JP2005320484A - Heat-conductive composition and heat-conductive sheet - Google Patents

Heat-conductive composition and heat-conductive sheet Download PDF

Info

Publication number
JP2005320484A
JP2005320484A JP2004141326A JP2004141326A JP2005320484A JP 2005320484 A JP2005320484 A JP 2005320484A JP 2004141326 A JP2004141326 A JP 2004141326A JP 2004141326 A JP2004141326 A JP 2004141326A JP 2005320484 A JP2005320484 A JP 2005320484A
Authority
JP
Japan
Prior art keywords
polymer
weight
heat
parts
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004141326A
Other languages
Japanese (ja)
Other versions
JP4829482B2 (en
Inventor
Shinichiro Kawahara
伸一郎 河原
Yasuyuki Ogawa
康之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2004141326A priority Critical patent/JP4829482B2/en
Publication of JP2005320484A publication Critical patent/JP2005320484A/en
Application granted granted Critical
Publication of JP4829482B2 publication Critical patent/JP4829482B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-conductive composition which is flexible, has excellent shape followingness, excellent adhesiveness, excellent recyclability, and high heat conductivity, and to provide a heat-conductive sheet. <P>SOLUTION: This heat-conductive composition is characterized by comprising 50 to 95 pts.wt. of an adhesive polymer, 5 to 50 pts.wt. of a side chain-crystallizable polymer which is incompatible with the adhesive polymer and exhibits flowability at the heat-generating temperature of the a heat generator, and a heat-conductive filler in an amount of 10 to 300 pts.wt. per 100 pts.wt. of the total amount of the polymers. The heat-conductive composition has an adhesive power ratio (adhesive power at 80°C / adhesive power a 23°C) at 80°C and 23°C of ≤0.2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱伝導性を有する熱伝導性組成物および熱伝導性シートに関する。   The present invention relates to a thermally conductive composition and a thermally conductive sheet having thermal conductivity.

近年、半導体を代表例とする電気・電子部品では、発熱に伴う電気・電子部品の冷却が、熱による誤作動等を防止するうえで重要となっている。冷却方法としては、電気・電子部品の発熱を放熱体へ熱伝導させ、放熱する方法がとられる。しかしながら、発熱体および放熱体の表面は平滑でないことが多い。このため、十分な接触面積が得られるように、発熱体と放熱体との間には、柔軟性を有する熱伝導性感圧接着剤を用いた接着シートを介在させることで、放熱効果を向上させている。かかる接着シートは、発熱体や放熱体の表面に密着し、接触面積を大きくすることで、高い放熱効果が得られる。このため、前記接着シートには、柔軟性や形状追従性が要求される。   2. Description of the Related Art In recent years, in electrical / electronic components that use semiconductors as a representative example, cooling of electrical / electronic components accompanying heat generation has become important in order to prevent malfunctions due to heat. As a cooling method, a method is adopted in which the heat generated by the electric / electronic component is conducted to the heat radiating body to radiate heat. However, the surfaces of the heat generator and the heat radiator are often not smooth. For this reason, the heat dissipation effect is improved by interposing an adhesive sheet using a heat conductive pressure-sensitive adhesive having flexibility between the heating element and the heat dissipation element so that a sufficient contact area is obtained. ing. Such an adhesive sheet is in close contact with the surface of the heating element or the heat radiating body, and a high heat radiating effect is obtained by increasing the contact area. For this reason, the said adhesive sheet is requested | required of a softness | flexibility and shape followability.

前記接着シートとして、特許文献1には、アクリル酸アルキルエステルを主成分とする共重合体と、この共重合体と非相溶であり且つ融点が40〜80℃の高級脂肪族系アルコールや高級脂肪酸などの化合物と、熱伝導性微粒子とを含有した熱伝導性感圧接着シートが記載されている。   As the adhesive sheet, Patent Document 1 discloses a copolymer containing an alkyl acrylate ester as a main component, a higher aliphatic alcohol having a melting point of 40 to 80 ° C. and a higher aliphatic alcohol which is incompatible with the copolymer. A thermally conductive pressure-sensitive adhesive sheet containing a compound such as a fatty acid and thermally conductive fine particles is described.

このような熱伝導性感圧接着シートは、発熱体からの熱を受けて、前記化合物の融点以上の温度にまで昇温すると化合物が溶融し、適度な柔軟性や形状追従性を有するとされている。しかしながら、前記化合物は重合体に比べると低分子量化合物であるため、主成分である共重合体に対する分散性が制限され、例えば分散粒径も小さなものにならざるをえない。このため、柔軟性が十分ではなく、発熱体および放熱体の表面形状によっては、特に微細な凹凸形状では完全に密着させることは困難であり、このため高い放熱効果が得られないという問題がある。また、化合物が溶融した際の粘着力の低下が小さいため、発熱体や放熱体から簡単に取外せない。このため、無理に取外そうとすると、前記化合物の一部が発熱体や放熱体の表面に残る、いわゆる糊残りが生じるため、発熱体や放熱体のリサイクルに支障をきたすおそれがある。   Such a heat conductive pressure-sensitive adhesive sheet receives heat from a heating element and is heated to a temperature equal to or higher than the melting point of the compound. Yes. However, since the compound is a low molecular weight compound as compared with the polymer, the dispersibility with respect to the copolymer as the main component is limited, and for example, the dispersed particle size must be small. For this reason, the flexibility is not sufficient, and depending on the surface shape of the heat generating body and the heat radiating body, it is difficult to achieve complete contact, particularly with a fine uneven shape, and thus there is a problem that a high heat radiating effect cannot be obtained. . Further, since the decrease in the adhesive strength when the compound is melted is small, it cannot be easily removed from the heating element and the heat dissipation element. For this reason, if it is forcibly removed, a part of the compound remains on the surface of the heating element or radiator, so-called adhesive residue is generated, which may hinder recycling of the heating element or radiator.

特開2003−105299号公報JP 2003-105299 A

本発明の課題は、柔軟で形状追従性および密着性に優れると共に、剥離性やリサイクル性にも優れ、高い熱伝導性を有する熱伝導性組成物および熱伝導性シートを提供することである。   An object of the present invention is to provide a thermally conductive composition and a thermally conductive sheet which are flexible and excellent in shape followability and adhesiveness, excellent in peelability and recyclability, and have high thermal conductivity.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、熱伝導性組成物が粘着性を有するポリマーと、前記粘着性を有するポリマーと非相溶であり且つ発熱体の発熱温度で流動性を示す側鎖結晶化可能ポリマーとを含む場合には、側鎖結晶化可能ポリマーが、母材である粘着性を有するポリマー(海)に対して非相溶(連続性のない島)に分散し、いわゆる海島構造を形成した状態で柔軟性を示すため、形状追従性や密着性が発現すると共に熱伝導性が向上し、しかも、粘着性が十分に低下するため取外しが容易となり、電気・電子部品のリサイクル性が向上するという新たな事実を見出し、本発明を完成させるに至った。
すなわち、本発明の熱伝導性組成物は、粘着性を有するポリマー50〜95重量部と、前記粘着性を有するポリマーと非相溶でありかつ発熱体の発熱温度で流動性を示す側鎖結晶化可能ポリマー5〜50重量部とを含み、さらにこれらのポリマー総量100重量部に対して、熱伝導性充填剤10〜300重量部を含有することを特徴とする。
As a result of intensive studies to solve the above problems, the present inventors have found that the heat conductive composition is incompatible with the adhesive polymer, and the exothermic temperature of the heating element is incompatible with the adhesive polymer. When the side-chain crystallizable polymer is fluid, the side-chain crystallizable polymer is incompatible with the adhesive polymer (sea) that is the base material (is not a continuous island). ) And exhibiting flexibility in a state of forming a so-called sea-island structure, shape followability and adhesion are exhibited, thermal conductivity is improved, and adhesiveness is sufficiently lowered to facilitate removal. The present inventors have found a new fact that the recyclability of electric / electronic parts is improved and completed the present invention.
That is, the thermally conductive composition of the present invention comprises 50 to 95 parts by weight of an adhesive polymer, side chain crystals that are incompatible with the adhesive polymer and exhibit fluidity at the heating temperature of the heating element. It is characterized by containing 5 to 50 parts by weight of the convertible polymer and further containing 10 to 300 parts by weight of a heat conductive filler with respect to 100 parts by weight of the total amount of these polymers.

