WO2011027502A1 - Alkaline dry battery - Google Patents

Alkaline dry battery Download PDF

Info

Publication number
WO2011027502A1
WO2011027502A1 PCT/JP2010/004629 JP2010004629W WO2011027502A1 WO 2011027502 A1 WO2011027502 A1 WO 2011027502A1 JP 2010004629 W JP2010004629 W JP 2010004629W WO 2011027502 A1 WO2011027502 A1 WO 2011027502A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery case
negative electrode
electrode terminal
alkaline
battery
Prior art date
Application number
PCT/JP2010/004629
Other languages
French (fr)
Japanese (ja)
Inventor
田野英二
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011027502A1 publication Critical patent/WO2011027502A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material

Definitions

  • the present invention relates to an alkaline battery, and more particularly to an alkaline battery in which a battery case (functioning as a positive terminal) is sealed with a negative terminal plate.
  • Alkaline batteries are widely used today as a main power source for daily necessities, toys, hobby supplies, game machines, portable music players and electronic devices.
  • the packaging forms of alkaline batteries at the time of distribution are diversified.
  • the negative electrode terminal plate of an alkaline battery is required to be thin for economic reasons.
  • a thin negative electrode terminal plate may not be able to withstand the pressure during sealing. Even if the thin negative electrode terminal plate can withstand the pressure at the time of sealing, the negative electrode terminal plate may be cracked during distribution or use. Therefore, a negative electrode terminal plate that can be thinned without reducing the strength has been proposed (Patent Document 1).
  • the battery case of an alkaline battery is required to be thin for reasons such as increasing the capacity of the alkaline battery.
  • reducing the thickness of the battery case may cause damage to the battery case during distribution or use.
  • Patent Document 2 a battery case that can be thinned without reducing the strength has been proposed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to prevent leakage of an alkaline electrolyte when a plurality of alkaline batteries are dropped in a state of being arranged in series.
  • the alkaline dry battery according to the present invention includes a battery case (positive electrode terminal), a positive electrode, a separator, a negative electrode, a negative electrode terminal plate, and a resin sealing body.
  • the battery case has a cylindrical shape having a sealed end and an open end, and the sealed end has a protrusion and a shoulder.
  • the protrusion is located in the center of the sealing end, and the shoulder extends radially inward from the side wall of the battery case and is connected to the protrusion.
  • the positive electrode, the separator, and the negative electrode are disposed in this order from the inner wall surface of the battery case toward the radially inner side, and the separator is also disposed between the shoulder and the negative electrode.
  • the negative electrode terminal plate has a central flat plate portion and a peripheral portion, the central flat plate portion covers the opening end of the battery case, and the peripheral portion is an opening edge portion of the battery case through the peripheral annular portion of the resin sealing body. It is fixed to.
  • the resin sealing body has a peripheral annular portion, a central cylindrical portion, a connecting portion, and a thin portion, and the central cylindrical portion is disposed to face the inner surface of the central flat plate portion of the negative electrode terminal plate, and the connecting portion is the center.
  • a cylindrical part and a peripheral annular part are connected, and the thin part is provided in the connection part and is relatively thin.
  • the shoulder portion of the battery case and the central flat plate portion of the negative electrode terminal plate are made of the same material, and the thickness of the shoulder portion of the battery case is 0.2 mm or more and 0.4 mm or less.
  • the thickness of the shoulder portion is Tp [mm] and the thickness of the central flat plate portion of the negative electrode terminal plate is Tn [mm]
  • 1.0 ⁇ (Tn / Tp) ⁇ 2.0 is satisfied.
  • the depression of the protruding portion of the battery case by the central flat plate portion of the negative electrode terminal plate can be prevented and the depression of the central flat plate portion of the negative electrode terminal plate by the protruding portion of the battery case can be prevented. Can be prevented.
  • the size of the corner located near the sealing end of the battery case among the corners formed by the axial direction of the central cylindrical portion and the thin wall portion is preferably 60 degrees or more and 90 degrees or less. .
  • the alkaline electrolyte it is possible to prevent the alkaline electrolyte from leaking from the alkaline battery even if the alkaline batteries are dropped in a state where they are arranged in series.
  • FIG. 1 is a table summarizing the results of experiments conducted to investigate the cause of liquid leakage during distribution.
  • FIG. 2 is a plan view showing a state in which a plurality of shrink packs are packed in a cardboard box.
  • FIGS. 3A and 3B are half cross-sectional views of an alkaline dry battery for explaining the first reason that liquid leakage occurs.
  • 4 (a) to 4 (c) are half cross-sectional views of an alkaline dry battery for explaining a second reason that liquid leakage occurs.
  • FIG. 5 is a half sectional view of an alkaline battery according to an embodiment of the present invention.
  • FIG. 6 is an enlarged view of a region VI shown in FIG.
  • FIG. 7 is an enlarged view of the region VII shown in FIG.
  • FIG. 8 is a table summarizing the results of Examples 1-6 and Comparative Examples 1-2.
  • FIG. 9 is a table summarizing the results of Examples 7 to 12 and Comparative Examples 3 to 4.
  • shrink packs are a pack of a plurality of alkaline batteries arranged in parallel
  • shrink packs are a pack of a plurality of alkaline batteries arranged in parallel
  • circulation has generate
  • the present inventor dropped a plurality of shrink packs packed in a cardboard box and examined whether or not a liquid leak occurred. Specifically, eight alkaline batteries were arranged in parallel to produce one shrink pack, and the five shrink packs were packed in a cardboard box.
  • FIG. 2 is a plan view showing a state where a plurality of shrink packs P, P,... Are packed in a cardboard box B.
  • FIG. 3 (a) to 3 (b) are half sectional views of the alkaline dry battery for explaining the first reason that the liquid leakage occurs.
  • FIGS. 4 (a) to 4 (c) show the liquid leakage. It is a half sectional view of an alkaline dry battery for explaining the 2nd reason to do.
  • the alkaline batteries 10, 10,... are arranged so that the outer surfaces of the battery cases 1, 1,.
  • the portion 12a and the central flat plate portion 7a of the negative electrode terminal plate 7 of the other alkaline dry battery 10 are adjacent to each other. Therefore, when the cardboard box B shown in FIG. 2 is dropped, when the central flat plate portion 7a of the negative electrode terminal plate 7 is recessed by the protruding portion 12a of the battery case 1, and when the central flat plate portion 7a of the negative electrode terminal plate 7 protrudes. It is conceivable that the portion 12a is recessed.
  • first reason is the central cylindrical shape of the resin sealing body 5 due to the depression of the central flat plate portion 7a of the negative electrode terminal plate 7.
  • the part 5a moves to the sealing end 12 side of the battery case 1, and as a result, the resin sealing body 5 is torn at the thin part 5d. Therefore, in this case, it is considered that liquid leakage occurs as soon as the cardboard box B shown in FIG. 2 is dropped.
  • the second reason for the liquid leakage due to the drop (hereinafter simply referred to as “second reason”) is that an internal short circuit occurs because the separator 4 is broken due to the deformation of the protruding portion 12a of the battery case 1. As a result, the resin sealing body 5 is torn at the thin portion 5d. Therefore, in this case, it is considered that liquid leakage occurs after the cardboard box B shown in FIG.
  • the deformation of the shoulder 12b of the battery case 1 may be prevented, and specifically, the strength of the shoulder 12b may be increased.
  • the central flat plate portion 7a of the negative electrode terminal plate 7 tends to be recessed when the cardboard box B shown in FIG. 2 is dropped. Cause leakage.
  • the inventor of the present application can suppress the liquid leakage due to the first reason and the liquid leakage due to the second reason at the same time. It is not sufficient to optimize the strength of either the portion 7a or the shoulder portion 12b of the battery case 1, and the strength of both the central flat plate portion 7a of the negative electrode terminal plate 7 and the shoulder portion 12b of the battery case 1 is optimized. It was considered preferable to make it.
  • An embodiment of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to embodiment shown below.
  • FIG. 5 is a half sectional view of the alkaline dry battery according to the present embodiment.
  • FIG. 6 is an enlarged view of a region VI shown in FIG.
  • FIG. 7 is an enlarged view of the region VII shown in FIG.
  • Alkaline batteries have a battery case 1 that also serves as a positive electrode terminal.
  • the battery case 1 is press-molded into a predetermined size and a predetermined shape by a known method using, for example, a nickel-plated steel plate, and has a cylindrical shape having an opening end 11 and a sealing end 12.
  • the sealing end 12 includes a projecting portion 12a and a shoulder portion 12b.
  • the protruding portion 12a is located at the center of the sealing end 12 and protrudes outside the battery case 1 from the shoulder portion 12b.
  • the shoulder 12b extends radially inward from the side wall of the battery case 1 and is connected to the protrusion 12a.
  • the positive electrode 2 is in close contact with the inner wall surface of the battery case 1.
  • the positive electrode 2 has a cylindrical shape, and the negative electrode 3 is provided in the hollow portion of the positive electrode 2 via a separator 4.
  • the separator 4 is provided not only between the positive electrode 2 and the negative electrode 3 but also between the shoulder 12 b of the battery case 1 and the negative electrode 3.
  • the positive electrode 2 includes a positive electrode active material containing manganese dioxide powder and the like, a conductive agent such as graphite, and an alkaline electrolyte such as an aqueous potassium hydroxide solution.
  • the separator 4 is a nonwoven fabric in which, for example, polyvinyl alcohol fiber and rayon fiber are mixed, and holds an alkaline electrolyte.
  • the negative electrode 3 includes, for example, a negative electrode active material such as zinc powder or zinc alloy powder, a gelling agent such as sodium polyacrylate, and an alkaline electrolyte such as an aqueous potassium hydroxide solution.
  • the negative electrode active material it is preferable to use a zinc alloy powder excellent in corrosion resistance. Furthermore, in consideration of the environment, it is preferable to use mercury, cadmium, lead, or a zinc alloy powder free of all of these.
  • the zinc alloy include a zinc alloy containing indium, aluminum, and bismuth.
  • the alkaline electrolyte may contain 30 to 40% by weight (preferably 32 to 35% by weight) potassium hydroxide and 0.5 to 3% by weight zinc oxide.
  • it is necessary is just to set suitably content of each material in the positive electrode 2, content of each material in the negative electrode 3, the thickness of the separator 4, etc.
  • the open end 11 of the battery case 1 is sealed by a sealing unit 9, and the sealing unit 9 has a resin sealing body 5, a negative electrode current collector 6, and a negative electrode terminal plate 7.
  • the negative electrode terminal plate 7 is produced by, for example, press-molding a nickel-plated steel plate into a predetermined size and a predetermined shape, and has a central flat plate portion 7a and a peripheral annular portion (peripheral portion) 7b.
  • the central flat plate portion 7 a covers the open end 11 of the battery case 1.
  • the peripheral annular portion 7 b is located on the inner side in the axial direction of the battery case 1 with respect to the central flat plate portion 7 a, and is fixed to the opening edge of the battery case 1 via the peripheral annular portion 5 b of the resin sealing body 5. .
  • a plurality of gas holes are formed in the peripheral annular portion 7b, so that the gas in the battery case 1 can be released when the thin portion 5d of the resin sealing body 5 is broken.
  • the resin sealing body 5 is manufactured by injection molding a resin such as polyamide or polypropylene into a predetermined size and a predetermined shape.
  • the resin sealing body 5 is preferably made of 6,6-nylon, 6,10-nylon or 6,12-nylon. Thereby, the resin sealing body 5 excellent in alkali resistance and heat resistance can be provided.
  • the resin sealing body 5 has a central cylindrical portion 5a, a connecting portion 5c, and a thin portion 5d in addition to the peripheral annular portion 5b.
  • the central cylindrical portion 5a is opposed to the inner surface of the central flat plate portion 7a of the negative electrode terminal plate 7, and a through hole is formed in the central cylindrical portion 5a so as to extend in the thickness direction.
  • the connecting part 5c connects the central cylindrical part 5a and the peripheral annular part 5b, and has a thin part 5d.
  • the thin part 5d is a relatively thin part in the connecting part 5c.
  • the negative electrode current collector 6 is produced by pressing a wire such as silver, copper, or brass into a predetermined shape and a predetermined size, and has a nail shape having a head 6a.
  • the surface of the negative electrode current collector 6 is preferably plated with tin or indium. Thereby, it can prevent that an impurity is mixed in the negative electrode current collector at the time of processing of the negative electrode current collector 6, and a concealment effect can be obtained.
  • Such a negative electrode current collector 6 is inserted into the through hole formed in the central cylindrical portion 5 a of the resin sealing body 5, and the head portion 6 a is in contact with the inner surface of the central flat plate portion 7 a of the negative electrode terminal plate 7. The tip located on the opposite side of the head 6 a is present in the negative electrode 3.
  • Such an alkaline battery satisfies the following (formula 1) and (formula 2).
  • In is the Vickers hardness Hv of the central flat plate portion 7 a of the negative electrode terminal plate 7, and Ip is the Vickers hardness Hv of the shoulder portion 12 b of the battery case 1.
  • the Vickers hardness ratio (In / Ip) satisfies (Equation 1). Therefore, even if the alkaline batteries according to this embodiment are accidentally dropped in a state where they are arranged in series, the negative flat plate 7a can be prevented from being depressed by the shoulder 12b of the battery case 1 and the central flat plate portion 7a of the negative flat plate 7 can be prevented. Since the deformation of the shoulder portion 12b of the battery case 1 by the central flat plate portion 7a can be prevented, the electrolyte solution can be prevented from leaking from the alkaline dry battery according to the present embodiment.
  • the alkaline batteries according to this embodiment are accidentally dropped while being packed in a cardboard box B as shown in FIG.
  • the alkaline dry battery according to the present embodiment may be accidentally dropped in a state in which the used device (toy, game device, electronic device, or the like) is filled.
  • the Vickers hardness ratio (In / Ip) is 1.0 or more and 2.0 or less as shown in (Formula 1), but preferably 1.0 or more and 1.7 or less, and 1.2 or more and 1.4. The following is more preferable.
  • Such Vickers hardness ratio (In / Ip) is measured according to JIS Z 2244 (Vickers hardness test method).
  • the Vickers hardness ratio can be rewritten by the thickness ratio. That is, the alkaline battery according to this embodiment only needs to satisfy the following (formula 3) to (formula 5).
  • Tn is the thickness (mm) of the central flat plate portion 7a of the negative electrode terminal plate 7
  • Tp is the thickness (mm) of the shoulder portion 12b of the battery case 1.
  • the thickness of the shoulder portion 12b of the battery case 1 only needs to satisfy (Equation 4), is preferably 0.2 mm or more and 0.3 mm or less, and more preferably about 0.2 mm.
  • the thickness of the central flat plate portion 7a of the negative electrode terminal plate 7 only needs to satisfy (Equation 5), is preferably 0.2 mm or more and 0.4 mm or less, and more preferably about 0.2 mm.
  • the angle of the thin portion 5d with respect to the axial direction of the central cylindrical portion 5a and the angle located on the sealing end 12 side of the battery case 1 may be 60 degrees or more and 90 degrees or less.
  • the inclination angle ⁇ of the thin portion is outside the above range, the amount of change in the inclination angle ⁇ of the thin portion increases when the central flat plate portion of the negative electrode terminal plate is recessed. Therefore, since a large stress is applied to the thin portion, the thin portion is easily broken.
  • the inclination angle ⁇ of the thin-walled portion is less than 60 degrees, the volume of the sealing unit is increased, so that it is difficult to increase the capacity of the alkaline battery.
  • the inclination angle ⁇ of the thin wall portion exceeds 90 degrees, the thin wall portion may not be broken even if the internal pressure of the alkaline battery increases when the alkaline battery is misused. It is difficult to ensure sex.
  • the inclination angle ⁇ of the thin portion 5d is preferably 60 degrees or more and 90 degrees or less.
  • leakage of the alkaline electrolyte can be suppressed even when the alkaline batteries are accidentally dropped in a state where they are arranged in series.
  • the present embodiment is not limited to the case where the battery case is dropped with the protruding portion of the battery case positioned below the negative electrode terminal plate as shown in FIG.
  • the effect of this embodiment can be obtained.
  • Example 1 The alkaline dry battery of Example 1 was produced according to the method shown below.
  • a groove was formed in the vicinity of the open end of the battery case 1 to form a recess.
  • the sealing unit 9 was installed at the opening end 11 of the battery case 1 so as to receive the peripheral annular portion 5b of the resin sealing body 5 of the sealing unit 9 on the concave portion.
  • the head 6 a of the nail-like negative electrode current collector 6 is welded to the inner surface of the central flat plate part 7 a of the negative electrode terminal plate 7, and the negative electrode current collector 6 is penetrated through the central cylindrical part 5 a of the resin sealing body 5. It inserted in the hole and inserted in the negative electrode 3.
  • the opening edge of the battery case 1 is bent and the peripheral annular portion 7b of the negative electrode terminal plate 7 is fixed to the opening edge of the battery case 1 via the peripheral annular portion 5b of the resin sealing body 5.
  • the outer label 8 was coated on the outer surface of the battery case 1.
  • the thickness of the central flat plate portion 7a of the negative electrode terminal plate 7 is 0.4 mm
  • the thickness of the shoulder portion 12b of the battery case 1 is 0.2 mm
  • the inclination angle ⁇ of the thin portion 5d is 80 degrees. . In this manner, 90 alkaline dry batteries according to Example 1 were produced.
  • Example 2-6 and Comparative Examples 1-2 the alkaline dry battery was manufactured in the same manner as in Example 1 except for the thickness of the shoulder 12b of the battery case 1 and the inclination angle ⁇ (see FIG. 8) of the thin part 5d. The same test as in Example 1 was conducted to check for the presence of liquid leakage. The results are shown in FIG.
  • Example 7 to 12 and Comparative Examples 3 to 4 In Examples 7 to 12 and Comparative Examples 3 to 4, except for the thickness of the central flat portion 7a of the negative electrode terminal plate 7, the thickness of the shoulder portion 12b of the battery case 1, and the inclination angle ⁇ of the thin portion 5d (see FIG. 9).
  • Example 7 to 12 and Comparative Examples 3 to 4 except for the thickness of the central flat portion 7a of the negative electrode terminal plate 7, the thickness of the shoulder portion 12b of the battery case 1, and the inclination angle ⁇ of the thin portion 5d (see FIG. 9).
  • Example 7 to 12 and Comparative Examples 3 to 4 except for the thickness of the central flat portion 7a of the negative electrode terminal plate 7, the thickness of the shoulder portion 12b of the battery case 1, and the inclination angle ⁇ of the thin portion 5d (see FIG. 9).
  • the batteries of Examples 7 to 12 are thinner than the batteries of Examples 1 to 6, but the thickness of the negative terminal plate and the shoulder of the battery case is thinner. Occurrence could be suppressed. As a result, it was found that the batteries of Examples 7 to 12 can realize a high capacity without causing liquid leakage.
  • the alkaline dry battery according to the present invention can be used in any device that uses an alkaline dry battery as a power source.

