JP2019053934A - Explosion-proof valve body for sealed electrochemical device - Google Patents

Explosion-proof valve body for sealed electrochemical device Download PDF

Info

Publication number
JP2019053934A
JP2019053934A JP2017178439A JP2017178439A JP2019053934A JP 2019053934 A JP2019053934 A JP 2019053934A JP 2017178439 A JP2017178439 A JP 2017178439A JP 2017178439 A JP2017178439 A JP 2017178439A JP 2019053934 A JP2019053934 A JP 2019053934A
Authority
JP
Japan
Prior art keywords
valve body
explosion
proof valve
destruction
electrochemical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017178439A
Other languages
Japanese (ja)
Other versions
JP6925212B2 (en
Inventor
廣井 清文
Kiyofumi Hiroi
清文 廣井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tigers Polymer Corp
Original Assignee
Tigers Polymer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tigers Polymer Corp filed Critical Tigers Polymer Corp
Priority to JP2017178439A priority Critical patent/JP6925212B2/en
Publication of JP2019053934A publication Critical patent/JP2019053934A/en
Application granted granted Critical
Publication of JP6925212B2 publication Critical patent/JP6925212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide an explosion-proof valve body for sealed electrochemical device in which variation of fracture strength of the valve body is suppressed, and dimensional accuracy of the attachment part is high.SOLUTION: Gas outlet in the sealing board of a sealed electrochemical device is blocked by an explosion-proof valve body 1, and when the internal pressure of the device increases, the explosion-proof valve body fractures to exhaust the gas. The explosion-proof valve body 1 is formed in such a shape that a cylindrical part 14 projects from a flat tabular part 11, by injection moulding of thermoplastic resin. The portion of the tabular part 11 located farther outside than the cylindrical part 14 is a collar part 12, and the explosion-proof valve body 1 is integrated with the sealing board of the device by the collar part 12. Multiple gate marks GR, GR are placed in the collar part 12 while spaced apart in the hoop direction, and a weld W is formed to substantially pass the center of a destruction part 13 of the tabular part 11, located farther inside than the cylindrical part 14.SELECTED DRAWING: Figure 2

Description

本発明は、コンデンサや電池などといった密閉型電気化学デバイスにおいて、デバイス内部の圧力が高まった際に、弁体が開放されて圧力を逃がす防爆弁体に関するものである。 The present invention relates to an explosion-proof valve body in a sealed electrochemical device such as a capacitor or a battery, in which when the pressure inside the device increases, the valve body is opened to release the pressure.

密閉されたケース内に電解液を有するコンデンサや電池などの密閉型電気化学デバイスは、多彩な用途に使用されている。特に、近年では、充放電を行う2次電池として、こうした密閉型電気化学デバイスが広く活用されている。
こうしたデバイスは、電解液がケース外に漏れ出ないように密閉されているが、高温下の放置や短絡・過充電・逆充電などにより電解液が分解されるなどして、本体内でガスが発生することがある。発生したガスによりデバイスの内圧が上昇すると、デバイスが破裂するおそれがある。そこで、デバイスの封口板のガス排出用孔に防爆弁体を設けて、デバイスの内圧上昇によって弁体を開放し、デバイスの破裂を防止することが行われる。
Sealed electrochemical devices such as capacitors and batteries having an electrolytic solution in a sealed case are used in various applications. In particular, in recent years, such a sealed electrochemical device has been widely used as a secondary battery for charging and discharging.
These devices are hermetically sealed so that the electrolyte does not leak out of the case, but if the electrolyte is decomposed by leaving it under high temperature, short-circuiting, overcharging, reverse charging, etc. May occur. When the internal pressure of the device increases due to the generated gas, the device may burst. Therefore, an explosion-proof valve body is provided in the gas discharge hole of the sealing plate of the device, and the valve body is opened by increasing the internal pressure of the device to prevent the device from bursting.

例えば、特許文献1には、軸部と凹溝部とつば部を有する防爆弁体が開示され、凹溝部の薄肉の部位で破断して、ガスを一気に排出できるようにされている。この防爆弁体は、合成樹脂により射出成形されるものである。 For example, Patent Document 1 discloses an explosion-proof valve body having a shaft portion, a groove portion, and a flange portion, and is broken at a thin portion of the groove portion so that gas can be discharged at once. This explosion-proof valve body is injection-molded with a synthetic resin.

特開2015−29029号公報JP 2015-29029 A

こうした防爆弁体は、密閉型電気化学デバイスのケース、特に封口板に対し、シールされた状態で一体化される。そのため、防爆弁体は、取付け部(特許文献1の防爆弁体においてはつば部)が、正確な形状で形成されている必要がある。 Such an explosion-proof valve body is integrated in a sealed state with respect to a case of a sealed electrochemical device, particularly a sealing plate. For this reason, in the explosion-proof valve body, the mounting portion (the flange portion in the explosion-proof valve body of Patent Document 1) needs to be formed in an accurate shape.

しかしながら、特許文献1の防爆弁体においては、破断すべき凹溝部は薄肉に形成される一方で、厚肉の軸部などを形成する必要があり、防爆弁体の寸法精度が低くなりがちであった。これは、防爆弁体の射出成形工程において、破断させるべき薄肉の凹溝部を成形する際に、薄肉部分では樹脂が流れにくくなることや、薄肉の凹溝部で冷却が進行しやすく、他の部分との間で温度差や圧力差が生じやすいことから、成形体としての防爆弁体に、反りやひずみが生じがちであることに起因する。 However, in the explosion-proof valve body of Patent Document 1, while the concave groove portion to be broken is formed thin, it is necessary to form a thick shaft portion or the like, and the dimensional accuracy of the explosion-proof valve body tends to be low. there were. This is because, in the injection molding process of the explosion-proof valve body, when forming a thin groove portion to be broken, it becomes difficult for the resin to flow in the thin portion, or cooling proceeds easily in the thin groove portion, and other parts This is because a temperature difference and a pressure difference are likely to occur between and the explosion-proof valve body as a molded body, which tends to be warped and distorted.

また、防爆弁体には、デバイスの内圧が所定の圧力に達した場合には、すみやかに弁体が破断して素早く内部のガスを排出して圧力を下げることができるよう、弁体の破壊強度を所定の範囲にすることが求められている。 In addition, the explosion-proof valve body is designed so that when the internal pressure of the device reaches a predetermined pressure, the valve body is destroyed so that the valve body can be quickly broken and the internal gas can be quickly discharged to reduce the pressure. There is a demand for the strength to fall within a predetermined range.

本発明の目的は、弁体の破壊強度のばらつきを抑えられ、取付け部の寸法精度が高い密閉型電気化学デバイス用防爆弁体を提供することにある。
An object of the present invention is to provide an explosion-proof valve body for a sealed electrochemical device that can suppress variation in the breaking strength of the valve body and has a high dimensional accuracy of the mounting portion.

発明者は、鋭意検討の結果、防爆弁体の形状を板状部と筒状部を組み合わせた形状とすると共に、かかる防爆弁体の射出成形において、ゲートを複数個所に配置して、ウェルドが所定の位置を通過するようにすると、上記課題が解決できることを知見し、本発明を完成させた。 As a result of intensive studies, the inventor has made the shape of the explosion-proof valve body a combination of a plate-like portion and a cylindrical portion, and in the injection molding of the explosion-proof valve body, the gate is arranged at a plurality of locations, It has been found that the above-mentioned problems can be solved by passing through a predetermined position, and the present invention has been completed.

