JP2005326822A - 光学素子及びその加工方法 - Google Patents

光学素子及びその加工方法 Download PDF

Info

Publication number
JP2005326822A
JP2005326822A JP2005069801A JP2005069801A JP2005326822A JP 2005326822 A JP2005326822 A JP 2005326822A JP 2005069801 A JP2005069801 A JP 2005069801A JP 2005069801 A JP2005069801 A JP 2005069801A JP 2005326822 A JP2005326822 A JP 2005326822A
Authority
JP
Japan
Prior art keywords
optical element
film
metal
molding
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005069801A
Other languages
English (en)
Inventor
Keiichi Ishizuka
慶一 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005069801A priority Critical patent/JP2005326822A/ja
Priority to US11/101,443 priority patent/US7344263B2/en
Publication of JP2005326822A publication Critical patent/JP2005326822A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】製造工程中に各種研磨工程を一切用いず、型成形のみにより光学素子用曲面鏡を低面粗度および高形状精度且つ安価に製造できるようにする。
【解決手段】金属基材1を成形型により成形することにより光学素子を成形するための光学素子の加工方法であって、金属基材1の表面に金属膜3をPVDやCVD、あるいはメッキ、浸漬等の方法で成膜する成膜工程と、金属膜が表面に形成された金属基材を成形型により成形する成形工程とを具備する。
【選択図】 図3