Abstract

Disclosed is an alkaline dry battery wherein an open end (11) of a battery case (1) is sealed with a negative electrode terminal plate (7) with a resin sealing body (5) interposed therebetween. A shoulder part (12b) of a sealing end (12) of the battery case (1) and a central flat plate part (7a) of the negative electrode terminal plate (7) are formed from the same material, and the thickness of the shoulder part (12b) of the battery case (1) is 0.2-0.4 mm (inclusive). When the thickness of the shoulder part (12b) of the battery case (1) is represented by Tp [mm] and the thickness of the central flat plate part (7a) of the negative electrode terminal plate (7) is represented by Tn [mm], the relation 1.0 ≤ (Tn/Tp) ≤ 2.0 is satisfied.

Description

アルカリ乾電池Alkaline battery
 本発明は、アルカリ乾電池に関し、特に、電池ケース(正極端子として機能)が負極端子板により密閉されたアルカリ乾電池に関する。 The present invention relates to an alkaline battery, and more particularly to an alkaline battery in which a battery case (functioning as a positive terminal) is sealed with a negative terminal plate.
 アルカリ乾電池は、日用品から玩具、ホビー用品、ゲーム機器、携帯用音楽再生装置及び電子機器等の主電源として、今日、幅広く普及している。また、流通時におけるアルカリ乾電池の包装形態は多様化している。 Alkaline batteries are widely used today as a main power source for daily necessities, toys, hobby supplies, game machines, portable music players and electronic devices. In addition, the packaging forms of alkaline batteries at the time of distribution are diversified.
 さらに、近年、顧客から製品の安全性に関する要求が高まっており、アルカリ乾電池の耐漏液性の向上が要求されている。例えば、流通時に梱包状態のアルカリ乾電池を誤って落下させたり、使用機器にアルカリ乾電池を装填した状態で高所から落下させても、漏液しないアルカリ乾電池が要求されている。 Furthermore, in recent years, there has been an increasing demand for product safety from customers, and there has been a demand for improved leakage resistance of alkaline batteries. For example, there is a demand for an alkaline battery that does not leak even if the alkaline battery in a packaged state is accidentally dropped during distribution, or dropped from a high place with the alkaline battery loaded in the device used.
 ところで、アルカリ乾電池の負極端子板には、経済的な理由から薄肉化が要求されている。しかし、薄肉な負極端子板では封口時の圧力に耐えることができない場合がある。仮に薄肉な負極端子板が封口時の圧力に耐えることができても、流通中又は使用中に負極端子板の割れを引き起こす場合がある。そこで、強度を低下させることなく薄肉化を図ることができる負極端子板が提案されている(特許文献1)。 Incidentally, the negative electrode terminal plate of an alkaline battery is required to be thin for economic reasons. However, a thin negative electrode terminal plate may not be able to withstand the pressure during sealing. Even if the thin negative electrode terminal plate can withstand the pressure at the time of sealing, the negative electrode terminal plate may be cracked during distribution or use. Therefore, a negative electrode terminal plate that can be thinned without reducing the strength has been proposed (Patent Document 1).
 また、アルカリ乾電池の電池ケースには、アルカリ乾電池の高容量化を図る等の理由から薄型化が要求されている。しかし、電池ケースの薄型化を図ると、流通中又は使用中に電池ケースの破損を引き起こす場合がある。そこで、強度を低下させることなく薄型化を図ることができる電池ケースが提案されている(特許文献2)。 Also, the battery case of an alkaline battery is required to be thin for reasons such as increasing the capacity of the alkaline battery. However, reducing the thickness of the battery case may cause damage to the battery case during distribution or use. Thus, a battery case that can be thinned without reducing the strength has been proposed (Patent Document 2).
 さらに、アルカリ乾電池は、所定の条件下における使用によりガスが発生することが知られている。発生したガスが外部に漏れることを回避するために、アルカリ乾電池は密閉されている(特許文献3)。 Furthermore, it is known that alkaline batteries generate gas when used under predetermined conditions. In order to avoid the generated gas from leaking to the outside, the alkaline battery is sealed (Patent Document 3).
特開2006-107873号公報JP 2006-107873 A 特開平9-306441号公報JP-A-9-306441 特表2001-509632号公報JP 2001-509632 A
 しかしながら、負極端子板の強度を大きくしても、電池ケースの強度を大きくしても、又は、樹脂封口体の形状を工夫しても、複数のアルカリ乾電池を直列に配置した状態で落下させたときにアルカリ電解液が漏れる場合があることが分かった。 However, even if the strength of the negative terminal plate is increased, the strength of the battery case is increased, or the shape of the resin sealing body is devised, a plurality of alkaline batteries are dropped in a state of being arranged in series. It was found that the alkaline electrolyte sometimes leaks.
 本発明は、上記問題点に鑑みてなされたものであり、複数のアルカリ乾電池を直列に配置した状態で落下させたときにアルカリ電解液の漏れを防止できることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to prevent leakage of an alkaline electrolyte when a plurality of alkaline batteries are dropped in a state of being arranged in series.
 本発明に係るアルカリ乾電池は、電池ケース(正極端子)と、正極と、セパレータと、負極と、負極端子板と、樹脂封口体とを備えている。電池ケースは封止端と開口端とを有する筒状であり、封止端は突出部と肩部とを有している。突出部は封止端の中央に位置しており、肩部は電池ケースの側壁から径方向内側へ向かって延びて突出部に接続されている。正極、セパレータ及び負極は、電池ケースの内壁面から径方向内側へ向かってこの順に配置されており、セパレータは、肩部と負極との間にも配置されている。負極端子板は中央平板部と周縁部とを有しており、中央平板部は電池ケースの開口端を蓋し、周縁部は樹脂封口体の周縁環状部を介して電池ケースの開口端縁部に固定されている。樹脂封口体は周縁環状部と中央筒状部と連結部と薄肉部とを有し、中央筒状部は負極端子板の中央平板部の内面に対向して配置されており、連結部は中央筒状部と周縁環状部とを連結し、薄肉部は連結部に設けられており相対的に薄肉である。 The alkaline dry battery according to the present invention includes a battery case (positive electrode terminal), a positive electrode, a separator, a negative electrode, a negative electrode terminal plate, and a resin sealing body. The battery case has a cylindrical shape having a sealed end and an open end, and the sealed end has a protrusion and a shoulder. The protrusion is located in the center of the sealing end, and the shoulder extends radially inward from the side wall of the battery case and is connected to the protrusion. The positive electrode, the separator, and the negative electrode are disposed in this order from the inner wall surface of the battery case toward the radially inner side, and the separator is also disposed between the shoulder and the negative electrode. The negative electrode terminal plate has a central flat plate portion and a peripheral portion, the central flat plate portion covers the opening end of the battery case, and the peripheral portion is an opening edge portion of the battery case through the peripheral annular portion of the resin sealing body. It is fixed to. The resin sealing body has a peripheral annular portion, a central cylindrical portion, a connecting portion, and a thin portion, and the central cylindrical portion is disposed to face the inner surface of the central flat plate portion of the negative electrode terminal plate, and the connecting portion is the center. A cylindrical part and a peripheral annular part are connected, and the thin part is provided in the connection part and is relatively thin.
 このようなアルカリ乾電池において、電池ケースの肩部と負極端子板の中央平板部とは同一の材料からなり、電池ケースの肩部の厚みは0.2mm以上0.4mm以下であり、電池ケースの肩部の厚みをTp[mm]とし負極端子板の中央平板部の厚みをTn[mm]としたとき、1.0≦(Tn/Tp)≦2.0を満たす。 In such an alkaline battery, the shoulder portion of the battery case and the central flat plate portion of the negative electrode terminal plate are made of the same material, and the thickness of the shoulder portion of the battery case is 0.2 mm or more and 0.4 mm or less. When the thickness of the shoulder portion is Tp [mm] and the thickness of the central flat plate portion of the negative electrode terminal plate is Tn [mm], 1.0 ≦ (Tn / Tp) ≦ 2.0 is satisfied.
 上記構成のアルカリ乾電池を直列に配置して落下させると、負極端子板の中央平板部による電池ケースの突出部の凹みを防止できるとともに電池ケースの突出部による負極端子板の中央平板部の凹みを防止できる。 When the alkaline batteries having the above configuration are arranged in series and dropped, the depression of the protruding portion of the battery case by the central flat plate portion of the negative electrode terminal plate can be prevented and the depression of the central flat plate portion of the negative electrode terminal plate by the protruding portion of the battery case can be prevented. Can be prevented.
 本発明に係るアルカリ乾電池では、中央筒状部の軸方向と薄肉部とがなす角のうち電池ケースの封止端寄りに位置する角の大きさは60度以上90度以下であることが好ましい。これにより、負極端子板の中央平板部が凹んだ場合であっても、樹脂封口体が電池ケースの封止端側へ移動することを防止できる。 In the alkaline dry battery according to the present invention, the size of the corner located near the sealing end of the battery case among the corners formed by the axial direction of the central cylindrical portion and the thin wall portion is preferably 60 degrees or more and 90 degrees or less. . Thereby, even if it is a case where the center flat plate part of a negative electrode terminal plate is dented, it can prevent that a resin sealing body moves to the sealing end side of a battery case.
 本発明では、アルカリ乾電池を直列に配置した状態で落下させても、アルカリ乾電池からアルカリ電解液が漏れることを防止できる。 In the present invention, it is possible to prevent the alkaline electrolyte from leaking from the alkaline battery even if the alkaline batteries are dropped in a state where they are arranged in series.
図1は、流通中の液漏れの原因を調べるために行った実験の結果をまとめた表である。FIG. 1 is a table summarizing the results of experiments conducted to investigate the cause of liquid leakage during distribution. 図2は、複数個のシュリンクパックが段ボール箱に梱包された状態を示す平面図である。FIG. 2 is a plan view showing a state in which a plurality of shrink packs are packed in a cardboard box. 図3(a)及び(b)は、液漏れが発生する1つ目の理由を説明するためのアルカリ乾電池の半断面図である。FIGS. 3A and 3B are half cross-sectional views of an alkaline dry battery for explaining the first reason that liquid leakage occurs. 図4(a)~(c)は、液漏れが発生する2つ目の理由を説明するためのアルカリ乾電池の半断面図である。4 (a) to 4 (c) are half cross-sectional views of an alkaline dry battery for explaining a second reason that liquid leakage occurs. 図5は、本発明の一実施形態に係るアルカリ乾電池の半断面図である。FIG. 5 is a half sectional view of an alkaline battery according to an embodiment of the present invention. 図6は、図5に示す領域VIの拡大図である。FIG. 6 is an enlarged view of a region VI shown in FIG. 図7は、図6に示す領域VIIの拡大図である。FIG. 7 is an enlarged view of the region VII shown in FIG. 図8は、実施例1~6及び比較例1~2の結果をまとめた表である。FIG. 8 is a table summarizing the results of Examples 1-6 and Comparative Examples 1-2. 図9は、実施例7~12及び比較例3~4の結果をまとめた表である。FIG. 9 is a table summarizing the results of Examples 7 to 12 and Comparative Examples 3 to 4.