本発明は、密閉型電気化学デバイスの封口板のガス排出孔を閉塞し、デバイスの内圧が上昇した際に破断してガスを排出する、密閉型電気化学デバイス用防爆弁体であって、防爆弁体は、平板状の板状部から筒状部が突出する形状に、熱可塑性樹脂の射出成形により形成されており、板状部のうち、筒状部よりも外側に位置する部分をつば部として、防爆弁体は、つば部で前記封口板に一体化されると共に、つば部には、複数のゲート痕が周方向に離間して配置されており、板状部のうち、筒状部よりも内側に位置する部分を破壊部として、破壊部には、破壊部の略中心を通過するように、ウェルドが形成されている密閉型電気化学デバイス用防爆弁体である(第1発明)。
なお、ゲート痕とは、防爆弁体を射出成形する際のゲートの部分の痕跡のことである。
The present invention is an explosion-proof valve body for a sealed electrochemical device that closes a gas discharge hole of a sealing plate of a sealed electrochemical device and breaks and discharges gas when the internal pressure of the device increases. The valve body is formed by injection molding of a thermoplastic resin into a shape in which the tubular portion protrudes from the flat plate-like portion, and a portion of the plate-like portion that is located outside the tubular portion is a flange. As the part, the explosion-proof valve body is integrated with the sealing plate at the collar part, and a plurality of gate marks are arranged in the collar part so as to be separated from each other in the circumferential direction. This is an explosion-proof valve body for a sealed electrochemical device in which a weld is formed so that a portion located inside the portion is a destruction portion and the destruction portion passes through substantially the center of the destruction portion (first invention) ).
In addition, a gate trace is a trace of the gate part at the time of injection-molding an explosion-proof valve body.

第1発明において、好ましくは、破壊部及びつば部が、略同じ肉厚とされる(第2発明)。また、第1発明もしくは第2発明において、好ましくは、ゲート痕の数が3、4のいずれかである(第3発明)。また、第1発明ないし第3発明のいずれかにおいて、好ましくは、複数のゲート痕が、破壊部の略中心を通過する線に対し対称となる位置に配置される(第4発明)。また、第1発明ないし第3発明のいずれかにおいて、好ましくは、複数のゲート痕が、破壊部の略中心に対し等角度配置となるように配置される(第5発明)。 In the first invention, preferably, the fracture portion and the collar portion have substantially the same thickness (second invention). In the first invention or the second invention, the number of gate marks is preferably either 3 or 4 (third invention). In any one of the first to third inventions, the plurality of gate marks are preferably arranged at positions symmetrical with respect to a line passing through the approximate center of the destruction portion (fourth invention). In any one of the first to third inventions, preferably, the plurality of gate traces are arranged at an equiangular arrangement with respect to the approximate center of the destruction portion (fifth invention).

本発明の防爆弁体(第1発明)によれば、ウェルドの位置が的確に調整され、弁体の破壊強度のばらつきを抑えることができる。また、防爆弁体の取付け部の寸法精度を高めることもできる。 According to the explosion-proof valve body (first invention) of the present invention, the position of the weld is accurately adjusted, and variation in the breaking strength of the valve body can be suppressed. Moreover, the dimensional accuracy of the attachment part of an explosion-proof valve body can also be improved.

特に、第2発明のようにした場合には、防爆弁体の取付け部の寸法精度が特に高められる。また、第3発明や第4発明、第5発明のようにした場合には、ウェルドの位置等がより調整しやすくなるなどして、弁体の破壊強度のばらつきをより効果的に抑えることができる。
In particular, in the case of the second invention, the dimensional accuracy of the mounting portion of the explosion-proof valve body is particularly improved. In addition, in the case of the third invention, the fourth invention, and the fifth invention, it is possible to more effectively suppress the variation in the breaking strength of the valve body by making it easier to adjust the position of the weld. it can.

密閉型電気化学デバイスに防爆弁体が取付けられた状態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the state by which the explosion-proof valve body was attached to the sealed electrochemical device. 第1実施形態の防爆弁体の正面図及び断面図である。It is the front view and sectional drawing of the explosion-proof valve body of 1st Embodiment. 第1実施形態の防爆弁体が封口板に取り付けられる工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the process in which the explosion-proof valve body of 1st Embodiment is attached to a sealing board. 第2実施形態の防爆弁体の正面図及び断面図である。It is the front view and sectional drawing of the explosion-proof valve body of 2nd Embodiment. 第3実施形態の防爆弁体の正面図及び断面図である。It is the front view and sectional drawing of the explosion-proof valve body of 3rd Embodiment. 第4実施形態の防爆弁体の正面図及び断面図である。It is the front view and sectional drawing of the explosion-proof valve body of 4th Embodiment.

以下図面を参照しながら、密閉型電気化学デバイスが電池である場合を例として、発明の実施形態について説明する。発明は以下に示す個別の実施形態に限定されるものではなく、その形態を変更して実施することもできる。 Hereinafter, embodiments of the invention will be described with reference to the drawings, taking as an example the case where the sealed electrochemical device is a battery. The invention is not limited to the individual embodiments shown below, and can be carried out by changing the form.

図1は、第1実施形態の防爆弁体1を有する密閉型電気化学デバイス9を示す。この密閉型電気化学デバイス9は電池である。箱状のケース4の内部に、正負極素子部8が配置され、電解液7で満たされて電池が構成されている。ケース4の開口部は、封口板3により密閉されている。ケース4や封口板3は、金属や合成樹脂等により形成されており、互いに溶接や接着などの手段により、密閉可能な形態で接合されている。 FIG. 1 shows a sealed electrochemical device 9 having an explosion-proof valve body 1 according to the first embodiment. The sealed electrochemical device 9 is a battery. A positive and negative electrode element portion 8 is arranged inside the box-shaped case 4 and filled with the electrolyte solution 7 to constitute a battery. The opening of the case 4 is sealed with a sealing plate 3. The case 4 and the sealing plate 3 are made of metal, synthetic resin, or the like, and are joined together in a form that can be sealed by means such as welding or adhesion.

封口板3には、電極用の穴が設けられており、穴には、正極端子5や負極端子6が封口板3を貫通するように設けられる。封口板3と正極端子5や負極端子6の間は、適宜ガスケット5G,6G等により、封止される。正極端子5はリード線51により正負極素子部8の正極に電気的に接続され、負極端子6はリード線61により正負極素子部8の負極に電気的に接続される。 The sealing plate 3 is provided with a hole for an electrode, and the positive electrode terminal 5 and the negative electrode terminal 6 are provided in the hole so as to penetrate the sealing plate 3. The space between the sealing plate 3 and the positive electrode terminal 5 or the negative electrode terminal 6 is appropriately sealed with gaskets 5G and 6G. The positive electrode terminal 5 is electrically connected to the positive electrode of the positive and negative electrode element portion 8 by a lead wire 51, and the negative electrode terminal 6 is electrically connected to the negative electrode of the positive and negative electrode element portion 8 by a lead wire 61.

