスケット7とが一体に組み立てられた封口ユニット9で密閉されている。負極端子板5は、例えば、ニッケルめっき鋼板やスズめっき鋼板を所定形状にプレス成形して得られる。負極端子板5の周縁部には、ガスケット7の薄肉部8による防爆機能が作動した際にガスを外部に逃がすためのガス抜き孔(図示せず)が設けられている。負極集電子6の端部には、鍔部6aが形成されており、鍔部6aが負極端子板5に溶接で接合されている。負極集電子6は、例えば真鍮の線材を所定寸法の釘形状にプレス加工して得られる。電池ケース1の外周面は、外装ラベル10で被覆されている。 The opening of the battery case 1 is sealed by a sealing unit 9 in which the negative electrode terminal plate 5, the negative electrode current collector 6, and the gasket 7 are integrally assembled. The negative electrode terminal plate 5 is obtained, for example, by pressing a nickel-plated steel plate or a tin-plated steel plate into a predetermined shape. A gas vent hole (not shown) is provided in the peripheral portion of the negative electrode terminal plate 5 for allowing gas to escape to the outside when the explosion-proof function of the thin portion 8 of the gasket 7 is activated. A flange portion 6 a is formed at an end of the negative electrode current collector 6, and the flange portion 6 a is welded to the negative electrode terminal plate 5. The negative electrode current collector 6 is obtained, for example, by pressing a brass wire rod into a nail shape having a predetermined size. The outer peripheral surface of the battery case 1 is covered with an exterior label 10.

ガスケット7のボス部7aには、負極集電子6が貫通されている。ガスケット7の外周部7bは、電池ケース1の開口端部に挟まれるように接しており、負極端子板5の周縁にかしめられている。ボス部7aと外周部7bとを連結する環状の連結部7cは、ボス部7a寄りの内周領域に防爆機能を有する薄肉部8を有する。薄肉部8における最小厚さは、例えば0.10mm〜0.35mmに設定される。 The negative electrode current collector 6 penetrates the boss portion 7 a of the gasket 7. The outer peripheral portion 7b of the gasket 7 is in contact with the open end of the battery case 1 so as to be sandwiched therebetween, and is crimped to the peripheral edge of the negative electrode terminal plate 5. The annular connecting portion 7c that connects the boss portion 7a and the outer peripheral portion 7b has a thin portion 8 having an explosion-proof function in the inner peripheral region near the boss portion 7a. The minimum thickness of the thin portion 8 is set to, for example, 0.10 mm to 0.35 mm.

図3は、図2の封口ユニットの寸法に関する説明図である。ボス部7aの高さHは、1.5mm以上、3.2mm以下に設定される。ボス部7aの高さは、ボス部7aの負極集電子6と接触する内周面の上下端間の距離Hとして測定すればよい。なお、樹脂の射出成形により形成されるガスケット7には、ボス部7aの端面の内周縁に、金型のゲート部に起因する環状突起7dが形成されることがある。この場合、環状突起7dを排除した高さをボス部7aの高さHとして測定すればよい。 FIG. 3 is an explanatory diagram regarding dimensions of the sealing unit of FIG. 2. The height H of the boss portion 7a is set to 1.5 mm or more and 3.2 mm or less. The height of the boss portion 7a may be measured as the distance H between the upper and lower ends of the inner peripheral surface of the boss portion 7a that contacts the negative electrode current collector 6. The gasket 7 formed by resin injection molding may have an annular projection 7d formed on the inner peripheral edge of the end surface of the boss portion 7a due to the gate portion of the mold. In this case, the height excluding the annular protrusion 7d may be measured as the height H of the boss portion 7a.

公差を考慮して、ボス部7aの負極端子板5側の端面と負極集電子6の鍔部6aとの間には、隙間Sが形成されてもよい。隙間Sは、連結部7cが膨張し得る空間を確保するのに寄与する。一方、ガスケット7が負極端子板5側へ移動するときは、ボス部7aが隙間Sに対応する距離を移動し、更に鍔部6aを覆うように変形し得る。 In consideration of tolerance, a gap S may be formed between the end surface of the boss portion 7a on the negative electrode terminal plate 5 side and the flange portion 6a of the negative electrode current collector 6. The gap S contributes to ensuring a space in which the connecting portion 7c can expand. On the other hand, when the gasket 7 moves to the negative electrode terminal plate 5 side, the boss portion 7a may move a distance corresponding to the gap S and may be further deformed so as to cover the flange portion 6a.