Description

本発明は、製造工程中に各種研磨工程を一切用いず、型成形のみにより大型光学素子用曲面鏡を低面粗度および高形状精度且つ安価に製造する技術に関するものである。
光学素子用曲面鏡を用いた画像システムとして、フライトシミュレータ、ヘッドマウントディスプレイ、プロジェクタ等が知られている。その中でも特に金属材料を主体とした光学素子用曲面鏡用材料もしくは光学素子用曲面鏡の提案として、特開平7−243027号公報(特許文献1)に開示されているAl圧延材表面にAl基金属を連続蒸着した反射用材料や、特開2002−316226号公報(特許文献2)に開示されている高純度アルミ板/純アルミ板圧延合板をプレス成形にて凹面鏡反射板を得る方法や、特開平8−36222号公報(特許文献3)に開示されている曲面鏡を鏡面に研磨した特にステンレス板材を用いてプレス成形やバルジ成形により製造する方法や、特開平9−120705号公報(特許文献4)に開示されているAlまたはAl合金またはステンレスをへら絞り成形または液圧成形により曲面形状とし、その後各種研磨法により照明用鏡を得る方法が知られている。
特開平7−243027号公報 特開2002−316226号公報 特開平8−36222号公報 特開平9−120705号公報 特開平6−31529号公報
ところが、上述した特許文献1に開示されている曲面鏡用材料はAl金属中に他の金属を5重量%まで許容するAl主体金属であり、実際にこの素材を機械研磨後、成形した場合、製造工数およびタクトが増大し、コストの上昇を招くと共に反射面に異質物に起因した微視的な凹凸や亀裂が生じてしまい、これら欠陥の影響が大きく、高品質な光学素子用鏡としての要求を満足できなかった。また、蒸着前のアルミ圧延材を平坦化するために、スキンパス圧延を施しているが、このように高圧下で加工したままの圧延材は著しい集合組織を有してしまい、その後の成形で異方変形し、目標とする特に大型の形状精度を得ることができなかった。
同様に、上述した特許文献2に開示されている高純度アルミ板/純アルミ板圧延合板にて凹面鏡反射板を得る方法では、やはりスキンパス圧延材のため、その後の成形で異方変形し、変形の影響の少ないφ1、2mm以下の凹面鏡に限られていた。また、この様な微小形状であるが故に、型による応力集中が可能なため、高いプレス圧縮応力による平坦化により面粗度を低くすることが可能であった。
また、上述した特許文献3に開示されている曲面鏡製造法では、金型表面に対する要求は無く、金属表面を加圧時や離型時の傷から保護するために樹脂シートや潤滑液を利用しているが、この様な方法では到底要求形状精度および面粗度を満足することはできず、また合金特有の微視的な不均質物に起因した面欠陥により、面粗度を要求品質内に収めることは極めて困難であった。
同様に、上述した特許文献4に開示されている曲面鏡製造法は、基本的に成形後に化学研磨処理に供し照明用金属鏡を得る製造法であり、特にその使用工具の精度を規定しているものではなく、その様な工具を用いた成形工程直後に得られる製品は高品質光学素子用としての形状精度と面粗度を満足するものではなく、また後工程で鏡面に化学研磨処理する工程が必要となり、その研磨処理では十分な平坦化は得られず、また工数が増え製造コストを押し上げていた。
また、一般に、高反射の金属板を得るためには、ローラーバニッシング等で鏡面化したり(特許文献5参照)、圧延基材上にアルミ主体金属を蒸着したりしていた(特許文献1参照)。
高純度で転位の移動阻害因子となる不純物が少ない場合でも、光沢(平滑性)を得るために特許文献5の様にローラーバニッシング等を行なうと、予め転位密度が高い状態であったり、優先方位を有する組織を生じたりし、塑性変形能が低下する。その結果、数ナノレベルの非常に平滑な金型を用いてプレス成形しても金型と同等の平滑性を得ることは出来なかった。また、優先方位の影響により塑性変形に方向性が顕著に表れ、金型の形状を転写することもまた困難であった。また、特許文献1の様に仮に高純度アルミを蒸着しても、基材が優先方位を有しているため、成形方向性が現れ、型のナノレベルの形状転写を施すことは困難であった。さらには、蒸着温度の上限が130°Cとされているが、この様なアルミ蒸着の場合、特に酸化膜の結晶構造が緻密化し、またより深く酸素原子が拡散するため、酸化膜を含めた最表面の機械的特性(ヤング率、硬さ)が上昇し、塑性変形した際に微細な膜剥れや膜の亀裂を生じやすくなり、光学素子の成形には不適当であった。
したがって、本発明は上述した課題に鑑みてなされたものであり、その目的は、製造工程中に各種研磨工程を一切用いず、型成形のみにより大型光学素子用曲面鏡を低面粗度および高形状精度且つ安価に製造できるようにすることである。
上述した課題を解決し、目的を達成するために、本発明に係わる光学素子の加工方法は、金属基材を成形型により成形することにより光学素子を成形するための光学素子の加工方法であって、前記金属基材の表面に金属膜を成膜する成膜工程と、前記金属膜が表面に形成された前記金属基材を前記成形型により成形する成形工程とを具備することを特徴とする。
また、この発明に係わる光学素子の加工方法において、前記金属基材の成形温度におけるヤング率が、前記金属膜のヤング率よりも高いことを特徴とする。
また、この発明に係わる光学素子の加工方法において、前記金属基材を、前記金属膜の成膜前に予めアニール処理する工程を更に具備することを特徴とする。
また、この発明に係わる光学素子の加工方法において、前記金属膜は、該金属膜を形成する主成分以外の成分の合計が1mol%以下に調整された高純度金属膜であることを特徴とする。
また、この発明に係わる光学素子の加工方法において、前記金属膜と前記金属基材との密着性を向上させるための中間膜を成膜する工程をさらに具備することを特徴とする。
また、この発明に係わる光学素子の加工方法において、前記金属基材の面粗度Raが、Ra≦3μmであることを特徴とする。
また、この発明に係わる光学素子の加工方法において、前記金属基材は、該金属基材への混入不純物の最大長さが50μm以下であることを特徴とする。
また、この発明に係わる光学素子の加工方法において、前記成形工程では、1回のプレス成形加工により前記光学素子を成形することを特徴とする。
また、この発明に係わる光学素子の加工方法において、前記成形工程では、複数回のプレス成形加工により前記光学素子を成形し、前記複数回のプレス成形加工のうちの最終のプレス成形加工時に、表面の面粗度RaがRa≦10nmである成形型を用いてプレス成形することを特徴とする。
また、この発明に係わる光学素子の加工方法において、前記成形工程では、複数回のプレス成形加工により前記光学素子を成形し、前記複数回のプレス成形加工のうちの少なくとも1回のプレス成形加工を行なった後に、前記金属基材に前記金属膜を成膜し、前記複数回のプレス成形加工のうちの最終のプレス加工時に、表面の面粗度RaがRa≦10nmである成形型を用いてプレス成形することを特徴とする。
また、本発明に係わる光学素子は、上記の加工方法により成形され、表面の面粗度RaがRa≦10nm、形状精度が前記成形型の形状に対してPV≦5μmであることを特徴とする。
また、この発明に係わる光学素子において、表面にAl系又はAg系の反射膜、あるいは金属膜又は有機膜からなる保護膜、あるいは前記反射膜と保護膜を積層した積層膜が形成されていることを特徴とする。
また、この発明に係わる光学素子において、前記反射膜、あるいは前記保護膜、あるいは前記積層膜の表面の面粗度RaがRa≦10nm、形状精度が前記成形型の形状に対してPV≦5μmであることを特徴とする。
また、本発明に係わる光学素子は、金属製板をプレス成形することにより製造された光学素子であって、金属製の板材からなる基材と、該基材上に形成され、金属材料からなる金属膜とを具備し、前記金属膜の表面から2nmから60nmの深さ範囲において、前記金属膜のそれぞれの深さでの平均ヤング率Eが、65GPa≦E≦130GPaであり、且つ平均硬さHvが、1.5GPa≦Hv≦15GPaであることを特徴とする。
また、この発明に係わる光学素子において、前記金属膜が、純度が99.9mol%以上の金属材料から形成されていることを特徴とする。
また、この発明に係わる光学素子において、前記金属膜は、該金属膜の表面に垂直な50nm以上の高さを有する柱状結晶構造を有することを特徴とする。
また、この発明に係わる光学素子において、前記金属膜が冷間において面心立方構造の結晶構造を有する金属からなることを特徴とする。
また、この発明に係わる光学素子において、前記金属膜の表面の面粗度RaがRa≦10nm、且つうねり高さPVがPV≦5μmであることを特徴とする。
本発明によれば、製造工程中に各種研磨工程を一切用いず、型成形のみにより大型光学素子用曲面鏡を低面粗度および高形状精度且つ安価に製造することが可能となる。
以下、本発明の好適な実施形態について図面を参照して説明する。
(第1の実施形態)
図1は、曲面鏡を製造するための材料となる板材10、すなわち基材1に高純度金属膜3を片面に形成した状態を示す断面図である。基材1と高純度金属膜3の密着性を高めるために基材1の表面にアンダーコート2を施している。
図2は、図1と同様に、基材1の両面に高純度金属膜3を形成した状態を示す断面図である。
図3は、図1に示す板材10を成形型により成形して製造された最終成形品の断面図である。
図4は、図3に示す最終成形品の光学面に、反射膜や保護膜、あるいはそれらを積層した膜4を形成した状態を示す断面図である。
図5は、図2に示す板材10を成形型により成形して製造された最終成形品の断面図である。
まず、本発明の第1の実施形態について具体的に説明する前に、一般的な鏡面形成方法について説明する。
一般に、金属の強化方法として、固溶強化、時効強化、分散強化などが知られている。この中でも時効強化と分散強化では母相と異質な析出や、分散した化合物が転移の移動の大きな障害となり強度が高くなる。この様な高強度化した材料は機械研磨や積層研磨等により光沢が得られ易く、アルミニウム合金やステンレス等から製造され広く照明用や光学用反射板として用いられてきた。
ところがこの様な析出相や偏析、分散物質、混入物質等が母相とコヒーレントでない、もしくは一部コヒーレントでない場合、上記の加工法では、母材表面から析出相や偏析、分散物質が脱落しあるいは亀裂の起点となり、または母材との磨耗差の相違により高低差を生じる等により、光学素子用母材表面に欠陥が生じ、欠陥の大きさや深さなどによっては高品質光学素子として要求を満たすことが困難であった。
そこで、これらを改善するために、予め純度を高めた圧延板もしくは高純度板を貼り合わせた合板をスキンパス等で平坦化する方法もあるが、その素材もしくは基材は異方性が激しく、成形後に目標とする特に大型の形状精度を得ることは到底できず、且つ精圧延程度では十分な平坦度は得られていなかった。
そこで、本発明の一実施形態では、まず圧延板(基材1)上に金属膜3を形成する。その結果、基材1の表面の析出相や偏析、分散強化成分を、金属膜3で覆うことにより極力排除でき、それらに起因した表面欠陥が減少する。
さらに、成形温度中の基材が表面構成金属よりもヤング率が小さい場合、荷重が主に形状精度向上のための変形応力として働き、面粗度向上への寄与が小さくなってしまい目標品質を得ることは困難であることが明らかになったため、成形時の基材1のヤング率は最表面膜材(金属膜3)より大きくした。
また、基材1に金属膜3を成膜する前に、予め適当なアニール処理を施している。この処理により、基材1に回復や再結晶が生じ、基材1そのものの異方性が改善され、より大型の成形品の形状精度が大きく改善されることが判明した。さらに、膜(金属膜3)を高純度化することにより展延性に富み、比較的低応力で金属表面への型の転写性が著しく向上すると共に、金属膜3の膜組織が基材1の集合組織とは異なるため、最表面での異方性が改善されることが確認できた。そこで、本実施形態では、金属膜3の膜主成分以外の成分を1mol%以下とした。尚、高価な高純度材の使用量は極僅かであり、極めて平滑な曲面鏡を安価に製造することが可能となることを確認できた。
また、一般的な金属鏡の製造では、鏡面を得るために、所謂鏡面に磨いた工具鋼を用い、成形品に傷がつかないように、潤滑液や樹脂シート等を工具と金属素材との間に挿入し、成形を実施していた。この場合、要求される形状精度と面粗度は共に得ることが出来なかった。
そこで、本実施形態では、成形型の表面(成形面)の面粗度(Ra)が10nm以下となるように、型材に工具鋼、超硬合金、サーメット、セラミックス、非晶質合金、金属間化合物、耐熱耐食性クロム合金、ニッケル合金、および鉄合金等を適用した曲面型を用いてプレス成形する。さらに、前記型材の成形面を金属酸化物、あるいは金属炭化物、あるいは金属窒化物、あるいは高密度炭素、あるいは貴金属基膜、あるいはこれらを組合わせた積層膜で被覆し、且つこの被覆表面の面粗度(Ra)を10nm以下とすることにより、各種潤滑材を少なくとも金属板(基材1と金属膜3を合わせたもの)の光学有効面には適用することなく、要求面粗度にプレス成形することが可能となった。尚、成形時に素材の滑りを更に向上させる方法として、型材を超音波振動させたり、衝撃圧を与えたりすることも可能である。
また、光学素子(鏡)の基材1に適用可能な市販の金属基材として面粗度がRa≦3μmのものを用いた。一般的な鏡面とは面粗度(Ra)が0.05〜0.1μmの範囲で知られており、照明機器用素材の初期板表面はこの範囲の表面処理がなされている。従来では、素材を予め機械的あるいは化学的に平坦化(鏡面化)処理した後、成形し、金属鏡と成す方法と、市販素材を成形した後に、機械的あるいは化学的に平坦化(鏡面化)処理し、金属鏡を得る方法があった。しかし、従来技術では何れにしても平坦化(鏡面化)処理(研磨処理等)を行っていたため、工程タクトが長くなり、且つ製品コストが増すという問題があった。また、これらはそもそも高品質な光学素子用途ではなかった。
これに対し、本実施形態では、実際に市販の金属板(基材1)を高純度膜(金属膜3)で成膜後、適当なプレス条件でプレス成形することにより、微視的な素材表面の凹凸を圧縮変形でき、容易に、且つ短時間でRaを10nm以下にできることが確認できた。
また、本実施形態では、表面欠陥の原因となる50μmより大きな工程上不可避的に混入する異物を極力排除する。このことよって前記と同じ要求品質の成形品が得られる。工程上不可避的に混入する異物は、例えば清浄度の高い環境で製品素材を製造することによって、50μm以上の大きさの異物を極力少なくすることができる。
次に、具体的成形工程では、これまでは成形後に機械研磨を中心として各種研磨を実施することにより、多結晶金属の場合、面粗度(Ra)で約2.8nmを得ていた(特開平8−68897号公報)。この研磨工程では成形後の研磨加工時間が大となり、またバッチ式であるためコストを押し上げた。
そこで、本実施形態では、まず一回のプレス成形により、素材(基材1と金属膜3を合わせたもの)および素材表面の微視的な凹凸を一度に、もしくはゆっくりと連続的に変形させ、要求形状精度および面粗度を同時に得ることが可能となる。また、成形を複数回繰り返すことにより初期の成形である程度の形状精度を付与し、最終プレス成形によって目標とする高形状精度および低面粗度を付与することが可能となった。また、成形を複数回繰り返し、初期の成形である程度の形状精度を付与しつつ、高純度膜(金属膜3)を成膜し、最終プレス成形によって目標とする高形状精度および低面粗度を付与することが可能となった。
以上の併記した実施形態を潤滑剤等を少なくとも光学有効面に用いることなく実施することにより、製品最表面への型の転写性が向上すると共に、コヒーレントでない異物や不均質組織を起点とした亀裂や空孔等の欠陥が著しく少なく、あるいは小さくなり、あるいはほとんど見られなくなる。そして、得られる大型の製品品質は表面粗度がRa≦10nm、且つ前記光学有効面の形状精度は型の形状に対してPV≦5μmと、低面粗度と高形状精度を各種研磨工程なしに、同時に得られる。このように、これまでの予想を越えた極めて平滑な面を有する光学素子用の大型金属曲面成形品が得られ、さらに、この超平滑金属曲面成形品に反射膜や保護膜等4を形成した後も、前記の高形状精度と低面粗度を維持することができる。
また、上記の成形品、あるいは表面に増反射膜または保護膜またはこれらを組み合わせた積層膜4を構成した成形品を対向させて、反射し合うように構成した中空構成にすることにより小型の光学装置を提供可能となる。
この様な観点から、高品質の光学素子が安価に得られる最適条件を鋭意検討し、下記の図6、図7に実施例および比較例を記した。
尚、本実施形態の面粗度の表記は、非接触の光学干渉測定装置であるNew View100を用い、任意の約300μm四方で測定した時の粗さデータ(Ra)を示した。また、本実施形態の形状データの表記は、非接触の光学干渉測定装置であるZygo Mark4を用い、光学有効面全面の形状精度(PV)を示した。
また、安価な市販のアニール処理を施した圧延板上(基材1)に高純度金属材料(金属膜3)で表面を容易且つ安価に構成する方法として、本実施形態では蒸着を用いた。また、蒸着時の基板温度は100°C以下で実施した。基板温度が100°C以上では膜硬さが高まり、成形後に表面を荒らしてしまった。また、膜の組織も成長し、面粗度が悪化する原因となった。さらに、高純度膜(金属膜3)と基材1との密着性を向上させるために、密着性を改善するアンダーコート2を施す方法を実施することも好ましい。尚、本発明は、蒸着に限定されるものではなく、他の成膜条件やPVDやCVD、あるいはメッキ、浸漬等の成膜方法も適用可能である。
高純度金属膜(金属膜3)で表面を構成した光学鏡用積層曲面鏡素材の成形を実施する際に、一切の各種研磨を施さず、再結晶温度以下の成形温度、且つ大気中あるいは真空中あるいは不活性雰囲気中の何れかの条件下で、面粗度Ra≦10nmにした曲面型を用い、その型周辺の清浄度を特に高め、前記の通り準備した積層素材(基材1と金属膜3を合わせたもの)を一回のプレス成形、もしくは複数回の成形により、製品表面粗度がRa≦10nm、且つ前記光学有効面の形状精度が型の形状に対してPV≦5μmとなるように成形荷重と成形速度を制御した。尚、上記の実施形態は単なる一例であり、本発明を限定するものではなく、前記の趣旨を考慮して光学素子用板材料やその構成材料、製造方法や成形品の変更を行うことはいずれも本発明の範囲内に含まれる。
以上説明したように、上記の実施形態によれば、全工程中で一切の各種研磨を施さず、成形後の光学素子用曲面鏡表面に現れる50μmより大きな欠陥を著しく減少することが出来る。
さらに、高価な光学素子用曲面鏡素材を用いることなく、著しく高い精度を有する型にて塑性変形させて成形するのみで、非常に平滑な表面が得られ、高品質な大型光学素子用曲面鏡として適用可能となると共に、成形後の加工数を大幅に減らすことが可能となりコストの低下を図ることが出来る。
その結果、安価に光学素子として十分な形状精度と面粗度を有する光学素子用曲面鏡および該曲面鏡を中空に構成した光学装置を提供可能となる。
(第2の実施形態)
以下、本発明の第2の実施形態について説明する。
本実施形態における成形素材としての板材10の断面構造は、図1乃至図5に示した第1の実施形態と同様である。
まず、ナノレベルで超平滑された型の平滑性を成形素材(板材10)に転写させるためには、少なくとも成形素材としての板材10の表面層は高純度であると同時に、初期表面層(高純度金属膜3)および基材1が低転位密度且つ等方的組織であることが必須となる。特許文献1の様に必ずしも構成膜は球状組織である必要は無い。
一般にせん断変形応力τと平均転位密度ρとの間には、τ=τ0+αμb√ρ(ただし、τ0とα:定数、μ:剛性率、b:バーガースベクトル)の関係が成立するため、ρが大きいとき変形が阻害されることが分かる。
つまり、第2の実施形態の反射光学素子の特徴とは、断面の深さ方向に2nmから60nmの範囲における表面層のヤング率Eが60〜72GPa、硬さHvが1.2〜7.7GPaの成形前の成形素材(板材10)を、プレス成形することにより、成形後の素子表面の転位密度の増大により、断面の深さ方向に2nmから60nmの範囲における表面層のヤング率Eが65〜130GPa、硬さHvが1.5〜15GPaに加工硬化するような成膜条件および成形条件で成形する。また、基材1においても予めJIS規格に定められた耐力15N/m2以上にアニールすることにより転位密度の低下を図り、且つ等方的配向組織にしておくことにより、高精度な形状を得ることが可能となる。
最表面層を高純度金属膜3で構成することは上述の通りであるが、その構成時(蒸着時)の温度は特願平7−243027号公報のように130°Cを最大値としては、目的の反射光学素子は得られない。最大80°C以下、室温以上が望ましい。このように、低温で蒸着を行なうことにより、蒸着された高純度金属膜3は成形前の状態では比較的柔らかく、たとえて言うならば、降り積もったままの雪がまだ踏み固められていないような状態にある。そのため、高純度金属膜3の内部の結晶構造では、滑り、回転等が起こりやすく、成形型の表面の平滑面に倣って容易に変形することが可能であり、成形型の表面の平滑性が非常によく転写される。そのため、このような温度条件で形成した膜を成形することで容易にナノレベルの型の表面転写が可能となる。
また、室温〜80°Cの範囲で成膜した高純度アルミ膜は、その膜の表面に垂直な柱状晶を有するが、微視的に見るとその柱状晶は膜の表面の垂直方向に50nm以上の微細結晶で構成されていることが望ましいことを本願発明者は見出した。この効果として、微細であるがゆえに表面の平滑性に寄与することはもちろん、組織的な著しい配向を防ぎ、且つ粒界表面の高い表面エネルギーにより、圧縮成形時に最表面の凹凸の加工硬化を動的再結晶により緩和する駆動力となり、平滑化を進めることが可能となる。
なお、高純度金属膜3は滑り面が多く高い変形能を有する面心立方格子の結晶構造を有する組織(例えば、アルミニウム)であることが好ましい。また、基材1には、圧延処理をされていない板材料、又は圧延処理をされていた場合には、アニールすることにより機械的な異方性を取り除いた材料を用いることが望ましい。
上述の条件を満たした成形素材(板材10)を成形した場合、表面平滑性のみならず、形状成形能にも優れているため、あらゆる形状の反射面が成形の対象となり得る。
また、成形した表面が高純度高平滑アルミ面であるため、自身のみでも可視域で最大90%を超える分光反射率を有するため、その製品面に腐食防止膜を直接形成することも可能である。また、高平滑面の特徴を生かして、赤外域に特化した膜構成や可視域の反射率をさらに高めた膜構成をとることも可能である。
上記のような条件で成形された成形品は、型の平滑性および形状を極めてよく転写可能である。つまり、型の出来の良し悪しが成形品の品質に影響を与える。型技術にもよるが、現在の型技術から考えると、型の成形面の面粗度を、Ra≦10nm、且つ光学有効面のうねり高さをPV≦5μmとすることが望ましい。
本実施形態では、成形品の形状が単純形状であるものは一回のプレス成形で前後に研磨工程を用いずに光学素子が得られるが、より大型の成形品や複雑な形状の成形品の場合は、複数回の圧縮粗型成形の後、最後に精密型成形を行うようにしても良い。また、複数回の圧縮粗型成形の後に成膜し、その直後に最終の精密型成形を行うようにしても良い。
この様な観点から、高品質の光学素子が低価格で得られる最適条件を鋭意検討し、下記に実施例および比較例を記した。
なお、本実施形態の反射光学素子表面近傍のヤング率Eおよび硬さHvは、成形素子断面をFIBで切断後、支持体に固定し、原子間力顕微鏡付きナノインデンテーション(Hystron社製Triboscpe)により、平らな面を探索後、ダイヤモンド製Cube Cornerの圧子を用いて、最大荷重10mN、押し込み深さ約50nm、測定間隔約5nmピッチで膜最表面(酸化膜を含む)から内部方向にN=3回測定し個々の深さでの平均値を求めた結果に基くものである。また、巨視的な表面の面粗度は、非接触の光学干渉測定装置であるNew View100を用い、任意の約300μm四方で測定した時の粗さデータ(Ra)を示した。また、本実施形態の形状データは、非接触の光学干渉測定装置であるZygo Mark4を用い、光学有効面全面の形状精度(PV)を示した。
反射光学素子用素材の表面の柱状晶組織は、安価な製法としては、市販のアニールを施した圧延板の表面上に、80°C以下で高純度金属材料をPVDやCVD等にて成膜することとにより、一度に大面積の素材が得られる。また、ニーズに応じたサイズによる成膜やニアネット成形品(一次成形品)への成膜等も一つの方法である。このように、上記の手法は本発明を限定するものではなく、本発明の主旨を逸脱しない範囲で光学素子用板素材やその構成材料、および製造方法の変更を行うことは可能である。
上記の方法によって作成された光学反射素子用素材(板材10)の成形を実施する前処理として、一切の各種研磨を施さなかった。成形は再結晶温度以下の成形温度、且つ大気中あるいは真空中あるいは不活性雰囲気中の何れかの条件下で、成形面の面粗度Ra≦10nmにした型を用い、一切の潤滑剤を用いず、素材をプレス成形のみにより、反射光学素子の表面粗度がRa≦10nm、且つ光学有効面の形状精度が型の形状に対してPV≦5μmとなるように成形温度、成形荷重と成形速度を制御した。なお、下記の実施例は本発明を実施した単なる例であり、本発明の主旨を逸脱しない範囲で、光学素子用板材料やその構成材料、および製造方法や成形品の変更を行うことは可能である。
(実施例1)
市販の特にスキンパス等の光沢処理を施していないJIS規格のアニール純アルミ素材の表面に、純度が99.99mol%のアルミを用いて、雰囲気2×10-5torr、室温にて膜厚2μmの柱状晶組織(高純度金属膜3)を形成した。高純度金属膜3の表面から2nmの深さでは、ヤング率E=72.3GPa、型さHv=7.7GPaであった。この素材(板材10)には、成形前処理としての各種研磨を一切施さなかった。成形は純アルミ膜の再結晶温度以下の成形温度、且つ大気中の条件下で、面粗度Ra:5nmにした球面型を用い、一切の潤滑剤を用いず、素材板をプレス成形のみにより、反射光学素子を成形した。同位置(高純度金属膜3の表面から2nmの深さ)での測定結果はヤング率E=114.4GPa、Hv=12.5GPaであり、また、表面粗度がRa:6nm、且つ光学有効面の形状精度は型の形状に対してPV:1.1μmであった。高純度金属膜3の表面に形成された酸化膜厚はTEM観察より5nmであり、得られた成形品にSiO2保護膜を形成し、赤外域反射特性と耐久性を改善した。なお、図8に、成形前後の高純度金属膜3のヤング率と硬さの測定値を示す。
(実施例2)
市販の特にスキンパス等の光沢処理を施していないJIS規格のアニール純銅素材を、大気中の条件下で、面粗度Ra≦100nmにした球面型を用い、素材板をプレス成形して一次成形品を得た。この成形品の表面に、純度が99.99mol%のアルミを用いて、雰囲気2×10-5torr、76°Cにて膜厚3μmの柱状晶組織を形成した。素材(高純度金属膜3)の表面から2nmの深さではヤング率E=65GPa、硬さHv=6.5GPaであった。その一次成形品には、成形前処理としての各種研磨を一切施さなかった。一次成形品は純アルミ膜(高純度金属膜3)の再結晶温度以下の成形温度、且つ不活性雰囲気中の条件で、面粗度Ra:5nmにした曲面型を用い、一切の潤滑剤を用いず、最終プレス成形のみにより、反射光学素子を成形した。同位置(高純度金属膜3の表面から2nmの深さ)での測定結果はヤング率E=119GPa、硬さHv=13.2GPaであり、また、表面粗度がRa:7nm、且つ光学有効面の形状精度は型の形状に対してPV=4.3μmであった。高純度金属膜3の表面に形成される酸化膜厚はTEM観察より5nmであり、得られた成形品にSiO2保護膜を形成し、赤外域反射特性と耐久性と耐食性を改善した。
(実施例3)
市販の特にスキンパス等の光沢処理を施していないJIS規格のアニール純アルミ素材表面に、純度が99.9mol%のアルミを用いて、雰囲気2×10-5torr、50°Cにて膜厚3μmの柱状晶組織(高純度金属膜3)を形成した。高純度金属膜3の表面から2nmの深さではヤング率E=79GPa、硬さHv=9.7GPaであった。この素材(板材10)には、成形前処理としての各種研磨を一切施さなかった。この素材板を、大気中の条件下で、面粗度Ra≦50nmにした自由曲面型を用い、一切の潤滑剤を用いず、素材板をプレス成形して一次成形品を得た。次に、一次成形品の前処理を一切行わず、一次成形品の純アルミ膜(高純度金属膜3)の再結晶温度以下で、且つ大気中の条件で、面粗度Ra:3nmにした自由曲面型を用い、一切の潤滑剤を用いず、最終プレス成形のみにより、反射光学素子を成形した。同位置(高純度金属膜3の表面から2nmの深さ)での測定結果はヤング率E=128GPa、硬さHv=14.1GPaであり、また、表面粗度がRa:5nm、且つ光学有効面の形状精度は型の形状に対してPV:3.4μmであった。酸化膜厚はTEM観察より3nmであり、得られた成形品にSiO2/TiO2/SiO2の順に成膜し、可視域反射特性と耐久性を改善した。
(比較例1)
99%の高純度アルミと95%以下のアルミまたはアルミ合金とを熱間圧延により合板とし、さらにスキンパスによる光沢処理を施した。この高純度アルミの表面側から2nmの深さではヤング率E=133GPa、硬さHv=15.2GPaであった。この素材を成形前処理として、一切の各種研磨を施さなかった。成形は再結晶温度以下の成形温度、且つ大気中で、面粗度Ra:5nmにした曲面型を用い、一切の潤滑剤を用いず、この素材をプレス成形のみにより成形したところ、同位置での測定結果はヤング率E=136GPa、硬さHv=15.8GPaであったが、この反射光学素子の表面粗度がRa=12nm、且つ光学有効面の形状精度は型の形状に対してPV=10μmと大きく歪み、高精度な反射光学素子を得ることが出来なかった。
(比較例2)
市販の特にスキンパス等の光沢処理を施していないJIS規格のアニール純アルミ素材表面に、雰囲気2×10-5torr、材料99.99mol%の純度のアルミにて、84℃で膜厚2μmの粒状晶組織を作成した。この素材の表面から2nmの深さではヤング率E=125GPa、硬さHv=8GPaであった。この素材を成形前処理として、一切の各種研磨を施さなかった。成形は再結晶温度以下の成形温度、且つ不活性雰囲気中で、面粗度Ra:3nmにした曲面型を用い、一切の潤滑剤を用いず、この素材をプレス成形のみにより成形したところ、同位置での測定結果はヤング率E=135GPa、硬さHv=15.4GPaであり、また、成膜アルミにクラックが生じ、光学素子を得ることができなかった。
以上説明したように、上記の第2の実施形態によれば、全工程中で一切の各種研磨を施さず、また潤滑剤を用いることなく、成形後、高平滑且つ高精度な反射光学素子を得ることができる。すなわち、従来の高価な高反射アルミ素材を用い、また成形前後に鏡面研磨を行っていた反射鏡に比べて、成形後の加工工数を大幅に減らすことが可能となり、且つコストの低減を図ることが出来る。その結果、安価に光学素子として十分な形状精度と面粗度を有する光学素子用曲面鏡およびその曲面鏡を複数使用した光学装置を得ることが可能となる。
曲面鏡を製造するための基材に高純度金属膜を片面に形成した状態を示す断面図である。 図1と同様に、基材の両面に高純度金属膜を形成した状態を示す断面図である。 図1に示す板材を成形型により成形して製造された最終成形品の断面図である。 図3に示す最終成形品の光学面に、反射膜や保護膜、あるいはそれらを積層した膜を形成した状態を示す断面図である。 図2に示す板材を成形型により成形して製造された最終成形品の断面図である。 第1の実施形態の実施例の成形結果を示す図である。 第1の実施形態の比較例の成形結果を示す図である。 第2の実施形態の実施例1における、成形前後の高純度金属膜のヤング率と硬さの測定値を示した図である。
符号の説明
1 基材
2 アンダーコート
3 金属膜
4 反射膜、保護膜

Claims (18)

  1. 金属基材を成形型により成形することにより光学素子を成形するための光学素子の加工方法であって、
    前記金属基材の表面に金属膜を成膜する成膜工程と、
    前記金属膜が表面に形成された前記金属基材を前記成形型により成形する成形工程とを具備することを特徴とする光学素子の加工方法。
  2. 前記金属基材の成形温度におけるヤング率が、前記金属膜のヤング率よりも高いことを特徴とする請求項1に記載の光学素子の加工方法。
  3. 前記金属基材を、前記金属膜の成膜前に予めアニール処理する工程を更に具備することを特徴とする請求項1に記載の光学素子の加工方法。
  4. 前記金属膜は、該金属膜を形成する主成分以外の成分の合計が1mol%以下に調整された高純度金属膜であることを特徴とする請求項1に記載の光学素子の加工方法。
  5. 前記金属膜と前記金属基材との密着性を向上させるための中間膜を成膜する工程をさらに具備することを特徴とする請求項1に記載の光学素子の加工方法。
  6. 前記金属基材の面粗度Raが、Ra≦3μmであることを特徴とする請求項1に記載の光学素子の加工方法。
  7. 前記金属基材は、該金属基材への混入不純物の最大長さが50μm以下であることを特徴とする請求項1に記載の光学素子の加工方法。
  8. 前記成形工程では、1回のプレス成形加工により前記光学素子を成形することを特徴とする請求項1に記載の光学素子の加工方法。
  9. 前記成形工程では、複数回のプレス成形加工により前記光学素子を成形し、前記複数回のプレス成形加工のうちの最終のプレス成形加工時に、表面の面粗度RaがRa≦10nmである成形型を用いてプレス成形することを特徴とする請求項1に記載の光学素子の加工方法。
  10. 前記成形工程では、複数回のプレス成形加工により前記光学素子を成形し、前記複数回のプレス成形加工のうちの少なくとも1回のプレス成形加工を行なった後に、前記金属基材に前記金属膜を成膜し、前記複数回のプレス成形加工のうちの最終のプレス加工時に、表面の面粗度RaがRa≦10nmである成形型を用いてプレス成形することを特徴とする請求項9に記載の光学素子の加工方法。
  11. 請求項1乃至10のいずれか1項に記載の加工方法により成形され、表面の面粗度RaがRa≦10nm、形状精度が前記成形型の形状に対してPV≦5μmであることを特徴とする光学素子。
  12. 表面にAl系又はAg系の反射膜、あるいは金属膜又は有機膜からなる保護膜、あるいは前記反射膜と保護膜を積層した積層膜が形成されていることを特徴とする請求項11に記載の光学素子。
  13. 前記反射膜、あるいは前記保護膜、あるいは前記積層膜の表面の面粗度RaがRa≦10nm、形状精度が前記成形型の形状に対してPV≦5μmであることを特徴とする請求項12に記載の光学素子。
  14. 金属製板をプレス成形することにより製造された光学素子であって、
    金属製の板材からなる基材と、
    該基材上に形成され、金属材料からなる金属膜とを具備し、
    前記金属膜の表面から2nmから60nmの深さ範囲において、前記金属膜のそれぞれの深さでの平均ヤング率Eが、65GPa≦E≦130GPaであり、且つ平均硬さHvが、1.5GPa≦Hv≦15GPaであることを特徴とする光学素子。
  15. 前記金属膜が、純度が99.9mol%以上の金属材料から形成されていることを特徴とする請求項14に記載の光学素子。
  16. 前記金属膜は、該金属膜の表面に垂直な50nm以上の高さを有する柱状結晶構造を有することを特徴とする請求項14に記載の光学素子。
  17. 前記金属膜が冷間において面心立方構造の結晶構造を有する金属からなることを特徴とする請求項14に記載の光学素子。
  18. 前記金属膜の表面の面粗度RaがRa≦10nm、且つうねり高さPVがPV≦5μmであることを特徴とする請求項14に記載の光学素子。
JP2005069801A 2004-04-13 2005-03-11 光学素子及びその加工方法 Withdrawn JP2005326822A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005069801A JP2005326822A (ja) 2004-04-13 2005-03-11 光学素子及びその加工方法
US11/101,443 US7344263B2 (en) 2004-04-13 2005-04-08 Optical element and processing method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004118224 2004-04-13
JP2005069801A JP2005326822A (ja) 2004-04-13 2005-03-11 光学素子及びその加工方法

Publications (1)

Publication Number Publication Date
JP2005326822A true JP2005326822A (ja) 2005-11-24

Family

ID=35473180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005069801A Withdrawn JP2005326822A (ja) 2004-04-13 2005-03-11 光学素子及びその加工方法

Country Status (1)

Country Link
JP (1) JP2005326822A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002777A (ja) * 2008-06-20 2010-01-07 Canon Electronics Inc マイクロミラーデバイス、光走査装置及び画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002777A (ja) * 2008-06-20 2010-01-07 Canon Electronics Inc マイクロミラーデバイス、光走査装置及び画像形成装置

Similar Documents

Publication Publication Date Title
US20090114317A1 (en) Metallic mirrors formed from amorphous alloys
JP5092702B2 (ja) マグネシウム合金部材
JP6370298B2 (ja) 可視光反射材用アルミニウム箔とその製造方法
JP6684139B2 (ja) 磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート
JP7081662B2 (ja) 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット
CA2313438C (en) High quality optical surface and method of producing same
JPWO2007020769A1 (ja) 光学素子成形用金型およびその製造方法
US7344263B2 (en) Optical element and processing method for the same
JPH10137861A (ja) 絞りしごき加工法
US20060141093A1 (en) Composite mold and method for making the same
WO2017163943A1 (ja) 磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート
JP6684198B2 (ja) 磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート
JP5439750B2 (ja) 被覆部材の製造方法および被覆部材
JP6427290B1 (ja) 磁気ディスク用アルミニウム合金基板及びその製造方法、ならびに、当該磁気ディスク用アルミニウム合金基板を用いた磁気ディスク
JP2005326822A (ja) 光学素子及びその加工方法
JP7168210B2 (ja) 純チタン金属材料薄板の製造方法およびスピーカ振動板の製造方法
JP2002326825A (ja) 光学素子成形金型及び光学素子
WO2022138837A1 (ja) チタン材
JP4689306B2 (ja) 反射光学素子
JP4667021B2 (ja) 光学素子の成形方法
JP2616181B2 (ja) 成形性に優れた高光沢チタン箔の製造方法
JP2001300643A (ja) マグネシウム材製品の製造方法
WO2011040181A1 (ja) 成形型及び成形型の製造方法
JP4006393B2 (ja) 金属製光学素子の製造方法
AU2020283650B2 (en) Method for manufacturing plate glass

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513