 本発明の実施形態を説明する前に、本願発明者が本発明を完成させるに至った経緯を説明する。 Before explaining the embodiments of the present invention, the background of the inventor's completion of the present invention will be described.
 アルカリ乾電池を流通させるときには、一般に、複数個のシュリンクパック(シュリンクパックは、複数のアルカリ乾電池を並列に配置してパックしたもの)を段ボール箱等に梱包する。このようにアルカリ乾電池を保護して流通させても、流通中にアルカリ乾電池が液漏れするという不具合が発生している。その原因として、流通中にアルカリ乾電池を誤って落下させることが考えられている。本願発明者は、上記不具合の原因を調べるため、複数個のシュリンクパックが段ボール箱に梱包されたものを落下させて液漏れの発生有無を調べた。具体的には、8個のアルカリ乾電池を並列に配置して1つのシュリンクパックを作製し、このシュリンクパック5つを段ボール箱に梱包した。この段ボール箱を5個作製した(この実験には200個のアルカリ乾電池を用いた。)。この段ボール箱を1.5mの高さから1回落下させ、落下直後、落下1日後、落下3日後、及び、落下1週間後に液漏れが発生している電池の個数を調べた。得られた結果を図1に示す。 When distributing alkaline batteries, generally, a plurality of shrink packs (shrink packs are a pack of a plurality of alkaline batteries arranged in parallel) are packed in a cardboard box or the like. Thus, even if it protects and distribute | circulates an alkaline battery, the malfunction that an alkaline battery leaks during distribution | circulation has generate | occur | produced. As the cause, it is considered that the alkaline battery is accidentally dropped during distribution. In order to investigate the cause of the above-mentioned problem, the present inventor dropped a plurality of shrink packs packed in a cardboard box and examined whether or not a liquid leak occurred. Specifically, eight alkaline batteries were arranged in parallel to produce one shrink pack, and the five shrink packs were packed in a cardboard box. Five cardboard boxes were prepared (200 alkaline batteries were used in this experiment). The cardboard box was dropped once from a height of 1.5 m, and the number of batteries in which liquid leakage occurred immediately after dropping, 1 day after dropping, 3 days after dropping, and 1 week after dropping was examined. The obtained results are shown in FIG.
 図1に示すように、いくつかのアルカリ乾電池では液漏れが発生していた。また、液漏れが発生したアルカリ乾電池には、落下直後に液漏れが発生したアルカリ乾電池と落下して暫くしてから液漏れが発生したアルカリ乾電池とがあった。液漏れが発生したアルカリ乾電池を分解すると、何れのアルカリ乾電池においても、樹脂封口体の薄肉部において破断が発生していた。ところが、落下直後に液漏れが発生したアルカリ乾電池では樹脂封口体が電池ケースの封止端寄りに移動しているのに対して、落下して暫くしてから液漏れが発生したアルカリ乾電池ではセパレータが負極と電池ケースの肩部との間に位置する部分において破れていた。これらの結果から、本願発明者は、複数個のシュリンクパックが段ボール箱に梱包されたものを落下させたときに液漏れが発生する理由には2つあると考えた。図2~図4を用いてその理由を説明する。 As shown in FIG. 1, liquid leakage occurred in some alkaline batteries. In addition, alkaline batteries with liquid leakage included alkaline batteries with liquid leakage immediately after dropping, and alkaline batteries with liquid leakage after dropping for a while. When the alkaline battery in which the liquid leakage occurred was disassembled, in any of the alkaline batteries, the thin portion of the resin sealing body was broken. However, in alkaline batteries where liquid leakage occurs immediately after dropping, the resin sealant moves closer to the sealing end of the battery case, whereas in alkaline batteries where liquid leakage occurs after a while after dropping, a separator is used. Was torn in the portion located between the negative electrode and the shoulder of the battery case. From these results, the inventor of the present application considered that there are two reasons why liquid leakage occurs when a plurality of shrink packs packed in a cardboard box are dropped. The reason will be described with reference to FIGS.
 図2は、複数個のシュリンクパックP,P,…が段ボール箱Bに梱包された状態を示す平面図である。図3(a)~(b)は、液漏れが発生する1つ目の理由を説明するためのアルカリ乾電池の半断面図であり、図4(a)~(c)は、液漏れが発生する2つ目の理由を説明するためのアルカリ乾電池の半断面図である。 FIG. 2 is a plan view showing a state where a plurality of shrink packs P, P,... Are packed in a cardboard box B. FIG. 3 (a) to 3 (b) are half sectional views of the alkaline dry battery for explaining the first reason that the liquid leakage occurs. FIGS. 4 (a) to 4 (c) show the liquid leakage. It is a half sectional view of an alkaline dry battery for explaining the 2nd reason to do.
 各シュリンクパックP内では、アルカリ乾電池10,10,…は、電池ケース1,1,…の外表面が互いに接触するように配置されている。しかし、図2に示す領域Xにおいて互いに隣り合うアルカリ乾電池10,10に着目すると、図2、図3(a)及び図4(a)に示すように一方のアルカリ乾電池10の電池ケース1の突出部12aと他方のアルカリ乾電池10の負極端子板7の中央平板部7aとが互いに隣り合っている。そのため、図2に示す段ボール箱Bを落下させると、電池ケース1の突出部12aにより負極端子板7の中央平板部7aが凹む場合と負極端子板7の中央平板部7aにより電池ケース1の突出部12aが凹む場合とが考えられる。 In each shrink pack P, the alkaline batteries 10, 10,... Are arranged so that the outer surfaces of the battery cases 1, 1,. However, when attention is paid to the alkaline batteries 10 and 10 adjacent to each other in the region X shown in FIG. 2, the protrusion of the battery case 1 of one alkaline battery 10 as shown in FIGS. 2, 3A, and 4A. The portion 12a and the central flat plate portion 7a of the negative electrode terminal plate 7 of the other alkaline dry battery 10 are adjacent to each other. Therefore, when the cardboard box B shown in FIG. 2 is dropped, when the central flat plate portion 7a of the negative electrode terminal plate 7 is recessed by the protruding portion 12a of the battery case 1, and when the central flat plate portion 7a of the negative electrode terminal plate 7 protrudes. It is conceivable that the portion 12a is recessed.
 電池ケース1の突出部12aにより負極端子板7の中央平板部7aが凹むと、図3(b)に示すように、負極集電子6の頭部6a及び樹脂封口体5の中央筒状部5aが負極端子板7に押されて電池ケース1の封止端12側へ移動する。このとき、樹脂封口体5の周縁環状部5bは電池ケース1の開口端縁部に固定されたままである。そのため、樹脂封口体5の連結部5c(特に薄肉部5d)において破断が発生し、その結果、アルカリ電解液が漏れる。つまり、落下に起因する液漏れの1つ目の理由(以下では単に「1つ目の理由」と記す)は、負極端子板7の中央平板部7aの凹みにより樹脂封口体5の中央筒状部5aが電池ケース1の封止端12側へ移動し、その結果、樹脂封口体5が薄肉部5dにおいて破けることである。よって、この場合には、図2に示す段ボール箱Bを落下させるや否や液漏れが生じる、と考えられる。 When the central flat plate portion 7a of the negative electrode terminal plate 7 is recessed by the protruding portion 12a of the battery case 1, as shown in FIG. 3 (b), the head portion 6a of the negative electrode current collector 6 and the central cylindrical portion 5a of the resin sealing body 5 are used. Is pushed by the negative electrode terminal plate 7 and moves to the sealing end 12 side of the battery case 1. At this time, the peripheral annular portion 5 b of the resin sealing body 5 remains fixed to the opening edge of the battery case 1. Therefore, a breakage occurs in the connecting portion 5c (particularly the thin portion 5d) of the resin sealing body 5, and as a result, the alkaline electrolyte leaks. That is, the first reason for the liquid leakage due to the drop (hereinafter, simply referred to as “first reason”) is the central cylindrical shape of the resin sealing body 5 due to the depression of the central flat plate portion 7a of the negative electrode terminal plate 7. The part 5a moves to the sealing end 12 side of the battery case 1, and as a result, the resin sealing body 5 is torn at the thin part 5d. Therefore, in this case, it is considered that liquid leakage occurs as soon as the cardboard box B shown in FIG. 2 is dropped.
 負極端子板7の中央平板部7aによりアルカリ乾電池の電池ケース1の突出部12aが凹むと、図4(b)に示すように、電池ケース1の肩部12bが電池ケース1の開口端11側へ移動する。そのため、セパレータ4が肩部12bと負極3との間に位置する部分において破れ、負極3がセパレータ4の破断部分を通って電池ケース1の封止端12の内面へ向かって流出する。これにより、電池ケース1(正極端子)と負極3とが互いに接触するため、内部短絡が発生する。内部短絡が発生すると、アルカリ乾電池の内圧が上昇し、その結果、図4(c)に示すように樹脂封口体5の薄肉部5dにおいて破断が発生する。つまり、落下に起因する液漏れの2つ目の理由(以下では単に「2つ目の理由」と記す)は、電池ケース1の突出部12aの変形によりセパレータ4が破断したために内部短絡が発生し、その結果、樹脂封口体5が薄肉部5dにおいて破けることである。よって、この場合には、図2に示す段ボール箱Bを落下させて暫くしてから液漏れが生じる、と考えられる。 When the protruding portion 12a of the battery case 1 of the alkaline battery is recessed by the central flat plate portion 7a of the negative electrode terminal plate 7, the shoulder portion 12b of the battery case 1 is on the opening end 11 side of the battery case 1 as shown in FIG. Move to. Therefore, the separator 4 is broken at a portion located between the shoulder portion 12 b and the negative electrode 3, and the negative electrode 3 flows through the broken portion of the separator 4 toward the inner surface of the sealing end 12 of the battery case 1. Thereby, since battery case 1 (positive electrode terminal) and negative electrode 3 contact each other, an internal short circuit occurs. When an internal short circuit occurs, the internal pressure of the alkaline battery increases, and as a result, a fracture occurs in the thin portion 5d of the resin sealing body 5 as shown in FIG. In other words, the second reason for the liquid leakage due to the drop (hereinafter simply referred to as “second reason”) is that an internal short circuit occurs because the separator 4 is broken due to the deformation of the protruding portion 12a of the battery case 1. As a result, the resin sealing body 5 is torn at the thin portion 5d. Therefore, in this case, it is considered that liquid leakage occurs after the cardboard box B shown in FIG.
 1つ目の理由を解消するためには、負極端子板7の中央平板部7aの変形を防止すれば良く、具体的には負極端子板7の中央平板部7aの強度を大きくすれば良い。しかし、負極端子板7の中央平板部7aの強度を大きくすると、図2に示す段ボール箱Bを落下させたときには電池ケース1の突出部12aが凹み易くなり、そのため、2つ目の理由による液漏れを引き起こす。 In order to eliminate the first reason, deformation of the central flat plate portion 7a of the negative electrode terminal plate 7 may be prevented, and specifically, the strength of the central flat plate portion 7a of the negative electrode terminal plate 7 may be increased. However, if the strength of the central flat plate portion 7a of the negative electrode terminal plate 7 is increased, the projecting portion 12a of the battery case 1 is easily recessed when the cardboard box B shown in FIG. 2 is dropped. Cause leakage.