また、本発明の熱伝導性組成物は、80℃と23℃における粘着力の比(80℃の粘着力/23℃の粘着力)が0.2以下であるのがよい。これにより、熱伝導性組成物を発熱体や放熱体から簡単に取外すことができる。   The heat conductive composition of the present invention preferably has a ratio of adhesive strength at 80 ° C. to 23 ° C. (adhesive strength at 80 ° C./adhesive strength at 23 ° C.) of 0.2 or less. Thereby, a heat conductive composition can be easily removed from a heat generating body or a heat radiator.

本発明の熱伝導性シートは、離型処理したフィルム間に粘着性を有するポリマー50〜95重量部と、前記粘着性を有するポリマーと非相溶でありかつ発熱体の発熱温度で流動性を示す側鎖結晶化可能ポリマー5〜50重量部とを含み、さらにこれらのポリマー総量100重量部に対して、熱伝導性充填剤10〜300重量部を含有することを特徴とする。前記シートの厚さは、形状追従性や密着性を得る上で、20〜200μmであるのがよい。
また、本発明における熱伝導性シートの他の形態は、離型処理したフィルム間に粘着性を有するポリマー50〜95重量部と、前記粘着性を有するポリマーと非相溶でありかつ発熱体の発熱温度で流動性を示す側鎖結晶化可能ポリマー5〜50重量部とを含み、さらにこれらのポリマー総量100重量部に対して、熱伝導性充填剤10〜300重量部を含有する粘着剤層を、熱伝導性を有する基材フィルムの両面に設けたことを特徴とする。
The thermally conductive sheet of the present invention has a fluidity at the exothermic temperature of the heating element, which is incompatible with 50 to 95 parts by weight of the adhesive polymer between the release-treated films, and the adhesive polymer. It contains 5 to 50 parts by weight of the side chain crystallizable polymer shown, and further contains 10 to 300 parts by weight of a heat conductive filler with respect to 100 parts by weight of the total amount of these polymers. The thickness of the sheet is preferably 20 to 200 μm in order to obtain shape followability and adhesion.
Another form of the heat conductive sheet in the present invention is 50 to 95 parts by weight of an adhesive polymer between the release-treated films, an incompatible with the adhesive polymer, and a heating element. A pressure-sensitive adhesive layer containing 5 to 50 parts by weight of a side-chain crystallizable polymer exhibiting fluidity at an exothermic temperature, and further containing 10 to 300 parts by weight of a heat conductive filler with respect to 100 parts by weight of the total amount of these polymers Is provided on both surfaces of a base film having thermal conductivity.

本発明の熱伝導性組成物は、発熱体の発熱温度で、高い分散性で分散して柔軟性を示すことで、形状追従性や密着性が発現し、熱伝導性が向上するという効果がある。また、特定の側鎖結晶化可能ポリマーを有することにより、取外しが容易であるため、電気・電子部品のリサイクル性が向上し、しかも、発熱体と放熱体の表面にいわゆる糊残りが無いという効果がある。   The heat conductive composition of the present invention has the effect that the shape followability and adhesion are expressed and the heat conductivity is improved by being dispersed with high dispersibility and exhibiting flexibility at the heat generation temperature of the heating element. is there. In addition, by having a specific side chain crystallizable polymer, it is easy to remove, so that the recyclability of electrical and electronic parts is improved, and there is no so-called adhesive residue on the surface of the heating element and heat dissipation element. There is.

本発明の熱伝導性組成物は、粘着性を有するポリマーと、側鎖結晶化可能ポリマーと、熱伝導性充填剤とを含む組成物であり、前記側鎖結晶化可能ポリマーが前記粘着性を有するポリマーと非相溶であり且つ発熱体の発熱温度で流動性を示す必要がある。   The thermally conductive composition of the present invention is a composition comprising an adhesive polymer, a side chain crystallizable polymer, and a thermally conductive filler, and the side chain crystallizable polymer has the adhesive property. It must be incompatible with the polymer it has and exhibit fluidity at the exothermic temperature of the heating element.

本発明における側鎖結晶化可能ポリマーは、温度変化に対応して結晶状態と流動状態との間で可逆的に相変化する性質を有する。具体的には、本発明における側鎖結晶化可能ポリマーは、前記粘着性を有するポリマーと非相溶であるのが好ましい。ここで言う「非相溶」とは、粘着性を有するポリマーと側鎖結晶化可能ポリマーとが、実質的に相溶していないことをいう。両ポリマーが相溶すると熱伝導性組成物の凝集力が低下し、ハンドリング性の低下や発熱体と放熱体との間から流出するおそれがある。   The side chain crystallizable polymer in the present invention has a property of reversibly changing between a crystalline state and a fluid state in response to a temperature change. Specifically, the side-chain crystallizable polymer in the present invention is preferably incompatible with the adhesive polymer. The term “incompatible” as used herein means that the adhesive polymer and the side chain crystallizable polymer are not substantially compatible. When both polymers are compatible, the cohesive force of the heat conductive composition is lowered, and there is a possibility that the handling property is lowered or the heat conductive composition flows out between the heat generator and the heat radiator.

また、本発明における側鎖結晶化可能ポリマーは、例えば融点が30℃以上、好ましくは40℃以上で、融点未満の温度で結晶化するのがよい。これにより、側鎖結晶化可能ポリマーは、発熱時の発熱体から熱を受けると流動性を示して発熱体と放熱体との界面で濡れ性が高くなり、発熱体と放熱体との密着性を高めることができると共に、粘着性が十分に低下するため、放熱体の取り外しも容易となり、リサイクル性が向上する。これに対し、前記側鎖結晶化可能ポリマーの融点が30℃未満であると、熱伝導性組成物が保管中に軟化または流動してしまい、ハンドリング性の低下や形態が崩れるおそれがある。   The side chain crystallizable polymer in the present invention is preferably crystallized at a temperature of, for example, a melting point of 30 ° C. or higher, preferably 40 ° C. or higher and lower than the melting point. As a result, the side chain crystallizable polymer exhibits fluidity when it receives heat from the heating element during heat generation, and has high wettability at the interface between the heating element and the heat dissipation element. Since the adhesiveness is sufficiently lowered, the heat radiating member can be easily removed and the recyclability is improved. On the other hand, when the melting point of the side chain crystallizable polymer is less than 30 ° C., the heat conductive composition may be softened or fluidized during storage, and the handling property may be deteriorated or the form may be lost.

本発明において「融点」とは、ある平衡プロセスにより、最初は秩序ある配列に整合されていたポリマーの特定部分が無秩序状態となる温度をいう。本発明における融点は、前記側鎖結晶化可能ポリマーを示差熱走査熱量計(DSC)で、10℃/分の測定条件で測定される。   In the present invention, the “melting point” refers to a temperature at which a specific portion of a polymer that is initially aligned in an ordered arrangement becomes disordered by an equilibrium process. The melting point in the present invention is measured by a differential thermal scanning calorimeter (DSC) of the side chain crystallizable polymer under measurement conditions of 10 ° C./min.

前記側鎖結晶化可能ポリマーの具体例としては、炭素数16以上の直鎖状アルキル基を有するアクリル酸エステルまたはメタクリル酸エステル30〜100重量部と、炭素数1〜12のアルキル基を有するアクリル酸エステルまたはメタクリル酸エステル0〜70重量部と、極性モノマー0〜10重量部とを重合させて得られる重合体(ホモポリマーまたはコーポリマー)であるのがよい。   Specific examples of the side-chain crystallizable polymer include acrylic ester or methacrylic acid ester having a linear alkyl group having 16 or more carbon atoms and acrylic acid having an alkyl group having 1 to 12 carbon atoms. It may be a polymer (homopolymer or copolymer) obtained by polymerizing 0 to 70 parts by weight of an acid ester or methacrylic acid ester and 0 to 10 parts by weight of a polar monomer.

炭素数16以上の直鎖状アルキル基を有するアクリル酸エステル及び/又はメタクリル酸エステル(以下、(メタ)アクリレートという)としては、例えば、ステアリル(メタ)アクリレート、エイコシル(メタ)アクリレート、ベヘニル(メタ)アクリレート等の炭素数18〜22の線状アルキル基を有する(メタ)アクリレートが好ましく用いられる。
炭素数1〜12のアルキル基を有する(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、エチルへキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等があげられる。
極性モノマーとしては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸などのカルボキシル基含有エチレン不飽和単量体や;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシル基を有するエチレン不飽和単量体等が用いられるが、このうち特に好適なものはアクリル酸である。
Examples of the acrylic acid ester and / or methacrylic acid ester (hereinafter referred to as (meth) acrylate) having a linear alkyl group having 16 or more carbon atoms include stearyl (meth) acrylate, eicosyl (meth) acrylate, and behenyl (meta). ) A (meth) acrylate having a linear alkyl group having 18 to 22 carbon atoms such as acrylate is preferably used.
Examples of the (meth) acrylate having an alkyl group having 1 to 12 carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, ethylhexyl (meth) acrylate, and lauryl (meth) acrylate. Etc.
Examples of polar monomers include carboxyl group-containing ethylenically unsaturated monomers such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, and fumaric acid; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl Ethylenically unsaturated monomers having a hydroxyl group such as (meth) acrylate and 2-hydroxyhexyl (meth) acrylate are used, among which acrylic acid is particularly preferable.

前記側鎖結晶化可能ポリマーの重量平均分子量は1000〜20000であるのがよい。これにより、側鎖結晶化可能ポリマーは、粘着性を有するポリマー(海)に対して、所定の分散粒径を有する連続性のない島として分散するため、側鎖結晶化可能ポリマーが流動化した際には、粘着性を有するポリマーに対して高い分散性で分散することができる。ここで、前記側鎖結晶化可能ポリマーの重量平均分子量が1000未満であると、粘着性を有するポリマーに対する分散性が低下する。また、前記重量平均分子量が20000より大きいと流動性が低下するため、発熱体と放熱体との密着性が劣るおそれがある。なお、前記重量平均分子量は、前記側鎖結晶化可能ポリマーをゲルパーミエーションクロマトグラフィ(GPC)で測定し、得られた測定値をポリスチレン換算した値である。   The side chain crystallizable polymer may have a weight average molecular weight of 1000 to 20000. As a result, the side chain crystallizable polymer is dispersed as a non-continuous island having a predetermined dispersed particle size with respect to the adhesive polymer (sea), so that the side chain crystallizable polymer is fluidized. In this case, it can be dispersed with high dispersibility with respect to the adhesive polymer. Here, if the weight average molecular weight of the side-chain crystallizable polymer is less than 1000, the dispersibility of the polymer having adhesiveness decreases. Moreover, since fluidity | liquidity will fall when the said weight average molecular weight is larger than 20000, there exists a possibility that the adhesiveness of a heat generating body and a heat radiator may be inferior. The weight average molecular weight is a value obtained by measuring the side chain crystallizable polymer by gel permeation chromatography (GPC) and converting the obtained measurement value into polystyrene.

本発明における粘着性を有するポリマーは、炭素数1〜12のアルキル基を有するアクリル酸エステル及び/又はメタクリル酸エステル(以下、(メタ)アクリレートという)を主成分とする共重合体であるのがよい。このような(メタ)アクリレートとしては、例えば、2−エチルへキシル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等があげられる。
また、他の共重合成分として、ヒドロキシアルキル基を有する(メタ)アクリレートを用いてもよい。このような(メタ)アクリレートとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシヘキシル(メタ)アクリレート等が挙げられる。
The adhesive polymer in the present invention is a copolymer having an acrylic acid ester and / or methacrylic acid ester (hereinafter referred to as (meth) acrylate) having a C 1-12 alkyl group as a main component. Good. Examples of such (meth) acrylates include 2-ethylhexyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and the like.
Moreover, you may use the (meth) acrylate which has a hydroxyalkyl group as another copolymerization component. Examples of such (meth) acrylates include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxyhexyl (meth) acrylate, and the like.

前記共重合体の重量平均分子量は5万〜50万、好ましくは10万〜30万であるのがよい。前記重合体の重量平均分子量が5万未満であると、熱伝導性組成物の凝集力が不足することで作業性が悪くなり、取外す際には糊残りが生じるおそれがある。また、前記重合体の重量平均分子量が50万より大きいと、凝集力が高く柔軟性に劣るため、発熱体と放熱体との密着性が低下するおそれがある。   The copolymer may have a weight average molecular weight of 50,000 to 500,000, preferably 100,000 to 300,000. When the weight average molecular weight of the polymer is less than 50,000, the workability is deteriorated due to insufficient cohesive force of the heat conductive composition, and there is a possibility that an adhesive residue may be generated when the polymer is removed. On the other hand, if the weight average molecular weight of the polymer is larger than 500,000, the cohesive force is high and the flexibility is inferior.

本発明における熱伝導性組成物は、前記粘着性を有するポリマーを50〜95重量部と、前記側鎖結晶化可能ポリマーを5〜50重量部の割合で含むのがよい。前記側鎖結晶化可能ポリマーの配合量が5重量部未満であると、融点以上の温度に加温しても柔軟性が向上しにくくなる。また、配合量が50重量部より上であると、取外す際には糊残りが多くなるおそれがある。   The thermally conductive composition in the present invention preferably contains 50 to 95 parts by weight of the adhesive polymer and 5 to 50 parts by weight of the side chain crystallizable polymer. When the blending amount of the side chain crystallizable polymer is less than 5 parts by weight, flexibility is hardly improved even when heated to a temperature equal to or higher than the melting point. On the other hand, if the blending amount is higher than 50 parts by weight, there is a possibility that the adhesive residue will increase when removing.

本発明の熱伝導性組成物には、熱伝導性を高めるために熱伝導性充填剤が添加される。前記熱伝導性充填剤としては、特に限定されるものではないが、たとえば、窒化ホウ素、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウム、グラファイトなどが挙げられる。また、形状としては、特に限定されるものではないが、平均粒子径が1〜50μmの微粒子状のものが好ましい。   A heat conductive filler is added to the heat conductive composition of the present invention in order to increase the heat conductivity. The heat conductive filler is not particularly limited, and examples thereof include boron nitride, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, and graphite. Further, the shape is not particularly limited, but fine particles having an average particle diameter of 1 to 50 μm are preferable.

前記熱伝導性充填剤は、粘着性を有するポリマーと側鎖結晶化可能ポリマーとの総量100重量部に対して、10〜300重量部の割合で配合するのが好ましい。これにより、側鎖結晶化可能ポリマーが流動性を示した際には、発熱体から放熱体へ効率よく熱が伝わる。前記熱伝導性充填剤の配合量が10重量部未満であると、熱伝導性組成物の柔軟性は維持できるが、熱伝導性が不足する。また、前記配合量が300重量部より高いと、該組成物の粘度が高くなり、柔軟性が低下するおそれがある。   The thermally conductive filler is preferably blended in an amount of 10 to 300 parts by weight with respect to 100 parts by weight of the total amount of the adhesive polymer and the side chain crystallizable polymer. Thereby, when the side chain crystallizable polymer exhibits fluidity, heat is efficiently transferred from the heating element to the heat dissipation element. When the blending amount of the thermally conductive filler is less than 10 parts by weight, the flexibility of the thermally conductive composition can be maintained, but the thermal conductivity is insufficient. Moreover, when the said compounding quantity is higher than 300 weight part, there exists a possibility that the viscosity of this composition may become high and a softness | flexibility may fall.

本発明の熱伝導性組成物は、80℃と23℃における粘着力の比(80℃の粘着力/23℃の粘着力)が0.2以下であるのが好ましい。前記比が0.2より大きい場合には、粘着力の低下が十分でないために取外しが困難となり、また糊残りが生じやすくなる。粘着力の比は、前記熱伝導性組成物をJIS Z0237に準拠した方法により、80℃、23℃の各雰囲気温度における180°ピール試験(対ステンレス)で得られる測定値から求められる。なお、本発明の熱伝導性組成物は、80℃の粘着力が0.1〜0.5N/25mmであり、23℃の粘着力が1〜5N/25mmであるのが好ましい。   The heat conductive composition of the present invention preferably has a ratio of adhesive strength at 80 ° C. to 23 ° C. (adhesive strength at 80 ° C./adhesive strength at 23 ° C.) of 0.2 or less. When the ratio is larger than 0.2, the adhesive force is not sufficiently lowered, so that it is difficult to remove and adhesive residue is likely to occur. The ratio of adhesive strength is determined from the measured values obtained by a 180 ° peel test (vs. stainless steel) at 80 ° C. and 23 ° C. in each ambient temperature by the method according to JIS Z0237. In addition, as for the heat conductive composition of this invention, it is preferable that 80 degreeC adhesive strength is 0.1-0.5 N / 25mm, and 23 degreeC adhesive strength is 1-5 N / 25mm.

また、本発明の熱伝導性組成物は、耐熱性や凝集力を上げるために、柔軟性を阻害しない範囲で架橋剤を添加してもよい。なお、本発明の熱伝導性組成物の使用形態は、取り扱い性の上でフィルム状ないしシート状の形態であるのが好ましい。   Moreover, in order to raise heat resistance and cohesion force, in the heat conductive composition of this invention, you may add a crosslinking agent in the range which does not inhibit a softness | flexibility. In addition, it is preferable that the usage form of the heat conductive composition of this invention is a film form or a sheet form form on handling property.

本発明にかかる熱伝導性シートは、前記した熱伝導性組成物を溶剤に加えた塗布液を適当な離型処理したフィルム(離型フィルム)上に所定の厚さで塗布し、乾燥させ、両面を離型フィルムで挟むことで形成する。なお、前記熱伝導性シートは、押し出し成形やカレンダー加工によってシート状に成形してもよい。前記離型フィルムは、例えばポリエチレンテレフタレート等のフィルム表面に、シリコーン等の離型剤を塗布したものなどを用いることができる。また、金属メッシュや金属繊維の織布に含浸させることもできる。   The thermally conductive sheet according to the present invention is applied to a film (release film) having been subjected to an appropriate release treatment with a coating solution obtained by adding the above-described thermally conductive composition to a solvent, and dried. It is formed by sandwiching both sides with a release film. The heat conductive sheet may be formed into a sheet shape by extrusion molding or calendering. As the release film, for example, a film surface such as polyethylene terephthalate coated with a release agent such as silicone can be used. It can also be impregnated into a metal mesh or metal fiber woven fabric.

前記熱伝導性シートの厚さは20〜200μmであるのがよい。前記熱伝導性シートの厚さが20μm未満であると、シートの柔軟性が向上した際には、発熱体や放熱体の表面形状に正確に追従させるのが困難になるおそれがある。また、前記シートの厚さが200μmより厚くなると、熱伝導性が悪くなるおそれがある。   The thermal conductive sheet may have a thickness of 20 to 200 μm. If the thickness of the heat conductive sheet is less than 20 μm, it may be difficult to accurately follow the surface shape of the heating element or the heat dissipation body when the flexibility of the sheet is improved. Moreover, when the thickness of the sheet is more than 200 μm, the thermal conductivity may be deteriorated.

本発明における発熱体としては、例えば半導体、パワーモジュール、電子部品等が挙げられる。また、放熱体としては、前記発熱体の発熱面に取り付けられ、空冷や水冷等により少なくとも発熱温度の上昇を抑制できる性能を有するものをいい、例えば放冷フィンを有するヒートシンク等が挙げられる。   As a heat generating body in this invention, a semiconductor, a power module, an electronic component etc. are mentioned, for example. Moreover, as a heat radiator, what is attached to the heat generating surface of the said heat generating body and has the performance which can suppress the raise of heat_generation | fever temperature at least by air cooling, water cooling, etc., for example, the heat sink etc. which have a cooling fin are mentioned.

次に、本発明の熱伝導性シートの使用方法を説明する。まず、熱伝導性シート両面の離型シートを剥がし、熱伝導性シートを発熱体表面の所定位置に貼着する。ついで、放熱体を該シートを介して発熱体の表面上に貼着し、放熱体を発熱体の表面に固定する。   Next, the usage method of the heat conductive sheet of this invention is demonstrated. First, the release sheets on both sides of the heat conductive sheet are peeled off, and the heat conductive sheet is attached to a predetermined position on the surface of the heating element. Next, the heat radiating body is stuck on the surface of the heating element through the sheet, and the heat radiating body is fixed to the surface of the heating element.

この状態で発熱体が発熱し、発熱体の表面が側鎖結晶化可能ポリマーの融点とほぼ等しい温度まで昇温すると、該ポリマーは結晶状態から非結晶状態へ相転移して流動し、発熱体と放熱体との界面で濡れ性が向上する。この結果、熱伝導性シートは、発熱体および放熱体の表面に存在する微細凹凸形状に良く追従するようになり、隙間なく、これらの表面に密着するので接触面積が大きくなり、高い熱伝導性を示すことができる。   In this state, the heating element generates heat, and when the surface of the heating element is heated to a temperature substantially equal to the melting point of the side chain crystallizable polymer, the polymer flows from the crystalline state to the non-crystalline state and flows. The wettability is improved at the interface with the heat sink. As a result, the heat conductive sheet follows the fine irregularities present on the surfaces of the heat generator and the heat radiator, and adheres to these surfaces without gaps, so the contact area is increased and high heat conductivity is achieved. Can be shown.

上記状態では、熱伝導性シートの粘着力が十分に低下しているため、放熱体と発熱体から簡単に取外すことができる。しかも、取外した後に、発熱体または放熱体の表面にシートの一部が残る、いわゆる糊残りは生じない。また、シートは、前記と同様の操作をすることで、何度も繰り返し使用することができる。   In the said state, since the adhesive force of a heat conductive sheet has fully reduced, it can remove easily from a heat radiator and a heat generating body. In addition, after the removal, a part of the sheet remains on the surface of the heat generating body or the heat radiating body, so-called adhesive residue does not occur. Further, the sheet can be used repeatedly many times by performing the same operation as described above.

本発明の他の実施形態として、熱伝導性を有する基材フィルムの両面に、前記した熱伝導性組成物を含む粘着剤層を設けることができる。これにより、熱伝導性シートの強度が向上する。前記導電性を有する基材フィルムとしては、特に制限されるものではないが、たとえば、銅やアルミニウムなどの金属フィルム、金属メッシュ、金属繊維織布、グラファイトシートが挙げられる。   As other embodiment of this invention, the adhesive layer containing an above described heat conductive composition can be provided in both surfaces of the base film which has heat conductivity. Thereby, the intensity | strength of a heat conductive sheet improves. Although it does not restrict | limit especially as a base film which has the said electroconductivity, For example, metal films, such as copper and aluminum, a metal mesh, a metal fiber woven fabric, and a graphite sheet are mentioned.

この熱伝導性シートは、前記した熱伝導性組成物を溶剤に加えた塗布液を基材フィルムの片面に塗布し、乾燥させ、ついで他面にも同様の操作で粘着剤層を形成し、この粘着剤層の表面に、離型フィルムを貼り付けることで形成する。または、初めに離型フィルムに塗布し、乾燥させ、それを基材フィルムにラミネートすることで転写させても形成できる。なお、片側の前記粘着剤層の厚さは20〜100μmであるのが形状追従性を発現させる上で好ましい。   This heat conductive sheet is formed by applying a coating solution obtained by adding the above-described heat conductive composition to a solvent on one side of a base film, drying, and then forming an adhesive layer on the other side in the same manner, It forms by sticking a release film on the surface of this adhesive layer. Alternatively, it can be formed by first applying to a release film, drying, and laminating it on a substrate film to transfer it. In addition, it is preferable when the thickness of the said adhesive layer of one side is 20-100 micrometers to express shape followability.