封口板3にはガス排出孔31が設けられており、防爆弁体1は、ガス排出孔31を覆い、閉塞するように、封口板3に一体化されている。後述するように、密閉型電気化学デバイス1の内部にガスが発生して、デバイスの内圧が上昇した際には、防爆弁体1の破壊部13が破断して解放され、内部のガスが排出される。 The sealing plate 3 is provided with a gas discharge hole 31, and the explosion-proof valve body 1 is integrated with the sealing plate 3 so as to cover and close the gas discharge hole 31. As will be described later, when gas is generated inside the sealed electrochemical device 1 and the internal pressure of the device rises, the destruction portion 13 of the explosion-proof valve body 1 is broken and released, and the internal gas is discharged. Is done.

防爆弁体1について説明する。図2に示すように、防爆弁体1は、平板状の板状部11から筒状部14が突出する形状に、熱可塑性樹脂の射出成形により形成されている。 The explosion-proof valve body 1 will be described. As shown in FIG. 2, the explosion-proof valve body 1 is formed by injection molding of a thermoplastic resin into a shape in which a cylindrical portion 14 protrudes from a flat plate-like plate-like portion 11.

防爆弁体1を形成する熱可塑性樹脂としては、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリスチレン(PS)樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、フッ素(F)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂などの熱可塑性樹脂が例示できる。これら熱可塑性樹脂は、単独もしくはブレンドして使用することもでき、適宜充填材や各種配合剤を含んでいてもよい。 Examples of the thermoplastic resin forming the explosion-proof valve body 1 include polyethylene (PE) resin, polypropylene (PP) resin, polystyrene (PS) resin, polyamide (PA) resin, polycarbonate (PC) resin, and polyvinyl chloride (PVC) resin. And thermoplastic resins such as polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, fluorine (F) resin, and polyether ether ketone (PEEK) resin. These thermoplastic resins can be used alone or blended, and may contain a filler and various compounding agents as appropriate.

図2に示した第1実施形態の防爆弁体1においては、板状部11は円盤状である。板状部は、後述する他の実施形態のように、矩形状であってもよい。また、本実施形態においては、筒状部14は円筒状である。後述する他の実施形態のように、筒状部は角筒状であってもよい。
本実施形態では、筒状部14は、板状部11の片面に突出するように設けられているが、筒状部を板状部11の両面に突出するように設けてもよい。
In the explosion-proof valve body 1 according to the first embodiment shown in FIG. 2, the plate-like portion 11 has a disk shape. The plate-like portion may be rectangular as in other embodiments described later. Moreover, in this embodiment, the cylindrical part 14 is cylindrical. As in other embodiments to be described later, the cylindrical portion may be a rectangular tube.
In the present embodiment, the cylindrical portion 14 is provided so as to protrude on one surface of the plate-like portion 11, but the cylindrical portion may be provided so as to protrude on both surfaces of the plate-like portion 11.

板状部11のうち、筒状部14よりも半径方向外側に位置する部分をつば部12とし、板状部11のうち、筒状部14よりも半径方向内側に位置する部分を破壊部13とする。筒状部14やつば部12、破壊部13は、本実施形態のように同心円状に配置・形成されることが好ましいが、これは必須ではない。 Of the plate-like part 11, a part positioned radially outward from the cylindrical part 14 is referred to as a collar part 12, and a part of the plate-like part 11 positioned radially inside of the cylindrical part 14 is a destruction part 13. And Although the cylindrical part 14, the collar part 12, and the destruction part 13 are preferably arranged and formed concentrically as in the present embodiment, this is not essential.

防爆弁体1は、封口板3のガス排出孔31に筒状部14が入り込むように配置され、つば部12で封口板3に対し一体化されている。両者の一体化は、封口板3と防爆弁体1の間の気密性や液密性が保たれるよう、つば部12の全周にわたって行われる。なお、防爆弁体1が封口板3に一体化される手段は特に限定されないが、接着や溶着により一体化されることが好ましい。別個に取付け部材を設けて、つば部12を封口板3に対し押し付けるようにして固定してもよい。また、防爆弁体1と封口板3との間に、適宜シール部材を挟んで、両者の密封性を高めるようにしてもよい。 The explosion-proof valve body 1 is arranged so that the cylindrical portion 14 enters the gas discharge hole 31 of the sealing plate 3, and is integrated with the sealing plate 3 by the collar portion 12. The integration of both is performed over the entire circumference of the collar portion 12 so that the airtightness and liquid tightness between the sealing plate 3 and the explosion-proof valve body 1 are maintained. The means for integrating the explosion-proof valve body 1 with the sealing plate 3 is not particularly limited, but is preferably integrated by adhesion or welding. A mounting member may be provided separately, and the collar portion 12 may be fixed so as to be pressed against the sealing plate 3. Further, a sealing member may be appropriately sandwiched between the explosion-proof valve body 1 and the sealing plate 3 to improve the sealing performance of both.

防爆弁体1は熱可塑性樹脂の射出成形により成形された部材であるため、防爆弁体1には、ゲート痕GR,GRが存在する。そして、防爆弁体1のつば部12には、複数のゲート痕GR,GRが周方向に離間して配置されている。なお、ゲート痕とは、防爆弁体を射出成形する際の金型において、キャビティへの樹脂の注入経路となったゲートが設けられていた部分の、成形体における痕跡のことである。 Since the explosion-proof valve body 1 is a member formed by injection molding of a thermoplastic resin, the explosion-proof valve body 1 has gate marks GR and GR. A plurality of gate marks GR and GR are arranged in the collar portion 12 of the explosion-proof valve body 1 so as to be separated from each other in the circumferential direction. The gate trace is a trace in the molded body of the mold when the explosion-proof valve body is injection-molded, where the gate serving as the resin injection path into the cavity is provided.

本実施形態では、つば部12の最外周部に、2つのゲート痕GR,GRが設けられており、ゲート痕GR,GRは、破壊部13の略中心を通過する線(例えば、図の上下方向に延在する線、ウェルドラインW)に対し対称となる位置に配置されている。また、本実施形態においては、同時に、2つのゲート痕GR,GRは、破壊部13の略中心に対し等角度配置となるように、すなわち、破壊部13の略中心を円の中心としてゲート痕GR,GRが配置される位置の中心角が互いに180度となるように、配置されている。 In the present embodiment, two gate marks GR and GR are provided on the outermost peripheral portion of the collar portion 12, and the gate marks GR and GR are lines (for example, upper and lower in the figure) that pass through the approximate center of the destruction portion 13. It is arranged at a position symmetrical to the line extending in the direction, the weld line W). Further, in the present embodiment, at the same time, the two gate marks GR and GR are arranged at an equal angle with respect to the approximate center of the destruction part 13, that is, the gate traces with the approximate center of the destruction part 13 as the center of the circle. It arrange | positions so that the center angle of the position where GR and GR are arrange | positioned may mutually become 180 degree | times.

そして、破壊部13には、破壊部13の略中心を通過するように、ウェルドWが形成されている。すなわち、射出成形の際に複数のゲートGR,GRからキャビティに流れ込んだ樹脂が合流する位置に形成されるウェルドWが、破壊部13の略中心を通過するよう、防爆弁体1は成形されている。なお、ウェルドWは、破壊部13の厳密な中心を通過しなければならないわけではなく、破壊部13の中心とウェルドWの間の隔たりが、破壊部13の直径(長径)のプラスマイナス15%以内であれば、ウェルドWが破壊部13の略中心を通過しているとみなせる。 A weld W is formed in the destruction portion 13 so as to pass through the approximate center of the destruction portion 13. That is, the explosion-proof valve body 1 is molded so that the weld W formed at the position where the resin flowing into the cavity from the plurality of gates GR and GR merges at the time of injection molding passes through the approximate center of the breaking portion 13. Yes. Note that the weld W does not have to pass through the exact center of the destruction portion 13, and the distance between the center of the destruction portion 13 and the weld W is plus or minus 15% of the diameter (major axis) of the destruction portion 13. If it is within the range, it can be considered that the weld W passes through the substantial center of the destruction portion 13.

必須ではないが、板状部11(つば部12、破壊部13)や筒状部14の寸法は、以下のようにされることが好ましい。つば部12の肉厚t1と破壊部13の肉厚t2とは、略同じ肉厚とされることが好ましく、このようにされると、防爆弁体の寸法精度が一層高められる。また、つば部12の肉厚t1が破壊部13の肉厚t2よりも肉厚になるようにされていてもよい。 Although it is not essential, it is preferable that the dimensions of the plate-like portion 11 (the collar portion 12 and the breaking portion 13) and the cylindrical portion 14 are as follows. It is preferable that the thickness t1 of the collar portion 12 and the thickness t2 of the destruction portion 13 are substantially the same thickness. In this way, the dimensional accuracy of the explosion-proof valve body is further improved. Further, the thickness t1 of the collar portion 12 may be made thicker than the thickness t2 of the destruction portion 13.

筒状部14の肉厚t3は、つば部12の肉厚t1よりも小さくされることが好ましい。また、筒状部14の肉厚t3は、筒状部14の高さHよりも小さくされることが好ましい。このようにすることも、防爆弁体の寸法精度を一層高めることに貢献する。 It is preferable that the thickness t3 of the cylindrical portion 14 be smaller than the thickness t1 of the collar portion 12. Moreover, it is preferable that the wall thickness t3 of the cylindrical portion 14 be smaller than the height H of the cylindrical portion 14. This also contributes to further improving the dimensional accuracy of the explosion-proof valve body.

また、必須ではないが、本実施形態の防爆弁体1のように、筒状部14が突設される側とは反対側に、板状部11に環状の凹溝15を設けることも好ましい。この凹溝15は、筒状部14が設けられる位置と重なるように設けられる。このような凹溝15を設けることでも、成形される防爆弁体の実質的な肉厚の均一化が図られることになり、樹脂の冷却が均一に進むようになって、防爆弁体の寸法精度が一層高められる。 Moreover, although not essential, it is also preferable to provide the annular concave groove 15 in the plate-like part 11 on the side opposite to the side on which the cylindrical part 14 protrudes like the explosion-proof valve body 1 of the present embodiment. . The concave groove 15 is provided so as to overlap with a position where the cylindrical portion 14 is provided. Providing such a concave groove 15 also makes it possible to make the substantial thickness of the molded explosion-proof valve body uniform, so that the cooling of the resin proceeds uniformly, and the dimensions of the explosion-proof valve body. The accuracy is further increased.

上記実施形態の防爆弁体1や密閉型電気化学デバイス9は、公知の方法により成形される。防爆弁体1は、熱可塑性樹脂の射出成形法により成形される。防爆弁体1の外面形状に対応する形状のキャビティを形成可能な金型が準備される。当該金型には、樹脂を注入する経路が設けられており、防爆弁体1の複数のゲート痕GR,GRに対応する位置に、複数のゲートが設けられている。 The explosion-proof valve body 1 and the sealed electrochemical device 9 of the above embodiment are formed by a known method. The explosion-proof valve body 1 is molded by a thermoplastic resin injection molding method. A mold capable of forming a cavity having a shape corresponding to the outer surface shape of the explosion-proof valve body 1 is prepared. The mold is provided with a route for injecting resin, and a plurality of gates are provided at positions corresponding to the plurality of gate marks GR and GR of the explosion-proof valve body 1.

射出成形工程において高温の溶融樹脂が金型に射出されると、金型のキャビティに、複数のゲートを通じて樹脂が供給される。溶融樹脂は、それぞれのゲートを起点としてキャビティ内を広がりながら、キャビティを充填していく。このとき、本実施形態では、ゲートが対称に配置されていたり、等角度に配置されているので、それぞれのゲートから注入された樹脂は、キャビティの略中央部で合流することになり、この部分にウェルドが形成される。このようにして、上記実施形態のような、複数のゲート痕を有し、破壊部13の略中心をウェルドWが通過するような防爆弁体1が成形される。 When high-temperature molten resin is injected into the mold in the injection molding process, the resin is supplied to the mold cavity through a plurality of gates. The molten resin fills the cavity while expanding in the cavity starting from each gate. At this time, in this embodiment, since the gates are arranged symmetrically or arranged at an equal angle, the resin injected from the respective gates merges at a substantially central portion of the cavity, and this portion A weld is formed. In this manner, the explosion-proof valve body 1 having a plurality of gate marks and having the weld W passing through the approximate center of the destruction portion 13 as in the above embodiment is formed.

複数のゲートの配置は、上記実施形態の配置に限定されず、例えば、後述する他の実施形態のようなゲート配置としてもよい。また、破壊部13の略中心をウェルドWが通過するようにできるのであれば、複数のゲートの配置は対称であったり等角度配置であったりする必要はない。ゲートが非対称や不等角度の配置であっても、ゲートの太さや長さ、供給経路中の樹脂だまりなどを調節して、ウェルドWが形成される位置を調整すればよい。 The arrangement of the plurality of gates is not limited to the arrangement of the above embodiment, and may be a gate arrangement as in other embodiments described later, for example. Further, as long as the weld W can pass through substantially the center of the destruction portion 13, the arrangement of the plurality of gates does not need to be symmetrical or equiangular. Even if the gates are arranged asymmetrically or at an unequal angle, the position where the weld W is formed may be adjusted by adjusting the thickness and length of the gate, the resin pool in the supply path, and the like.

成形された防爆弁体1は、公知の方法により、密閉型電気化学デバイス9の封口板3に取り付けられる。防爆弁体1は、封口板3に設けられたガス排出孔31を覆い、ガス排出孔31を閉塞するように取り付けられる。たとえば、図3に示すように、防爆弁体1の筒状部14が封口板3のガス排出孔31に入り込むように両者を配置し(図3(a))、つば部12をガス排出孔31の周縁部に接着剤で固着させ、両者を密封状に一体化すればよい(図3(b))。 The molded explosion-proof valve body 1 is attached to the sealing plate 3 of the sealed electrochemical device 9 by a known method. The explosion-proof valve body 1 is attached so as to cover the gas discharge hole 31 provided in the sealing plate 3 and close the gas discharge hole 31. For example, as shown in FIG. 3, both are arranged so that the cylindrical portion 14 of the explosion-proof valve body 1 enters the gas discharge hole 31 of the sealing plate 3 (FIG. 3A), and the collar portion 12 is placed in the gas discharge hole. What is necessary is just to adhere to the peripheral part of 31 with an adhesive agent, and to integrate both in a sealing form (FIG.3 (b)).

上記第1実施形態の防爆弁体1の作用及び効果について説明する。
上記実施形態の防爆弁体1においては、つば部12に複数のゲート痕GR,GRが周方向に離間して配置されており、破壊部13の略中心を通過するようにウェルドWが形成されているため、弁体の破壊強度のばらつきを抑えることができる。
The operation and effect of the explosion-proof valve body 1 of the first embodiment will be described.
In the explosion-proof valve body 1 of the above-described embodiment, a plurality of gate marks GR and GR are arranged in the collar portion 12 so as to be spaced apart from each other in the circumferential direction, and a weld W is formed so as to pass through the approximate center of the destruction portion 13. Therefore, variation in the breaking strength of the valve body can be suppressed.

防爆弁体1では内圧が高まると、破壊部13が破壊して内部のガスが放出されるが、その際に、破壊部にウェルドWがあると、ウェルド部の強度は通常の部分に比べ強度が低いため(典型的には40〜60%程度強度が低下する)、ウェルドWの部分を起点として破壊が生じやすくなる。一方、内圧にさらされる破壊部13に生ずる応力は、一般に破壊部の中心部で最大となり、周縁に向かうにつれて応力が減る傾向を示す。 In the explosion-proof valve body 1, when the internal pressure increases, the destruction portion 13 is destroyed and the internal gas is released. At this time, if there is a weld W in the destruction portion, the strength of the weld portion is higher than that of a normal portion. Is low (typically, the strength is reduced by about 40 to 60%), so that breakage tends to occur starting from the weld W. On the other hand, the stress generated in the fracture portion 13 exposed to the internal pressure generally becomes maximum at the central portion of the fracture portion, and shows a tendency for the stress to decrease toward the periphery.

このため、ウェルドWと破壊部13の中心の隔たりが大きくなると、弁体の破壊強度がばらつくことになり、好ましくない。上記実施形態の防爆弁体1においては、複数のゲート(痕)があるため、ウェルドWが破壊部13の略中心を通過するように的確に調整しやすくなるので、弁体の破壊強度のばらつきを抑えることができる。 For this reason, if the distance between the center of the weld W and the destruction portion 13 becomes large, the destruction strength of the valve body varies, which is not preferable. In the explosion-proof valve body 1 of the above-described embodiment, since there are a plurality of gates (scratches), it becomes easy to accurately adjust the weld W so that it passes through the approximate center of the destruction portion 13, and therefore, variation in the destruction strength of the valve body Can be suppressed.

また、上記実施形態の防爆弁体1においては、ウェルドWを起点として破壊部13が破壊され、弁体の一部に極端に薄い場所を作らなくてもよいので、防爆弁体の取付け部の寸法精度を高めることもできる。特許文献1に記載されたような従来の防爆弁体では、弁体が破壊すべき箇所を薄肉に成形する必要があり、このような薄肉の部分を設けると、薄肉部分が早く冷却される一方で、厚肉部分では冷却が遅くなるため、防爆弁体の射出成形工程において、成形体の冷却や保圧が不均一となり、成形体が反ったり、ひずんだり、ヒケを生じたりするなど、成形体の取付け部の寸法精度が悪化しがちであった。 Moreover, in the explosion-proof valve body 1 of the said embodiment, since the destruction part 13 is destroyed starting from the weld W and it is not necessary to make an extremely thin place in a part of the valve body, The dimensional accuracy can also be increased. In the conventional explosion-proof valve body as described in Patent Document 1, it is necessary to form a thin portion where the valve body should be destroyed. When such a thin portion is provided, the thin portion is cooled quickly. In the thick-walled part, the cooling is slow, so in the injection molding process of the explosion-proof valve body, the cooling and holding pressure of the molded body become uneven, and the molded body warps, distorts, and sinks. The dimensional accuracy of the body mounting part tended to deteriorate.

上記実施形態の防爆弁体1においては、破壊部13の略中央を通過するウェルドWを起点として破壊部が破壊するので、弁体に極端に薄い場所を作らなくてもよい。その結果、防爆弁体1の寸法精度、特に、取付け部となるつば部12の平面度などを向上できる。つば部12の平面度が向上すると、つば部と封口板3を一体化する部分の密封度が良くなるといったメリットがある。 In the explosion-proof valve body 1 of the above-described embodiment, since the destruction part is destroyed starting from the weld W passing through the approximate center of the destruction part 13, it is not necessary to make an extremely thin place in the valve body. As a result, it is possible to improve the dimensional accuracy of the explosion-proof valve body 1, particularly the flatness of the collar portion 12 serving as the attachment portion. When the flatness of the collar portion 12 is improved, there is an advantage that the degree of sealing of the portion where the collar portion and the sealing plate 3 are integrated is improved.

また、上記実施形態の防爆弁体1における寸法精度の向上には、防爆弁体1が平板状の板状部11から筒状部14が突出する形状に成形されていることも寄与している。破壊部13の破壊する内圧を低くしようとすると、破壊部13の肉厚やつば部12の肉厚を薄くすることになるが、筒状部14が板状部から突出するように成形されていれば、板状部が薄くなっても、成形時につば部が反ったり変形したりしにくくなるからである。この観点から、筒状部の形状は高さHが厚みt3よりも大きくなるようにされることが好ましい。 In addition, the improvement of the dimensional accuracy in the explosion-proof valve body 1 of the above embodiment also contributes to the fact that the explosion-proof valve body 1 is formed in a shape in which the cylindrical portion 14 projects from the flat plate-like plate-like portion 11. . When attempting to lower the internal pressure at which the destruction portion 13 breaks, the thickness of the destruction portion 13 and the thickness of the collar portion 12 are reduced, but the cylindrical portion 14 is formed so as to protrude from the plate-like portion. This is because even if the plate-like portion is thin, the collar portion is less likely to warp or deform during molding. From this viewpoint, it is preferable that the shape of the cylindrical portion is such that the height H is greater than the thickness t3.

また、防爆弁体1の取付け部の寸法精度をより効果的に高める観点からは、第1実施形態のように、破壊部13及びつば部12が、略同じ肉厚とされる(t1≒t2)ことが好ましい。両者が略同じ肉厚とされていれば、射出された樹脂の冷却度合いが両者の間で大きく異なることが抑制され、成形された防爆弁体を冷却する際に反りやひずみが発生することが抑制されるからである。 In addition, from the viewpoint of more effectively increasing the dimensional accuracy of the mounting portion of the explosion-proof valve body 1, the fracture portion 13 and the collar portion 12 have substantially the same thickness (t1≈t2) as in the first embodiment. Is preferred. If both have substantially the same thickness, the degree of cooling of the injected resin is prevented from greatly differing between the two, and warping and distortion may occur when the molded explosion-proof valve body is cooled. It is because it is suppressed.

また、弁体の破壊強度のばらつきをより効果的に抑えるとの観点からは、第1実施形態のように、つば部12に設けられる複数のゲート痕GR,GRが、破壊部13の略中心を通過する線(例えば図2の上下方向に延在する線)に対し対称となる位置に配置されることが好ましい。このようにされていると、ウェルドWが破壊部13の略中心を通過するように的確に調整しやすくなると共に、破壊部13の略中心を通るウェルドWが直線状に生じることになり、所定の内圧による応力で割れやすくなるからである。 Further, from the viewpoint of more effectively suppressing the variation in the breaking strength of the valve body, as in the first embodiment, the plurality of gate marks GR and GR provided on the collar portion 12 are substantially at the center of the breaking portion 13. It is preferable to be arranged at a position that is symmetric with respect to a line passing through (for example, a line extending in the vertical direction in FIG. 2). This makes it easy to accurately adjust the weld W so that it passes through the approximate center of the destruction portion 13, and the weld W that passes through the approximate center of the destruction portion 13 is generated in a straight line. It is because it becomes easy to crack by the stress by the internal pressure.

また、同様の理由から、第1実施形態のように、つば部12に設けられる複数のゲート痕GR,GRが、破壊部の略中心に対し等角度配置となるように配置されることが好ましい。このようにされていると、ウェルドWが破壊部13の略中心を通過するように的確に調整しやすくなると共に、破壊部13の略中心を通るウェルドWが直線状に生じることになり、所定の内圧による応力で割れやすくなるからである。 For the same reason, as in the first embodiment, it is preferable that the plurality of gate marks GR, GR provided on the collar portion 12 are arranged so as to be equiangular with respect to the approximate center of the destruction portion. . This makes it easy to accurately adjust the weld W so that it passes through the approximate center of the destruction portion 13, and the weld W that passes through the approximate center of the destruction portion 13 is generated in a straight line. It is because it becomes easy to crack by the stress by the internal pressure.

発明は、上記実施形態に限定されるものではなく、種々の改変をして実施することができる。以下に発明の他の実施形態について説明するが、以下の説明においては、上記実施形態と異なる部分を中心に説明し、同様である部分についてはその詳細な説明を省略する。また、これら実施形態は、その一部を互いに組み合わせて、あるいは、その一部を置き換えて実施できる。 The invention is not limited to the embodiment described above, and can be implemented with various modifications. Although other embodiments of the invention will be described below, in the following description, portions different from the above-described embodiment will be mainly described, and detailed descriptions of the same portions will be omitted. Moreover, these embodiments can be implemented by combining some of them or replacing some of them.

図4には、第2実施形態の防爆弁体21を示す。第2実施形態の防爆弁体21において、円盤状の板状部に円筒状の筒状部214が突出形成されている点や、つば部212に複数のゲート痕GR,GRが周方向に離間して設けられ、破壊部213の略中心をウェルドWが通過している点は、第1実施形態の防爆弁体1と同様である。 In FIG. 4, the explosion-proof valve body 21 of 2nd Embodiment is shown. In the explosion-proof valve body 21 of the second embodiment, a cylindrical tubular portion 214 is formed to protrude from a disk-shaped plate-shaped portion, and a plurality of gate marks GR and GR are spaced apart from each other in the collar portion 212 in the circumferential direction. This is the same as the explosion-proof valve body 1 of the first embodiment in that the weld W passes through the approximate center of the destruction part 213.

第2実施形態の防爆弁体21では、破壊部213の肉厚が、つば部212よりも薄くされている。破壊部213の肉厚は、つば部212の寸法精度に悪影響を与えない範囲であれば、つば部よりも薄くしてもよい。 In the explosion-proof valve body 21 of the second embodiment, the thickness of the destruction part 213 is made thinner than the collar part 212. The thickness of the destruction part 213 may be made thinner than the collar part as long as the dimensional accuracy of the collar part 212 is not adversely affected.

また、第2実施形態の防爆弁体21においては、複数のゲート痕GR,GRの配置が、破壊部213の略中心を通過する線(図4の上下方向の線)に対し対称となる位置に配置される一方で、破壊部の略中心に対し等角度配置となるようには配置されていない。このような配置であっても、対称に配置されていれば、直線状のゲート痕Wを的確に配置できる。
すなわち、第2実施形態の防爆弁体21でも、弁体の破壊強度のばらつきを抑えることができ、防爆弁体の取付け部の寸法精度も高められる。
Moreover, in the explosion-proof valve body 21 of the second embodiment, the arrangement of the plurality of gate marks GR and GR is symmetrical with respect to a line (vertical line in FIG. 4) passing through the approximate center of the destruction part 213. However, they are not arranged so as to be equiangular with respect to the approximate center of the destruction portion. Even in such an arrangement, the linear gate marks W can be accurately arranged as long as they are arranged symmetrically.
That is, even in the explosion-proof valve body 21 of the second embodiment, variation in the breaking strength of the valve body can be suppressed, and the dimensional accuracy of the mounting portion of the explosion-proof valve body can be improved.

図5には、第3実施形態の防爆弁体22を示す。第3実施形態の防爆弁体22においては、板状部に筒状部224が突出形成されている点や、つば部222に複数のゲート痕GR,GRが周方向に離間して設けられ、破壊部223の略中心をウェルドWが通過している点は、第1実施形態の防爆弁体1と同様である。 In FIG. 5, the explosion-proof valve body 22 of 3rd Embodiment is shown. In the explosion-proof valve body 22 of the third embodiment, the cylindrical portion 224 protrudes from the plate-like portion, and a plurality of gate marks GR and GR are provided in the collar portion 222 apart from each other in the circumferential direction. The point that the weld W passes through the approximate center of the destruction part 223 is the same as that of the explosion-proof valve body 1 of the first embodiment.

第3実施形態の防爆弁体22では、板状部が矩形状、特に方形状に形成され、筒状部が角筒状に形成されている。このように、板状部や筒状部、つば部の形状は、円形や円筒でなくてもよい。また、第3実施形態の防爆弁体22では、つば部222の外周側のコーナー部のそれぞれに、計4つのゲート痕GR,GRが設けられている。ゲート痕GR,GRがこのように配置されることにより、ウェルドWは破壊部223の略中心を通る十文字状に生じている。 In the explosion-proof valve body 22 of the third embodiment, the plate-like portion is formed in a rectangular shape, particularly a rectangular shape, and the cylindrical portion is formed in a rectangular tube shape. Thus, the shape of the plate-like part, the cylindrical part, and the collar part may not be circular or cylindrical. In the explosion-proof valve body 22 of the third embodiment, a total of four gate marks GR and GR are provided in each of the corner portions on the outer peripheral side of the collar portion 222. By arranging the gate marks GR and GR in this way, the weld W is formed in a cross shape passing through the approximate center of the destruction portion 223.

第3実施形態の防爆弁体22でも、弁体の破壊強度のばらつきを抑えることができ、防爆弁体の取付け部の寸法精度も高められる。
特に、4つのゲート痕が周方向に離間して設けられることにより、ウェルドWが破壊部223の略中心を通る十文字状に生じるので、ウェルド部を起点とする破壊強度の調整がしやすくなり、より効果的に弁体の破壊強度のばらつきを抑えることができる。
Even in the explosion-proof valve body 22 of the third embodiment, variation in the breaking strength of the valve body can be suppressed, and the dimensional accuracy of the mounting portion of the explosion-proof valve body can be increased.
In particular, since the four gate marks are provided apart in the circumferential direction, the weld W is formed in a cross shape passing through the approximate center of the fracture portion 223, so that it is easy to adjust the fracture strength starting from the weld portion. The variation in the breaking strength of the valve body can be suppressed more effectively.

また、第3実施形態の防爆弁体22では、つば部222の肉厚や破壊部223の肉厚よりも、筒状部224の肉厚が小さくなるようにされている。このようにすることも、板状部の冷却の均質性を高め、防爆弁体22の取付け部の寸法精度を高めることに効果的であり、好ましい。 Further, in the explosion-proof valve body 22 of the third embodiment, the thickness of the tubular portion 224 is made smaller than the thickness of the collar portion 222 and the thickness of the destruction portion 223. This is also preferable because it is effective in improving the cooling uniformity of the plate-like portion and improving the dimensional accuracy of the attachment portion of the explosion-proof valve body 22.

図6には、第4実施形態の防爆弁体23を示す。第4実施形態の防爆弁体23においては、板状部に筒状部234が突出形成されている点や、つば部232に複数のゲート痕GR,GRが周方向に離間して設けられ、破壊部233の略中心をウェルドWが通過している点は、他の実施形態の防爆弁体と同様である。第4実施形態の防爆弁体23でも、弁体の破壊強度のばらつきを抑えることができ、防爆弁体の取付け部の寸法精度も高められる。 In FIG. 6, the explosion-proof valve body 23 of 4th Embodiment is shown. In the explosion-proof valve body 23 of the fourth embodiment, a plurality of gate marks GR, GR are provided in the circumferential direction away from the point where the cylindrical part 234 is formed to protrude from the plate-like part, The point that the weld W passes through the approximate center of the destruction part 233 is the same as that of the explosion-proof valve body of the other embodiments. Even in the explosion-proof valve body 23 of the fourth embodiment, variation in the breaking strength of the valve body can be suppressed, and the dimensional accuracy of the mounting portion of the explosion-proof valve body can be improved.

第4実施形態の防爆弁体23では、筒状部234が、板状部の両面に突出するように設けられている。筒状部を両側に突出させるようにすれば、それぞれの筒状部234,234の突出量を低く抑えながら、防爆弁体の取付け部の寸法精度をより効果的に高めることができる。 In the explosion-proof valve body 23 of the fourth embodiment, the cylindrical portion 234 is provided so as to protrude from both surfaces of the plate-like portion. If the cylindrical portions are protruded on both sides, the dimensional accuracy of the mounting portion of the explosion-proof valve body can be more effectively increased while suppressing the protruding amounts of the respective cylindrical portions 234 and 234.

また、第4実施形態の防爆弁体23では、3つのゲート痕GR,GRが、破壊部の略中心に対しそれぞれ120度の間隔で等角度配置となるように配置されている。このような配置であると、ウェルドWが破壊部233の略中心を通る三つ又状に生じるので、第3実施形態の防爆弁体22と同様に、ウェルド部を起点とする破壊強度の調整がしやすくなり、より効果的に弁体の破壊強度のばらつきを抑えることができる。この観点から、ゲート痕の数は、3つまたは4つであることが特に好ましい。 Further, in the explosion-proof valve body 23 of the fourth embodiment, the three gate marks GR and GR are arranged so as to be equiangularly arranged at intervals of 120 degrees with respect to the approximate center of the destruction part. With such an arrangement, since the weld W is formed in a trifurcated shape passing through the approximate center of the destruction portion 233, the fracture strength starting from the weld portion is adjusted in the same manner as the explosion-proof valve body 22 of the third embodiment. It becomes easy and can suppress the dispersion | variation in the fracture strength of a valve body more effectively. From this viewpoint, the number of gate marks is particularly preferably three or four.

なお、第4実施形態の防爆弁体23では、ゲート痕GR,GRは、つば部232の半径方向の中央部に設けられている。ゲート痕の位置は、寸法精度を高めるうえで、第1実施形態ないし第3実施形態のように、つば部の最外周部であることが好ましいが、第4実施形態のように、つば部の半径方向中央部であってもよく、つば部の内周側であってもよい。 In the explosion-proof valve body 23 of the fourth embodiment, the gate marks GR and GR are provided in the center portion in the radial direction of the collar portion 232. The position of the gate mark is preferably the outermost peripheral portion of the collar portion as in the first to third embodiments in order to increase the dimensional accuracy, but as in the fourth embodiment, the position of the collar portion is preferred. The central portion in the radial direction may be used, or the inner peripheral side of the collar portion may be used.

上記実施形態の説明においては、防爆弁体が適用される密閉型電気化学デバイスが電池である場合について説明した。電池は1次電池、例えばアルカリ電池であってもよいし、2次電池、例えばリチウムイオン電池等でもよいし、他の電池でもよく、特に限定されない。また、防爆弁体が適用される密閉型電気化学デバイスは、電解コンデンサであってもよい。 In the description of the above embodiment, the case where the sealed electrochemical device to which the explosion-proof valve body is applied is a battery has been described. The battery may be a primary battery such as an alkaline battery, a secondary battery such as a lithium ion battery, or other battery, and is not particularly limited. The sealed electrochemical device to which the explosion-proof valve body is applied may be an electrolytic capacitor.

防爆弁体は、密閉型電気化学デバイスに使用でき、密閉型電気化学デバイスの内部で発生したガスを排出できて産業上の利用価値が高い。 The explosion-proof valve body can be used for a sealed electrochemical device, and can discharge gas generated inside the sealed electrochemical device, so that it has high industrial utility value.

1 防爆弁体
11 板状部
12 つば部
13 破壊部
14 筒状部
GR ゲート痕
W ウェルド
3 封口板
4 ケース
5 正極端子
6 負極端子
7 電解液
8 正負極素子部
9 密閉型電気化学デバイス(電池)
DESCRIPTION OF SYMBOLS 1 Explosion-proof valve body 11 Plate part 12 Collar part 13 Destruction part 14 Cylindrical part GR Gate mark W Weld 3 Sealing plate 4 Case 5 Positive electrode terminal 6 Negative electrode terminal 7 Electrolyte 8 Positive / negative electrode element part 9 Sealed electrochemical device (battery )

Claims (5)

密閉型電気化学デバイスの封口板のガス排出孔を閉塞し、デバイスの内圧が上昇した際に破断してガスを排出する、密閉型電気化学デバイス用防爆弁体であって、
防爆弁体は、平板状の板状部から筒状部が突出する形状に、熱可塑性樹脂の射出成形により形成されており、
板状部のうち、筒状部よりも外側に位置する部分をつば部として、
防爆弁体は、つば部で前記封口板に一体化されると共に、
つば部には、複数のゲート痕が周方向に離間して配置されており、
板状部のうち、筒状部よりも内側に位置する部分を破壊部として、
破壊部には、破壊部の略中心を通過するように、ウェルドが形成されている
密閉型電気化学デバイス用防爆弁体。
It is an explosion-proof valve body for a sealed electrochemical device that closes the gas discharge hole of the sealing plate of the sealed electrochemical device and breaks and discharges gas when the internal pressure of the device rises.
The explosion-proof valve body is formed by injection molding of a thermoplastic resin into a shape in which the cylindrical portion protrudes from the flat plate-like portion,
Of the plate-like part, the part located outside the cylindrical part as a collar part,
The explosion-proof valve body is integrated with the sealing plate at the collar,
In the collar portion, a plurality of gate marks are arranged spaced apart in the circumferential direction,
Of the plate-like part, the part located inside the cylindrical part as the destruction part,
An explosion-proof valve body for a sealed electrochemical device in which a weld is formed in the destruction portion so as to pass through the approximate center of the destruction portion.
破壊部及びつば部が、略同じ肉厚とされた請求項1に記載の密閉型電気化学デバイス用防爆弁体。 The explosion-proof valve body for a sealed electrochemical device according to claim 1, wherein the destruction part and the collar part have substantially the same thickness. ゲート痕の数が3、4のいずれかである請求項1または請求項2に記載の密閉型電気化学デバイス用防爆弁体。 The explosion-proof valve body for a sealed electrochemical device according to claim 1 or 2, wherein the number of gate marks is 3 or 4. 複数のゲート痕が、破壊部の略中心を通過する線に対し対称となる位置に配置された請求項1ないし請求項3のいずれかに記載の密閉型電気化学デバイス用防爆弁体。 The explosion-proof valve body for a sealed electrochemical device according to any one of claims 1 to 3, wherein the plurality of gate marks are arranged at positions symmetrical with respect to a line passing through the approximate center of the destruction portion. 複数のゲート痕が、破壊部の略中心に対し等角度配置となるように配置された請求項1ないし請求項3のいずれかに記載の密閉型電気化学デバイス用防爆弁体。 The explosion-proof valve body for a sealed electrochemical device according to any one of claims 1 to 3, wherein the plurality of gate traces are arranged so as to be equiangularly arranged with respect to a substantially center of the destruction portion.
JP2017178439A 2017-09-18 2017-09-18 Explosion-proof valve body for sealed electrochemical devices Active JP6925212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017178439A JP6925212B2 (en) 2017-09-18 2017-09-18 Explosion-proof valve body for sealed electrochemical devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017178439A JP6925212B2 (en) 2017-09-18 2017-09-18 Explosion-proof valve body for sealed electrochemical devices

Publications (2)

Publication Number Publication Date
JP2019053934A true JP2019053934A (en) 2019-04-04
JP6925212B2 JP6925212B2 (en) 2021-08-25

Family

ID=66015245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017178439A Active JP6925212B2 (en) 2017-09-18 2017-09-18 Explosion-proof valve body for sealed electrochemical devices

Country Status (1)

Country Link
JP (1) JP6925212B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243201A (en) * 2021-12-20 2022-03-25 风帆(扬州)有限责任公司 High valve accuse non-maintaining battery of security
CN114397100A (en) * 2021-12-29 2022-04-26 东软睿驰汽车技术(沈阳)有限公司 Method and device for determining installation number of explosion-proof valves
WO2022120851A1 (en) * 2020-12-11 2022-06-16 宁德时代新能源科技股份有限公司 End cap assembly, battery cell and manufacturing method therefor, battery and power device
JP7182995B2 (en) 2018-11-02 2022-12-05 タイガースポリマー株式会社 Explosion-proof valve structure for closed electrochemical devices
WO2023220885A1 (en) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 End cap, battery cell, battery and power consuming device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315486A (en) * 1999-04-30 2000-11-14 Matsushita Electric Ind Co Ltd Manganese dry battery
JP2005332613A (en) * 2004-05-18 2005-12-02 Matsushita Electric Ind Co Ltd Alkaline primary battery
JP2008010476A (en) * 2006-06-27 2008-01-17 Hitachi Aic Inc Pressure valve for capacitor
JP2009064957A (en) * 2007-09-06 2009-03-26 Hitachi Aic Inc Capacitor having pressure valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315486A (en) * 1999-04-30 2000-11-14 Matsushita Electric Ind Co Ltd Manganese dry battery
JP2005332613A (en) * 2004-05-18 2005-12-02 Matsushita Electric Ind Co Ltd Alkaline primary battery
JP2008010476A (en) * 2006-06-27 2008-01-17 Hitachi Aic Inc Pressure valve for capacitor
JP2009064957A (en) * 2007-09-06 2009-03-26 Hitachi Aic Inc Capacitor having pressure valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7182995B2 (en) 2018-11-02 2022-12-05 タイガースポリマー株式会社 Explosion-proof valve structure for closed electrochemical devices
WO2022120851A1 (en) * 2020-12-11 2022-06-16 宁德时代新能源科技股份有限公司 End cap assembly, battery cell and manufacturing method therefor, battery and power device
US11688907B2 (en) 2020-12-11 2023-06-27 Contemporary Amperex Technology Co., Limited End cap assembly, battery cell and manufacturing method thereof, battery, and electric apparatus
CN114243201A (en) * 2021-12-20 2022-03-25 风帆(扬州)有限责任公司 High valve accuse non-maintaining battery of security
CN114243201B (en) * 2021-12-20 2023-11-17 风帆(扬州)有限责任公司 High valve accuse maintenance-free battery of security
CN114397100A (en) * 2021-12-29 2022-04-26 东软睿驰汽车技术(沈阳)有限公司 Method and device for determining installation number of explosion-proof valves
WO2023220885A1 (en) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 End cap, battery cell, battery and power consuming device

Also Published As

Publication number Publication date
JP6925212B2 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
JP2019053934A (en) Explosion-proof valve body for sealed electrochemical device
EP3489063A1 (en) High-pressure vessel for vehicle
US10593983B2 (en) End plate for fuel cell stack
US20160036017A1 (en) Battery module with enhanced vibration characteristic and frame cartridge assembly applied for the same
JP6217982B2 (en) Bus bar
JP2010232071A (en) Gasket for battery and alkaline battery using the same
US10854894B2 (en) Method of manufacturing plate-integrated gasket
CN104577004A (en) Polymer lithium ion battery with fixed diaphragm and manufacturing method thereof
JP7182995B2 (en) Explosion-proof valve structure for closed electrochemical devices
KR101580103B1 (en) Indicator with improved sealing power
JP2011150946A (en) Manufacturing method for lead storage battery
JP6225499B2 (en) Explosion-proof device for sealed electrochemical devices
JP6164481B2 (en) Sealing body for sealed electrochemical device and its gasket
JP2014232856A5 (en)
JP2015056391A5 (en)
JP5995120B2 (en) Storage battery lid manufacturing method and storage battery manufacturing method
JP2010118339A (en) Valve structure, and battery using the same
JP2015201290A (en) battery holding device
CN110718667A (en) Forming process of non-falling structure of conductive pole column, pole column structure and battery cover plate
CN211178884U (en) Air tightness detection device
JP2015090871A (en) Ignition coil for internal combustion engine
US10847831B2 (en) End plate of fuel cell stack
JP2017220393A (en) Secondary battery
US20240030545A1 (en) Sealed battery
CN220021333U (en) Cover plate for power battery and power battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200825

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210803

R150 Certificate of patent or registration of utility model

Ref document number: 6925212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150