 2つ目の理由を解消するためには、電池ケース1の肩部12bの変形を防止すれば良く、具体的には肩部12bの強度を大きくすれば良い。しかし、電池ケース1の肩部12bの強度を大きくすると、図2に示す段ボール箱Bを落下させたときには負極端子板7の中央平板部7aが凹みやすくなり、そのため、1つ目の理由による液漏れを引き起こす。 In order to eliminate the second reason, the deformation of the shoulder 12b of the battery case 1 may be prevented, and specifically, the strength of the shoulder 12b may be increased. However, when the strength of the shoulder portion 12b of the battery case 1 is increased, the central flat plate portion 7a of the negative electrode terminal plate 7 tends to be recessed when the cardboard box B shown in FIG. 2 is dropped. Cause leakage.
 以上の実験結果及びその結果に対する考察をふまえ、本願発明者は、1つ目の理由による液漏れと2つ目の理由による液漏れとを同時に抑制するためには、負極端子板7の中央平板部7a及び電池ケース1の肩部12bのどちらか一方の強度を最適化するだけでは不十分であり、負極端子板7の中央平板部7a及び電池ケース1の肩部12bの両方の強度を最適化することが好ましいと考えた。以下に、図面を参照しながら、本発明の一実施形態を説明する。なお、本発明は、以下に示す実施形態に限定されない。 Based on the above experimental results and considerations on the results, the inventor of the present application can suppress the liquid leakage due to the first reason and the liquid leakage due to the second reason at the same time. It is not sufficient to optimize the strength of either the portion 7a or the shoulder portion 12b of the battery case 1, and the strength of both the central flat plate portion 7a of the negative electrode terminal plate 7 and the shoulder portion 12b of the battery case 1 is optimized. It was considered preferable to make it. An embodiment of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to embodiment shown below.
 図5は、本実施形態に係るアルカリ乾電池の半断面図である。図6は、図5に示す領域VIの拡大図である。図7は、図6に示す領域VIIの拡大図である。 FIG. 5 is a half sectional view of the alkaline dry battery according to the present embodiment. FIG. 6 is an enlarged view of a region VI shown in FIG. FIG. 7 is an enlarged view of the region VII shown in FIG.
 アルカリ乾電池は、正極端子を兼ねる電池ケース1を備えている。電池ケース1は、例えばニッケルめっき鋼板を用いて公知の方法で所定の寸法且つ所定の形状にプレス成形されたものであり、開口端11と封止端12とを有する筒状である。封止端12は、突出部12aと肩部12bとからなる。突出部12aは、封止端12の中央に位置しており、肩部12bよりも電池ケース1の外側へ突出している。肩部12bは、電池ケース1の側壁から径方向内側へ向かって延び、突出部12aに接続されている。 Alkaline batteries have a battery case 1 that also serves as a positive electrode terminal. The battery case 1 is press-molded into a predetermined size and a predetermined shape by a known method using, for example, a nickel-plated steel plate, and has a cylindrical shape having an opening end 11 and a sealing end 12. The sealing end 12 includes a projecting portion 12a and a shoulder portion 12b. The protruding portion 12a is located at the center of the sealing end 12 and protrudes outside the battery case 1 from the shoulder portion 12b. The shoulder 12b extends radially inward from the side wall of the battery case 1 and is connected to the protrusion 12a.
 電池ケース1の内壁面には、正極2が密接されている。正極2は筒状であり、正極2の中空部にはセパレータ4を介して負極3が設けられている。セパレータ4は、正極2と負極3との間だけでなく、電池ケース1の肩部12bと負極3との間にも設けられている。 The positive electrode 2 is in close contact with the inner wall surface of the battery case 1. The positive electrode 2 has a cylindrical shape, and the negative electrode 3 is provided in the hollow portion of the positive electrode 2 via a separator 4. The separator 4 is provided not only between the positive electrode 2 and the negative electrode 3 but also between the shoulder 12 b of the battery case 1 and the negative electrode 3.
 ここで、正極2、セパレータ4及び負極3の材料に言及すると、正極2は、二酸化マンガン粉末等を含む正極活物質と、黒鉛等の導電剤と、水酸化カリウム水溶液等のアルカリ電解液とを含んでいる。セパレータ4は、例えば、ポリビニルアルコール繊維及びレーヨン繊維等が混抄された不織布であり、アルカリ電解液を保持している。負極3は、例えば、亜鉛粉末又は亜鉛合金粉末等の負極活物質と、ポリアクリル酸ナトリウム等のゲル化剤と、水酸化カリウム水溶液等のアルカリ電解液とを含んでいる。負極活物質としては、耐食性に優れた亜鉛合金粉末を用いることが好ましく、更には、環境に配慮して水銀、カドミウム、鉛又はこれらの全てが無添加である亜鉛合金粉末を用いることが好ましい。亜鉛合金としては、例えば、インジウム、アルミニウム、及びビスマスを含む亜鉛合金を挙げることができる。アルカリ電解液は、30~40重量%(好ましくは32~35重量%)の水酸化カリウムと、0.5~3重量%の酸化亜鉛とを含んでいれば良い。なお、正極2における各材料の含有量、負極3における各材料の含有量、及び、セパレータ4の厚み等は、適宜設定すれば良い。 Here, referring to the materials of the positive electrode 2, the separator 4, and the negative electrode 3, the positive electrode 2 includes a positive electrode active material containing manganese dioxide powder and the like, a conductive agent such as graphite, and an alkaline electrolyte such as an aqueous potassium hydroxide solution. Contains. The separator 4 is a nonwoven fabric in which, for example, polyvinyl alcohol fiber and rayon fiber are mixed, and holds an alkaline electrolyte. The negative electrode 3 includes, for example, a negative electrode active material such as zinc powder or zinc alloy powder, a gelling agent such as sodium polyacrylate, and an alkaline electrolyte such as an aqueous potassium hydroxide solution. As the negative electrode active material, it is preferable to use a zinc alloy powder excellent in corrosion resistance. Furthermore, in consideration of the environment, it is preferable to use mercury, cadmium, lead, or a zinc alloy powder free of all of these. Examples of the zinc alloy include a zinc alloy containing indium, aluminum, and bismuth. The alkaline electrolyte may contain 30 to 40% by weight (preferably 32 to 35% by weight) potassium hydroxide and 0.5 to 3% by weight zinc oxide. In addition, what is necessary is just to set suitably content of each material in the positive electrode 2, content of each material in the negative electrode 3, the thickness of the separator 4, etc. FIG.
 電池ケース1の開口端11は封口ユニット9により封じられており、封口ユニット9は樹脂封口体5、負極集電子6及び負極端子板7を有している。 The open end 11 of the battery case 1 is sealed by a sealing unit 9, and the sealing unit 9 has a resin sealing body 5, a negative electrode current collector 6, and a negative electrode terminal plate 7.
 負極端子板7は、例えばニッケルめっき鋼板を所定の寸法且つ所定の形状にプレス成形して作製されたものであり、中央平板部7aと周縁環状部(周縁部)7bとを有している。中央平板部7aは、電池ケース1の開口端11を蓋している。周縁環状部7bは、中央平板部7aよりも電池ケース1の軸方向内側に位置しており、樹脂封口体5の周縁環状部5bを介して電池ケース1の開口端縁部に固定されている。また、周縁環状部7bには複数個のガス孔(不図示)が形成されており、これにより、樹脂封口体5の薄肉部5dが破断したときには電池ケース1内のガスを逃がすことができる。 The negative electrode terminal plate 7 is produced by, for example, press-molding a nickel-plated steel plate into a predetermined size and a predetermined shape, and has a central flat plate portion 7a and a peripheral annular portion (peripheral portion) 7b. The central flat plate portion 7 a covers the open end 11 of the battery case 1. The peripheral annular portion 7 b is located on the inner side in the axial direction of the battery case 1 with respect to the central flat plate portion 7 a, and is fixed to the opening edge of the battery case 1 via the peripheral annular portion 5 b of the resin sealing body 5. . Further, a plurality of gas holes (not shown) are formed in the peripheral annular portion 7b, so that the gas in the battery case 1 can be released when the thin portion 5d of the resin sealing body 5 is broken.
 樹脂封口体5は、ポリアミド又はポリプロピレン等の樹脂を所定の寸法及び所定の形状に射出成型して作製されたものである。樹脂封口体5は、6,6-ナイロン、6,10-ナイロン又は6,12-ナイロンからなることが好ましい。これにより、耐アルカリ性且つ耐熱性に優れた樹脂封口体5を提供することができる。 The resin sealing body 5 is manufactured by injection molding a resin such as polyamide or polypropylene into a predetermined size and a predetermined shape. The resin sealing body 5 is preferably made of 6,6-nylon, 6,10-nylon or 6,12-nylon. Thereby, the resin sealing body 5 excellent in alkali resistance and heat resistance can be provided.
 樹脂封口体5は、周縁環状部5b以外に、中央筒状部5a、連結部5c及び薄肉部5dを有している。中央筒状部5aは、負極端子板7の中央平板部7aの内面に対向しており、中央筒状部5aには貫通孔が厚み方向に延びて形成されている。連結部5cは、中央筒状部5aと周縁環状部5bとを連結しており、薄肉部5dを有している。薄肉部5dは、連結部5cにおいて相対的に薄肉な部分である。 The resin sealing body 5 has a central cylindrical portion 5a, a connecting portion 5c, and a thin portion 5d in addition to the peripheral annular portion 5b. The central cylindrical portion 5a is opposed to the inner surface of the central flat plate portion 7a of the negative electrode terminal plate 7, and a through hole is formed in the central cylindrical portion 5a so as to extend in the thickness direction. The connecting part 5c connects the central cylindrical part 5a and the peripheral annular part 5b, and has a thin part 5d. The thin part 5d is a relatively thin part in the connecting part 5c.
 負極集電子6は、銀、銅又は真鍮等の線材をプレス加工して所定の形状及び所定の寸法に作製されたものであり、頭部6aを有する釘状である。負極集電子6の表面は、スズ又はインジウムでメッキされていることが好ましい。これにより、負極集電子6の加工時に不純物が負極集電子内に混入されることを防止でき、隠蔽効果を得ることができる。このような負極集電子6は樹脂封口体5の中央筒状部5aに形成されている上記貫通孔に挿通されており、頭部6aは負極端子板7の中央平板部7aの内面に接しており、頭部6aとは反対側に位置する先端は負極3内に存在している。 The negative electrode current collector 6 is produced by pressing a wire such as silver, copper, or brass into a predetermined shape and a predetermined size, and has a nail shape having a head 6a. The surface of the negative electrode current collector 6 is preferably plated with tin or indium. Thereby, it can prevent that an impurity is mixed in the negative electrode current collector at the time of processing of the negative electrode current collector 6, and a concealment effect can be obtained. Such a negative electrode current collector 6 is inserted into the through hole formed in the central cylindrical portion 5 a of the resin sealing body 5, and the head portion 6 a is in contact with the inner surface of the central flat plate portion 7 a of the negative electrode terminal plate 7. The tip located on the opposite side of the head 6 a is present in the negative electrode 3.
 このようなアルカリ乾電池は、以下に示す(式1)及び(式2)を満足している。なお、(式1)及び(式2)において、Inは負極端子板7の中央平板部7aのビッカース硬度Hvであり、Ipは電池ケース1の肩部12bのビッカース硬度Hvである。 Such an alkaline battery satisfies the following (formula 1) and (formula 2). In (Expression 1) and (Expression 2), In is the Vickers hardness Hv of the central flat plate portion 7 a of the negative electrode terminal plate 7, and Ip is the Vickers hardness Hv of the shoulder portion 12 b of the battery case 1.