発電要素側における薄肉部8とボス部7aとの内側連結位置Cinは、ボス部7aの軸方向から見ると概ね円の軌跡を描く。同様に、負極端子板5側における薄肉部8とボス部7aとの外側連結位置Coutは、ボス部7aの軸方向から見ると概ね円の軌跡を描く。内側連結位置Cinが描く円の第1直径φ1と、外側連結位置Coutが描く円の第2直径φ2との差:φ1−φ2(すなわち内外直径差Δφ)は、0.03mm以上、0.2mm以下に制限されている。 The inner connecting position Cin between the thin portion 8 and the boss portion 7a on the power generating element side draws a substantially circular locus when viewed from the axial direction of the boss portion 7a. Similarly, the outer connection position Cout between the thin portion 8 and the boss portion 7a on the negative electrode terminal plate 5 side draws a substantially circular locus when viewed in the axial direction of the boss portion 7a. The difference between the first diameter φ1 of the circle drawn by the inner connecting position Cin and the second diameter φ2 of the circle drawn by the outer connecting position Cout: φ1-φ2 (that is, the inner-outer diameter difference Δφ) is 0.03 mm or more and 0.2 mm. Limited to:

図4は、内側連結位置Cinにおける薄肉部8とボス部7aとの境界Cbの拡大断面模式図である。ガスケット7の軸方向の断面において、境界Cbは、面取りされておらず、シャープに尖った鋭角の形状を有する。すなわち、境界Cbの曲率半径は0.1mmより十分に小さくされている。スカート角度θは45度以上90度以下の範囲内である。 FIG. 4 is an enlarged schematic sectional view of the boundary Cb between the thin portion 8 and the boss portion 7a at the inner connecting position Cin. In the cross section of the gasket 7 in the axial direction, the boundary Cb is not chamfered and has a sharply pointed acute angle shape. That is, the radius of curvature of the boundary Cb is sufficiently smaller than 0.1 mm. The skirt angle θ is in the range of 45 degrees or more and 90 degrees or less.

図5は、連結部7cが負極端子板5に向けて膨らむ前(a)と後(b)の封口ユニットを示す半断面図である。電池が誤用され、電池内圧が上昇すると、図5(b)に示されるように、連結部7cが負極端子板5に向けて膨らみながら、薄肉部8が破断し、電池内圧が開放され、安全性が確保される。薄肉部8が破断する圧力が防爆作動圧である。 FIG. 5 is a half cross-sectional view showing a sealing unit before (a) and after (b) that the connecting portion 7c bulges toward the negative electrode terminal plate 5. When the battery is misused and the internal pressure of the battery rises, as shown in FIG. 5B, the thin portion 8 is broken while the connecting portion 7c bulges toward the negative electrode terminal plate 5, the internal pressure of the battery is released, and the safety is improved. Sex is secured. The pressure at which the thin portion 8 breaks is the explosion-proof operating pressure.

薄肉部8の破断は、図4に示される境界Cbに応力が集中することで、境界Cbを起点に生じると考えられている。しかし、電池温度の上昇によってガスケット7が軟化すると、軟化したボス部7aが、図5(b)に示すように負極端子板5側に押し上げられ、鍔部6aにめり込むようになり、連結部7cと負極端子板5との距離が近くなり、連結部7cが負極端子板5に向けて膨らむ空間が小さくなる。よって、防爆作動圧が適度でなければ、薄肉部8の破断が困難になり得る。一方、内外直径差Δφを0.03mm以上、0.2mm以下に制限すると、防爆作動圧が適度になり、連結部7cが適度に膨むと、連結部7cが負極端子板5に接する前に薄肉部8が破断するようになる。 It is considered that the breakage of the thin portion 8 occurs from the boundary Cb as a starting point due to the concentration of stress on the boundary Cb shown in FIG. However, when the gasket 7 is softened due to the rise in the battery temperature, the softened boss portion 7a is pushed up to the negative electrode terminal plate 5 side as shown in FIG. And the negative electrode terminal plate 5 become closer, and the space in which the connecting portion 7c bulges toward the negative electrode terminal plate 5 becomes smaller. Therefore, if the explosion-proof operating pressure is not appropriate, it may be difficult to break the thin portion 8. On the other hand, when the inner-outer diameter difference Δφ is limited to 0.03 mm or more and 0.2 mm or less, the explosion-proof working pressure becomes appropriate, and when the connecting portion 7c swells to an appropriate degree, the connecting portion 7c becomes thin before contacting the negative electrode terminal plate 5. The part 8 comes to break.

負極集電子6の胴径Dは、例えば2.0mm以下が好ましく、1.8mm以下がより好ましい。また、優れた集電性を確保する観点から、負極集電子6の胴径Dは、1.1mm以上が好ましく、1.15mm以上がより好ましい。 The body diameter D of the negative electrode current collector 6 is preferably 2.0 mm or less, more preferably 1.8 mm or less. Further, from the viewpoint of ensuring excellent current collecting properties, the barrel diameter D of the negative electrode current collector 6 is preferably 1.1 mm or more, and more preferably 1.15 mm or more.

負極集電子6の表面粗さ(Rmax)は、例えば0.3〜3.0μmであればよい。負極集電子6の表面には、スズ、インジウムなどのめっき層を形成してもよい。 The surface roughness (R max ) of the negative electrode current collector 6 may be 0.3 to 3.0 μm, for example. A plating layer of tin, indium or the like may be formed on the surface of the negative electrode current collector 6.

負極集電子6は真鍮により形成されているが、真鍮の銅の含有率を少なくしてもよい。例えば真鍮の銅含有量を50〜60%質量%以下とすると、負極集電子6の電気伝導度が低下し、電池の誤用時における負極集電子の発熱は増大する。このような場合、ボス部7aが負極端子板5側へ移動しやすいが、防爆作動圧が適度であるため、防爆機能は安定化する。 The negative electrode current collector 6 is made of brass, but the copper content of brass may be reduced. For example, when the copper content of brass is 50 to 60% by mass or less, the electric conductivity of the negative electrode current collector 6 is lowered, and the heat generation of the negative electrode current collector during misuse of the battery is increased. In such a case, the boss portion 7a easily moves to the negative electrode terminal plate 5 side, but since the explosion-proof operating pressure is appropriate, the explosion-proof function is stabilized.

負極集電子6とボス部7aとの間には、封止剤を介在させてもよい。封止剤により、負極集電子6とボス部7aとの間からのアルカリ電解液の漏液が発生しにくくなる。封止剤には、シリコーン樹脂、フッ素樹脂、ポリアミドアミンが添加されたエポキシ樹脂などを用いることができる。 A sealant may be interposed between the negative electrode current collector 6 and the boss portion 7a. The sealant makes it difficult for the alkaline electrolyte to leak from between the negative electrode current collector 6 and the boss 7a. As the sealant, a silicone resin, a fluororesin, a polyamidoamine-added epoxy resin, or the like can be used.

アルカリ乾電池のタイプは、特に限定されないが、中でも既に述べたように単四形電池の実施形態において、上記封口ユニットを用いることによる防爆機能を安定化させる効果が大きくなる。 Although the type of the alkaline dry battery is not particularly limited, as described above, in the embodiment of the AAA battery, the effect of stabilizing the explosion-proof function by using the sealing unit becomes large.

以下、アルカリ乾電池の発電要素の具体的な構成について更に説明する。
正極2には、例えば、正極活物質、導電剤およびアルカリ電解液を含む混合物の成形体が用いられる。混合物には、ポリエチレン粉末などの結着剤、ステアリン酸塩などの滑沢剤を添加してもよい。正極活物質には、二酸化マンガン粉末、オキシ水酸化ニッケル粉末などが用いられる。導電剤には、黒鉛粉末などが用いられる。
Hereinafter, the specific configuration of the power generating element of the alkaline dry battery will be further described.
For the positive electrode 2, for example, a molded body of a mixture containing a positive electrode active material, a conductive agent and an alkaline electrolyte is used. A binder such as polyethylene powder and a lubricant such as stearate may be added to the mixture. As the positive electrode active material, manganese dioxide powder, nickel oxyhydroxide powder or the like is used. Graphite powder or the like is used as the conductive agent.

ゲル状負極3には、例えば、負極活物質、アルカリ電解液およびゲル化剤を含む混合物が用いられる。負極活物質には、亜鉛合金粉末が用いられる。ゲル化剤には、ポリアクリル酸ナトリウムなどが用いられる。混合物には、亜鉛合金の耐食性を向上させるために、インジウム、ビスマスなどの水素過電圧の高い金属化合物や界面活性剤を添加してもよい。 For the gelled negative electrode 3, for example, a mixture containing a negative electrode active material, an alkaline electrolyte, and a gelling agent is used. Zinc alloy powder is used as the negative electrode active material. Sodium polyacrylate or the like is used as the gelling agent. In order to improve the corrosion resistance of the zinc alloy, a metal compound having a high hydrogen overvoltage such as indium or bismuth or a surfactant may be added to the mixture.

セパレータ4には、例えば、ポリビニルアルコール繊維およびレーヨン繊維を主体とする不織布が用いられる。 For the separator 4, for example, a non-woven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber is used.

正極2、ゲル状負極3およびセパレータ4は、それぞれがアルカリ電解液を含んでいる。アルカリ電解液には、例えば、水酸化カリウムを30〜40質量%含有し、酸化亜鉛を1〜3質量%含有する水溶液が用いられる。 Each of the positive electrode 2, the gelled negative electrode 3 and the separator 4 contains an alkaline electrolyte. As the alkaline electrolyte, for example, an aqueous solution containing 30 to 40% by mass of potassium hydroxide and 1 to 3% by mass of zinc oxide is used.

以下、本発明の実施形態について実施例に基づいて更に説明するが、本発明は実施例に限定されるものではない。ここでは、図1に示されるような構造の単四形のアルカリ乾電池を作製した。 Hereinafter, the embodiments of the present invention will be further described based on examples, but the present invention is not limited to the examples. Here, a AAA alkaline dry battery having a structure as shown in FIG. 1 was produced.

《実施例1》
(1)封口ユニットの作製
複数種類の金型を用いて6,10−ナイロンを所定形状に射出成形してガスケット7を作製した。ガスケット7のボス部7aの高さHを3mm、薄肉部8の厚さは0.2mmとし、内外直径差Δφを表1のように変化させた。なお、Δφがマイナス値のときはφ1<φ2であることを意味する。スカート角θは60度とした。内側連結位置Cinにおける薄肉部8とボス部7aとの境界Cbの曲率半径は0.1mmより十分に小さくした。
<<Example 1>>
(1) Production of sealing unit A gasket 7 was produced by injection-molding 6,10-nylon into a predetermined shape using a plurality of types of molds. The height H of the boss portion 7a of the gasket 7 was 3 mm, the thickness of the thin portion 8 was 0.2 mm, and the inner and outer diameter difference Δφ was changed as shown in Table 1. When Δφ is a negative value, it means φ1<φ2. The skirt angle θ was set to 60 degrees. The radius of curvature of the boundary Cb between the thin portion 8 and the boss portion 7a at the inner connecting position Cin is sufficiently smaller than 0.1 mm.

銅含有量58質量%の真鍮を、全長30mm、胴径1.20mmの釘形状に加工して負極集電子6を作製した。負極集電子6の表面にはめっき層を形成せず、表面粗さ(Rmax)は1.0μmであった。一方、厚さ0.4mmのニッケルめっき鋼板を所定形状にプレス加工して負極端子板5を作製し、負極集電子6の鍔部6aを負極端子板5に溶接した。そして、ガスケット7のボス部7aの中空に負極集電子6を圧入して、封口ユニット9を組み立てた。 A negative electrode current collector 6 was produced by processing brass having a copper content of 58 mass% into a nail shape having a total length of 30 mm and a body diameter of 1.20 mm. No plating layer was formed on the surface of the negative electrode current collector 6, and the surface roughness (R max ) was 1.0 μm. On the other hand, a nickel-plated steel plate having a thickness of 0.4 mm was pressed into a predetermined shape to produce a negative electrode terminal plate 5, and the collar portion 6a of the negative electrode current collector 6 was welded to the negative electrode terminal plate 5. Then, the negative electrode current collector 6 was pressed into the hollow of the boss portion 7a of the gasket 7 to assemble the sealing unit 9.

(2)正極の作製
平均粒径35μmの電解二酸化マンガン粉末と平均粒径15μmの黒鉛粉末とを94:6の質量比で混合し、混合物100質量部に対してアルカリ電解液を2質量部添加し、充分に攪拌した後、圧縮成形して、フレーク状の正極合剤を得た。フレーク状の正極合剤を顆粒状に粉砕した後、中空円筒状ペレットに加圧成形し、得られた成形体を正極2とした。
(2) Preparation of positive electrode Electrolytic manganese dioxide powder having an average particle size of 35 μm and graphite powder having an average particle size of 15 μm were mixed at a mass ratio of 94:6, and 2 parts by mass of an alkaline electrolyte was added to 100 parts by mass of the mixture. Then, the mixture was sufficiently stirred and then compression-molded to obtain a flake-shaped positive electrode mixture. The flake-shaped positive electrode mixture was crushed into granules and then pressure-molded into hollow cylindrical pellets, and the obtained molded body was used as the positive electrode 2.

アルカリ電解液には、35質量%の水酸化カリウムと2質量%の酸化亜鉛とを含有する水溶液を用いた。 An aqueous solution containing 35% by mass of potassium hydroxide and 2% by mass of zinc oxide was used as the alkaline electrolyte.

(3)負極の調製
ゲル化剤(ポリアクリル酸ナトリウム粉末)と、アルカリ電解液と、平均粒径160μmの亜鉛合金粉末とを、質量比0.8:33.6:65.6で混合し、ゲル状負極3を得た。
(3) Preparation of Negative Electrode A gelling agent (sodium polyacrylate powder), an alkaline electrolyte, and a zinc alloy powder having an average particle diameter of 160 μm were mixed in a mass ratio of 0.8:33.6:65.6. Thus, a gelled negative electrode 3 was obtained.

(4)電池の組み立て
正極2を電池ケース1内に挿入し、加圧治具により正極2を電池ケース1の内壁に密着させた。正極2の中空に有底円筒形のセパレータ4を配置した。セパレータ4には、ポリビニルアルコール繊維およびレーヨン繊維を主体とする不織布を用いた。セパレータ4内にアルカリ電解液を注入して所定時間経過後、ゲル状負極3をセパレータ4内に充填した。封口ユニットのガスケットの外周部を電池ケース1の開口付近に配置し、電池ケース1の開口端部を内方へ折り曲げて封口し、単四形の電池を完成させた。
(4) Assembly of Battery The positive electrode 2 was inserted into the battery case 1, and the positive electrode 2 was brought into close contact with the inner wall of the battery case 1 by a pressing jig. A bottomed cylindrical separator 4 was placed in the hollow of the positive electrode 2. For the separator 4, a non-woven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber was used. After the alkaline electrolyte was injected into the separator 4 and a predetermined time elapsed, the gelled negative electrode 3 was filled in the separator 4. The outer peripheral portion of the gasket of the sealing unit was arranged in the vicinity of the opening of the battery case 1, and the opening end of the battery case 1 was bent inward and sealed to complete a AAA battery.

<防爆動作試験>
各電池をそれぞれ10個準備し、電池ケース側面に直径4mmの穴を空け、穴から水を注入して内部圧力をモニタし、薄肉部が破断するときの圧力を防爆作動圧として求めた。結果を表1に示す。
<Explosion-proof operation test>
Ten batteries each were prepared, a hole having a diameter of 4 mm was formed on the side surface of the battery case, water was injected from the hole to monitor the internal pressure, and the pressure at which the thin portion broke was determined as the explosion-proof working pressure. The results are shown in Table 1.

<漏液試験>
各電池をそれぞれ10個準備し、80℃の恒温槽で3月保存し、10個中、漏液した電池数を求めた。結果を表1に示す。
<Leakage test>
Ten of each battery was prepared and stored in an 80° C. constant temperature bath for 3 months, and the number of leaked batteries in 10 batteries was determined. The results are shown in Table 1.



図6に、防爆作動圧と内外直径差Δφ(φ1−φ2)との関係を示す。Δφが0.03mm未満では、防爆作動圧が大きくなり、防爆機能が極端に作動しにくくなることが理解できる。また、表1より、Δφが0.20mmを超えると、防爆作動圧は若干低下するが問題のない範囲である一方、防爆機能が作動しやすくなり過ぎて、漏液に至る確率が大きくなることが理解できる。 FIG. 6 shows the relationship between the explosion-proof working pressure and the inner-outer diameter difference Δφ (φ1-φ2). It can be understood that when Δφ is less than 0.03 mm, the explosion-proof operating pressure becomes large and the explosion-proof function becomes extremely difficult to operate. Further, from Table 1, when Δφ exceeds 0.20 mm, the explosion-proof operating pressure slightly decreases but is within a range where there is no problem, but the explosion-proof function becomes too easy to operate and the probability of leaking increases. Can understand.

《実施例2》
ガスケット7の薄肉部8の厚さは0.2mmとし、ボス部7aの高さHと内外直径差Δφとを表2のように変化させたこと以外、実施例1と同様に電池を作製した。
<<Example 2>>
A battery was manufactured in the same manner as in Example 1 except that the thickness of the thin portion 8 of the gasket 7 was 0.2 mm and the height H of the boss portion 7a and the inner/outer diameter difference Δφ were changed as shown in Table 2. ..

<短絡試験>
4個の電池を直列接続した組をそれぞれ10組ずつ作製した。60℃で10組の電池を8時間保管後、閉回路状態で24時間放置し、その後、開回路状態に戻し、1週間放置した。防爆機能が作動せず、4個中のいずれかの電池が破損した組の割合を表2に示す。
<Short circuit test>
Ten groups were produced by connecting four batteries in series. After storing 10 sets of batteries at 60° C. for 8 hours, they were left in a closed circuit state for 24 hours, then returned to an open circuit state and left for 1 week. Table 2 shows the proportion of the groups in which the explosion-proof function did not operate and any one of the four cells was damaged.

また、破損していない電池の薄肉部の伸びを測定し、平均値を測定した。具体的には、まず、短絡試験前の連結部7cが負極端子板5に向けて膨らむ前の電池について、CTスキャンで断面写真を撮影し、図5(a)に示される連結部7cの負極端子板5側の面が描くX−Y線の長さLを求めた。次に、連結部7cが負極端子板5に向けて膨らんだ短絡試験後の電池について、同様に、CTスキャンで断面写真を撮影し、図5(b)に示される連結部7cの負極端子板5側の面が描くX´−Y´線の長さL´を求めた。次にL´−Lの平均値(mm)を伸びとして求めた。結果を表3に示す。 In addition, the elongation of the thin portion of the battery that was not damaged was measured, and the average value was measured. Specifically, first, a cross-sectional photograph is taken by CT scan of the battery before the connecting portion 7c before the short circuit test expands toward the negative electrode terminal plate 5, and the negative electrode of the connecting portion 7c shown in FIG. The length L of the XY line drawn by the surface on the terminal plate 5 side was determined. Next, for the battery after the short-circuit test in which the connecting portion 7c bulges toward the negative electrode terminal plate 5, similarly, a cross-sectional photograph is taken by CT scan, and the negative electrode terminal plate of the connecting portion 7c shown in FIG. 5B is taken. The length L′ of the X′-Y′ line drawn by the surface on the 5 side was obtained. Next, the average value (mm) of L'-L was obtained as elongation. The results are shown in Table 3.

まず、ボス部の高さHが3.2mmを超えて大きくなると、そもそもボス部の移動が生じないと考えられ、Δφが0でも連結部が十分に膨張して薄肉部が破断する。よって、連結部7cの伸びもある程度大きくなる。ただし、Δφがマイナス値になると、防爆作動圧が大きくなり過ぎるため、薄肉部が破断できず、連結部の伸びも顕著に大きくなる。 First, if the height H of the boss portion exceeds 3.2 mm and becomes large, it is considered that the boss portion does not move in the first place, and even if Δφ is 0, the connecting portion is sufficiently expanded and the thin portion is broken. Therefore, the extension of the connecting portion 7c also increases to some extent. However, when Δφ becomes a negative value, the explosion-proof operating pressure becomes too large, so that the thin portion cannot be broken and the elongation of the connecting portion becomes significantly large.

次に、ボス部の高さが短くなると、Δφが0.03mm未満では、電池が破損する確率が大きく、連結部の伸びも比較的大きくなることが理解できる。一方、Δφを0.03mm以上とすることで、電池の破損が顕著に抑制され、連結部の伸びも小さくなっている。これは、Δφを0.03mm以上とすることで防爆作動圧が適度に低下したためである。ただし、ボス部の高さが1.5mm未満では、電池の破損が顕著である。これは、ボス部が負極端子板側へ移動しやすく、連結部が膨張し得る空間が過度に小さくなるため、防爆機能が作動しないためと考えられる。 Next, it can be understood that when the height of the boss portion is reduced and the Δφ is less than 0.03 mm, the probability of battery damage is high and the elongation of the connection portion is relatively large. On the other hand, by setting Δφ to be 0.03 mm or more, breakage of the battery is significantly suppressed and the elongation of the connecting portion is also small. This is because the explosion-proof operating pressure was appropriately reduced by setting Δφ to 0.03 mm or more. However, when the height of the boss portion is less than 1.5 mm, the battery is significantly damaged. It is considered that this is because the boss portion is likely to move to the negative electrode terminal plate side, and the space in which the connecting portion can expand becomes excessively small, so that the explosion-proof function does not operate.

本発明の実施形態に係るアルカリ乾電池は、防爆機能の安定性に優れるとともに高容量化できるため、種々の電子機器の電源として有用である。 INDUSTRIAL APPLICABILITY The alkaline dry battery according to the embodiment of the present invention is excellent in stability of the explosion-proof function and can have a high capacity, and thus is useful as a power source for various electronic devices.

1:電池ケース、2:正極、3:ゲル状負極、4:セパレータ、5:負極端子板、6:負極集電子、6a:鍔部、7:ガスケット、7a:ボス部、7b:外周部、7c:連結部、7d:環状突起、8:薄肉部、9:封口ユニット、10:外装ラベル、Cin:内側連結位置、Cout:外側連結位置、Cb:境界、D:胴径、S:隙間

1: Battery case, 2: Positive electrode, 3: Gelled negative electrode, 4: Separator, 5: Negative electrode terminal plate, 6: Negative electrode current collector, 6a: Collar part, 7: Gasket, 7a: Boss part, 7b: Outer peripheral part, 7c: connecting portion, 7d: annular protrusion, 8: thin portion, 9: sealing unit, 10: outer label, Cin: inner connecting position, Cout: outer connecting position, Cb: boundary, D: body diameter, S: gap

Claims (4)

開口を有する電池ケースと、
前記電池ケース内に収容された発電要素と、
前記開口を封口する封口ユニットと、を備え、
前記封口ユニットは、負極端子板と、前記負極端子板に接合された負極集電子と、ガスケットと、を備え、
前記ガスケットは、前記負極集電子を貫通させるボス部と、前記電池ケースの開口端部に接する外周部と、前記ボス部と前記外周部とを連結する連結部とを備え、
前記連結部の前記ボス部に隣接する内周領域に、防爆機能を有する薄肉部を有し、
前記ボス部の高さは、1.5mm以上、3.2mm以下であり、
前記薄肉部と前記ボス部との前記発電要素側における内側連結位置が描く円の第1直径φ1と、前記薄肉部と前記ボス部との前記負極端子板側における外側連結位置が描く円の第2直径φ2との差:φ1−φ2が、0.03mm以上、0.2mm以下である、アルカリ乾電池。
A battery case having an opening,
A power generation element housed in the battery case,
A sealing unit for sealing the opening,
The sealing unit includes a negative electrode terminal plate, a negative electrode current collector joined to the negative electrode terminal plate, and a gasket,
The gasket includes a boss portion that penetrates the negative electrode current collector, an outer peripheral portion that contacts the opening end portion of the battery case, and a connecting portion that connects the boss portion and the outer peripheral portion,
An inner peripheral region of the connecting portion adjacent to the boss portion has a thin wall portion having an explosion-proof function,
The height of the boss portion is 1.5 mm or more and 3.2 mm or less,
A first diameter φ1 of a circle drawn by the inner connecting position of the thin portion and the boss portion on the power generating element side, and a first diameter φ1 of the circle drawn by the outer connecting position of the thin portion and the boss portion on the negative electrode terminal plate side. 2 Difference with diameter φ2: φ1-φ2 is 0.03 mm or more and 0.2 mm or less, alkaline dry battery.
前記内側連結位置における前記薄肉部と前記ボス部との境界の曲率半径が、0.1mm以下である、請求項1に記載のアルカリ乾電池。 The alkaline dry battery according to claim 1, wherein a radius of curvature of a boundary between the thin portion and the boss portion at the inner connection position is 0.1 mm or less. 前記ガスケットは、ポリアミド樹脂を含む、請求項1または2に記載のアルカリ乾電池。 The alkaline dry battery according to claim 1, wherein the gasket contains a polyamide resin. 単四形である、請求項1〜3のいずれか1項に記載のアルカリ乾電池。

The alkaline dry battery according to claim 1, which is a AAA type.

JP2018231121A 2018-12-10 2018-12-10 Alkaline dry cell Pending JP2020095805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018231121A JP2020095805A (en) 2018-12-10 2018-12-10 Alkaline dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018231121A JP2020095805A (en) 2018-12-10 2018-12-10 Alkaline dry cell

Publications (1)

Publication Number Publication Date
JP2020095805A true JP2020095805A (en) 2020-06-18

Family

ID=71085364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018231121A Pending JP2020095805A (en) 2018-12-10 2018-12-10 Alkaline dry cell

Country Status (1)

Country Link
JP (1) JP2020095805A (en)

Similar Documents

Publication Publication Date Title
CN100544069C (en) Enclosed secondary battery
JP4124756B2 (en) Sealed battery
JP2009087729A (en) Closed battery
JP5669369B2 (en) Sealed battery
JP5707568B2 (en) Alkaline battery
JP4507159B2 (en) Sealed battery
JP2009158472A (en) Alkaline battery and battery pack
WO2018123123A1 (en) Alkali dry cell
US20040029002A1 (en) Electrochemical cell closure
JP2020095805A (en) Alkaline dry cell
JP2007005196A (en) Alkaline battery
JP2020095806A (en) Alkaline dry cell
JP2008204839A (en) Sealing plate for cylindrical battery cell
TW202226666A (en) Gasket for electrochemical cell, and electrochemical cell
JP4824271B2 (en) Gasket for electrochemical cell and electrochemical cell
JP2009135008A (en) Gasket for alkaline cell, and alkaline cell
JP2005332613A (en) Alkaline primary battery
JPWO2017203853A1 (en) Sealed battery and battery case
JP2020021676A (en) Alkaline battery
JP2002198060A (en) Battery
JP2008004428A (en) Alkaline dry battery
JP2009212051A (en) Bobbin type lithium bettry
JP7187205B2 (en) cylindrical battery
JPS63304568A (en) Battery
JP2011216217A (en) Alkaline dry battery