なお、本発明の熱伝導性組成物の使用形態は、フィルム状やシート状に限定されるものではなく、例えば前記熱伝導性組成物に適当な溶剤を加えて発熱体や放熱体の表面に塗布し、乾燥するようにしてもよい。このようにして形成された塗膜も、前記熱伝導性シートと同様の効果を奏することができる。   In addition, the usage form of the heat conductive composition of this invention is not limited to a film form or a sheet form, For example, an appropriate solvent is added to the said heat conductive composition, and the surface of a heat generating body or a heat radiator is added. It may be applied and dried. Thus, the formed coating film can also show the effect similar to the said heat conductive sheet.

以下、合成例および実施例を挙げて本発明の熱伝導性組成物および熱伝導性シートについて詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。なお、以下の説明で「部」は重量部を意味する。   Hereinafter, although the synthesis example and an Example are given and the heat conductive composition and heat conductive sheet of this invention are demonstrated in detail, this invention is not limited only to a following example. In the following description, “part” means part by weight.

(合成例1)
2−エチルへキシルアクリレートを92部、2−ヒドロキシエチルアクリレート8部および重合開始剤(日本油脂社製の商品名「パーブチルND」)を1部の割合で、それぞれ酢酸エチル/n−ヘプタン(=7/3)の230部に加え、60℃で5時間撹拌して、これらのモノマーを重合させ、粘着性を有するポリマー(共重合体)を得た。得られたポリマーは、重量平均分子量が15万であった。
(Synthesis Example 1)
92 parts of 2-ethylhexyl acrylate, 8 parts of 2-hydroxyethyl acrylate, and 1 part of a polymerization initiator (trade name “Perbutyl ND” manufactured by NOF Corporation) are each ethyl acetate / n-heptane (= In addition to 230 parts of 7/3), the mixture was stirred at 60 ° C. for 5 hours to polymerize these monomers to obtain an adhesive polymer (copolymer). The obtained polymer had a weight average molecular weight of 150,000.

(合成例2)
ステアリルアクリレートを95部、アクリル酸を5部、ドデシルメルカプタンを5部および重合開始剤(日本油脂社製の商品名「パーブチルPV」)を1部の割合で、それぞれトルエン100部に加え、80℃で5時間撹拌して、これらのモノマーを重合させ、側鎖結晶化可能ポリマー(共重合体)を得た。得られたポリマーは、重量平均分子量が7000、融点が50℃であった。
(Synthesis Example 2)
Add 95 parts of stearyl acrylate, 5 parts of acrylic acid, 5 parts of dodecyl mercaptan and 1 part of polymerization initiator (trade name “Perbutyl PV” manufactured by NOF Corporation) to 100 parts of toluene, respectively, at 80 ° C. The mixture was stirred for 5 hours to polymerize these monomers to obtain a side chain crystallizable polymer (copolymer). The obtained polymer had a weight average molecular weight of 7000 and a melting point of 50 ° C.

(合成例3)
ステアリルアクリレート95部に代えてベヘニルアクリレート95部を用いた以外は、合成例2と同様にしてモノマーを重合させ、側鎖結晶化可能ポリマー(共重合体)を得た。得られたポリマーは、重量平均分子量が8000、融点が70℃であった。
(Synthesis Example 3)
A monomer was polymerized in the same manner as in Synthesis Example 2 except that 95 parts of behenyl acrylate was used instead of 95 parts of stearyl acrylate to obtain a side chain crystallizable polymer (copolymer). The obtained polymer had a weight average molecular weight of 8000 and a melting point of 70 ° C.

(合成例4)
ステアリルアクリレートを75部、メチルアクリレートを20部、アクリル酸を5部の割合にした以外は、合成例2と同様にしてモノマーを重合させ、側鎖結晶化可能ポリマー(共重合体)を得た。得られたポリマーは、重量平均分子量が10000、融点が40℃であった。
(Synthesis Example 4)
A monomer was polymerized in the same manner as in Synthesis Example 2 except that 75 parts of stearyl acrylate, 20 parts of methyl acrylate, and 5 parts of acrylic acid were used to obtain a side chain crystallizable polymer (copolymer). . The obtained polymer had a weight average molecular weight of 10,000 and a melting point of 40 ° C.

(合成例5)
ドデシルメルカプタンを2部の割合にした以外は、合成例2と同様にしてモノマーを重合させ、側鎖結晶化可能ポリマー(共重合体)を得た。得られたポリマーは、重量平均分子量が30000、融点が50℃であった。
(Synthesis Example 5)
A monomer was polymerized in the same manner as in Synthesis Example 2 except that the proportion of dodecyl mercaptan was changed to 2 parts to obtain a side chain crystallizable polymer (copolymer). The obtained polymer had a weight average molecular weight of 30,000 and a melting point of 50 ° C.

(合成例6)
2−エチルへキシルアクリレートを99.5部、2−ヒドロキシエチルアクリレート0.5部および重合開始剤(日本油脂社製の商品名「パーブチルND」)を0.5部の割合で、それぞれ酢酸エチル/n−ヘプタン(=7/3)の230部に加え、55℃で5時間撹拌して、これらのモノマーを重合させ、粘着性を有するポリマー(共重合体)を得た。得られたポリマーは、重量平均分子量が22万であった。
合成例1〜6の共重合体を表1に示す。
(Synthesis Example 6)
99.5 parts of 2-ethylhexyl acrylate, 0.5 part of 2-hydroxyethyl acrylate and 0.5 parts of polymerization initiator (trade name “Perbutyl ND” manufactured by NOF Corporation) were each added in ethyl acetate. In addition to 230 parts of / n-heptane (= 7/3), the mixture was stirred at 55 ° C. for 5 hours to polymerize these monomers to obtain an adhesive polymer (copolymer). The obtained polymer had a weight average molecular weight of 220,000.
Table 1 shows the copolymers of Synthesis Examples 1 to 6.

Figure 2005320484
Figure 2005320484

(熱伝導性シートの作製)
それぞれ反応液から固形分を単離することなく、固形分換算で、合成例1のポリマー100部に対して合成例2のポリマー10部となるように、合成例1で得られたポリマー溶液と合成例2で得られたポリマー溶液とを混合して、混合ポリマー溶液を調整した。ついで、この混合ポリマー溶液の固形分100部に対して、窒化ホウ素粉末(平均粒径18μm、電気化学工業社製の商品名「SGP」)を50部の割合で添加し、均一に分散させて熱伝導性溶液を得た。この熱伝導性溶液を、厚さ50μmの離型処理をしたポリエチレンテレフタレートフィルム上に厚さ50μmで塗布し、乾燥させて熱伝導性シートを作製した。得られたシートの粘着力の比(80℃の粘着力/23℃の粘着力)は0.05であった。
(Preparation of thermal conductive sheet)
The polymer solution obtained in Synthesis Example 1 so as to be 10 parts of the polymer of Synthesis Example 2 with respect to 100 parts of the polymer of Synthesis Example 1 in terms of solid content without isolating the solid content from the reaction solution. The polymer solution obtained in Synthesis Example 2 was mixed to prepare a mixed polymer solution. Next, 50 parts of boron nitride powder (average particle size 18 μm, trade name “SGP” manufactured by Denki Kagaku Kogyo Co., Ltd.) is added to 100 parts of the solid content of the mixed polymer solution and dispersed uniformly. A thermally conductive solution was obtained. This thermally conductive solution was applied to a 50 μm thick polyethylene terephthalate film having a thickness of 50 μm, and dried to prepare a thermally conductive sheet. The ratio of the adhesive strength of the obtained sheet (adhesive strength at 80 ° C./adhesive strength at 23 ° C.) was 0.05.

(熱抵抗および熱伝導率)
ヒーター部と冷却部(放熱体)との間に前記熱伝導性シートを挟み、ヒーター部に5Wの電力を1分間印加した後の、ヒーター部と冷却部の温度差(△T)を測定した。なお、熱抵抗(℃/W)は式:△T/5Wから求められる。また、熱伝導率(W/m・K)は式:5W×T×S×△Tから求められる。ここで、Tは前記熱伝導性シートの厚さ50μmを50×10-6mに換算した値を示し、Sは前記熱伝導性シートの面積(m2)を示している。
(Thermal resistance and thermal conductivity)
The thermal conductive sheet was sandwiched between the heater part and the cooling part (heat radiator), and the temperature difference (ΔT) between the heater part and the cooling part was measured after 5 W of power was applied to the heater part for 1 minute. . The thermal resistance (° C./W) is obtained from the formula: ΔT / 5W. The thermal conductivity (W / m · K) is obtained from the formula: 5W × T × S × ΔT. Here, T represents a value obtained by converting the thickness 50 μm of the thermally conductive sheet into 50 × 10 −6 m, and S represents the area (m 2 ) of the thermally conductive sheet.

(再剥離性)
前記熱伝導性シートの80℃と23℃における粘着力の比(80℃の粘着力/23℃の粘着力)から再剥離性を評価した。なお、評価基準は以下のように設定した。
〇:0.2以下
△:0.2より大きく、0.5以下
×:0.5より大きい
(Removability)
The removability was evaluated from the ratio of the adhesive strength of the heat conductive sheet at 80 ° C. and 23 ° C. (adhesive strength at 80 ° C./adhesive strength at 23 ° C.). The evaluation criteria were set as follows.
○: 0.2 or less Δ: Greater than 0.2, 0.5 or less ×: Greater than 0.5

(糊残り)
23℃の雰囲気温度で前記熱伝導性シートをヒーター部と冷却部とで挟み、80℃まで加熱する。ついで該雰囲気温度でシートをヒーター部または冷却部から手で剥がす際の糊残りの有無を目視評価した。なお、評価基準は以下のように設定した。
〇:外観上、糊残りが無い
×:外観上、糊残りが明らかに有る
上記の結果を表2に示す。
(Adhesive residue)
The heat conductive sheet is sandwiched between a heater part and a cooling part at an ambient temperature of 23 ° C. and heated to 80 ° C. Subsequently, the presence or absence of adhesive residue when the sheet was manually peeled off from the heater part or the cooling part at the atmospheric temperature was visually evaluated. The evaluation criteria were set as follows.
○: There is no adhesive residue on appearance
X: From the appearance, the adhesive residue is clearly present. The above results are shown in Table 2.

合成例2で得られたポリマーに代えて、合成例3で得られたポリマーを用いた以外は、実施例1と同様にして熱伝導性シートを作製した。得られたシートの粘着力の比(80℃の粘着力/23℃の粘着力)は0.10であった。ついで、得られた熱伝導性シートについて、実施例1と同様にして熱抵抗、熱伝導率、再剥離性および糊残りを評価した。その結果を表2に示す。   A heat conductive sheet was produced in the same manner as in Example 1 except that the polymer obtained in Synthesis Example 3 was used in place of the polymer obtained in Synthesis Example 2. The ratio of the adhesive strength of the obtained sheet (80 ° C. adhesive strength / 23 ° C. adhesive strength) was 0.10. Subsequently, the obtained thermal conductive sheet was evaluated in the same manner as in Example 1 for thermal resistance, thermal conductivity, removability, and adhesive residue. The results are shown in Table 2.

合成例2で得られたポリマーに代えて、合成例4で得られたポリマーを用いた以外は、実施例1と同様にして熱伝導性シートを作製した。得られたシートの粘着力の比(80℃の粘着力/23℃の粘着力)は0.15であった。ついで、得られた熱伝導性シートについて、実施例1と同様にして熱抵抗、熱伝導率、再剥離性および糊残りを評価した。その結果を表2に示す。   A heat conductive sheet was produced in the same manner as in Example 1 except that the polymer obtained in Synthesis Example 4 was used instead of the polymer obtained in Synthesis Example 2. The ratio of the adhesive strength of the obtained sheet (adhesive strength at 80 ° C./adhesive strength at 23 ° C.) was 0.15. Subsequently, the obtained thermal conductive sheet was evaluated in the same manner as in Example 1 for thermal resistance, thermal conductivity, removability, and adhesive residue. The results are shown in Table 2.

合成例1で得られたポリマーの固形分100部に対して、合成例2で得られたポリマーの固形分が30部の割合となるように混合した以外は、実施例1と同様にして熱伝導性シートを作製した。得られたシートの粘着力の比(80℃の粘着力/23℃の粘着力)は0.05であった。ついで、得られた熱伝導性シートについて、実施例1と同様にして熱抵抗、熱伝導率、再剥離性および糊残りを評価した。その結果を表2に示す。   Heating was conducted in the same manner as in Example 1 except that the solid content of the polymer obtained in Synthesis Example 2 was mixed with 100 parts by weight of the polymer obtained in Synthesis Example 1 so that the solid content of the polymer was 30 parts. A conductive sheet was prepared. The ratio of the adhesive strength of the obtained sheet (adhesive strength at 80 ° C./adhesive strength at 23 ° C.) was 0.05. Subsequently, the obtained thermal conductive sheet was evaluated in the same manner as in Example 1 for thermal resistance, thermal conductivity, removability, and adhesive residue. The results are shown in Table 2.

[比較例1]
ポリマー溶液を、合成例1で得られた粘着性を有するポリマーのみにした以外は、実施例1と同様にして熱伝導性シートを作製した。得られたシートの粘着力の比(80℃の粘着力/23℃の粘着力)は0.70であった。ついで、得られた熱伝導性シートについて、実施例1と同様にして熱抵抗、熱伝導率、再剥離性および糊残りを評価した。その結果を表2に示す。
[Comparative Example 1]
A thermally conductive sheet was produced in the same manner as in Example 1 except that the polymer solution was changed to only the adhesive polymer obtained in Synthesis Example 1. The ratio of the adhesive strength of the obtained sheet (adhesive strength at 80 ° C./adhesive strength at 23 ° C.) was 0.70. Subsequently, the obtained thermal conductive sheet was evaluated in the same manner as in Example 1 for thermal resistance, thermal conductivity, removability, and adhesive residue. The results are shown in Table 2.

[比較例2]
合成例1で得られたポリマーの固形分100部に対して、合成例2で得られたポリマーの固形分が1部の割合となるように混合した以外は、実施例1と同様にして熱伝導性シートを作製した。得られたシートの粘着力の比(80℃の粘着力/23℃の粘着力)は0.40であった。ついで、得られた熱伝導性シートについて、実施例1と同様にして熱抵抗、熱伝導率、再剥離性および糊残りを評価した。その結果を表2に示す。
[Comparative Example 2]
Except that the solid content of the polymer obtained in Synthesis Example 1 was mixed with the solid content of the polymer obtained in Synthesis Example 1 so that the solid content of the polymer obtained in Synthesis Example 2 was 1 part, heat was applied in the same manner as in Example 1. A conductive sheet was prepared. The ratio of the adhesive strength of the obtained sheet (adhesive strength at 80 ° C./adhesive strength at 23 ° C.) was 0.40. Subsequently, the obtained thermal conductive sheet was evaluated in the same manner as in Example 1 for thermal resistance, thermal conductivity, removability, and adhesive residue. The results are shown in Table 2.

[比較例3]
合成例1で得られたポリマーの固形分100部に対して、合成例2で得られたポリマーの固形分が60部の割合となるように混合した以外は、実施例1と同様にして熱伝導性シートを作製した。得られたシートの粘着力の比(80℃の粘着力/23℃の粘着力)は0.30であった。ついで、得られた熱伝導性シートについて、実施例1と同様にして熱抵抗、熱伝導率、再剥離性および糊残りを評価した。その結果を表2に示す。
[Comparative Example 3]
Except for mixing so that the solid content of the polymer obtained in Synthesis Example 2 was 60 parts with respect to 100 parts of the solid content of the polymer obtained in Synthesis Example 1, heat was applied in the same manner as in Example 1. A conductive sheet was prepared. The ratio of the adhesive strength of the obtained sheet (adhesive strength at 80 ° C./adhesive strength at 23 ° C.) was 0.30. Subsequently, the obtained thermal conductive sheet was evaluated in the same manner as in Example 1 for thermal resistance, thermal conductivity, removability, and adhesive residue. The results are shown in Table 2.