           1.0≦(In/Ip)≦2.0:(式1)
              90≦Ip≦140:(式2)
 ビッカース硬度比(In/Ip)が小さいと(例えば1.0未満)、アルカリ乾電池を直列に配置した状態で落下させたときに負極端子板の中央平板部が凹みやすい。そのため、1つ目の理由による液漏れが発生し易い。一方、ビッカース硬度比(In/Ip)が大きいと(例えば2.0を超える)、アルカリ乾電池を直列に配置した状態で落下させたときに電池ケースの肩部が変形し易い。そのため、2つ目の理由による液漏れが発生し易い。しかし、本実施形態に係るアルカリ乾電池では、ビッカース硬度比(In/Ip)が(式1)を満足している。よって、本実施形態に係るアルカリ乾電池を直列に配置した状態で誤って落下させても、電池ケース1の肩部12bによる負極端子板7の中央平板部7aの凹みを防止できるとともに負極端子板7の中央平板部7aによる電池ケース1の肩部12bの変形を防止できるので、本実施形態に係るアルカリ乾電池から電解液が漏れることを防止できる。なお、本実施形態に係るアルカリ乾電池が直列に配置した状態で落下する状況としては、本実施形態に係るアルカリ乾電池を図2に示すように段ボール箱Bに詰めた状態で誤って落下させる、又は、本実施形態に係るアルカリ乾電池を使用機器(玩具、ゲーム機器又は電子機器等)に充填させた状態で誤って落下させる等が挙げられる。
1.0 ≦ (In / Ip) ≦ 2.0: (Formula 1)
90 ≦ Ip ≦ 140: (Formula 2)
When the Vickers hardness ratio (In / Ip) is small (for example, less than 1.0), the central flat plate portion of the negative electrode terminal plate is likely to be recessed when the alkaline batteries are dropped in a state of being arranged in series. Therefore, liquid leakage is likely to occur for the first reason. On the other hand, when the Vickers hardness ratio (In / Ip) is large (eg, exceeding 2.0), the shoulder of the battery case is easily deformed when the alkaline batteries are dropped in a state where they are arranged in series. Therefore, liquid leakage is likely to occur due to the second reason. However, in the alkaline battery according to this embodiment, the Vickers hardness ratio (In / Ip) satisfies (Equation 1). Therefore, even if the alkaline batteries according to this embodiment are accidentally dropped in a state where they are arranged in series, the negative flat plate 7a can be prevented from being depressed by the shoulder 12b of the battery case 1 and the central flat plate portion 7a of the negative flat plate 7 can be prevented. Since the deformation of the shoulder portion 12b of the battery case 1 by the central flat plate portion 7a can be prevented, the electrolyte solution can be prevented from leaking from the alkaline dry battery according to the present embodiment. In addition, as a situation where the alkaline batteries according to this embodiment fall in a state where they are arranged in series, the alkaline batteries according to this embodiment are accidentally dropped while being packed in a cardboard box B as shown in FIG. For example, the alkaline dry battery according to the present embodiment may be accidentally dropped in a state in which the used device (toy, game device, electronic device, or the like) is filled.
 ビッカース硬度比(In/Ip)は、(式1)に示すように1.0以上2.0以下であるが、1.0以上1.7以下であれば好ましく、1.2以上1.4以下であればさらに好ましい。このようなビッカース硬度比(In/Ip)は、JIS Z 2244(ビッカース硬さ試験方法)に従って測定される。 The Vickers hardness ratio (In / Ip) is 1.0 or more and 2.0 or less as shown in (Formula 1), but preferably 1.0 or more and 1.7 or less, and 1.2 or more and 1.4. The following is more preferable. Such Vickers hardness ratio (In / Ip) is measured according to JIS Z 2244 (Vickers hardness test method).
 負極端子板7の中央平板部7aと電池ケース1の肩部12bとが同一材料からなることに着目すると、ビッカース硬度比を厚みの比で書き換えることができる。つまり、本実施形態に係るアルカリ乾電池は以下に示す(式3)~(式5)を満足していれば良い。なお、(式3)~(式5)において、Tnは負極端子板7の中央平板部7aの厚み(mm)であり、Tpは電池ケース1の肩部12bの厚み(mm)である。 Focusing on the fact that the central flat plate portion 7a of the negative electrode terminal plate 7 and the shoulder portion 12b of the battery case 1 are made of the same material, the Vickers hardness ratio can be rewritten by the thickness ratio. That is, the alkaline battery according to this embodiment only needs to satisfy the following (formula 3) to (formula 5). In (Expression 3) to (Expression 5), Tn is the thickness (mm) of the central flat plate portion 7a of the negative electrode terminal plate 7, and Tp is the thickness (mm) of the shoulder portion 12b of the battery case 1.
          1.0≦(Tn/Tp)≦2.0:(式3)
             0.2≦Tp≦0.4:(式4)
             0.2≦Tn≦0.5:(式5)
 負極端子板7の厚み及び電池ケース1の厚みに言及すると、負極端子板7の厚み及び電池ケース1の厚みが薄ければ、アルカリ乾電池の高容量化を図ることができる。しかし、負極端子板7の厚み及び電池ケース1の厚みが薄すぎると、負極端子板7の強度及び電池ケース1の強度を確保することは難しい。そのため、電池ケース1の肩部12bの厚みは、(式4)を満足していれば良く、0.2mm以上0.3mm以下であれば好ましく、0.2mm程度であればさらに好ましい。負極端子板7の中央平板部7aの厚みは、(式5)を満足していれば良く、0.2mm以上0.4mm以下であれば好ましく、0.2mm程度であればさらに好ましい。
1.0 ≦ (Tn / Tp) ≦ 2.0: (Formula 3)
0.2 ≦ Tp ≦ 0.4: (Formula 4)
0.2 ≦ Tn ≦ 0.5: (Formula 5)
When referring to the thickness of the negative electrode terminal plate 7 and the thickness of the battery case 1, if the thickness of the negative electrode terminal plate 7 and the thickness of the battery case 1 are thin, the capacity of the alkaline dry battery can be increased. However, if the thickness of the negative electrode terminal plate 7 and the thickness of the battery case 1 are too thin, it is difficult to ensure the strength of the negative electrode terminal plate 7 and the strength of the battery case 1. Therefore, the thickness of the shoulder portion 12b of the battery case 1 only needs to satisfy (Equation 4), is preferably 0.2 mm or more and 0.3 mm or less, and more preferably about 0.2 mm. The thickness of the central flat plate portion 7a of the negative electrode terminal plate 7 only needs to satisfy (Equation 5), is preferably 0.2 mm or more and 0.4 mm or less, and more preferably about 0.2 mm.
 また、本実施形態における樹脂封口体5では、中央筒状部5aの軸方向に対する薄肉部5dの傾斜角のうち電池ケース1の封止端12側に位置する角の大きさ(以下では単に「薄肉部5dの傾斜角度θ」と記す。)が60度以上90度以下であれば良い。これにより、本実施形態に係るアルカリ乾電池を直列に配置した状態で誤って落下したために負極端子板7の中央平板部7aが凹んだ場合であっても、薄肉部5dの傾斜角度θの変化量を最小限に抑えることができる。よって、薄肉部5dにおける破断が抑制されるので、電解液の漏れを抑制することができる。 Further, in the resin sealing body 5 in the present embodiment, the angle of the thin portion 5d with respect to the axial direction of the central cylindrical portion 5a and the angle located on the sealing end 12 side of the battery case 1 (hereinafter simply “ The inclination angle θ of the thin portion 5d ”) may be 60 degrees or more and 90 degrees or less. Thereby, even if the central flat plate portion 7a of the negative electrode terminal plate 7 is recessed because the alkaline batteries according to the present embodiment are accidentally dropped in a state where they are arranged in series, the amount of change in the inclination angle θ of the thin portion 5d Can be minimized. Therefore, since the breakage in the thin portion 5d is suppressed, leakage of the electrolytic solution can be suppressed.
 薄肉部の傾斜角度θが上記範囲の外であれば、負極端子板の中央平板部が凹んだときに薄肉部の傾斜角度θの変化量が大きくなる。そのため、大きな応力が薄肉部にかかるので、薄肉部が破断し易くなる。それだけでなく、薄肉部の傾斜角度θが60度未満であれば、封口ユニットの体積の増加を招来するので、アルカリ乾電池の高容量化を図ることが難しい。また、薄肉部の傾斜角度θが90度を超えると、アルカリ乾電池の誤使用時等にアルカリ乾電池の内圧が上昇しても薄肉部を破断させることができない場合があり、そのため、アルカリ乾電池の安全性を確保することは難しい。以上より、薄肉部5dの傾斜角度θは60度以上90度以下であることが好ましい。 If the inclination angle θ of the thin portion is outside the above range, the amount of change in the inclination angle θ of the thin portion increases when the central flat plate portion of the negative electrode terminal plate is recessed. Therefore, since a large stress is applied to the thin portion, the thin portion is easily broken. In addition, if the inclination angle θ of the thin-walled portion is less than 60 degrees, the volume of the sealing unit is increased, so that it is difficult to increase the capacity of the alkaline battery. In addition, if the inclination angle θ of the thin wall portion exceeds 90 degrees, the thin wall portion may not be broken even if the internal pressure of the alkaline battery increases when the alkaline battery is misused. It is difficult to ensure sex. As described above, the inclination angle θ of the thin portion 5d is preferably 60 degrees or more and 90 degrees or less.
 以上説明したように、本実施形態では、アルカリ乾電池を直列に配置した状態で誤って落下させた場合であってもアルカリ電解液の漏れを抑制することができる。 As described above, in the present embodiment, leakage of the alkaline electrolyte can be suppressed even when the alkaline batteries are accidentally dropped in a state where they are arranged in series.
 なお、言うまでもなく、本実施形態は、図2に示すように電池ケースの突起部の方が負極端子板よりも下に位置する状態で落下した場合に限定されない。例えば負極端子板の方が電池ケースの突起部よりも下に位置する状態で落下した場合でも、本実施形態における効果を得ることができる。 Needless to say, the present embodiment is not limited to the case where the battery case is dropped with the protruding portion of the battery case positioned below the negative electrode terminal plate as shown in FIG. For example, even when the negative electrode terminal plate falls in a state where it is located below the protrusion of the battery case, the effect of this embodiment can be obtained.
 以下に本発明の実施例を詳細に説明する。本発明は以下に示す実施例に限定されない。 Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to the following examples.
 (実施例1)
 以下に示す方法に従って実施例1のアルカリ乾電池を作製した。
Example 1
The alkaline dry battery of Example 1 was produced according to the method shown below.
 1.アルカリ乾電池の製造方法
 (1)正極合剤の作製
 まず、二酸化マンガン粉末と黒鉛とを94:6の重量比で混合した。次に、この混合物と33重量%の水酸化カリウム水溶液(アルカリ電解液)とを100:1の重量比で混合してから充分に攪拌した後、フレーク状に圧縮成型した。続いて、フレーク状の正極合剤を粉砕して顆粒状とし、篩を用いて顆粒状の正極合剤を分級した。10~100メッシュの顆粒状の正極合剤を中空円筒状に加圧成型して、ペレット状の正極合剤を得た。
1. Manufacturing method of alkaline battery (1) Preparation of positive electrode mixture First, manganese dioxide powder and graphite were mixed at a weight ratio of 94: 6. Next, this mixture was mixed with a 33% by weight potassium hydroxide aqueous solution (alkaline electrolyte) at a weight ratio of 100: 1, and after sufficient stirring, it was compression molded into flakes. Subsequently, the flaky positive electrode mixture was pulverized into granules, and the granular positive electrode mixture was classified using a sieve. A granular positive electrode mixture of 10 to 100 mesh was pressure-molded into a hollow cylinder to obtain a pellet-shaped positive electrode mixture.
 (2)ゲル状負極の作製
 ポリアクリル酸ナトリウム(ゲル化剤)と33重量%の水酸化カリウム水溶液(アルカリ電解液)と亜鉛粉末(負極活物質)とを1:33:66の重量比で混合し、ゲル状負極を得た。
(2) Preparation of gelled negative electrode Sodium polyacrylate (gelator), 33 wt% potassium hydroxide aqueous solution (alkaline electrolyte) and zinc powder (negative electrode active material) in a weight ratio of 1:33:66. By mixing, a gelled negative electrode was obtained.
 (3)円筒形アルカリ乾電池の作製
 図5に示す単3形アルカリ乾電池を下記の手順により作製した。
(3) Production of Cylindrical Alkaline Battery An AA alkaline battery shown in FIG. 5 was produced according to the following procedure.
 上記で得られたペレット状の正極合剤を電池ケース1内に2個挿入し、加圧冶具によりペレット状の正極合剤を再成型して電池ケース1の内壁面に密着させた。これにより、電池ケース1の内壁面上には筒状の正極2が形成された。正極2の中空内に有底円筒形のセパレータ4を配置した後、セパレータ4に33重量%の水酸化カリウム水溶液(アルカリ電解液)を所定量注入した。所定時間経過した後、上記で得られたゲル状負極をセパレータ4よりも電池ケースの径方向内側に充填した。なお、セパレータ4としては、ポリビニルアルコール繊維及びレーヨン繊維を主体として混抄した不織布を用いた。 Two pellet-shaped positive electrode mixtures obtained as described above were inserted into the battery case 1, and the pellet-shaped positive electrode mixture was remolded with a pressure jig and adhered to the inner wall surface of the battery case 1. Thereby, the cylindrical positive electrode 2 was formed on the inner wall surface of the battery case 1. After placing the bottomed cylindrical separator 4 in the hollow of the positive electrode 2, a predetermined amount of 33 wt% potassium hydroxide aqueous solution (alkaline electrolyte) was injected into the separator 4. After a lapse of a predetermined time, the gelled negative electrode obtained above was filled inside the battery case in the radial direction from the separator 4. In addition, as the separator 4, the nonwoven fabric which mixed and mixed mainly the polyvinyl alcohol fiber and the rayon fiber was used.
 電池ケース1の開口端近傍に溝入れを施して、凹部を形成した。その凹部上で封口ユニット9の樹脂封口体5の周縁環状部5bを受けるように、電池ケース1の開口端11に封口ユニット9を設置した。具体的には、釘状の負極集電子6の頭部6aを負極端子板7の中央平板部7aの内面に溶接し、その負極集電子6を樹脂封口体5の中央筒状部5aの貫通孔内に挿入して負極3内に挿入した。電池ケース1の開口端縁部を折り曲げ、樹脂封口体5の周縁環状部5bを介して負極端子板7の周縁環状部7bを電池ケース1の開口端縁部に固定して電池ケースの開口端を封止した。その後、外装ラベル8を電池ケース1の外表面に被覆させた。 A groove was formed in the vicinity of the open end of the battery case 1 to form a recess. The sealing unit 9 was installed at the opening end 11 of the battery case 1 so as to receive the peripheral annular portion 5b of the resin sealing body 5 of the sealing unit 9 on the concave portion. Specifically, the head 6 a of the nail-like negative electrode current collector 6 is welded to the inner surface of the central flat plate part 7 a of the negative electrode terminal plate 7, and the negative electrode current collector 6 is penetrated through the central cylindrical part 5 a of the resin sealing body 5. It inserted in the hole and inserted in the negative electrode 3. The opening edge of the battery case 1 is bent and the peripheral annular portion 7b of the negative electrode terminal plate 7 is fixed to the opening edge of the battery case 1 via the peripheral annular portion 5b of the resin sealing body 5. Was sealed. Thereafter, the outer label 8 was coated on the outer surface of the battery case 1.
 ここで、負極端子板7の中央平板部7aの厚みは0.4mmであり、電池ケース1の肩部12bの厚みは0.2mmであり、薄肉部5dの傾斜角度θは80度であった。このようにして実施例1に係るアルカリ乾電池を90個作製した。 Here, the thickness of the central flat plate portion 7a of the negative electrode terminal plate 7 is 0.4 mm, the thickness of the shoulder portion 12b of the battery case 1 is 0.2 mm, and the inclination angle θ of the thin portion 5d is 80 degrees. . In this manner, 90 alkaline dry batteries according to Example 1 were produced.
 2.試験
 作製した90個のアルカリ乾電池を用いて漏液の有無を調べた。
2. Test The presence or absence of liquid leakage was investigated using 90 alkaline dry batteries produced.
 まず、作製した90個のアルカリ乾電池のうち3個ずつを樹脂チューブ内に入れ、樹脂チューブを熱収縮させた。これにより、3個のアルカリ乾電池が直列に配置された試験体を30個作製した。 First, three of the 90 alkaline dry batteries produced were placed in a resin tube, and the resin tube was thermally contracted. This produced 30 test bodies in which three alkaline batteries were arranged in series.
 次に、30個の試験体を、1.5mの高さから連続10回、自然落下させた。その後、30個の試験体を常温常湿環境下に放置させ、落下直後、落下1日後、落下3日後、落下1週間後に試験体を観察し、漏液の有無を調べた。漏液の発生が確認された試験体に対しては、その試験体を構成するアルカリ乾電池を分解し、漏液の原因を調べた。つまり、1つ目の理由により漏液が発生した電池の個数と、2つ目の理由により漏液が発生した電池の個数とを数えた。その結果を図8に示す。なお、図8に記載の「薄肉部の破断のみ」は1つ目の理由により漏液が発生したことを示しており、図8に記載の「ゲル状負極の流出」は2つ目の理由により漏液が発生したことを示している。 Next, 30 specimens were naturally dropped 10 times continuously from a height of 1.5 m. Thereafter, 30 test specimens were allowed to stand in a room temperature and normal humidity environment, and the specimens were observed immediately after dropping, 1 day after dropping, 3 days after dropping, and 1 week after dropping to check for the presence of liquid leakage. For the test specimen in which the occurrence of liquid leakage was confirmed, the alkaline battery constituting the test specimen was disassembled to investigate the cause of the liquid leakage. That is, the number of batteries that leaked due to the first reason and the number of batteries that leaked due to the second reason were counted. The result is shown in FIG. Note that “only the fracture of the thin portion” shown in FIG. 8 indicates that leakage occurred for the first reason, and “the outflow of the gelled negative electrode” shown in FIG. 8 indicates the second reason. Indicates that a leak occurred.
 (実施例2~6及び比較例1~2)
 実施例2~6及び比較例1~2では、電池ケース1の肩部12bの厚み及び薄肉部5dの傾斜角度θ(図8参照)を除いては実施例1と同様の方法に従ってアルカリ乾電池を作製し、実施例1と同様の試験を行って漏液の有無を調べた。結果を図8に示す。
(Examples 2-6 and Comparative Examples 1-2)
In Examples 2 to 6 and Comparative Examples 1 and 2, the alkaline dry battery was manufactured in the same manner as in Example 1 except for the thickness of the shoulder 12b of the battery case 1 and the inclination angle θ (see FIG. 8) of the thin part 5d. The same test as in Example 1 was conducted to check for the presence of liquid leakage. The results are shown in FIG.
 (実施例7~12及び比較例3~4)
 実施例7~12及び比較例3~4では、負極端子板7の中央平面部7aの厚み、電池ケース1の肩部12bの厚み及び薄肉部5dの傾斜角度θ(図9参照)を除いては実施例1と同様の方法に従ってアルカリ乾電池を作製し、実施例1と同様の試験を行って漏液の有無を調べた。結果を図9に示す。なお、図9に記載の「薄肉部の破断のみ」及び「ゲル状負極の流出」は上述の通りである。
(Examples 7 to 12 and Comparative Examples 3 to 4)
In Examples 7 to 12 and Comparative Examples 3 to 4, except for the thickness of the central flat portion 7a of the negative electrode terminal plate 7, the thickness of the shoulder portion 12b of the battery case 1, and the inclination angle θ of the thin portion 5d (see FIG. 9). Prepared an alkaline dry battery according to the same method as in Example 1, and conducted the same test as in Example 1 to examine the presence or absence of leakage. The results are shown in FIG. Note that “only the fracture of the thin portion” and “the outflow of the gelled negative electrode” described in FIG. 9 are as described above.
 (考察)
 比較例1の電池では、樹脂封口体は封止端寄りに移動しており、樹脂封口体の薄肉部の破断のみが観察された。比較例2の電池では、樹脂封口体の薄肉部の破断のみならず電池ケースの肩部の変形、セパレータの破断及びゲル状負極の流出が観察された。一方、実施例1~6の電池では、樹脂封口体の薄肉部の破断及びゲル状負極の流出は観察されず、耐漏液性に優れていた。
(Discussion)
In the battery of Comparative Example 1, the resin sealing body was moved closer to the sealing end, and only the breakage of the thin portion of the resin sealing body was observed. In the battery of Comparative Example 2, the deformation of the shoulder of the battery case, the breakage of the separator, and the outflow of the gelled negative electrode were observed as well as the thin portion of the resin sealant. On the other hand, in the batteries of Examples 1 to 6, no breakage of the thin portion of the resin sealing body and outflow of the gelled negative electrode were observed, and the liquid leakage resistance was excellent.
 同様のことは、実施例7~12及び比較例3~4の電池にも言えた。実施例7~12の電池の方が実施例1~6の電池よりも負極端子板の厚み及び電池ケースの肩部の厚みは薄いが、実施例7~12の電池であっても液漏れの発生を抑制することができた。これにより、実施例7~12の電池では、液漏れを引き起こすことなく高容量化を実現できることが分かった。 The same was true for the batteries of Examples 7 to 12 and Comparative Examples 3 to 4. The batteries of Examples 7 to 12 are thinner than the batteries of Examples 1 to 6, but the thickness of the negative terminal plate and the shoulder of the battery case is thinner. Occurrence could be suppressed. As a result, it was found that the batteries of Examples 7 to 12 can realize a high capacity without causing liquid leakage.
 本発明に係るアルカリ乾電池を直列に配置した状態で落下させても液漏れの発生を防止することができるため、本発明に係るアルカリ乾電池はアルカリ乾電池を電源とするあらゆる機器に用いることができる。 Since the occurrence of liquid leakage can be prevented even if the alkaline dry batteries according to the present invention are dropped in a state where they are arranged in series, the alkaline dry battery according to the present invention can be used in any device that uses an alkaline dry battery as a power source.
 1    電池ケース 
 1a   凹部 
 2    正極 
 3    負極(ゲル状負極) 
 4    セパレータ 
 5    樹脂封口体 
 5a   中央筒状部 
 5b   周縁環状部 
 5c   連結部 
 5d   薄肉部 
 6    負極集電子 
 6a   頭部 
 7    負極端子板 
 7a   中央平板部 
 7b   周縁環状部 
 8    外装ラベル 
 9    封口ユニット 
 10   アルカリ乾電池 
 11   開口端 
 12   封止端 
 12a   突出部 
 12b   肩部
1 Battery case
1a recess
2 Positive electrode
3 Negative electrode (gelled negative electrode)
4 Separator
5 Resin seal
5a Center tube
5b Peripheral ring
5c Connecting part
5d thin part
6 Negative current collector
6a head
7 Negative terminal plate
7a Center plate
7b Peripheral ring
8 Exterior label
9 Sealing unit
10 Alkaline batteries
11 Open end
12 Sealed end
12a Protrusion
12b shoulder

Claims (2)

  1.  封止端と開口端とを有する筒状であり正極端子として機能する電池ケースと、前記電池ケースの内壁面から径方向内側へ向かって順に配置された正極、セパレータ及び負極と、樹脂封口体を介して前記開口端を封止する負極端子板とを備えたアルカリ乾電池であって、
     前記封止端は、中央に位置する突出部と、前記電池ケースの側壁から径方向内側へ向かって延びて前記突出部に接続された肩部とを有し、
     前記セパレータは、前記肩部と前記負極との間にも配置されており、
     前記負極端子板は、前記電池ケースの前記開口端を蓋する中央平板部と、前記樹脂封口体の周縁環状部を介して前記電池ケースの開口端縁部に固定された周縁部とを有し、
     前記樹脂封口体は、前記周縁環状部と、前記負極端子板の前記中央平板部の内面に対向して配置された中央筒状部と、前記中央筒状部と前記周縁環状部とを連結する連結部と、前記連結部に設けられ相対的に薄肉な薄肉部とを有し、
     前記電池ケースの前記肩部と前記負極端子板の前記中央平板部とは同一の材料からなり、
     前記電池ケースの前記肩部の厚みは0.2mm以上0.4mm以下であり、
     前記電池ケースの前記肩部の厚みをTp[mm]とし前記負極端子板の前記中央平板部の厚みをTn[mm]としたとき、1.0≦(Tn/Tp)≦2.0を満たすアルカリ乾電池。
    A battery case that has a sealed end and an open end and functions as a positive electrode terminal; a positive electrode, a separator, and a negative electrode that are arranged in order from the inner wall surface of the battery case toward the radially inner side; and a resin sealant An alkaline battery including a negative electrode terminal plate for sealing the opening end through
    The sealing end has a projecting portion located in the center, and a shoulder portion extending radially inward from the side wall of the battery case and connected to the projecting portion,
    The separator is also disposed between the shoulder and the negative electrode,
    The negative electrode terminal plate includes a central flat plate portion that covers the open end of the battery case, and a peripheral portion fixed to the open end edge of the battery case via a peripheral annular portion of the resin sealing body. ,
    The said resin sealing body connects the said peripheral annular part, the central cylindrical part arrange | positioned facing the inner surface of the said central flat plate part of the said negative electrode terminal plate, the said central cylindrical part, and the said peripheral annular part. A connecting portion and a relatively thin-walled portion provided in the connecting portion;
    The shoulder portion of the battery case and the central flat plate portion of the negative electrode terminal plate are made of the same material,
    The thickness of the shoulder of the battery case is 0.2 mm or more and 0.4 mm or less,
    When the thickness of the shoulder portion of the battery case is Tp [mm] and the thickness of the central flat plate portion of the negative electrode terminal plate is Tn [mm], 1.0 ≦ (Tn / Tp) ≦ 2.0 is satisfied. Alkaline battery.
  2.  請求項1に記載のアルカリ乾電池であって、
     前記中央筒状部の軸方向と前記薄肉部とがなす角のうち前記電池ケースの前記封止端寄りに位置する角の大きさは60度以上90度以下であるアルカリ乾電池。
    The alkaline dry battery according to claim 1,
    Among the angles formed by the axial direction of the central cylindrical portion and the thin-walled portion, the size of the corner located near the sealing end of the battery case is 60 degrees or more and 90 degrees or less.
PCT/JP2010/004629 2009-09-02 2010-07-16 Alkaline dry battery WO2011027502A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-202578 2009-09-02
JP2009202578A JP2012226825A (en) 2009-09-02 2009-09-02 Alkaline dry battery

Publications (1)

Publication Number Publication Date
WO2011027502A1 true WO2011027502A1 (en) 2011-03-10

Family

ID=43649060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004629 WO2011027502A1 (en) 2009-09-02 2010-07-16 Alkaline dry battery

Country Status (2)

Country Link
JP (1) JP2012226825A (en)
WO (1) WO2011027502A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843726A1 (en) * 2013-08-29 2015-03-04 Arkema France Battery gasket based on a polyamide composition
WO2018123123A1 (en) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 Alkali dry cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249232A (en) * 2002-02-25 2003-09-05 Toshiba Battery Co Ltd Cylindrical alkaline cell
JP2008004428A (en) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd Alkaline dry battery
JP2008108603A (en) * 2006-10-26 2008-05-08 Fdk Energy Co Ltd Cylindrical alkaline battery
JP2008226795A (en) * 2007-03-15 2008-09-25 Fdk Energy Co Ltd Battery metal component and battery
JP2009129665A (en) * 2007-11-22 2009-06-11 Fdk Energy Co Ltd Cylindrical cell and method of manufacturing the same
JP2009151958A (en) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd Alkaline battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249232A (en) * 2002-02-25 2003-09-05 Toshiba Battery Co Ltd Cylindrical alkaline cell
JP2008004428A (en) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd Alkaline dry battery
JP2008108603A (en) * 2006-10-26 2008-05-08 Fdk Energy Co Ltd Cylindrical alkaline battery
JP2008226795A (en) * 2007-03-15 2008-09-25 Fdk Energy Co Ltd Battery metal component and battery
JP2009129665A (en) * 2007-11-22 2009-06-11 Fdk Energy Co Ltd Cylindrical cell and method of manufacturing the same
JP2009151958A (en) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd Alkaline battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843726A1 (en) * 2013-08-29 2015-03-04 Arkema France Battery gasket based on a polyamide composition
FR3010235A1 (en) * 2013-08-29 2015-03-06 Arkema France
CN104419203A (en) * 2013-08-29 2015-03-18 阿克马法国公司 Battery gasket based on a polyamide composition
WO2018123123A1 (en) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 Alkali dry cell

Also Published As

Publication number Publication date
JP2012226825A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
EP2800162B1 (en) Cylindrical alkaline storage battery
US20120208051A1 (en) Alkaline secondary battery
JP2009530786A (en) Zinc / air battery
WO2011102557A1 (en) Cylindrical battery and gasket for use in same
CN216389481U (en) Secondary battery
US8497034B2 (en) Alkaline battery
US9831479B2 (en) Sealed type battery
US8338023B2 (en) AA alkaline battery
JP5707568B2 (en) Alkaline battery
WO2011027502A1 (en) Alkaline dry battery
US20090053584A1 (en) Alkaline dry battery
JP4214172B1 (en) Alkaline battery and battery pack
JP2009170157A (en) Aa alkaline battery
JP5514632B2 (en) Cylindrical battery sealing gasket and cylindrical battery
US20090169988A1 (en) AA and AAA Alkaline dry batteries
JP2020119628A (en) Flat button battery
CN211404542U (en) Battery cap
JP2008277154A (en) Alkaline dry battery
JP2009037917A (en) Alkaline dry cell and battery pack
JP2005332613A (en) Alkaline primary battery
US7972723B2 (en) Flat alkaline primary battery
JP2014157654A (en) Alkaline battery
CN202977598U (en) Battery current collector
CN209328950U (en) Nickel-metal hydride battery with protection structure against pressure
JP2008004428A (en) Alkaline dry battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP