JP2006241333A - Heat conductive composition and heat conductive sheet - Google Patents

Heat conductive composition and heat conductive sheet Download PDF

Info

Publication number
JP2006241333A
JP2006241333A JP2005059784A JP2005059784A JP2006241333A JP 2006241333 A JP2006241333 A JP 2006241333A JP 2005059784 A JP2005059784 A JP 2005059784A JP 2005059784 A JP2005059784 A JP 2005059784A JP 2006241333 A JP2006241333 A JP 2006241333A
Authority
JP
Japan
Prior art keywords
heat
heat conductive
side chain
weight
conductive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005059784A
Other languages
Japanese (ja)
Inventor
Shinichiro Kawahara
伸一郎 河原
Yasuyuki Ogawa
康之 小川
Kiyotaka Nagai
清高 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2005059784A priority Critical patent/JP2006241333A/en
Publication of JP2006241333A publication Critical patent/JP2006241333A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat conductive composition for efficiently transferring the heat generated from a heat generator part of CPU, MPU and the like to a heat dissipation part of a heat sink, a heat pipe and the like, particularly a heat conductive composition and a heat conductive sheet excellent in shape follow-up properties, flexibility, and adhesion properties capable of coping with a sudden rise in the temperature of the heat generator part and excellent in handling properties and recycling properties. <P>SOLUTION: The heat conductive composition 100 comprising 50-95 pts.wt. side chain crystallizable polymer A which softens at the heat generation temperature of CPU 4, 50-5 pts.wt. side chain crystallizable polymer B which is incompatible with the side chain crystallizable polymer A and exhibits flowability at the heat generation temperature of CPU 4, and furthermore 10-300 pts.wt. heat conductive filler 2 based on 100 pts.wt. solid content of a mixed polymer 1 of the side chain crystallizable polymer A and the side chain crystallizable polymer B and the heat conductive sheet are placed in between CPU 4 and a heat sink 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、CPUやMPU等の発熱体から発生する熱をヒートシンクやヒートパイプ等の放熱部品に効率良く伝えるための熱伝導性組成物および熱伝導性シートに関する。   The present invention relates to a thermally conductive composition and a thermally conductive sheet for efficiently transferring heat generated from a heating element such as a CPU or MPU to a heat radiating component such as a heat sink or a heat pipe.

ノートブックパソコンや、ディスクトップパソコンなどの電子製品の中で発熱する発熱体部品としてCPUやMPU等の半導体部品がある。これらの半導体部品は近年、高性能化に伴い高周波数化が進んでおり、それに伴い消費電力が増大し発熱量も増加する傾向にある。また、このような半導体部品にあっては、発熱量の増大に比例して熱による誤作動や性能の劣化が発生し易くなっている。このため、従来より、これらの発熱体にヒートシンクやシートパイプ等の放熱部品を取り付けて空冷方式または水冷方式で発熱体の温度上昇を抑えて、誤作動や性能の劣化を抑えることが一般的に行われている。しかしながら、発熱体の表面は平滑でないことが多いため、発熱体と放熱部品との間の密着性を向上させるため柔軟性を有する熱伝導性の接着シートを介在させ、発熱体と放熱部品との接触を確保し放熱効果を向上させていた。   Semiconductor parts such as CPUs and MPUs are used as heating element parts that generate heat in electronic products such as notebook personal computers and desktop personal computers. In recent years, these semiconductor components have been increased in frequency with higher performance, and accordingly, power consumption and heat generation tend to increase. Further, in such a semiconductor component, malfunction due to heat and deterioration in performance are likely to occur in proportion to an increase in the amount of heat generated. For this reason, it has been common to install heat-dissipating parts such as heat sinks and seat pipes on these heating elements to suppress temperature rise of the heating elements by air cooling method or water cooling method to suppress malfunctions and performance degradation. Has been done. However, since the surface of the heating element is often not smooth, a heat conductive adhesive sheet having flexibility is interposed to improve the adhesion between the heating element and the heat dissipation component, The contact was secured and the heat dissipation effect was improved.

前記接着シートとして、アクリル酸エステルを主成分とする接着剤に、この接着剤に非相溶な高級脂肪酸などの化合物と熱伝導性微粒子を添加した熱伝導性接着シートが知られている。このような熱伝導性接着シートは、発熱体から熱を受けることで、前記化合物が融点以上の温度に達し溶融し、接着シートとして適度な柔軟性や形状追従性を有し、放熱効果をもたらしている(例えば、特許文献1参照。)。
特開2003−105299号公報(頁1)
As the adhesive sheet, there is known a heat conductive adhesive sheet obtained by adding a compound such as a higher fatty acid incompatible with the adhesive and heat conductive fine particles to an adhesive mainly composed of an acrylate ester. Such a heat conductive adhesive sheet receives heat from a heating element, so that the compound reaches a temperature higher than the melting point and melts, and has an appropriate flexibility and shape followability as an adhesive sheet, thereby providing a heat dissipation effect. (For example, refer to Patent Document 1).
JP 2003-105299 A (page 1)

しかしながら、前記特許文献1に記載の接着シートは、主成分となる接着剤が熱を受けた状態では柔軟性が不十分であることから、発熱体と放熱部品を完全に密着させることは困難であった。また発熱体の温度は、徐々に上昇するのではなく、発熱体(CPU)の演算処理の量により、急激な上昇と下降を繰り返す。そのため、瞬時に上昇する発熱をいかに放熱部品に伝達して効率よく温度を下げるかが重要とされていた。その点からも、前記接着シートを発熱体と放熱部品との間に介在させたとしても、急な温度上昇による発熱体表面の微細な変化に追従できず、高い放熱効果は得られなかった。   However, since the adhesive sheet described in Patent Document 1 is insufficiently flexible in a state where the main component adhesive is heated, it is difficult to completely adhere the heating element and the heat dissipation component. there were. Further, the temperature of the heating element does not gradually increase, but rapidly increases and decreases depending on the amount of calculation processing of the heating element (CPU). For this reason, it has been important to transmit the heat that rises instantaneously to the heat radiating component to efficiently lower the temperature. From this point, even if the adhesive sheet is interposed between the heat generating element and the heat radiating component, it cannot follow a minute change of the surface of the heat generating element due to a sudden temperature rise, and a high heat radiating effect cannot be obtained.

また、前記接着シートは室温で粘着性を有するため、発熱体に貼付ける際、接着シート同士がくっつくために、発熱体への貼り直し時などにおいて作業性や取り扱い性に問題があった。   In addition, since the adhesive sheet has tackiness at room temperature, the adhesive sheets stick to each other when pasted to the heating element, and thus there is a problem in workability and handleability when reattaching to the heating element.

また、CPUやヒートシンク等のリサイクルを考えた場合、前記接着シートは、発熱時においても粘着力の低下が小さいため、発熱体から放熱部品を容易に分離できず、無理に取外そうとすると、前記接着剤の一部が発熱体や放熱体の表面に残る、いわゆる糊残りが生じてしまい、リサイクル性に乏しかった。   Also, when considering recycling of CPU, heat sink, etc., the adhesive sheet has a small decrease in adhesive force even during heat generation, so it is not possible to easily separate the heat radiating parts from the heating element, and forcibly removing it, A part of the adhesive remains on the surface of the heating element or the heat radiating member, so-called adhesive residue is generated, and the recyclability is poor.

本発明は、前記問題点を解決するためになされたもので、CPUやMPU等の発熱体部品から発生する熱を、ヒートシンクやヒートパイプ等の放熱部品に効率良く伝えるための熱伝導性組成物および熱伝導性シートを提供することを目的とし、特にCPUの急激な温度上昇にも対応できる形状追従性と密着性に優れ、取り扱い性やリサイクル性にも優れる熱伝導性組成物および熱伝導性シートを提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and is a heat conductive composition for efficiently transferring heat generated from a heat generating component such as a CPU or MPU to a heat radiating component such as a heat sink or a heat pipe. The thermal conductive composition and the thermal conductivity are excellent in shape followability and adhesiveness that can cope with a rapid temperature rise of the CPU, and are excellent in handleability and recyclability. The purpose is to provide a sheet.

上記目的を達成するための、本発明の熱伝導性組成物および熱伝導性シートは以下のとおりである。   In order to achieve the above object, the heat conductive composition and the heat conductive sheet of the present invention are as follows.

発熱体の発熱温度で軟化する第1側鎖結晶化可能ポリマーを50〜95重量部と、前記第1側鎖結晶化可能ポリマーと非相溶であり発熱体の発熱温度で流動性を示す第2側鎖結晶化可能ポリマーを50〜5重量部含み、前記第1側鎖結晶化可能ポリマーと前記第2側鎖結晶化可能ポリマーの混合ポリマーの固形分100重量部に対して、熱伝導性充填剤10〜300重量部を含むことを特徴とする。   50 to 95 parts by weight of a first side chain crystallizable polymer that softens at an exothermic temperature of the heating element, and is incompatible with the first side chain crystallizable polymer and exhibits fluidity at the exothermic temperature of the heating element. 50 to 5 parts by weight of a two-side chain crystallizable polymer, and thermal conductivity with respect to 100 parts by weight of the solid content of the mixed polymer of the first side-chain crystallizable polymer and the second side-chain crystallizable polymer It contains 10 to 300 parts by weight of a filler.

また、前記第1側鎖結晶化可能ポリマーと第2側鎖結晶化可能ポリマーの融点がともに温度30℃以上であり、かつ融点未満の温度では結晶化することを特徴とする。   The melting points of the first side chain crystallizable polymer and the second side chain crystallizable polymer are both 30 ° C. or higher and crystallize at a temperature lower than the melting point.

また、前記第1側鎖結晶化可能ポリマーおよび前記第2側鎖結晶化可能ポリマーが、ともに炭素数が16以上の直鎖状アルキル基を有するアクリル酸エステル又はメタクリル酸エステルを30〜100重量部と、炭素数1〜12のアクリル酸エステル又はメタクリル酸エステルを70〜0重量部と、極性モノマー0〜10重量部とを重合させて得られる重合体であることを特徴とする。   Further, both the first side chain crystallizable polymer and the second side chain crystallizable polymer are 30 to 100 parts by weight of acrylic acid ester or methacrylic acid ester having a linear alkyl group having 16 or more carbon atoms. And a polymer obtained by polymerizing 70 to 0 parts by weight of an acrylic acid ester or methacrylic acid ester having 1 to 12 carbon atoms and 0 to 10 parts by weight of a polar monomer.

本発明の熱伝導性組成物または熱伝導性シートを発熱体と放熱部品の間に介在させることで、発熱体の発熱温度で前記熱伝導性組成物が軟化、流動化し柔軟性が増すことで、発熱体と放熱部品との密着性がアップし、発熱体の熱を良好に放熱部品に伝え放熱することができる。特に、発熱体の急激な温度上昇においても、発熱体の表面形状の変化に熱伝導性組成物の形状が追従し変化することで、各部材間との密着性を維持し、良好に発熱体の熱を放熱部品へ伝えることができる。また室温では、前記熱伝導性組成物はほとんど粘着性がないことから、発熱体への貼付けや貼直しが容易である。   By interposing the heat conductive composition or the heat conductive sheet of the present invention between the heat generator and the heat radiating component, the heat conductive composition is softened and fluidized at the heat generation temperature of the heat generator to increase flexibility. The adhesion between the heating element and the heat dissipation component is improved, and the heat of the heating element can be transmitted to the heat dissipation component well and radiated. In particular, even when the temperature of the heating element is suddenly increased, the shape of the heat conductive composition changes following the change in the surface shape of the heating element, so that the adhesion between the members is maintained, and the heating element is excellent. Heat can be transferred to heat dissipation components. Moreover, since the said heat conductive composition has almost no adhesiveness at room temperature, it is easy to stick or re-apply to a heat generating body.

また、同様な理由から発熱体から放熱部品を容易に分離できリサイクル性が向上できる。さらにその際、各部材表面で前記熱伝導性組成物が糊残りもなく容易に剥離できることで、リサイクルにおける後工程への負担が少ない。   For the same reason, the heat dissipating component can be easily separated from the heating element, and the recyclability can be improved. Furthermore, at that time, the thermal conductive composition can be easily peeled off without any adhesive residue on the surface of each member, so that the burden on the subsequent process in recycling is small.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

まず、本発明の熱伝導性組成物の実施形態を、図1を用いて説明する。本発明の熱伝導性組成物100は、発熱体の発熱温度で軟化する側鎖結晶化可能ポリマーAに、前記側鎖結晶化可能ポリマーAと非相溶であり、かつ発熱体の発熱温度で流動性を示す側鎖結晶化可能ポリマーBを加えた混合ポリマー1を含み、さらに熱伝導性充填剤2を加えた組成物である。   First, an embodiment of the thermally conductive composition of the present invention will be described with reference to FIG. The thermally conductive composition 100 of the present invention is incompatible with the side chain crystallizable polymer A in the side chain crystallizable polymer A that is softened at the heat generation temperature of the heat generator, and at the heat generation temperature of the heat generator. This is a composition comprising the mixed polymer 1 to which the side-chain crystallizable polymer B exhibiting fluidity is added, and further the thermally conductive filler 2 added.

本発明における前記側鎖結晶化可能ポリマーA,Bは、温度変化に反応して結晶状態と軟化状態(側鎖結晶化可能ポリマーAの場合)、および流動状態(側鎖結晶化可能ポリマーBの場合)との間を可逆的に相転移できるポリマーである。この相転移特性は、両ポリマーが側鎖結晶化可能ポリマーであることから、温度変化にすばやく反応して相転移することが可能である。よって、前記熱伝導性組成物100は、急激な温度変化に瞬時に反応して、前記側鎖結晶化可能ポリマーAが軟化、前記側鎖結晶化可能ポリマーBが流動化することで、即座に柔軟性を示すことが可能となる。   In the present invention, the side chain crystallizable polymers A and B react with temperature changes in a crystalline state, a softened state (in the case of the side chain crystallizable polymer A), and a fluidized state (of the side chain crystallizable polymer B). A polymer that can reversibly undergo phase transition. With respect to this phase transition property, since both polymers are side chain crystallizable polymers, it is possible to quickly react to a temperature change and to undergo phase transition. Therefore, the thermal conductive composition 100 reacts instantaneously to a sudden temperature change, the side chain crystallizable polymer A softens, and the side chain crystallizable polymer B fluidizes, It becomes possible to show flexibility.

前述したように、CPUのような発熱体は、その使用量により瞬時に発熱し温度が上昇する。その際、発熱体と放熱部品との間に、実施形態の熱伝導性組成物100を介在させることで、急激な温度変化による発熱体表面の微細な変化に対し、前記熱伝導性組成物100の形状がすばやく追従変化し、発熱体表面に隙間なく密着することができる。このように、密着性が向上することで熱抵抗が減り、前記熱伝導性組成物100は、発熱体からの熱を効率よく放熱部品に伝え、放熱を行うことが可能である。   As described above, a heating element such as a CPU generates heat instantaneously and increases in temperature depending on the amount of use. At that time, by interposing the heat conductive composition 100 of the embodiment between the heat generating element and the heat radiating component, the heat conductive composition 100 against a minute change of the surface of the heat generating element due to a rapid temperature change. Can quickly follow and change and can adhere to the surface of the heating element without any gaps. As described above, the heat resistance is reduced by improving the adhesion, and the heat conductive composition 100 can efficiently transmit the heat from the heating element to the heat radiating component and perform the heat radiation.

前記熱伝導性組成物100において、前記側鎖結晶化可能ポリマーA、Bの割合は、側鎖結晶化可能ポリマーAが50〜95重量部で、側鎖結晶化可能ポリマーBが50〜5重量部である。割合として軟化特性を持つ側鎖結晶化可能ポリマーAが多いことから、側鎖結晶化可能ポリマーAを母材として、非相溶な側鎖結晶化可能ポリマーBをその中に均一に分散させた、いわゆる海島構造をとっている。重量部の値が前記以外の割合になると、側鎖結晶化可能ポリマーA、Bでの海島構造のバランスが崩れ、熱伝導性組成物100としての機能が低下する。   In the thermally conductive composition 100, the ratio of the side chain crystallizable polymers A and B is 50 to 95 parts by weight of the side chain crystallizable polymer A and 50 to 5% by weight of the side chain crystallizable polymer B. Part. Since there are many side chain crystallizable polymers A having a softening property as a proportion, the incompatible side chain crystallizable polymer B was uniformly dispersed in the side chain crystallizable polymer A as a base material. It has a so-called sea-island structure. When the value by weight is in a ratio other than the above, the balance of the sea-island structure in the side-chain crystallizable polymers A and B is lost, and the function as the heat conductive composition 100 is lowered.

特に、流動特性を持つ側鎖結晶化可能ポリマーBの割合が前記割合より多くなると、前記海島構造の島の部分が連続した形となってしまい、側鎖結晶化可能ポリマーAに側鎖結晶化可能ポリマーBが均一に分散できない状態となる。そのような分散状態において前記熱伝導性組成物100は、室温において粘性がなく脆い状態であり、たとえシート状に成形できたとしても、ぼろぼろと崩れ易く取り扱い難い。また発熱温度では、側鎖結晶化可能ポリマーBの流動化が熱伝導性組成物100内で支配的となって、熱伝導性組成物100が発熱体と放熱部品との間から流れ落ちてしまうおそれが高い。   In particular, when the proportion of the side chain crystallizable polymer B having flow characteristics is larger than the above proportion, the island portion of the sea-island structure becomes a continuous shape, and the side chain crystallizable polymer A is side chain crystallized. Possible polymer B is in a state where it cannot be uniformly dispersed. In such a dispersed state, the heat conductive composition 100 is in a brittle state without viscosity at room temperature, and even if it can be formed into a sheet, it is easily broken and difficult to handle. Further, at the heat generation temperature, fluidization of the side chain crystallizable polymer B becomes dominant in the heat conductive composition 100, and the heat conductive composition 100 may flow down from between the heat generator and the heat dissipation component. Is expensive.

また、前記側鎖結晶化可能ポリマーA、Bが互いに非相溶の関係であることで、側鎖結晶化可能ポリマーAの軟化特性と側鎖結晶化可能ポリマーBの流動特性が、互いに干渉せずに発現できる。このことから、前記熱伝導性組成物100は、発熱体の発熱温度で十分な柔軟性を示すとともに、流動化による表面の濡れ性をもアップできる。   Further, since the side chain crystallizable polymers A and B are incompatible with each other, the softening characteristics of the side chain crystallizable polymer A and the flow characteristics of the side chain crystallizable polymer B interfere with each other. Can be expressed without From this, the heat conductive composition 100 exhibits sufficient flexibility at the heat generation temperature of the heat generator, and can also improve the wettability of the surface by fluidization.

したがって、発熱体と放熱部品との間に実施形態の前記熱伝導性組成物100を介在させることで、発熱体と放熱部品との密着性が向上し、隙間なく前記熱伝導性組成物100がこれらの表面に密着して、各部材間の擬似的な接触面積を大きくすることで、高い放熱効果をあげることができる。   Therefore, by interposing the thermal conductive composition 100 of the embodiment between the heat generating element and the heat radiating component, the adhesion between the heat generating element and the heat radiating component is improved, and the heat conductive composition 100 is formed without a gap. By closely contacting these surfaces and increasing the pseudo contact area between the members, a high heat dissipation effect can be obtained.

また、前記熱伝導性組成物100に使われる前記側鎖結晶化可能ポリマーA,Bは、いずれも、例えば融点が30℃以上であって、かつ融点未満の温度では結晶化するポリマーが好ましい。このことで、前記熱伝導性組成物100は、室温においては非粘着(もしくは微粘着性)であることで、ハンドリングがし易くなり、発熱体への貼り直し時などにおいて作業が行い易い。また、室温において発熱体から放熱部品を容易に分離でき、分離に際し、各部材への糊残りの現象が発生せず、リサイクル性に優れる。   The side chain crystallizable polymers A and B used in the heat conductive composition 100 are preferably polymers that have a melting point of 30 ° C. or higher and crystallize at a temperature lower than the melting point, for example. Thus, the thermally conductive composition 100 is non-adhesive (or slightly adhesive) at room temperature, so that it is easy to handle and work when re-attaching to a heating element. In addition, the heat radiating component can be easily separated from the heating element at room temperature, and in the separation, the phenomenon of adhesive residue on each member does not occur and the recyclability is excellent.

また、前記熱伝導性組成物100の相転移特性は、側鎖結晶化可能ポリマーA、Bの融点を境にした可逆的な化学特性であることから、各部材の分離の後、熱伝導性組成物100は再度繰り返しの使用が可能である。   Further, since the phase transition characteristic of the heat conductive composition 100 is a reversible chemical characteristic with the melting point of the side chain crystallizable polymers A and B as a boundary, the thermal conductivity is separated after the separation of each member. The composition 100 can be used again and again.

また、前記側鎖結晶化可能ポリマーA,Bは、いずれも炭素数16以上の直鎖状アルキル基を有するアクリル酸エステルまたはメタクリル酸エステル30〜100重量部と、炭素数1〜12のアルキル基を有するアクリル酸エステルまたはメタクリル酸エステル70〜0重量部と、極性モノマー0〜10重量部とを重合させて得られる重合体であるのが好ましい。   The side-chain crystallizable polymers A and B each have 30 to 100 parts by weight of an acrylic ester or methacrylic ester having a linear alkyl group having 16 or more carbon atoms and an alkyl group having 1 to 12 carbon atoms. It is preferable that it is a polymer obtained by polymerizing 70 to 0 parts by weight of acrylic acid ester or methacrylic acid ester and 0 to 10 parts by weight of a polar monomer.

炭素数16以上の直鎖状アルキル基を有するアクリル酸エステル及び/又はメタクリル酸エステル(以下、(メタ)アクリレートという)としては、例えば、ステアリル(メタ)アクリレート、エイコシル(メタ)アクリレート、ベヘニル(メタ)アクリレート等の炭素数18〜22の線状アルキル基を有する(メタ)アクリレートが好ましく用いられる。   Examples of the acrylic acid ester and / or methacrylic acid ester (hereinafter referred to as (meth) acrylate) having a linear alkyl group having 16 or more carbon atoms include stearyl (meth) acrylate, eicosyl (meth) acrylate, and behenyl (meta). ) A (meth) acrylate having a linear alkyl group having 18 to 22 carbon atoms such as acrylate is preferably used.

炭素数1〜12のアルキル基を有する(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、エチルへキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等があげられる。   Examples of the (meth) acrylate having an alkyl group having 1 to 12 carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, ethylhexyl (meth) acrylate, and lauryl (meth) acrylate. Etc.

極性モノマーとしては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸などのカルボキシル基含有エチレン不飽和単量体や;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシル基を有するエチレン不飽和単量体等が用いられるが、このうち特に好適なものはアクリル酸である。   Examples of the polar monomer include carboxyl group-containing ethylenically unsaturated monomers such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, and fumaric acid; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl Ethylenically unsaturated monomers having a hydroxyl group such as (meth) acrylate and 2-hydroxyhexyl (meth) acrylate are used, among which acrylic acid is particularly preferable.

また、前記側鎖結晶化可能ポリマーAの重量平均分子量は、1万〜30万であるのがよい。前記側鎖結晶化可能ポリマーAの重量平均分子量が1万未満であると、前記熱伝導性組成物100の凝集力が不足し、シートの形状が維持できず、取り扱い性に劣る。また、前記側鎖結晶化可能ポリマーAの重量平均分子量が30万より大きいと、組成物が硬くなり柔軟性に劣るため、発熱体や放熱部品への密着性が低下し放熱効果が低下する。   The weight average molecular weight of the side chain crystallizable polymer A is preferably 10,000 to 300,000. When the weight average molecular weight of the side chain crystallizable polymer A is less than 10,000, the cohesive force of the heat conductive composition 100 is insufficient, the shape of the sheet cannot be maintained, and the handleability is poor. On the other hand, when the weight average molecular weight of the side chain crystallizable polymer A is larger than 300,000, the composition becomes hard and inferior in flexibility, so that the adhesion to the heating element and the heat radiating component is lowered and the heat radiation effect is lowered.

また前記側鎖結晶化可能ポリマーBの重量平均分子量は、1000〜10000であるのが好ましい。前記側鎖結晶化可能ポリマーBの重量平均分子量が1000未満であると、側鎖結晶化可能ポリマーAに対する分散性が低下し、前記海島構造の島の部分が連続した形態となってしまい、発熱時の流動性にバラツキが発生してしまう。また、前記重量平均分子量が10000より大きいと流動性が低下するため、発熱体と放熱部品との密着性が劣るおそれがある。   The weight average molecular weight of the side chain crystallizable polymer B is preferably 1000 to 10,000. If the weight average molecular weight of the side chain crystallizable polymer B is less than 1000, the dispersibility with respect to the side chain crystallizable polymer A is lowered, and the island portions of the sea-island structure are in a continuous form, and heat is generated. Variations in fluidity will occur. Moreover, since fluidity | liquidity will fall when the said weight average molecular weight is larger than 10,000, there exists a possibility that the adhesiveness of a heat generating body and a thermal radiation component may be inferior.

また、本発明の前記熱伝導性組成物100は、温度23℃における貯蔵弾性率が1.0×106Pa以上〜1.0×108Pa以下の範囲であって、温度23℃と80℃における貯蔵弾性率の比(23℃の貯蔵弾性率÷80℃の貯蔵弾性率)が100以上、好ましくは200以上であるのが好ましい。この貯蔵弾性率の比の値が大きいことは、前記熱伝導性組成物100が室温時(例えば、温度23℃)に比較して高温時(例えば、温度80℃)に柔軟性を激増させることを意味している。前記温度23℃の貯蔵弾性率の値や、温度23℃と80℃の貯蔵弾性率の比の値が上記以外になると、前記熱伝導性組成物100の室温での作業性や、発熱温度での柔軟性とのバランスが悪くなるおそれがある。 Further, the thermal conductive composition 100 of the present invention has a storage elastic modulus at a temperature of 23 ° C. in the range of 1.0 × 10 6 Pa to 1.0 × 10 8 Pa, and the temperatures of 23 ° C. and 80 ° C. The ratio of storage elastic modulus at ° C. (storage elastic modulus at 23 ° C. ÷ storage elastic modulus at 80 ° C.) is 100 or more, preferably 200 or more. The large value of the ratio of the storage elastic modulus greatly increases the flexibility of the thermal conductive composition 100 at a high temperature (for example, a temperature of 80 ° C.) as compared with a room temperature (for example, a temperature of 23 ° C.). Means. When the value of the storage elastic modulus at the temperature of 23 ° C. or the value of the ratio of the storage elastic modulus at the temperature of 23 ° C. and 80 ° C. is other than the above, the workability at room temperature of the thermally conductive composition 100 and the heat generation temperature There is a risk that the balance with the flexibility will be worse.

本発明の前記熱伝導性組成物100には、熱伝導性を高めるために熱伝導性充填剤2が添加される。前記熱伝導性充填剤2としては、特に限定されるものではないが、たとえば、窒化ホウ素、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウム、グラファイトなどが挙げられる。また、形状としては、特に限定されるものではないが、平均粒子径が1〜50μmの微粒子状のものが好ましい。   In order to improve thermal conductivity, the thermally conductive filler 2 is added to the thermally conductive composition 100 of the present invention. The heat conductive filler 2 is not particularly limited, and examples thereof include boron nitride, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, and graphite. Further, the shape is not particularly limited, but fine particles having an average particle diameter of 1 to 50 μm are preferable.

前記熱伝導性充填剤2は、前記側鎖結晶化可能ポリマーA,Bの混合ポリマー1の固形分100重量部に対して、10〜300重量部の割合で配合するのが好ましい。これにより、前記熱伝導性組成物100が発熱温度で発熱体や放熱部品に密着した際に、発熱体から放熱体へ熱を良好に伝えることができる。前記熱伝導性充填剤2の配合量が10重量部未満であると、前記熱伝導性組成物100の柔軟性は維持できるが、熱伝導性が不足する。また、前記配合量が300重量部より高いと、前記熱伝導性組成物100の剛性が高くなり、柔軟性が低下するため各部材への密着性が低下し放熱効果が減少する。   The thermally conductive filler 2 is preferably blended in a proportion of 10 to 300 parts by weight with respect to 100 parts by weight of the solid content of the mixed polymer 1 of the side chain crystallizable polymers A and B. Thereby, when the said heat conductive composition 100 closely_contact | adheres to a heat generating body or a heat radiating component at the heat_generation | fever temperature, heat can be favorably transmitted from a heat generating body to a heat radiator. When the blending amount of the heat conductive filler 2 is less than 10 parts by weight, the heat conductive composition 100 can maintain flexibility, but heat conductivity is insufficient. Moreover, when the said compounding quantity is higher than 300 weight part, the rigidity of the said heat conductive composition 100 will become high, and since a softness | flexibility falls, the adhesiveness to each member will fall and the heat dissipation effect will reduce.

また、本発明の前記熱伝導性組成物100は、耐熱性や凝集力を上げるために、柔軟性を阻害しない範囲で、架橋剤や老化防止剤、可塑剤、充填剤等を適宜添加してもよい。   In addition, the thermal conductive composition 100 of the present invention may be appropriately added with a crosslinking agent, an anti-aging agent, a plasticizer, a filler, etc. within a range that does not impair flexibility in order to increase heat resistance and cohesion. Also good.

また、本発明の前記熱伝導性組成物100の使用形態は、取り扱い性の上でシート状の形態であるのが好ましい。シート状であることで、発熱体表面への貼付けが容易となり、取り扱い易くなる。特にシート状の場合は、前記熱伝導性組成物100の両面に離型フィルムを設けることで、取り扱い性が向上できる。   Moreover, it is preferable that the usage form of the said heat conductive composition 100 of this invention is a sheet form form on handleability. By being in the form of a sheet, it is easy to attach to the surface of the heating element, and it becomes easy to handle. In particular, in the case of a sheet shape, handling properties can be improved by providing release films on both surfaces of the thermally conductive composition 100.

前記熱伝導性シートの厚さは20〜200μmであるのがよい。前記熱伝導性シートの厚さが20μm未満であると、発熱体の熱でシートの柔軟性が増加した際、シートのボリューム不足から発熱体や放熱部品の表面形状に追従するのが困難になる。また、前記シートの厚さが200μmより厚くなると、発熱体の熱を効率よく放熱部品へ伝達できなくなるおそれがある。   The thermal conductive sheet may have a thickness of 20 to 200 μm. When the thickness of the heat conductive sheet is less than 20 μm, when the flexibility of the sheet increases due to the heat of the heating element, it becomes difficult to follow the surface shape of the heating element and the heat dissipation component due to insufficient sheet volume. . If the thickness of the sheet is greater than 200 μm, the heat of the heating element may not be efficiently transmitted to the heat radiating component.

また、本発明の他の実施形態として、図2に示すような熱伝導性を有する基材フィルム3の両面に、前記熱伝導性組成物100を設けた熱伝導性シート200であってもよい。熱伝導性のある前記基材フィルム3を熱伝導性組成物100で挟んだ構造にすることで、熱伝導性を低下させずに、熱伝導性シート200としての剛性が増し、ハンドリング性が向上する。導電性を有する前記基材フィルム3としては、特に制限されるものではないが、たとえば、PETやPEなどの樹脂フィルムの中に熱伝導性充填剤を添加したものや、銅やアルミニウムなどの金属フィルム、金属メッシュ、金属繊維織布、グラファイトシートが挙げられる。   Further, as another embodiment of the present invention, a heat conductive sheet 200 in which the heat conductive composition 100 is provided on both surfaces of a base film 3 having heat conductivity as shown in FIG. 2 may be used. . By adopting a structure in which the base film 3 having thermal conductivity is sandwiched between the thermal conductive compositions 100, the rigidity as the thermal conductive sheet 200 is increased without lowering thermal conductivity, and handling properties are improved. To do. Although it does not restrict | limit especially as said base film 3 which has electroconductivity, For example, what added the heat conductive filler in resin films, such as PET and PE, and metals, such as copper and aluminum Examples thereof include films, metal meshes, metal fiber woven fabrics, and graphite sheets.

これらの前記基材フィルム3の両面に設けられる前記熱伝導性組成物100の厚さは、それぞれ20〜100μmであるのが形状追従性を発現させる上で好ましい。また、この熱伝導性シート200の両面には、離型フィルムを貼り付けてもよい。   The thickness of each of the thermally conductive compositions 100 provided on both surfaces of the base film 3 is preferably 20 to 100 μm in order to develop shape followability. Moreover, you may affix a release film on both surfaces of this heat conductive sheet 200. FIG.

次に、本発明の熱伝導性組成物100の使用方法の一実施形態を、図3を参照して説明する。上述した熱伝導性組成物100は、CPU4とヒートシンク5の間に介在される形で使用され、ヒートシンク5は、CPU4にボルト等で固定される。   Next, an embodiment of a method for using the thermally conductive composition 100 of the present invention will be described with reference to FIG. The above-described heat conductive composition 100 is used in a form interposed between the CPU 4 and the heat sink 5, and the heat sink 5 is fixed to the CPU 4 with a bolt or the like.

熱伝導性組成物100は、室温においては非粘着であることからCPU4への貼り直しやヒートシンク5の位置の修正などは容易に行なえるという利点を持つ。   Since the thermally conductive composition 100 is non-adhesive at room temperature, it has an advantage that it can be easily reattached to the CPU 4 and the position of the heat sink 5 can be easily corrected.

この熱伝導性組成物100を介して、CPU4とヒートシンク5は密着状態を維持することができる。この状態でCPU4が発熱した場合、CPU4の表面温度がこの熱伝導性組成物100の融点に達すると、熱伝導性組成物100は、即座に相転移し軟化、流動し、CPU4表面の微細凹凸形状の変化に追従変化することで、CPU4の熱をヒートシンク5へ良好に伝えることができる。よって、発熱によるCPU4の誤作動や性能の劣化を防ぐことが可能となる。   Through this thermally conductive composition 100, the CPU 4 and the heat sink 5 can maintain a close contact state. When the CPU 4 generates heat in this state, when the surface temperature of the CPU 4 reaches the melting point of the heat conductive composition 100, the heat conductive composition 100 immediately undergoes phase transition, softens, and flows, and the fine irregularities on the surface of the CPU 4 By changing following the shape change, the heat of the CPU 4 can be transferred to the heat sink 5 well. Accordingly, it is possible to prevent malfunction of the CPU 4 and deterioration of performance due to heat generation.

一方、CPU4の使用量が減り発熱が少なくなって、CPU4の表面温度がこの熱伝導性組成物100の融点未満になると、熱伝導性組成物100は結晶化し、粘着性を失う。   On the other hand, when the usage amount of the CPU 4 is reduced and heat generation is reduced, and the surface temperature of the CPU 4 becomes lower than the melting point of the heat conductive composition 100, the heat conductive composition 100 is crystallized and loses adhesiveness.

前記熱伝導性組成物100は、融点未満での結晶化状態と融点以上での軟化、流動化状態を、温度をトリガーとして、化学的な相転移により、すばやく繰り返すことが可能であり、そのことで、CPU4の発熱を効率よくヒートシンク5へ伝えることができ、結果として、CPU4の誤作動や性能の劣化を防ぐことが可能である。   The thermal conductive composition 100 can quickly repeat the crystallization state below the melting point and the softening and fluidization state above the melting point by a chemical phase transition using temperature as a trigger. Thus, the heat generated by the CPU 4 can be efficiently transmitted to the heat sink 5, and as a result, malfunction of the CPU 4 and deterioration of performance can be prevented.

また、前述の通り前記熱伝導性組成物100は融点未満では粘着性を失っている。この状態で、ヒートシンク5はCPU4から容易に取り外すことができる。また取り外しに際し、ヒートシンク5やCPU4への糊残りの現象が発生せず、リサイクル性に優れる。また、この熱伝導性組成物100は、前述の化学的な相転移特性から繰り返して使用することが可能である。   Further, as described above, the thermal conductive composition 100 loses its adhesiveness at a temperature lower than the melting point. In this state, the heat sink 5 can be easily detached from the CPU 4. Further, when removing, no adhesive residue is generated on the heat sink 5 or the CPU 4 and the recyclability is excellent. Moreover, this heat conductive composition 100 can be repeatedly used from the above-mentioned chemical phase transition characteristic.

以下、合成例および実施例を挙げて、本発明の熱伝導性組成物100および熱伝導性シートについて詳細に説明する。   Hereinafter, the thermal conductive composition 100 and the thermal conductive sheet of the present invention will be described in detail with reference to synthesis examples and examples.

まず、前記側鎖結晶化可能ポリマーAの合成例を以下に示す。   First, a synthesis example of the side chain crystallizable polymer A is shown below.

(合成例1)
ベヘニルアクリレート45重量部、メチルアクリレート50重量部、アクリル酸5重量部、重合開始剤としてパーブチルND(日本油脂製)1重量部を用い、酢酸エチル/n−ヘプタン(70/30)230重量部を溶媒として、60℃で5時間攪拌して、これらのモノマーを重合させた。得られたポリマーの重量平均分子量は15万、融点は57℃であった。
(Synthesis Example 1)
45 parts by weight of behenyl acrylate, 50 parts by weight of methyl acrylate, 5 parts by weight of acrylic acid, 1 part by weight of perbutyl ND (manufactured by NOF Corporation) as a polymerization initiator, and 230 parts by weight of ethyl acetate / n-heptane (70/30) As a solvent, these monomers were polymerized by stirring at 60 ° C. for 5 hours. The obtained polymer had a weight average molecular weight of 150,000 and a melting point of 57 ° C.

ここで、融点について説明する。本発明でいう「融点」は、ある平衡プロセスにより、最初は秩序ある配列に整合されていたポリマーの特定部分が無秩序状態となる温度を表している。実際の測定では、作成された側鎖結晶化可能ポリマーAを示差熱走査熱量計(DSC)で、10℃/分の昇温条件で測定した値である。以下の合成例においても、同様に測定を行った。   Here, the melting point will be described. As used herein, “melting point” refers to the temperature at which a particular portion of the polymer that was initially aligned in an ordered arrangement becomes disordered by some equilibrium process. In actual measurement, the prepared side chain crystallizable polymer A is a value measured by a differential thermal scanning calorimeter (DSC) under a temperature rising condition of 10 ° C./min. The same measurement was performed in the following synthesis examples.

(合成例2)
メチルアクリレート50重量部の代わりにブチルアクリレート50重量部を用いた以外は、合成例1と同様にしてポリマーを得た。得られたポリマーの重量平均分子量は15万、融点は45℃であった。
(Synthesis Example 2)
A polymer was obtained in the same manner as in Synthesis Example 1 except that 50 parts by weight of butyl acrylate was used instead of 50 parts by weight of methyl acrylate. The obtained polymer had a weight average molecular weight of 150,000 and a melting point of 45 ° C.

(合成例3)
ベヘニルアクリレート95重量部、アクリル酸5重量部、重合開始剤としてパーブチルND1重量部を用い、n−ヘプタン150重量部を溶媒とし、合成例1と同様な条件でポリマーを重合した。得られたポリマーの重量平均分子量は10万、融点は70℃であった。
次に前記側鎖結晶化可能ポリマーBの合成例を以下に示す。
(Synthesis Example 3)
A polymer was polymerized under the same conditions as in Synthesis Example 1 using 95 parts by weight of behenyl acrylate, 5 parts by weight of acrylic acid, 1 part by weight of perbutyl ND as a polymerization initiator, and 150 parts by weight of n-heptane as a solvent. The weight average molecular weight of the obtained polymer was 100,000, and the melting point was 70 ° C.
Next, a synthesis example of the side chain crystallizable polymer B is shown below.

(合成例4)
ステアリルアクリレート95重量部、アクリル酸5重量部、ドデシルメルカプタン5重量部、パーヘキシルPV(日本油脂製)1重量部をトルエン100重量部を溶媒として80℃で5時間攪拌して、これらのモノマーを重合させた。得られたポリマーの重量平均分子量は7000、融点は50℃であった。
(Synthesis Example 4)
Stearyl acrylate 95 parts by weight, acrylic acid 5 parts by weight, dodecyl mercaptan 5 parts by weight, perhexyl PV (manufactured by Nippon Oil & Fats) 1 part by weight with toluene 100 parts by weight as a solvent at 80 ° C. for 5 hours to polymerize these monomers I let you. The weight average molecular weight of the obtained polymer was 7000, and the melting point was 50 ° C.

(合成例5)
ステアリルアクリレート95重量部の代わりにベヘニルアクリレート95重量部を用いた以外は、合成例4と同様にしてポリマーを得た。得られたポリマーの重量平均分子量は8000、融点は70℃であった。
(Synthesis Example 5)
A polymer was obtained in the same manner as in Synthesis Example 4 except that 95 parts by weight of behenyl acrylate was used instead of 95 parts by weight of stearyl acrylate. The obtained polymer had a weight average molecular weight of 8,000 and a melting point of 70 ° C.

(合成例6)
ステアリルアクリレート95重量部、アクリル酸5重量部、パーヘキシルPV(日本油脂製)1重量部を、トルエン100重量部を溶媒として80℃で5時間攪拌して、これらのモノマーを重合させた。得られたポリマーの重量平均分子量は3万、融点は50℃であった。
(Synthesis Example 6)
These monomers were polymerized by stirring 95 parts by weight of stearyl acrylate, 5 parts by weight of acrylic acid and 1 part by weight of perhexyl PV (manufactured by NOF Corporation) at 80 ° C. for 5 hours using 100 parts by weight of toluene as a solvent. The weight average molecular weight of the obtained polymer was 30,000, and the melting point was 50 ° C.

次に、前記側鎖結晶化可能ポリマーA,Bには該当しないポリマーとしての合成例を以下にあげる。   Next, synthesis examples as polymers not corresponding to the side chain crystallizable polymers A and B will be given below.

(合成例7)
2−エチルヘキシルアクリレート92重量部、2−ヒドロキシエチルアクリレート8重量部、重合開始剤としてパーブチルND1重量部を酢酸エチル/n−ヘプタン(70/30)230重量部を溶媒として60℃で5時間攪拌して、これらのモノマーを重合させた。得られたポリマーの重量平均分子量は15万であった。融点は測定したが、明確な融点は示さなかった。
(Synthesis Example 7)
The mixture was stirred at 60 ° C. for 5 hours with 92 parts by weight of 2-ethylhexyl acrylate, 8 parts by weight of 2-hydroxyethyl acrylate, 1 part by weight of perbutyl ND as a polymerization initiator and 230 parts by weight of ethyl acetate / n-heptane (70/30) as a solvent. These monomers were polymerized. The weight average molecular weight of the obtained polymer was 150,000. The melting point was measured but did not show a clear melting point.

以上の合成例1乃至7の物性を、表1に一覧にして示す。

Figure 2006241333
次に、実施例として熱伝導性シートの調整の例を示す。 The physical properties of Synthesis Examples 1 to 7 are listed in Table 1.
Figure 2006241333
Next, the example of adjustment of a heat conductive sheet is shown as an Example.

(実施例1)
合成例1のポリマー90重量部と合成例4のポリマー10重量部を混合して混合ポリマー1を調整した後、前記混合ポリマー1の固形分100重量部に対し、熱伝導性充填剤2として窒化ホウ素粉末50重量部を添加し、均一に分散させて熱伝導性組成物100を作成した。前記熱伝導性組成物100を、PETの離型フィルム上に厚さ50μmで塗布し、熱伝導性シートを得た。
Example 1
After 90 parts by weight of the polymer of Synthesis Example 1 and 10 parts by weight of the polymer of Synthesis Example 4 were mixed to prepare the mixed polymer 1, nitriding was performed as the heat conductive filler 2 with respect to 100 parts by weight of the solid content of the mixed polymer 1. A thermally conductive composition 100 was prepared by adding 50 parts by weight of boron powder and uniformly dispersing the powder. The heat conductive composition 100 was applied on a PET release film at a thickness of 50 μm to obtain a heat conductive sheet.

(実施例2)
合成例1のポリマー90重量部と合成例5のポリマー10重量部を混合して混合ポリマー1を調整した以外は、実施例1と同様にして熱伝導性シートを得た。
(Example 2)
A thermally conductive sheet was obtained in the same manner as in Example 1 except that 90 parts by weight of the polymer of Synthesis Example 1 and 10 parts by weight of the polymer of Synthesis Example 5 were mixed to prepare the mixed polymer 1.

(実施例3)
合成例2のポリマー90重量部と合成例4のポリマー10重量部を混合して混合ポリマー1を調整した以外は、実施例1と同様にして熱伝導性シートを得た。
(Example 3)
A thermally conductive sheet was obtained in the same manner as in Example 1 except that 90 parts by weight of the polymer of Synthesis Example 2 and 10 parts by weight of the polymer of Synthesis Example 4 were mixed to prepare the mixed polymer 1.

(実施例4)
合成例2のポリマー90重量部と合成例5のポリマー10重量部を混合して混合ポリマー1を調整した以外は、実施例1と同様にして熱伝導性シートを得た。
Example 4
A thermally conductive sheet was obtained in the same manner as in Example 1 except that 90 parts by weight of the polymer of Synthesis Example 2 and 10 parts by weight of the polymer of Synthesis Example 5 were mixed to prepare the mixed polymer 1.

(実施例5)
合成例3のポリマー90重量部と合成例4のポリマー10重量部を混合して混合ポリマー1を調整した以外は、実施例1と同様にして熱伝導性シートを得た。
(Example 5)
A thermally conductive sheet was obtained in the same manner as in Example 1 except that 90 parts by weight of the polymer of Synthesis Example 3 and 10 parts by weight of the polymer of Synthesis Example 4 were mixed to prepare the mixed polymer 1.

(実施例6)
合成例3のポリマー90重量部と合成例5のポリマー10重量部を混合して混合ポリマー1を調整した以外は、実施例1と同様にして熱伝導性熱伝導性シートを得た。
(Example 6)
A thermally conductive and thermally conductive sheet was obtained in the same manner as in Example 1 except that 90 parts by weight of the polymer of Synthesis Example 3 and 10 parts by weight of the polymer of Synthesis Example 5 were mixed to prepare the mixed polymer 1.

(比較例1)
合成例1のポリマー40重量部と合成例4のポリマー60重量部を混合して混合ポリマーを調整した以外は、実施例1と同様にして熱伝導性シートの作成を試みた。が、シートに粘性がなく、ぼろぼろとした状態で脆く、十分なシートの作成は出来なかった。
(Comparative Example 1)
Preparation of a thermally conductive sheet was attempted in the same manner as in Example 1 except that 40 parts by weight of the polymer of Synthesis Example 1 and 60 parts by weight of the polymer of Synthesis Example 4 were mixed to prepare a mixed polymer. However, the sheet was not viscous and fragile in a raged state, and a sufficient sheet could not be produced.

(比較例2)
合成例1のポリマー90重量部と合成例6のポリマー10重量部を混合して混合ポリマーを調整した以外は、実施例1と同様にして熱伝導性シートを得た。
(Comparative Example 2)
A thermally conductive sheet was obtained in the same manner as in Example 1 except that 90 parts by weight of the polymer of Synthesis Example 1 and 10 parts by weight of the polymer of Synthesis Example 6 were mixed to prepare a mixed polymer.

(比較例3)
合成例2のポリマー90重量部と合成例6のポリマー10重量部を混合して混合ポリマーを調整した以外は、実施例1と同様にして熱伝導性シートを得た。
(Comparative Example 3)
A thermally conductive sheet was obtained in the same manner as in Example 1 except that 90 parts by weight of the polymer of Synthesis Example 2 and 10 parts by weight of the polymer of Synthesis Example 6 were mixed to prepare a mixed polymer.

(比較例4)
合成例3のポリマー90重量部と合成例6のポリマー10重量部を混合して混合ポリマーを調整した以外は、実施例1と同様にして熱伝導性シートを得た。
(Comparative Example 4)
A thermally conductive sheet was obtained in the same manner as in Example 1 except that 90 parts by weight of the polymer of Synthesis Example 3 and 10 parts by weight of the polymer of Synthesis Example 6 were mixed to prepare a mixed polymer.

(比較例5)
合成例7のポリマーの固形分100重量部に対し、熱伝導性充填剤として窒化ホウ素粉末50重量部を均一に分散させて熱伝導性組成物を作成した。以下、実施例1と同様にして熱伝導性シートを得た。
(Comparative Example 5)
A heat conductive composition was prepared by uniformly dispersing 50 parts by weight of boron nitride powder as a heat conductive filler with respect to 100 parts by weight of the solid content of the polymer of Synthesis Example 7. Thereafter, a thermally conductive sheet was obtained in the same manner as in Example 1.

(熱伝導性シートとしての性能評価)
(評価−1:熱抵抗の測定)
以下に示す方法で、実施例1乃至6および比較例2乃至5で作成した熱伝導性シートの熱抵抗を測定した。前記熱伝導性シートの離型フィルムを剥がし、発熱体を想定したヒーター部材と放熱部品との間に挟み、ヒーターに5Wの電力を1分間印加した。その直後のヒーター部材表面と放熱部品表面の温度差(△T)を測定し、得られた温度差の数値から、熱抵抗(℃/W)を次式から求めた。熱抵抗=△T/電力。ここで電力=5Wとして、得られた測定結果を表2に示す。尚、比較例1は、前述したように十分なシートが得られなかったことから、本評価を含め、以下に示す評価を全て行うことができなかった。
(Performance evaluation as a thermal conductive sheet)
(Evaluation-1: Measurement of thermal resistance)
The thermal resistance of the heat conductive sheets prepared in Examples 1 to 6 and Comparative Examples 2 to 5 was measured by the method described below. The release film of the heat conductive sheet was peeled off and sandwiched between a heater member assuming a heating element and a heat dissipation component, and 5 W of power was applied to the heater for 1 minute. Immediately after that, the temperature difference (ΔT) between the surface of the heater member and the surface of the heat dissipating component was measured, and the thermal resistance (° C./W) was determined from the following equation from the numerical value of the obtained temperature difference. Thermal resistance = ΔT / power. Table 2 shows the measurement results obtained with power = 5 W. In Comparative Example 1, a sufficient sheet could not be obtained as described above, and therefore, all of the following evaluations including this evaluation could not be performed.

(評価−2:熱伝導率の測定)
また、上記測定結果を利用し、熱伝導率(W/m・K)を次式から求めた。熱伝導率=(電力×T)/(S×△T)。ここで、電力=5W、Tは前記熱伝導性シートの厚さ(50μm:5×10-5m)であり、Sは前記熱伝導性シートの面積(m2)である。測定結果を表2に示す。
(Evaluation-2: Measurement of thermal conductivity)
Moreover, the thermal conductivity (W / m · K) was obtained from the following equation using the measurement results. Thermal conductivity = (power × T) / (S × ΔT). Here, power = 5 W, T is the thickness (50 μm: 5 × 10 −5 m) of the thermal conductive sheet, and S is the area (m 2 ) of the thermal conductive sheet. The measurement results are shown in Table 2.

(評価−3:熱伝導性シート表面の流動性(ぬれ性)の評価)
実施例1乃至6および比較例2乃至5で作成した前記熱伝導性シートを温度80℃まで温めた後、表面の離型フィルムを剥がし、前記熱伝導性シートの表面を指でなぞり、表面状態を触感により評価した。熱伝導性シート表面が流動し、べたつき感があり、表面のぬれが確認できる:○、熱伝導性シート表面は流動しておらず、ぬれていない:×、の判断基準により評価を行った。結果を表2に示す。
(Evaluation-3: Evaluation of fluidity (wetting property) of the surface of the heat conductive sheet)
After heating the thermal conductive sheets prepared in Examples 1 to 6 and Comparative Examples 2 to 5 to a temperature of 80 ° C., the release film on the surface was peeled off, and the surface of the thermal conductive sheet was traced with a finger to obtain a surface state. Was evaluated by tactile sensation. The surface of the heat conductive sheet was fluidized, there was a sticky feeling, and wetting of the surface could be confirmed: ○, the surface of the heat conductive sheet was not fluidized and not wet: x was evaluated based on the judgment criteria. The results are shown in Table 2.

(リサイクル性の評価)
(評価−1:温度23℃における熱伝導性シートの粘着力の評価)
リサイクル性に関し、室温(例えば、温度23℃)における前記熱伝導性シートの粘着力について評価を行った。まず、前記熱伝導性シートを幅25mm×長さ15cmの大きさにカットし、離型フィルムを剥がしてステンレス板に貼付けた。次いで、作った試料を温度80℃まで温め、温度80℃の状態で10分間放置した。その後、室温へ戻し、ステンレス板から前記熱伝導性シートを180°でピール剥離を行い、その際の剥離強度を測定した。測定結果を表2に示す。
(Evaluation of recyclability)
(Evaluation-1: Evaluation of adhesive strength of thermal conductive sheet at a temperature of 23 ° C.)
Regarding the recyclability, the adhesive strength of the thermally conductive sheet at room temperature (for example, temperature 23 ° C.) was evaluated. First, the heat conductive sheet was cut into a size of 25 mm wide × 15 cm long, and the release film was peeled off and attached to a stainless steel plate. Next, the prepared sample was warmed to a temperature of 80 ° C. and left at a temperature of 80 ° C. for 10 minutes. Then, it returned to room temperature, peeled the said heat conductive sheet from the stainless steel plate at 180 degrees, and measured the peeling strength in that case. The measurement results are shown in Table 2.

(評価−2:糊残り性の評価)
評価−1での剥離強度測定の後、ステンレス板表面に残る熱伝導性組成物100の量を目視観察し、外観上、糊残りなし:○、外観上、糊残りが明らかにある:×、での評価を行った。評価結果を表2に示す。
(Evaluation-2: Evaluation of adhesive residue)
After the peel strength measurement in Evaluation-1, the amount of the thermally conductive composition 100 remaining on the surface of the stainless steel plate was visually observed. On the appearance, there was no adhesive residue: ○, on the appearance, the adhesive residue was apparent: x, Was evaluated. The evaluation results are shown in Table 2.

(貯蔵弾性率の測定)
作成した熱伝導性シートを使って、温度23℃と80℃における貯蔵弾性率の比(23℃の貯蔵弾性率÷80℃の貯蔵弾性率)を測定した。測定には、レオロジカ社製の回転・振動型レオメータを使用し、温度23℃と80℃での各温度における貯蔵弾性率を測定し、貯蔵弾性率の比を、「23℃の貯蔵弾性率÷80℃の貯蔵弾性率」から求めた。結果を表2に示す。

Figure 2006241333
(Measurement of storage modulus)
The ratio of the storage elastic modulus at a temperature of 23 ° C. and 80 ° C. (storage elastic modulus at 23 ° C. ÷ storage elastic modulus at 80 ° C.) was measured using the prepared heat conductive sheet. For the measurement, a rotational / vibration type rheometer manufactured by Rheology is used to measure the storage elastic modulus at each temperature of 23 ° C. and 80 ° C., and the ratio of the storage elastic modulus is “storage elastic modulus at 23 ° C. ÷ It was calculated | required from 80 degreeC storage elastic modulus. The results are shown in Table 2.
Figure 2006241333

表2に示す評価結果から、本発明の実施例1〜6は、熱抵抗の値が低くかつ熱伝導率が高く、熱伝導性シートとしての適性を十分に有しているとともに、リサイクル性に関しても優れていることが判った。また、比較例2乃至5に挙げた熱伝導性シートは、いずれも熱抵抗の数値が高かったり、熱伝導率が低かったりして、熱伝導性シートとしては不適と判断できる。特に、比較例5は室温における粘着力が高く、また糊残り性も悪く、リサイクル性に乏しいことが判った。   From the evaluation results shown in Table 2, Examples 1 to 6 of the present invention have low values of thermal resistance and high thermal conductivity, and have sufficient suitability as a thermal conductive sheet, and are also related to recyclability. Was also found to be excellent. Further, the thermal conductive sheets listed in Comparative Examples 2 to 5 are all unsuitable as thermal conductive sheets because of their high thermal resistance values and low thermal conductivity. In particular, Comparative Example 5 was found to have high adhesive strength at room temperature, poor adhesive residue, and poor recyclability.

本発明に係る熱伝導性組成物の一実施形態を示す図である。It is a figure which shows one Embodiment of the heat conductive composition which concerns on this invention. 本発明に係る熱伝導性シートの一実施形態を示す図である。It is a figure which shows one Embodiment of the heat conductive sheet which concerns on this invention. 本発明に係る熱伝導性組成物の使用方法の一実施形態を示す図である。It is a figure which shows one Embodiment of the usage method of the heat conductive composition which concerns on this invention.

符号の説明Explanation of symbols

1:混合ポリマー、2:熱伝導性充填剤、3:基材フィルム、4:CPU、5:ヒートシンク、100:熱伝導性組成物、200:熱伝導性シート   1: mixed polymer, 2: thermally conductive filler, 3: base film, 4: CPU, 5: heat sink, 100: thermally conductive composition, 200: thermally conductive sheet

Claims (10)

発熱体の発熱温度で軟化する第1側鎖結晶化可能ポリマーを50〜95重量部と、前記第1側鎖結晶化可能ポリマーと非相溶であり発熱体の発熱温度で流動性を示す第2側鎖結晶化可能ポリマーを50〜5重量部含み、
前記第1側鎖結晶化可能ポリマーと前記第2側鎖結晶化可能ポリマーの混合ポリマーの固形分100重量部に対して、熱伝導性充填剤10〜300重量部を含む
ことを特徴とする熱伝導性組成物。
50 to 95 parts by weight of a first side chain crystallizable polymer that softens at an exothermic temperature of the heating element, and is incompatible with the first side chain crystallizable polymer and exhibits fluidity at the exothermic temperature of the heating element. Containing 50-5 parts by weight of a two-side chain crystallizable polymer;
A heat comprising 10 to 300 parts by weight of a heat conductive filler with respect to 100 parts by weight of a solid content of the mixed polymer of the first side chain crystallizable polymer and the second side chain crystallizable polymer. Conductive composition.
前記第1側鎖結晶化可能ポリマーおよび前記第2側鎖結晶化可能ポリマーの融点がともに温度30℃以上であり、かつ前記融点未満の温度では結晶化することを特徴とする請求項1記載の熱伝導性組成物。   The melting point of the first side chain crystallizable polymer and the second side chain crystallizable polymer are both 30 ° C. or higher and crystallizes at a temperature lower than the melting point. Thermally conductive composition. 前記第1側鎖結晶化可能ポリマーおよび前記第2側鎖結晶化可能ポリマーがともに
炭素数が16以上の直鎖状アルキル基を有するアクリル酸エステル又はメタクリル酸エステルを30〜100重量部と、
炭素数1〜12のアクリル酸エステル又はメタクリル酸エステルを70〜0重量部と、
極性モノマー0〜10重量部と
を重合させて得られる重合体であることを特徴とする請求項1又は請求項2に記載の熱伝導性組成物。
30 to 100 parts by weight of acrylic acid ester or methacrylic acid ester each having a linear alkyl group having 16 or more carbon atoms in both the first side chain crystallizable polymer and the second side chain crystallizable polymer;
70 to 0 parts by weight of an acrylic acid ester or methacrylic acid ester having 1 to 12 carbon atoms,
The heat conductive composition according to claim 1 or 2, which is a polymer obtained by polymerizing 0 to 10 parts by weight of a polar monomer.
前記第1側鎖結晶化可能ポリマーの重量平均分子量が1万〜30万であることを特徴とする前記請求項1乃至請求項3いずれか1項に記載の熱伝導性組成物。   4. The heat conductive composition according to claim 1, wherein the first side chain crystallizable polymer has a weight average molecular weight of 10,000 to 300,000. 5. 前記第2側鎖結晶化可能ポリマーの重量平均分子量が1000〜10000であることを特徴とする前記請求項1乃至請求項3いずれか1項に記載の熱伝導性組成物。   4. The heat conductive composition according to claim 1, wherein the second side chain crystallizable polymer has a weight average molecular weight of 1000 to 10,000. 5. 前記熱伝導性組成物の温度23℃と80℃における貯蔵弾性率の比(23℃の貯蔵弾性率÷80℃の貯蔵弾性率)が100以上であることを特徴とする前記請求項1乃至請求項5いずれか1項に記載の熱伝導性組成物。   The ratio of storage elastic modulus at a temperature of 23 ° C. and 80 ° C. of the heat conductive composition (storage elastic modulus at 23 ° C. ÷ storage elastic modulus at 80 ° C.) is 100 or more. Item 6. The heat conductive composition according to any one of Items 5 to 6. 前記熱伝導性組成物の温度23℃における粘着力が50g/25mm以下であることを特徴とする前記請求項1乃至請求項6いずれか1項に記載の熱伝導性組成物。   The heat conductive composition according to any one of claims 1 to 6, wherein an adhesive force of the heat conductive composition at a temperature of 23 ° C is 50 g / 25 mm or less. 前記請求項1の前記熱伝導性組成物の形態がシート状であることを特徴とする熱伝導性シート。   The form of the said heat conductive composition of the said Claim 1 is a sheet form, The heat conductive sheet characterized by the above-mentioned. 前記シートの厚さが20μm以上〜200μm以下であることを特徴とする請求項8の熱伝導性シート。   The heat conductive sheet according to claim 8, wherein the sheet has a thickness of 20 µm to 200 µm. 前記請求項1の前記熱伝導性組成物が熱伝導性を有する基材フィルムの両面に設けられていることを特徴とする熱伝導性シート。
The heat conductive sheet according to claim 1, wherein the heat conductive composition is provided on both surfaces of a base film having heat conductivity.
JP2005059784A 2005-03-04 2005-03-04 Heat conductive composition and heat conductive sheet Pending JP2006241333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059784A JP2006241333A (en) 2005-03-04 2005-03-04 Heat conductive composition and heat conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059784A JP2006241333A (en) 2005-03-04 2005-03-04 Heat conductive composition and heat conductive sheet

Publications (1)

Publication Number Publication Date
JP2006241333A true JP2006241333A (en) 2006-09-14

Family

ID=37048053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059784A Pending JP2006241333A (en) 2005-03-04 2005-03-04 Heat conductive composition and heat conductive sheet

Country Status (1)

Country Link
JP (1) JP2006241333A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197109A (en) * 2008-02-20 2009-09-03 Nippon Zeon Co Ltd Acrylic resin composition, thermally conductive pressure-sensitive adhesive sheet made of the acrylic resin composition, method of producing the thermally conductive pressure-sensitive adhesive sheet, and composite comprising substrate and the thermally conductive pressure-sensitive adhesive sheet
JP2010114421A (en) * 2008-10-08 2010-05-20 Hitachi Chem Co Ltd Thermally conductive sheet and manufacturing method thereof
JP2010123850A (en) * 2008-11-21 2010-06-03 Asahi Kasei E-Materials Corp Sheet for conducting heat
JP2011528396A (en) * 2008-07-16 2011-11-17 アウトラスト テクノロジーズ,インコーポレイティド Functional polymer phase change material and method for producing the same
JP2013225540A (en) * 2012-04-19 2013-10-31 Kaneka Corp Conjugate including heat conductive resin
WO2015133274A1 (en) * 2014-03-04 2015-09-11 デクセリアルズ株式会社 Multilayer heat-conductive sheet, and manufacturing method for multilayer heat-conductive sheet
JP2015220239A (en) * 2014-05-14 2015-12-07 日産自動車株式会社 Power semiconductor module and manufacturing method of the same
CN107722942A (en) * 2017-11-10 2018-02-23 苏州环明电子科技有限公司 Phase transformation high heat conduction boundary material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105299A (en) * 2001-09-28 2003-04-09 Sekisui Chem Co Ltd Heat conductive pressure sensitive adhesive, heat conductive pressure sensitive adhesive sheet and its laminate
JP2003129029A (en) * 1991-02-12 2003-05-08 Nitta Ind Corp Pressure-sensitive adhesive composition specific to temperature range and adhesive assembly, and its usage
JP2004002684A (en) * 2002-04-18 2004-01-08 Nitta Ind Corp Crystalline block copolymer and adhesive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129029A (en) * 1991-02-12 2003-05-08 Nitta Ind Corp Pressure-sensitive adhesive composition specific to temperature range and adhesive assembly, and its usage
JP2003105299A (en) * 2001-09-28 2003-04-09 Sekisui Chem Co Ltd Heat conductive pressure sensitive adhesive, heat conductive pressure sensitive adhesive sheet and its laminate
JP2004002684A (en) * 2002-04-18 2004-01-08 Nitta Ind Corp Crystalline block copolymer and adhesive

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197109A (en) * 2008-02-20 2009-09-03 Nippon Zeon Co Ltd Acrylic resin composition, thermally conductive pressure-sensitive adhesive sheet made of the acrylic resin composition, method of producing the thermally conductive pressure-sensitive adhesive sheet, and composite comprising substrate and the thermally conductive pressure-sensitive adhesive sheet
JP2011528396A (en) * 2008-07-16 2011-11-17 アウトラスト テクノロジーズ,インコーポレイティド Functional polymer phase change material and method for producing the same
JP2010114421A (en) * 2008-10-08 2010-05-20 Hitachi Chem Co Ltd Thermally conductive sheet and manufacturing method thereof
JP2010123850A (en) * 2008-11-21 2010-06-03 Asahi Kasei E-Materials Corp Sheet for conducting heat
JP2013225540A (en) * 2012-04-19 2013-10-31 Kaneka Corp Conjugate including heat conductive resin
WO2015133274A1 (en) * 2014-03-04 2015-09-11 デクセリアルズ株式会社 Multilayer heat-conductive sheet, and manufacturing method for multilayer heat-conductive sheet
JP2015170606A (en) * 2014-03-04 2015-09-28 デクセリアルズ株式会社 Multilayer heat conductive sheet, and method for producing multilayer heat conductive sheet
CN106030784A (en) * 2014-03-04 2016-10-12 迪睿合株式会社 Multilayer heat-conductive sheet, and manufacturing method for multilayer heat-conductive sheet
US10340201B2 (en) 2014-03-04 2019-07-02 Dexerials Corporation Multilayer heat-conductive sheet, and manufacturing method for multilayer heat-conductive sheet
JP2015220239A (en) * 2014-05-14 2015-12-07 日産自動車株式会社 Power semiconductor module and manufacturing method of the same
CN107722942A (en) * 2017-11-10 2018-02-23 苏州环明电子科技有限公司 Phase transformation high heat conduction boundary material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2006241333A (en) Heat conductive composition and heat conductive sheet
US7016196B2 (en) Radiating structural body of electronic part and radiating sheet used for the radiating structural body
KR101099258B1 (en) Acrylic-based thermally conductive composition and thermally conductive sheet
JP4848434B2 (en) Thermally conductive adhesive composition and thermal conductive adhesive sheet
JP5600604B2 (en) Temperature-sensitive adhesive for flat panel display manufacturing and temperature-sensitive adhesive tape for flat panel display manufacturing
TW200303166A (en) Thermal management materials having a phase change dispersion
WO2006023860A2 (en) Thermally conductive composition and method for preparing the same
JP2002194306A (en) Heat-conductive sheet
JP4829482B2 (en) Thermally conductive composition and thermal conductive sheet
JP2002329989A (en) Thermosoftening radiation sheet
JP2002003830A (en) Highly heat conductive composition and its application
TWI555767B (en) Thermal interface material with epoxidized nutshell oil
KR20130087327A (en) Adhesive composition for heat dissipation sheet and heat dissipation sheet using the same
JP2005060594A (en) Pressure-sensitive-adhesive-layer-fitted heat-conductive sheet
JP4119287B2 (en) Heat dissipation member and connection structure
JP4030399B2 (en) Self-adhesive phase change heat dissipation member
JP2011241329A (en) Heat-conductive self-adhesive sheet
WO2004015768A1 (en) Heat-dissipating member and joined structure
JP4729266B2 (en) Thermally conductive composition and thermal conductive sheet
JP2003152147A (en) Heat conductive composite, heat conductive pressure sensitive adhesive sheet as well as jointing structure of heat generating body and heat dissipation body
JP2004331835A (en) Heat release sheet
JP3762675B2 (en) Thermal softening sheet
JP3976642B2 (en) Heat dissipation member and connection structure
JP2009120841A (en) Acrylic thermally conductive composition and article including the same
JP4312046B2 (en) Thermally conductive resin composition, thermally conductive sheet, and thermally conductive composite sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301