[比較例4]
合成例2で得られたポリマーに代えて、合成例5で得られたポリマーを用いた以外は、実施例1と同様にして熱伝導性シートを作製した。得られたシートの粘着力の比(80℃の粘着力/23℃の粘着力)は0.60であった。ついで、得られた熱伝導性シートについて、実施例1と同様にして熱抵抗、熱伝導率、再剥離性および糊残りを評価した。その結果を表2に示す。
[Comparative Example 4]
A heat conductive sheet was produced in the same manner as in Example 1 except that the polymer obtained in Synthesis Example 5 was used in place of the polymer obtained in Synthesis Example 2. The ratio of the adhesive strength of the obtained sheet (adhesive strength at 80 ° C./adhesive strength at 23 ° C.) was 0.60. Subsequently, the obtained thermal conductive sheet was evaluated in the same manner as in Example 1 for thermal resistance, thermal conductivity, removability, and adhesive residue. The results are shown in Table 2.

[比較例5]
合成例6のポリマー100部に対してn−オクタデシルアルコール10部となるように、混合した以外は、実施例1と同様にして熱伝導性シートを作製した。得られたシートの粘着力の比(80℃の粘着力/23℃の粘着力)は0.50であった。ついで、得られた熱伝導性シートについて、実施例1と同様にして熱抵抗、熱伝導率、再剥離性および糊残りを評価した。その結果を表2に示す。
[Comparative Example 5]
A thermally conductive sheet was produced in the same manner as in Example 1 except that the mixture was mixed so that it was 10 parts of n-octadecyl alcohol with respect to 100 parts of the polymer of Synthesis Example 6. The ratio of the adhesive strength of the obtained sheet (adhesive strength at 80 ° C./adhesive strength at 23 ° C.) was 0.50. Subsequently, the obtained thermal conductive sheet was evaluated in the same manner as in Example 1 for thermal resistance, thermal conductivity, removability, and adhesive residue. The results are shown in Table 2.

Figure 2005320484
Figure 2005320484

表2から明らかなように、実施例1〜4では本発明の熱伝導性組成物を用いることにより、熱伝導性が高く且つ再剥離性が良好であり、糊残りも無いことがわかる。これに対して比較例1〜5では、熱伝導性が低く、再剥離性および糊残りが劣る結果を示した。   As apparent from Table 2, in Examples 1 to 4, it can be seen that by using the thermally conductive composition of the present invention, the thermal conductivity is high, the removability is good, and there is no adhesive residue. On the other hand, in Comparative Examples 1-5, the heat conductivity was low, and the re-peelability and the adhesive residue were inferior.

Claims (9)

粘着性を有するポリマー50〜95重量部と、前記粘着性を有するポリマーと非相溶でありかつ発熱体の発熱温度で流動性を示す側鎖結晶化可能ポリマー5〜50重量部とを含み、さらにこれらのポリマー総量100重量部に対して、熱伝導性充填剤10〜300重量部を含有することを特徴とする熱伝導性組成物。   50 to 95 parts by weight of an adhesive polymer, and 5 to 50 parts by weight of a side-chain crystallizable polymer that is incompatible with the adhesive polymer and exhibits fluidity at the exothermic temperature of the heating element, Furthermore, the heat conductive composition characterized by containing 10-300 weight part of heat conductive fillers with respect to 100 weight part of these polymers total amount. 前記側鎖結晶化可能ポリマーの融点が30℃以上であり且つ融点未満の温度で結晶化する請求項1記載の熱伝導性組成物。   The thermally conductive composition according to claim 1, wherein the side chain crystallizable polymer has a melting point of 30 ° C or higher and crystallizes at a temperature lower than the melting point. 前記側鎖結晶化可能ポリマーが、炭素数16以上の直鎖状アルキル基を有するアクリル酸エステルまたはメタクリル酸エステル30〜100重量部と、炭素数1〜12のアルキル基を有するアクリル酸エステルまたはメタクリル酸エステル0〜70重量部と、極性モノマー0〜10重量部とを重合させて得られる、重量平均分子量が1000〜20000の重合体である請求項1または2記載の熱伝導性組成物。   The side chain crystallizable polymer is an acrylic ester or methacrylic acid having 30 to 100 parts by weight of an acrylic ester or methacrylic ester having a linear alkyl group having 16 or more carbon atoms and an alkyl group having 1 to 12 carbon atoms. The heat conductive composition according to claim 1 or 2, which is a polymer having a weight average molecular weight of 1,000 to 20,000 obtained by polymerizing 0 to 70 parts by weight of an acid ester and 0 to 10 parts by weight of a polar monomer. 前記粘着性を有するポリマーが、炭素数1〜12のアルキル基を有するアクリル酸エステルまたはメタクリル酸エステルを主成分とする、重量平均分子量が5万〜50万の共重合体である請求項1〜3のいずれかに記載の熱伝導性組成物。   The polymer having an adhesive property is a copolymer having a weight average molecular weight of 50,000 to 500,000, the main component of which is an acrylic ester or methacrylic ester having an alkyl group having 1 to 12 carbon atoms. The heat conductive composition in any one of 3. 80℃と23℃における粘着力の比(80℃の粘着力/23℃の粘着力)が0.2以下である請求項1〜4のいずれかに記載の熱伝導性組成物。   The heat conductive composition according to any one of claims 1 to 4, wherein a ratio of adhesive strength at 80 ° C and 23 ° C (adhesive strength at 80 ° C / adhesive strength at 23 ° C) is 0.2 or less. 粘着性を有するポリマー50〜95重量部と、前記粘着性を有するポリマーと非相溶でありかつ発熱体の発熱温度で流動性を示す側鎖結晶化可能ポリマー5〜50重量部とを含み、さらにこれらのポリマー総量100重量部に対して、熱伝導性充填剤10〜300重量部を含有することを特徴とする熱伝導性シート。   50 to 95 parts by weight of an adhesive polymer, and 5 to 50 parts by weight of a side-chain crystallizable polymer that is incompatible with the adhesive polymer and exhibits fluidity at the exothermic temperature of the heating element, Furthermore, the heat conductive sheet characterized by containing 10-300 weight part of heat conductive fillers with respect to 100 weight part of these polymer total amounts. 前記熱伝導性シートが、厚さ20〜200μmである請求項6記載の熱伝導性シート。   The heat conductive sheet according to claim 6, wherein the heat conductive sheet has a thickness of 20 to 200 μm. 両面に離型処理したフィルムを設けた請求項6または7記載の熱伝導性シート。   The heat conductive sheet of Claim 6 or 7 which provided the film which carried out the mold release process on both surfaces. 粘着性を有するポリマー50〜95重量部と、前記粘着性を有するポリマーと非相溶でありかつ発熱体の発熱温度で流動性を示す側鎖結晶化可能ポリマー5〜50重量部とを含み、さらにこれらのポリマー総量100重量部に対して、熱伝導性充填剤10〜300重量部を含有する粘着剤層を、熱伝導性を有する基材フィルムの両面に設け、さらにこの粘着剤層の表面に離型処理したフィルムを設けたことを特徴とする熱伝導性シート。   50 to 95 parts by weight of an adhesive polymer, and 5 to 50 parts by weight of a side-chain crystallizable polymer that is incompatible with the adhesive polymer and exhibits fluidity at the exothermic temperature of the heating element, Furthermore, with respect to 100 parts by weight of the total amount of these polymers, a pressure-sensitive adhesive layer containing 10 to 300 parts by weight of a heat conductive filler is provided on both surfaces of a base film having heat conductivity, and further the surface of this pressure-sensitive adhesive layer. A thermally conductive sheet characterized in that a release-treated film is provided.
JP2004141326A 2004-05-11 2004-05-11 Thermally conductive composition and thermal conductive sheet Expired - Fee Related JP4829482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141326A JP4829482B2 (en) 2004-05-11 2004-05-11 Thermally conductive composition and thermal conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141326A JP4829482B2 (en) 2004-05-11 2004-05-11 Thermally conductive composition and thermal conductive sheet

Publications (2)

Publication Number Publication Date
JP2005320484A true JP2005320484A (en) 2005-11-17
JP4829482B2 JP4829482B2 (en) 2011-12-07

Family

ID=35467979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141326A Expired - Fee Related JP4829482B2 (en) 2004-05-11 2004-05-11 Thermally conductive composition and thermal conductive sheet

Country Status (1)

Country Link
JP (1) JP4829482B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199741A (en) * 2005-01-18 2006-08-03 Idemitsu Kosan Co Ltd High heat-conductive resin composition
JP2009120743A (en) * 2007-11-15 2009-06-04 Nitta Ind Corp Temperature sensitive adhesive
JP2009197109A (en) * 2008-02-20 2009-09-03 Nippon Zeon Co Ltd Acrylic resin composition, thermally conductive pressure-sensitive adhesive sheet made of the acrylic resin composition, method of producing the thermally conductive pressure-sensitive adhesive sheet, and composite comprising substrate and the thermally conductive pressure-sensitive adhesive sheet
JP2010065064A (en) * 2008-09-08 2010-03-25 Tokyo Institute Of Technology Thermally conductive material, thermally conductive sheet, inter-laminar insulation film, and manufacturing method thereof
JP2011037944A (en) * 2009-08-07 2011-02-24 Nitta Corp Temperature-sensitive adhesive and temperature-sensitive adhesive tape
JP2011528397A (en) * 2008-07-16 2011-11-17 アウトラスト テクノロジーズ,インコーポレイティド Microcapsules and other constraining structures for articles containing functional polymeric phase change materials
JP2011528396A (en) * 2008-07-16 2011-11-17 アウトラスト テクノロジーズ,インコーポレイティド Functional polymer phase change material and method for producing the same
EP2392628A1 (en) * 2009-01-30 2011-12-07 Nitto Denko Corporation Heat-conductive pressure-sensitive adhesive composition and heat-conductive pressure-sensitive adhesive sheet
JP2013122019A (en) * 2011-12-12 2013-06-20 Nitto Denko Corp Thermally conductive adhesive resin composition and thermally conductive adhesive sheet
JP2015218307A (en) * 2014-05-20 2015-12-07 日東電工株式会社 Adhesive layer, adhesive sheet, and method of producing adhesive layer
JP2021059650A (en) * 2019-10-04 2021-04-15 ニッタ株式会社 Temperature-sensitive resin clay

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316953A (en) * 1997-05-16 1998-12-02 Nitto Denko Corp Releasable thermally conductive pressuer-sensitive adhesive and adhesive sheet prepared therefrom
JP2003105299A (en) * 2001-09-28 2003-04-09 Sekisui Chem Co Ltd Heat conductive pressure sensitive adhesive, heat conductive pressure sensitive adhesive sheet and its laminate
JP2003321654A (en) * 2002-04-26 2003-11-14 Panac Co Ltd Re-peelable double-faced adhesive sheet having repair function
JP2004022634A (en) * 2002-06-13 2004-01-22 Sekisui Chem Co Ltd Wafer support and semiconductor wafer manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316953A (en) * 1997-05-16 1998-12-02 Nitto Denko Corp Releasable thermally conductive pressuer-sensitive adhesive and adhesive sheet prepared therefrom
JP2003105299A (en) * 2001-09-28 2003-04-09 Sekisui Chem Co Ltd Heat conductive pressure sensitive adhesive, heat conductive pressure sensitive adhesive sheet and its laminate
JP2003321654A (en) * 2002-04-26 2003-11-14 Panac Co Ltd Re-peelable double-faced adhesive sheet having repair function
JP2004022634A (en) * 2002-06-13 2004-01-22 Sekisui Chem Co Ltd Wafer support and semiconductor wafer manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199741A (en) * 2005-01-18 2006-08-03 Idemitsu Kosan Co Ltd High heat-conductive resin composition
JP2009120743A (en) * 2007-11-15 2009-06-04 Nitta Ind Corp Temperature sensitive adhesive
JP2009197109A (en) * 2008-02-20 2009-09-03 Nippon Zeon Co Ltd Acrylic resin composition, thermally conductive pressure-sensitive adhesive sheet made of the acrylic resin composition, method of producing the thermally conductive pressure-sensitive adhesive sheet, and composite comprising substrate and the thermally conductive pressure-sensitive adhesive sheet
JP2011528397A (en) * 2008-07-16 2011-11-17 アウトラスト テクノロジーズ,インコーポレイティド Microcapsules and other constraining structures for articles containing functional polymeric phase change materials
JP2011528396A (en) * 2008-07-16 2011-11-17 アウトラスト テクノロジーズ,インコーポレイティド Functional polymer phase change material and method for producing the same
JP2010065064A (en) * 2008-09-08 2010-03-25 Tokyo Institute Of Technology Thermally conductive material, thermally conductive sheet, inter-laminar insulation film, and manufacturing method thereof
EP2392628A1 (en) * 2009-01-30 2011-12-07 Nitto Denko Corporation Heat-conductive pressure-sensitive adhesive composition and heat-conductive pressure-sensitive adhesive sheet
EP2392628A4 (en) * 2009-01-30 2012-08-29 Nitto Denko Corp Heat-conductive pressure-sensitive adhesive composition and heat-conductive pressure-sensitive adhesive sheet
JP2011037944A (en) * 2009-08-07 2011-02-24 Nitta Corp Temperature-sensitive adhesive and temperature-sensitive adhesive tape
JP2013122019A (en) * 2011-12-12 2013-06-20 Nitto Denko Corp Thermally conductive adhesive resin composition and thermally conductive adhesive sheet
WO2013088949A1 (en) * 2011-12-12 2013-06-20 日東電工株式会社 Thermally conductive adhesive resin composition and thermally conductive adhesive sheet
JP2015218307A (en) * 2014-05-20 2015-12-07 日東電工株式会社 Adhesive layer, adhesive sheet, and method of producing adhesive layer
JP2021059650A (en) * 2019-10-04 2021-04-15 ニッタ株式会社 Temperature-sensitive resin clay
JP7409818B2 (en) 2019-10-04 2024-01-09 ニッタ株式会社 thermosensitive resin clay

Also Published As

Publication number Publication date
JP4829482B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4889190B2 (en) Acrylic heat conductive composition and heat conductive sheet
TWI302561B (en) Releasable adhesive composition
JP5600604B2 (en) Temperature-sensitive adhesive for flat panel display manufacturing and temperature-sensitive adhesive tape for flat panel display manufacturing
JP4829482B2 (en) Thermally conductive composition and thermal conductive sheet
JP4647865B2 (en) Thermally conductive pressure sensitive adhesive, thermally conductive pressure sensitive adhesive sheet and laminate thereof
JP2006241333A (en) Heat conductive composition and heat conductive sheet
WO2013172429A1 (en) Stretchable heat-radiation sheet, and article having same attached thereto
WO2022163027A1 (en) Thermally conductive adhesive agent composition, adhesive sheet, and production method therefor
JP3810515B2 (en) Peelable thermally conductive pressure sensitive adhesive and its adhesive sheets
KR101798532B1 (en) Adhesive Composition for Heat Dissipation Sheet and Heat Dissipation Sheet Using the Same
JPH11292998A (en) Heat-conductive sheet
JP4119287B2 (en) Heat dissipation member and connection structure
JP5554933B2 (en) Temperature sensitive adhesive
JP2003049144A (en) Heat-conductive pressure-sensitive adhesive and heat- conductive pressure-sensitive adhesive sheet
JP4729266B2 (en) Thermally conductive composition and thermal conductive sheet
JP2003152147A (en) Heat conductive composite, heat conductive pressure sensitive adhesive sheet as well as jointing structure of heat generating body and heat dissipation body
JP2011241329A (en) Heat-conductive self-adhesive sheet
WO2004015768A1 (en) Heat-dissipating member and joined structure
JP7170476B2 (en) Composition for Forming Heat Dissipating Member, Heat Dissipating Member, and Method for Producing Same
JP2009120841A (en) Acrylic thermally conductive composition and article including the same
JP3976642B2 (en) Heat dissipation member and connection structure
JP4201640B2 (en) Heat conduction sheet
JP2003273296A (en) Heat radiating member and connection structure
JP5379455B2 (en) Temperature sensitive adhesive
JP6353273B2 (en) Pressure-sensitive adhesive layer, pressure-sensitive adhesive sheet, and method for producing pressure-sensitive adhesive layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4829482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees