JP3976642B2 - Heat dissipation member and connection structure - Google Patents

Heat dissipation member and connection structure Download PDF

Info

Publication number
JP3976642B2
JP3976642B2 JP2002233597A JP2002233597A JP3976642B2 JP 3976642 B2 JP3976642 B2 JP 3976642B2 JP 2002233597 A JP2002233597 A JP 2002233597A JP 2002233597 A JP2002233597 A JP 2002233597A JP 3976642 B2 JP3976642 B2 JP 3976642B2
Authority
JP
Japan
Prior art keywords
heat
temperature
thermoplastic resin
heating element
heat radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002233597A
Other languages
Japanese (ja)
Other versions
JP2004079568A (en
Inventor
賢一 東
淳 長谷川
俊司 俵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002233597A priority Critical patent/JP3976642B2/en
Priority to CNB038186071A priority patent/CN100339983C/en
Priority to US10/523,409 priority patent/US20050155751A1/en
Priority to PCT/JP2003/010112 priority patent/WO2004015768A1/en
Priority to EP03784597A priority patent/EP1542281A1/en
Publication of JP2004079568A publication Critical patent/JP2004079568A/en
Application granted granted Critical
Publication of JP3976642B2 publication Critical patent/JP3976642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、常温においては優れた取り扱い性を有し、発熱体と放熱体との間に介在し、高い柔軟性を有することにより発熱体及び放熱体に密着して効率よく発熱体から発生した熱を放熱体に伝導することができ、かつ、温度が上昇しても密着した状態を保つことができる放熱用部材、及び、該放熱用部材により発熱体と放熱体とを接続してなる接続構造体に関する。
【0002】
【従来の技術】
電気・電子部品等の発熱体と放熱体の間に介在させ、発熱体から発生する熱を放散させる目的で、放熱シート等の放熱用部材が利用されている。しかし、電気・電子部品に限らず、多くの発熱体や放熱体の表面は平滑でないため放熱用部材が発熱体及び放熱体に密着できず、発熱体や放熱体と放熱用部材との間の接触面積が減少すると、発熱体から放熱体への熱伝達効率が低下し、放熱用部材が有する放熱性能が充分に発揮できない。
【0003】
発熱体と放熱体の間の熱的な抵抗は熱抵抗と呼ばれ、熱抵抗が小さいほど、発熱体から放熱体への熱伝達が優れ、高い放熱効果が得られる。そのため熱抵抗を小さくするためには、放熱用部材に対して優れた柔軟性が要求されている。そこで、従来は、放熱用部材として熱伝導性徴粒子を含有した放熱グリース;シリコンゴムやアクリル酸エステル系樹脂等の柔軟かつ復元力のある樹脂に熱伝導性徴粒子を分散させた放熱シート等が用いられていた。
【0004】
放熱グリースとしては、例えば、特公平6−39591号公報にシリコンオイルをベースとし、亜鉛華、アルミナ、窒化アルミニウム等の熱伝導性徴粒子を含有させたものが開示されている。このような放熱グリースは流動性のある粘稠な物質であるため、発熱体と放熱体の間に介在させた際に大きな接触面積が得られることから優れた熱抵抗性能を発現可能である。しかしながら、発熱体や放熱体に塗布させる際に、周辺部位の汚れなどが生じて作業性が低いことや、作業のばらつきが生じて熱抵抗性能が変化する可能性が高い等の問題があった。
【0005】
放熱シートとしては、例えば、特開平6−88061号公報にアクリル酸エステル系樹脂に熱伝導性徴粒子をランダムに分散させた熱伝導テープが開示されている。このような放熱シートは定形のシートであるため、発熱体や放熱体に容易に貼り付けることができ、発熱体と放熱体の間に介在させる際に一定の間隙にすることができるため、安定した熱抵抗性能を発現することができる。しかしながら、流動性がないため、放熱グリースほどの高い柔軟性が得られず、高い熱抵抗性能を発現することが困難であった。
【0006】
これに対し、特表2000−509209号公報にはアクリル系感圧性粘着成分に対し、約50〜60℃に融解温度を有するαオレフィン系熱可塑性成分や約60〜70℃の融解温度を有するパラフィン系ロウ成分等の化合物を混合した放熱用部材が開示されている。これらの放熱用部材は、電圧を印加することで発熱体の温度が上がり、混合しているαオレフィン系熱可塑性成分やパラフィン系ロウ成分の融解温度に達すると急激に軟化し、柔軟性が向上して熱抵抗性能が向上するというものである。
【0007】
しかしながら、このような融解温度を持つ化合物は、発熱体や放熱体への貼付作業を行う23℃付近の温度では接着性のない固体であるため、これを含有するアクリル系感圧性粘着成分の粘着性が損なわれ、貼付作業性か低下する。また、発熱体の温度が上がって融解温度を超える際に、化合物がすべて融解するまでに若干の時間がかかることから、発熱体の温度がいったんは急上昇する。そして、融解温度を有する化合物が溶けて放熱用部材の柔軟性が向上し、発熱体と放熱体の間が密着して熱伝達率が向上すると発熱体の温度は急降下する。そのため短時間ではあるが、発熱体に温度負荷がかかるという問題があった。
【0008】
また、発熱体の温度が上がり化合物が溶けて放熱用部材の柔軟性が向上し、発熱体と放熱体の間が密着して熱伝達率が向上したとしても、更に温度がかかり続けた場合には、溶融粘度の低い溶融した化合物が放熱用部材から流れ出してしまい、その結果、密着性が損なわれ熱伝達率も悪化して、発熱体の温度が上昇してしまうことがあるという問題もあった。
【0009】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、常温においては優れた取り扱い性を有し、発熱体と放熱体との間に介在し、高い柔軟性を有することにより発熱体及び放熱体に密着して効率よく発熱体から発生した熱を放熱体に伝導することができ、かつ、温度が上昇しても密着した状態を保つことができる放熱用部材、及び、該放熱用部材により発熱体と放熱体とを接続してなる接続構造体を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、熱可塑性樹脂と熱伝導性微粒子とを含有し、40〜100℃に融解温度を有する化合物を含有しない熱可塑性樹脂組成物からなる放熱用部材であって、23℃においては、0.1Hz時の貯蔵弾性率が5万Pa以上であり、かつ、定形を保持しており、60℃においては、0.1Hz時の貯蔵弾性率が400〜1万Paであり、かつ、不定形であり、80℃においては、0.1Hz時の貯蔵弾性率が400〜5000Pa以上であり、かつ、不定形である放熱用部材である。
以下に本発明を詳述する。
【0011】
本発明の放熱部材は、23℃においては、0.1Hz時の貯蔵弾性率が5万Pa以上であり、かつ、定形を保持しており、60℃においては、0.1Hz時の貯蔵弾性率が400〜1万Paであり、かつ、不定形であり、80℃においては、0.1Hz時の貯蔵弾性率が400〜5000Paであり、かつ、不定形である。これにより、発熱体や放熱体への貼付作業を行う23℃付近の温度では定形のシート状にして用いることができ優れた貼付作業性を示し、一方で、電圧を印加することにより発熱体の温度が上がると放熱用部材は急速に軟化し、60℃の温度に達すると柔軟性が向上するため発熱体と放熱体に対する接触面積が向上し、優れた熱抵抗性能を発現するが、80℃以上の温度になっても貯蔵弾性率の減少は緩やかであり、流れ出して発熱体及び放熱体から離れてしまうことはない。
なお、貯蔵弾性率は、例えばレオメトリックス社製のダイナミック・アナライザーRDAII等の動的粘弾性測定装置で測定することができる。
【0012】
23℃の温度における0.1Hz時の貯蔵弾性率が5万Pa未満であると、柔らかすぎて取り扱いにくくなり、貼付作業も行いにくくなる。また、60℃の温度における0.1Hz時の貯蔵弾性率が1万Paを超えると、放熱用部材の柔軟性が低く発熱体や放熱体に密着できず、充分な熱抵抗性能が得られない。更に、80℃の温度における0.1Hz時の貯蔵弾性率が400Pa未満であると、放熱用部材は柔らかくなりすぎて流れ出し発熱体及び放熱体から離れてしまう。
【0013】
23℃と60℃との間に、相転移現象を伴わずにかかる急速な貯蔵弾性率の変化が起こることから、発熱体の温度の上昇にあわせて放熱用部材がしだいに密着していき、発熱体の温度の上昇と、放熱用部材が軟化して発熱体と放熱体に対する接触面積が向上し優れた熱抵抗性能を発現するまでの間に時間の遅れが生じないため、発熱体の温度が急上昇してしまうことがなく、発熱体に温度負荷がかかることがない。
また、相転移現象を伴わない熱可塑性樹脂組成物では、室温や室温よりわずかに加熱しただけで柔らかくなったり、樹脂表面に粘着性が現れたりすることがあり放熱用部材として取り扱いにくいことが多いが、低温において定形を保持することができ取扱い性にも優れる。
【0014】
なお、上記熱可塑性樹脂組成物に40〜100℃に融解温度を有する化合物が添加されると、融解という相転移現象に伴う潜熱吸収が起こるため、融解が充分に進むまで放熱用部材が軟化しないので、発熱体の温度の上昇と、放熱用部材が軟化して発熱体と放熱体に対する接触面積が向上し優れた熱抵抗性能を発現するまでの間に時間の遅れが生じてしまい、発熱体に温度負荷がかかってしまう。したがって、上記熱可塑性樹脂組成物は、40〜100℃に融解温度を有する化合物を含有しない。
【0015】
60℃を超えると、貯蔵弾性率の減少は緩やかになり、柔らかくなりすぎて発熱体及び放熱体から離れて流れ出てしまうことがなく、発熱体及び放熱体に密着し続け、発熱体から発生する熱を放熱体に効率よく伝え続けることができる。
【0016】
本発明の放熱用部材は、23℃における対アルミニウム接着力が0.5N/cm2以上であることが好ましい。これにより、発熱体及び放熱体に対して高い接着性を有することとなり、発熱体及び放熱体に放熱用部材を貼り付ける際の貼付作業性が向上する。
【0017】
本発明の放熱用部材は、特に限定されないが、シート状に加工して用いることが好ましい。シート状にすることにより、貼付作業性が著しく向上する。
シート状にして用いる場合、シートが薄くなりすぎると取り扱い性が低下するとともに、発熱体と放熱体との間に介在させた際に、隙間を充分に埋めることが難しくなり、また、シートが厚すぎると熱抵抗性能が低下する傾向にある。したがって、本発明の放熱用部材の厚さは下限が20μm、上限が400μmであることが好ましい。
【0018】
本発明の放熱用部材は、熱可塑性樹脂と熱伝導性微粒子とを含有する熱可塑性樹脂組成物からなる。
上記熱可塑性樹脂としては、(メタ)アクリル酸エステル系共重合体;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体等のスチレン系ブロック共重合体;エチレン−酢酸ビニル樹脂、ブタジエン系樹脂、イソブチレン系樹脂、オレフィン系樹脂、ウレタン系樹脂、エポキシ系樹脂、酢酸ビニル系樹脂、スチレン系樹脂、ブチラ−ル系樹脂、ポリビニルアルコール系樹脂、シリコン系樹脂;これらの変性樹脂等が挙げられる。これらは単独で用いられてもよいし、2種類以上を併用してもよい。なかでも、上述の貯蔵弾性率を実現できる設計が比較的容易であることから、アクリル酸エステル系共重合体、スチレン系ブロック共重合体、ブチルゴム系樹脂が好適である。例えば、アクリル酸エステル系共重合体であれば、共重合体の重量平均分子量を20万以下にすれば、上述の貯蔵弾性率を発現することができる。
【0019】
なお、上記熱可塑性樹脂はIC等の電子部品の高温側の動作限界温度付近に融点を有する樹脂ではないことが好ましい。また、ガラス転移温度を有する樹脂の場合においても、示差熱量計を用いて測定されるガラス転移温度がIC等の電子部品の高温側の動作限界温度付近にないことが好ましい。これらの樹脂の融解やガラス転移現象における潜熱吸収もまた、発熱体や放熱体と放熱用部材との間が密着するまでに時間の遅れを生じさせる原因となることがある。
【0020】
また、上記熱可塑性樹脂として、スチレン系ブロック共重合体、ブチルゴム等の23℃において固形状の芳香族熱可塑性樹脂を用いる場合には、更に23℃において粘稠体であるキシレン樹脂を含有することが好ましい。
このようなキシレン樹脂を添加することによって、上述のように23℃と60℃との間の貯蔵弾性率の挙動においてより急激な変化し、更に、60℃以上では緩やかな貯蔵弾性率の変化を実現することができる。これは、23℃において固形状の芳香族熱可塑性樹脂と23℃において粘稠体であるキシレン樹脂とを混合して使用すると、それぞれの芳香環同士の相互作用によって23℃では固形状態を保つが、温度を上昇させるとしだいに相互作用が弱まり、ある温度領域で相転移現象を伴うことなく相互作用が急激に弱まり軟化し、一方、一定の温度に達しても芳香環同士の擬似架橋的な相互作用が残存していることによりそれ以上の流動化が抑えられるためであると考えられる。ただし、熱伝導性微粒子の配合量が増えると、種類によっては高温での弾性率が低下する傾向にあるので、本発明の放熱用部材の弾性率挙動は、熱可塑性樹脂、キシレン樹脂の種類及び配合量により適当に調整する必要がある。
【0021】
また、上記キシレン樹脂は、粘着性付与剤としても働くものであることから、上記キシレン樹脂を配合することにより本発明の放熱用部材を発熱体及び放熱体に貼り付ける際の作業性が向上する。
【0022】
上記熱可塑性樹脂組成物における上記キシレン樹脂の配合量の好ましい下限は10体積%、上限は60体積%である。10体積%未満であると、80℃以上における熱可塑性樹脂組成物の流動化を充分に抑えられないことがあり、60体積%を超えると、23℃で定形のシートを得ることが困難となることがある。
【0023】
上記熱伝導性微粒子としては、例えば、窒化ホウ素、窒化アルミニウム、アルミナ、アルミニウム、炭化珪素、酸化亜鉛、銅、金属水酸化物から選ばれる少なくとも1種類以上の熱伝導性微粒子が挙げられる。
上記金属水酸化物としては、例えば、水酸化マグネシウム、水酸化アルミニウム等が挙げられる。
また、これらの熱伝導性微粒子は、高い配合割合で均一に混合できるように表面処理されていることが好ましい。
【0024】
上記熱可塑性樹脂組成物における上記熱伝導性微粒子の配合量の好ましい下限は10体積%、上限は90体積%である。10体積%未満であると、充分な熱伝導率が得られないことがあり、90体積%を超えると、得られる放熱用部材の対アルミニウム接着力が低下して貼付作業性が低下することがある。
【0025】
上記熱可塑性樹脂組成物は、所望の弾性率と対アルミニウム接着力を損なわない鞄囲であれば、必要に応じて、ハロゲン系化合物、リン酸エステル系化合物、金属水酸化物、酸化チタン等の難燃材;カーボンブラック、ホワイトカーボン等の着色剤;シラン系、チタネート系カップリング剤等の粉体表面改質剤;ビスフェノール系、ヒンダード・フェノール系等の酸化防止剤;クロマン樹脂、テルペンフェノール樹脂、フェノール樹脂、ロジン、テルペン樹脂、脂肪族炭化水素、脂環式炭化水素等の粘着付与剤等を含有してもよい。
【0026】
本発明の放熱用部材の製造方法としては特に限定されず、例えば、所定量の熱可塑性樹脂と熱伝導性徴粒子とを、2本ロール、3本ロール、プラストミル、ニーダー、プラネタリーミキサー、バンバリーミキサー等を用いて混合し、それをコーティング成形、押し出し成形、プレス成形等によって所望の厚さのシート状に成形する方法等が挙げられる。
【0027】
本発明の放熱用部材は、23℃付近の常温においては定形であり極めて取り扱い性に優れ、効率よく発熱体と放熱体とを接続した接続構造体を作製することができる。
この接続構造体の発熱体の温度を上昇させると、一定温度以上になった時点で、ガラス転移現象や融解等の潜熱吸収を伴う相転移現象を伴うことなく急速に本発明の放熱用部材が軟化して発熱体及び放熱体との接触面積が大きくなり、更にそれに伴って放熱用部材の厚みが減少して、優れた熱抵抗性能を発現することができる。しかも、かかる放熱用部材の変化は急速であり、発熱体の温度が発熱体にとって負荷となる温度に達するまで上昇してしまう前に起こることから、発熱体に温度負荷がかかることがない。
更に、温度が上昇した場合であっても、本発明の放熱用部材はそれ以上流動化することなく、発熱体及び放熱体に密着し続け、発熱体に温度負荷がかかることがない。
このような、本発明の放熱用部材により発熱体と放熱体とを接続してなる接続構造体であって、上記放熱用部材は、発熱体の発熱により、上記発熱前よりも厚みが減少することが可能である接続構造体もまた、本発明の1つである。
また、本発明の放熱用部材により発熱体と放熱体とを接続してなる接続構造体であって、上記放熱用部材は、発熱体が発熱したことにより、上記発熱前よりも既に厚みが減少しているものである接続構造体もまた、本発明の1つである。
【0028】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0029】
(実施例1)
スチレン含量22重量%のスチレン−イソプレンブロック共重合体20重量部、キシレン樹脂(三菱ガス化学社製、商品名「ニカノールKL−05」)80重量部、及び、窒化アルミニウム(トクヤマ社製、商品名「グレードF」)140重量部をプラストミルで混合しスラリー状物を得た。このスラリー状物において窒化アルミニウムの体積比率は30%であった。
次いで、プレス板の上に離型PETフィルムを敷き、その上に厚みが100μmの金属枠を載せ、金属枠内に得られたスラリー状物を流し込んだ。次いで、離型PETフィルムをその上に載せ上下からプレス板で挟み込み、室温下でプレス成形を行った。これにより、両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0030】
(実施例2)
スチレン含量22重量%のスチレン−イソプレンブロック共重合体20重量部、キシレン樹脂(三菱ガス化学社製、商品名「ニカノールKL−05」)80重量部、及び、窒化アルミニウム(トクヤマ社製、商品名「グレードF」)330重量部をプラストミルで混合しスラリー状物を得た。このスラリー状物において窒化アルミニウムの体積比率は50%であった。
このスラリー状物を用いて、実施例1と同様にして両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0031】
(比較例1)
スチレン含量22重量%のスチレン−イソプレンブロック共重合体30重量部、ドデシルベンゼン70重量部、及び、窒化アルミニウム(トクヤマ社製、商品名「グレードF」)760重量部をプラストミルで混合しスラリー状物を得た。このスラリー状物において窒化アルミニウムの体積比率は70%であった。
このスラリー状物を用いて、実施例1と同様にして両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0032】
(比較例2)
スチレン含量22重量%のスチレン−イソプレンブロック共重合体50重量部、ドデシルベンゼン50重量部、及び、窒化ホウ素(電気化学工業社製、商品名「グレードSGP」)226重量部をプラストミルで混合しスラリー状物を得た。このスラリー状物において窒化ホウ素の体積比率は50%であった。
このスラリー状物を用いて、実施例1と同様にして両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0033】
(比較例3)
スチレン含量22重量%のスチレン−イソプレンブロック共重合体20重量部の代わりにアクリル酸エステル系共重合体(根上工業社製、商品名「S−2022改2」:重量平均分子量27万)100重量部を、窒化アルミニウム(トクヤマ社製、商品名「グレードF」)140重量部の代わりに窒化ホウ素(電気化学工業社製、商品名「グレードSGP」)226重量部を用いたこと以外は実施例1と同様にして両面に離型PETフィルムが付いた厚さ100μmのシート状の放熱用部材を得た。
【0034】
<評 価>
実施例1〜2及び比較例1〜3で得られた放熱用部材について、以下の方法により、熱抵抗、貯蔵弾性率及び高温流動性を評価した。
【0035】
(熱抵抗の測定)
熱抵抗は、図1に示す測定装置により測定した。すなわち、アルミニウム製の冷却器1の上に離型PETフィルムを剥がした放熱用部材2を貼り付け、更にその上に熱源となるICを積層し、ボルト3により締め付けトルク1N・mで締め付けた。
ICに電源を入れて80W/hの電力を供給し、60分後に、ICの温度T1と、冷却器1の放熱用部材の近傍温度T2を測定した。なお、冷却器1は、内部に恒温水槽4から23℃の水が供給循環されるようになっている。測定結果から熱抵抗を下記式で求めた。
【0036】
【数1】

Figure 0003976642
【0037】
(貯蔵弾性率の測定)
ダイナミック・アナライザーRDAII(レオメトリックス社製)を用い、0.1Hzの条件で、23℃、60℃及び80℃における放熱用部材の貯蔵弾性率を測定した。
【0038】
(高温流動性の評価)
図2に示したように、アルミニウムからなる正立方体のブロックの側面に片面の離型PETフィルムを剥がした放熱用部材を貼り付けた。このアルミニウムブロックを80℃の恒温槽に保管し、1週間経過後に放熱用部材の流れ落ちの有無を目視にて観察した。
【0039】
【表1】
Figure 0003976642
【0040】
【発明の効果】
本発明によれば、常温においては優れた取り扱い性を有し、発熱体と放熱体との間に介在し、高い柔軟性を有することにより発熱体及び放熱体に密着して効率よく発熱体から発生した熱を放熱体に伝導することができ、かつ、温度が上昇しても密着した状態を保つことができる放熱用部材、及び、該放熱用部材により発熱体と放熱体とを接続してなる接続構造体を提供できる。
【図面の簡単な説明】
【図1】放熱用部材の熱抵抗の測定に用いた測定装置を示す模式図である。
【図2】実施例における高温流動性の評価の方法を説明する模式図である。
【符号の説明】
1 冷却器
2 放熱用部材
3 ボルト
4 恒温水槽
5 アルミニウムブロック[0001]
BACKGROUND OF THE INVENTION
The present invention has excellent handleability at room temperature, is interposed between the heating element and the heat radiating body, and has high flexibility so that the heat generating body and the heat radiating body are in close contact with each other and efficiently generated from the heating element. A heat dissipating member that can conduct heat to the heat dissipator and can maintain a close contact state even when the temperature rises, and a connection formed by connecting the heat dissipator and the heat dissipator by the heat dissipating member Concerning the structure.
[0002]
[Prior art]
A heat radiating member such as a heat radiating sheet is used for the purpose of dissipating the heat generated from the heat generating element by being interposed between the heat generating element such as an electric / electronic component and the heat radiating element. However, the surface of many heating elements and radiators, not limited to electrical and electronic parts, is not smooth, so the heat radiating member cannot be in close contact with the heating element and the radiating member. When the contact area decreases, the heat transfer efficiency from the heat generating element to the heat dissipating body decreases, and the heat dissipating performance of the heat dissipating member cannot be sufficiently exhibited.
[0003]
The thermal resistance between the heating element and the heat radiating body is called thermal resistance. The smaller the thermal resistance, the better the heat transfer from the heating element to the heat radiating body, and the higher the heat dissipation effect can be obtained. Therefore, in order to reduce the thermal resistance, excellent flexibility is required for the heat radiating member. Therefore, conventionally, a heat-dissipating grease containing heat-conducting particles as a heat-dissipating member; a heat-dissipating sheet in which heat-conducting particles are dispersed in a flexible and resilient resin such as silicon rubber or acrylate resin is used. It was done.
[0004]
For example, Japanese Patent Publication No. 6-39591 discloses a heat dissipating grease based on silicon oil and containing heat conductive particles such as zinc white, alumina and aluminum nitride. Since such a heat dissipating grease is a fluid and viscous substance, a large contact area can be obtained when it is interposed between the heat generating element and the heat dissipating element, so that excellent heat resistance performance can be exhibited. However, when it is applied to a heating element or a radiator, there are problems such as contamination of peripheral parts and the like, and workability is low, and there is a high possibility that the thermal resistance performance is changed due to variation in work. .
[0005]
As a heat-dissipating sheet, for example, JP-A-6-88061 discloses a heat conductive tape in which heat conductive particles are randomly dispersed in an acrylate resin. Since such a heat dissipation sheet is a regular sheet, it can be easily affixed to a heating element or a heat dissipation body, and can be a constant gap when interposed between the heating element and the heat dissipation element, so that it is stable. Heat resistance performance can be exhibited. However, since there is no fluidity, the flexibility as high as that of the heat dissipating grease cannot be obtained, and it has been difficult to develop high heat resistance performance.
[0006]
In contrast, JP 2000-509209 A discloses an α-olefin thermoplastic component having a melting temperature of about 50 to 60 ° C. and a paraffin having a melting temperature of about 60 to 70 ° C. with respect to the acrylic pressure-sensitive adhesive component. A heat dissipation member in which a compound such as a system wax component is mixed is disclosed. These heat-dissipating members increase the temperature of the heating element when a voltage is applied, and soften rapidly when the melting temperature of the mixed α-olefin thermoplastic component or paraffin wax component is reached, improving flexibility. As a result, the thermal resistance performance is improved.
[0007]
However, since a compound having such a melting temperature is a solid having no adhesiveness at a temperature of about 23 ° C. at which a heating operation or a heat radiating operation is performed, the adhesion of an acrylic pressure-sensitive adhesive component containing the same The applicability is impaired, and the workability of application is reduced. In addition, when the temperature of the heating element rises and exceeds the melting temperature, it takes some time for all the compounds to melt, so the temperature of the heating element rises rapidly. Then, the compound having the melting temperature is melted to improve the flexibility of the heat dissipating member, and when the heat generating member and the heat dissipating member are brought into close contact with each other and the heat transfer coefficient is improved, the temperature of the heat generating member is rapidly lowered. For this reason, there is a problem that a temperature load is applied to the heating element for a short time.
[0008]
In addition, even if the temperature of the heating element continues to increase even if the temperature of the heating element rises and the compound melts, the flexibility of the heat dissipation member improves, and the heat transfer coefficient increases due to close contact between the heating element and the heat dissipation element. However, the melted compound having a low melt viscosity flows out from the heat radiating member. As a result, the adhesion is impaired, the heat transfer rate is deteriorated, and the temperature of the heating element may be increased. It was.
[0009]
[Problems to be solved by the invention]
In view of the above situation, the present invention has excellent handling at room temperature, is interposed between the heating element and the radiator, and has high flexibility so that the heating element and the radiator are in close contact with each other efficiently. A heat radiating member capable of conducting heat generated from the heat generating body to the heat radiating body and maintaining a close contact state even when the temperature rises, and the heat radiating member and the heat radiating body It aims at providing the connection structure formed by connecting.
[0010]
[Means for Solving the Problems]
The present invention is a heat dissipating member comprising a thermoplastic resin composition containing a thermoplastic resin and thermally conductive fine particles and not containing a compound having a melting temperature of 40 to 100 ° C. The storage elastic modulus at 1 Hz is 50,000 Pa or more and has a fixed shape, and at 60 ° C., the storage elastic modulus at 0.1 Hz is 400 to 10,000 Pa and is indefinite. In 80 degreeC, the storage elastic modulus at the time of 0.1 Hz is 400-5000 Pa or more, and is a heat radiating member which is an indeterminate form.
The present invention is described in detail below.
[0011]
The heat radiating member of the present invention has a storage elastic modulus at 0.1 Hz at 23 ° C. of 50,000 Pa or more and maintains a fixed shape, and at 60 ° C., the storage elastic modulus at 0.1 Hz. Is 400 to 10,000 Pa and is indefinite, and at 80 ° C., the storage elastic modulus at 0.1 Hz is 400 to 5000 Pa and is indefinite. As a result, it can be used in the form of a regular sheet at a temperature of around 23 ° C. where the heating work or the heat sink is applied, and exhibits excellent workability while applying a voltage to the heating element. When the temperature rises, the heat radiating member softens rapidly, and when it reaches a temperature of 60 ° C., the flexibility is improved. Therefore, the contact area between the heating element and the heat radiating body is improved, and excellent heat resistance performance is exhibited. Even when the temperature reaches the above temperature, the decrease in storage elastic modulus is gradual, and it does not flow away from the heating element and the heat dissipation element.
The storage elastic modulus can be measured by a dynamic viscoelasticity measuring device such as a dynamic analyzer RDAII manufactured by Rheometrics.
[0012]
If the storage elastic modulus at 0.1 Hz at a temperature of 23 ° C. is less than 50,000 Pa, it is too soft and difficult to handle, and the sticking operation is also difficult to perform. In addition, if the storage elastic modulus at 0.1 Hz at a temperature of 60 ° C. exceeds 10,000 Pa, the heat dissipation member has low flexibility and cannot adhere to the heating element or the heat dissipation element, and sufficient heat resistance performance cannot be obtained. . Furthermore, when the storage elastic modulus at 0.1 Hz at a temperature of 80 ° C. is less than 400 Pa, the heat dissipating member becomes too soft and flows out and separates from the heating element and the heat dissipating element.
[0013]
Since a rapid change in storage elastic modulus takes place between 23 ° C. and 60 ° C. without causing a phase transition phenomenon, the heat radiating member gradually adheres as the temperature of the heating element rises, There is no time lag between the rise of the temperature of the heating element and the improvement of the contact area between the heating element and the heat dissipation member due to softening of the heat dissipation member and the appearance of excellent thermal resistance performance. Does not rise rapidly, and no temperature load is applied to the heating element.
Also, a thermoplastic resin composition that does not involve a phase transition phenomenon is often difficult to handle as a heat-dissipating member because it may soften or become sticky on the resin surface even when heated slightly at room temperature or room temperature. However, it can maintain a fixed shape at a low temperature and is excellent in handleability.
[0014]
When a compound having a melting temperature of 40 to 100 ° C. is added to the thermoplastic resin composition, latent heat absorption accompanying a phase transition phenomenon called melting occurs, so that the heat radiating member does not soften until melting sufficiently proceeds. Therefore, there is a time delay between the temperature rise of the heating element and the heat dissipation member softening to improve the contact area between the heating element and the radiator and exhibit excellent thermal resistance performance. Temperature load. Therefore, the said thermoplastic resin composition does not contain the compound which has a melting temperature in 40-100 degreeC.
[0015]
When the temperature exceeds 60 ° C., the decrease in the storage elastic modulus becomes gradual, becomes too soft and does not flow away from the heating element and the heat dissipation body, and continues to adhere to the heating element and the heat dissipation element and is generated from the heating element. Heat can continue to be transferred efficiently to the radiator.
[0016]
The heat radiating member of the present invention preferably has an adhesive strength to aluminum at 23 ° C. of 0.5 N / cm 2 or more. Thereby, it has high adhesiveness with respect to a heat generating body and a heat radiator, and the sticking workability | operativity at the time of affixing the heat radiating member on a heat generating body and a heat radiator improves.
[0017]
Although the heat radiating member of the present invention is not particularly limited, it is preferably processed into a sheet shape. By making it into a sheet, the workability of attaching is remarkably improved.
When used in the form of a sheet, if the sheet becomes too thin, the handleability deteriorates, and when it is interposed between the heating element and the radiator, it becomes difficult to sufficiently fill the gap, and the sheet is thick. If it is too much, the thermal resistance performance tends to be lowered. Therefore, the thickness of the heat radiating member of the present invention is preferably 20 μm at the lower limit and 400 μm at the upper limit.
[0018]
The heat radiating member of the present invention comprises a thermoplastic resin composition containing a thermoplastic resin and thermally conductive fine particles.
Examples of the thermoplastic resin include (meth) acrylic acid ester copolymers; styrene block copolymers such as styrene-butadiene-styrene block copolymers and styrene-isoprene-styrene block copolymers; ethylene-vinyl acetate. Resins, butadiene resins, isobutylene resins, olefin resins, urethane resins, epoxy resins, vinyl acetate resins, styrene resins, butyral resins, polyvinyl alcohol resins, silicone resins; these modified resins Etc. These may be used alone or in combination of two or more. Especially, since the design which can implement | achieve the above-mentioned storage elastic modulus is comparatively easy, an acrylate-type copolymer, a styrene-type block copolymer, and a butyl rubber-type resin are suitable. For example, in the case of an acrylic ester copolymer, the above storage elastic modulus can be expressed by setting the weight average molecular weight of the copolymer to 200,000 or less.
[0019]
The thermoplastic resin is preferably not a resin having a melting point near the operating limit temperature on the high temperature side of an electronic component such as an IC. Even in the case of a resin having a glass transition temperature, it is preferable that the glass transition temperature measured using a differential calorimeter is not in the vicinity of the operating limit temperature on the high temperature side of an electronic component such as an IC. The melting of these resins and the absorption of latent heat in the glass transition phenomenon may also cause a time delay until the heat generating member or the heat radiating member and the heat radiating member come into close contact with each other.
[0020]
Moreover, when using a solid aromatic thermoplastic resin at 23 ° C. such as a styrene block copolymer, butyl rubber or the like as the thermoplastic resin, it further contains a xylene resin that is viscous at 23 ° C. Is preferred.
By adding such a xylene resin, the behavior of the storage elastic modulus between 23 ° C. and 60 ° C. changes more rapidly as described above, and further, the storage elastic modulus changes gradually at 60 ° C. or higher. Can be realized. This is because when a solid aromatic thermoplastic resin at 23 ° C. and a xylene resin that is viscous at 23 ° C. are mixed and used, the solid state is maintained at 23 ° C. due to the interaction between the aromatic rings. As the temperature rises, the interaction weakens, and the interaction suddenly weakens and softens without causing a phase transition phenomenon in a certain temperature range. This is considered to be because fluidization is further suppressed by the interaction remaining. However, as the blending amount of the heat conductive fine particles increases, the elastic modulus behavior of the heat dissipating member of the present invention tends to decrease depending on the type depending on the type, the types of thermoplastic resin, xylene resin and It is necessary to adjust appropriately according to a compounding quantity.
[0021]
In addition, since the xylene resin also functions as a tackifier, the workability when the heat radiating member of the present invention is attached to the heat generator and the heat radiator is improved by blending the xylene resin. .
[0022]
The minimum with the preferable compounding quantity of the said xylene resin in the said thermoplastic resin composition is 10 volume%, and an upper limit is 60 volume%. If it is less than 10% by volume, fluidization of the thermoplastic resin composition at 80 ° C. or higher may not be sufficiently suppressed, and if it exceeds 60% by volume, it will be difficult to obtain a regular sheet at 23 ° C. Sometimes.
[0023]
Examples of the heat conductive fine particles include at least one kind of heat conductive fine particles selected from boron nitride, aluminum nitride, alumina, aluminum, silicon carbide, zinc oxide, copper, and metal hydroxide.
Examples of the metal hydroxide include magnesium hydroxide and aluminum hydroxide.
Moreover, it is preferable that these heat conductive fine particles are surface-treated so that it can mix uniformly with a high compounding ratio.
[0024]
The minimum with the preferable compounding quantity of the said heat conductive microparticles | fine-particles in the said thermoplastic resin composition is 10 volume%, and an upper limit is 90 volume%. If it is less than 10% by volume, sufficient thermal conductivity may not be obtained, and if it exceeds 90% by volume, the adhesion of the obtained heat-dissipating member to aluminum may be reduced, and the pasting workability may be reduced. is there.
[0025]
The thermoplastic resin composition may be a halogen compound, a phosphate compound, a metal hydroxide, titanium oxide, etc. Flame retardants; Colorants such as carbon black and white carbon; Powder surface modifiers such as silane and titanate coupling agents; Antioxidants such as bisphenols and hindered phenols; Chroman resins and terpene phenol resins Further, it may contain tackifiers such as phenol resin, rosin, terpene resin, aliphatic hydrocarbon and alicyclic hydrocarbon.
[0026]
The method for producing the heat radiating member of the present invention is not particularly limited. For example, a predetermined amount of thermoplastic resin and thermally conductive particles are used in two rolls, three rolls, a plast mill, a kneader, a planetary mixer, and a Banbury mixer. Etc., and a method of forming it into a sheet having a desired thickness by coating molding, extrusion molding, press molding, or the like.
[0027]
The heat dissipating member of the present invention has a fixed shape at a room temperature around 23 ° C., is extremely excellent in handleability, and can efficiently produce a connection structure in which a heat generator and a heat dissipator are connected.
When the temperature of the heating element of this connection structure is raised, when the temperature rises above a certain temperature, the heat radiating member of the present invention is rapidly produced without a glass transition phenomenon or a phase transition phenomenon accompanied by latent heat absorption such as melting. Softening increases the contact area between the heat generating element and the heat radiating body, and accordingly, the thickness of the heat radiating member is reduced, and excellent thermal resistance performance can be exhibited. In addition, the change of the heat radiating member is rapid and occurs before the temperature of the heating element rises until it reaches a temperature that is a load for the heating element, so that no temperature load is applied to the heating element.
Furthermore, even when the temperature rises, the heat dissipating member of the present invention does not fluidize any more and keeps in close contact with the heat generating element and the heat dissipating element, so that no temperature load is applied to the heat generating element.
Such a connection structure formed by connecting a heat generating element and a heat dissipating member by the heat dissipating member of the present invention, wherein the heat dissipating member has a thickness less than that before the heat generation due to heat generated by the heat generating element. A connection structure that is also possible is one aspect of the present invention.
Further, the present invention is a connection structure in which a heat generating member and a heat dissipating member are connected by the heat dissipating member of the present invention, and the heat dissipating member is already reduced in thickness than before the heat generation because the heat generating member generates heat. The connecting structure which is the same is also one aspect of the present invention.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[0029]
Example 1
20 parts by weight of a styrene-isoprene block copolymer having a styrene content of 22% by weight, 80 parts by weight of xylene resin (Mitsubishi Gas Chemical Co., Ltd., trade name “Nikanol KL-05”), and aluminum nitride (Tokuyama Co., Ltd., trade name) "Grade F") 140 parts by weight were mixed with a plastmill to obtain a slurry. In this slurry, the volume ratio of aluminum nitride was 30%.
Next, a release PET film was laid on the press plate, a metal frame having a thickness of 100 μm was placed thereon, and the resulting slurry was poured into the metal frame. Next, a release PET film was placed thereon and sandwiched between press plates from above and below, and press molding was performed at room temperature. As a result, a sheet-like heat radiation member having a thickness of 100 μm with a release PET film on both sides was obtained.
[0030]
(Example 2)
20 parts by weight of a styrene-isoprene block copolymer having a styrene content of 22% by weight, 80 parts by weight of xylene resin (Mitsubishi Gas Chemical Co., Ltd., trade name “Nikanol KL-05”), and aluminum nitride (Tokuyama Co., Ltd., trade name) "Grade F") 330 parts by weight were mixed with a plast mill to obtain a slurry. In this slurry, the volume ratio of aluminum nitride was 50%.
Using this slurry-like material, a sheet-like heat-dissipating member having a thickness of 100 μm with a release PET film on both sides was obtained in the same manner as in Example 1.
[0031]
(Comparative Example 1)
30 parts by weight of a styrene-isoprene block copolymer having a styrene content of 22% by weight, 70 parts by weight of dodecylbenzene, and 760 parts by weight of aluminum nitride (trade name “Grade F”, manufactured by Tokuyama Co., Ltd.) are mixed with a plastmill to form a slurry. Got. In this slurry, the volume ratio of aluminum nitride was 70%.
Using this slurry-like material, a sheet-like heat-dissipating member having a thickness of 100 μm with a release PET film on both sides was obtained in the same manner as in Example 1.
[0032]
(Comparative Example 2)
A slurry obtained by mixing 50 parts by weight of a styrene-isoprene block copolymer having a styrene content of 22% by weight, 50 parts by weight of dodecylbenzene, and 226 parts by weight of boron nitride (trade name “Grade SGP” manufactured by Denki Kagaku Kogyo Co., Ltd.) using a plastmill. A product was obtained. In this slurry, the volume ratio of boron nitride was 50%.
Using this slurry-like material, a sheet-like heat-dissipating member having a thickness of 100 μm with a release PET film on both sides was obtained in the same manner as in Example 1.
[0033]
(Comparative Example 3)
Instead of 20 parts by weight of a styrene-isoprene block copolymer having a styrene content of 22% by weight, an acrylic ester copolymer (trade name “S-2022 modified 2”, manufactured by Negami Kogyo Co., Ltd .: weight average molecular weight 270,000) 100 weights Example, except that 226 parts by weight of boron nitride (trade name “Grade SGP”, manufactured by Denki Kagaku Kogyo Co., Ltd.) was used instead of 140 parts by weight of aluminum nitride (trade name “Grade F”, manufactured by Tokuyama Corporation). In the same manner as in No. 1, a sheet-shaped heat radiation member having a thickness of 100 μm with a release PET film on both sides was obtained.
[0034]
<Evaluation>
About the heat radiating member obtained in Examples 1-2 and Comparative Examples 1-3, the thermal resistance, the storage elastic modulus, and the high temperature fluidity | liquidity were evaluated with the following method.
[0035]
(Measurement of thermal resistance)
The thermal resistance was measured with the measuring apparatus shown in FIG. That is, the heat radiating member 2 from which the release PET film was peeled off was pasted on the aluminum cooler 1, an IC serving as a heat source was further laminated thereon, and the bolt 3 was tightened with a tightening torque of 1 N · m.
The IC was powered on and supplied with 80 W / h of power. After 60 minutes, the IC temperature T1 and the temperature T2 near the heat dissipating member of the cooler 1 were measured. The cooler 1 is supplied and circulated with water at 23 ° C. from the constant temperature water tank 4. From the measurement results, the thermal resistance was determined by the following formula.
[0036]
[Expression 1]
Figure 0003976642
[0037]
(Measurement of storage modulus)
Using a dynamic analyzer RDAII (manufactured by Rheometrics), the storage elastic modulus of the heat radiating member at 23 ° C., 60 ° C. and 80 ° C. was measured under the condition of 0.1 Hz.
[0038]
(Evaluation of high temperature fluidity)
As shown in FIG. 2, the heat radiating member which peeled off the single-sided release PET film was affixed on the side surface of the regular cubic block which consists of aluminum. This aluminum block was stored in a constant temperature bath at 80 ° C., and the presence or absence of the heat dissipation member was visually observed after one week.
[0039]
[Table 1]
Figure 0003976642
[0040]
【The invention's effect】
According to the present invention, it has excellent handleability at room temperature, is interposed between the heating element and the radiator, and has high flexibility so that the heating element and the radiator are in close contact with each other efficiently. A heat dissipating member capable of conducting the generated heat to the heat dissipator and maintaining a close contact state even when the temperature rises, and connecting the heat generating member and the heat dissipator with the heat dissipating member. Can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a measuring apparatus used for measuring the thermal resistance of a heat radiating member.
FIG. 2 is a schematic diagram illustrating a method for evaluating high-temperature fluidity in Examples.
[Explanation of symbols]
1 Cooler 2 Heat Dissipation Member 3 Bolt 4 Constant Temperature Water Tank 5 Aluminum Block

Claims (3)

熱可塑性樹脂と熱伝導性微粒子とを含有し、40〜100℃に融解温度を有する化合物を含有しない熱可塑性樹脂組成物からなる放熱用部材であって、
前記熱可塑性樹脂組成物は、23℃において固形状の芳香族熱可塑性樹脂と、23℃において粘稠体であるキシレン樹脂とを含有するものであり、
前記熱可塑性樹脂組成物における前記キシレン樹脂の配合量が10〜60体積%であり、23℃においては、0.1Hz時の貯蔵弾性率が5万Pa以上であり、かつ、定形を保持しており、
60℃においては、0.1Hz時の貯蔵弾性率が400〜1万Paであり、かつ、不定形であり、
80℃においては、0.1Hz時の貯蔵弾性率が400〜5000Paであり、かつ、不定形である
ことを特徴とする放熱用部材。
A heat radiating member comprising a thermoplastic resin composition containing a thermoplastic resin and thermally conductive fine particles and not containing a compound having a melting temperature of 40 to 100 ° C.,
The thermoplastic resin composition contains a solid aromatic thermoplastic resin at 23 ° C. and a xylene resin that is viscous at 23 ° C.,
The blending amount of the xylene resin in the thermoplastic resin composition is 10 to 60% by volume, and at 23 ° C., the storage elastic modulus at 0.1 Hz is 50,000 Pa or more and keeps the fixed shape. And
At 60 ° C., the storage elastic modulus at 0.1 Hz is 400 to 10,000 Pa and is indeterminate.
A heat radiating member having a storage elastic modulus at 0.1 Hz of 400 to 5000 Pa at 80 ° C. and an indefinite shape.
請求項1記載の放熱用部材により発熱体と放熱体とを接続してなる接続構造体であって、前記放熱用部材は、発熱体の発熱により、前記発熱前よりも厚みが減少することが可能であることを特徴とする接続構造体。It is a connection structure body which connects a heat generating body and a heat radiator with the heat radiating member of Claim 1, Comprising: The said heat radiating member may reduce thickness than before the said heat_generation | fever by heat_generation | fever of a heat generating body. Connection structure characterized in that it is possible. 請求項1記載の放熱用部材により発熱体と放熱体とを接続してなる接続構造体であって、前記放熱用部材は、発熱体が発熱したことにより、前記発熱前よりも既に厚みが減少しているものであることを特徴とする接続構造体。 A connection structure formed by connecting a heat generating element and a heat dissipating member by the heat dissipating member according to claim 1 , wherein the heat dissipating member is already thinner than before the heat generation due to the heat generating element generating heat. Connection structure characterized by being made.
JP2002233597A 2002-08-09 2002-08-09 Heat dissipation member and connection structure Expired - Fee Related JP3976642B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002233597A JP3976642B2 (en) 2002-08-09 2002-08-09 Heat dissipation member and connection structure
CNB038186071A CN100339983C (en) 2002-08-09 2003-08-08 Heat radiating member and connection structure
US10/523,409 US20050155751A1 (en) 2002-08-09 2003-08-08 Heat-dissipating member and joined structure
PCT/JP2003/010112 WO2004015768A1 (en) 2002-08-09 2003-08-08 Heat-dissipating member and joined structure
EP03784597A EP1542281A1 (en) 2002-08-09 2003-08-08 Heat-dissipating member and joined structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233597A JP3976642B2 (en) 2002-08-09 2002-08-09 Heat dissipation member and connection structure

Publications (2)

Publication Number Publication Date
JP2004079568A JP2004079568A (en) 2004-03-11
JP3976642B2 true JP3976642B2 (en) 2007-09-19

Family

ID=32018691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233597A Expired - Fee Related JP3976642B2 (en) 2002-08-09 2002-08-09 Heat dissipation member and connection structure

Country Status (1)

Country Link
JP (1) JP3976642B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729266B2 (en) * 2004-05-11 2011-07-20 ニッタ株式会社 Thermally conductive composition and thermal conductive sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194306A (en) * 2000-12-26 2002-07-10 Sekisui Chem Co Ltd Heat-conductive sheet

Also Published As

Publication number Publication date
JP2004079568A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US7527753B2 (en) Acrylic-based thermally conductive composition and thermally conductive sheet
JP2002194306A (en) Heat-conductive sheet
JP2000509209A (en) Compatible thermal interface materials for electronic components
JP2002329989A (en) Thermosoftening radiation sheet
JP2003026928A (en) Thermally conductive composition
JP2006241333A (en) Heat conductive composition and heat conductive sheet
JP4119287B2 (en) Heat dissipation member and connection structure
JP2002003830A (en) Highly heat conductive composition and its application
JP2003105299A (en) Heat conductive pressure sensitive adhesive, heat conductive pressure sensitive adhesive sheet and its laminate
JP4829482B2 (en) Thermally conductive composition and thermal conductive sheet
JP2008143975A (en) Heat-conductive hot melt adhesive composition
JP2004075760A (en) Heat-conductive resin composition and phase-change type heat radiation member
JPH10324853A (en) Releasable heat-conductive pressure-sensitive adhesive and adhesive sheet or the like coated therewith
JP4030399B2 (en) Self-adhesive phase change heat dissipation member
JP3976642B2 (en) Heat dissipation member and connection structure
JP3978056B2 (en) Heat dissipation member and connection structure
WO2004015768A1 (en) Heat-dissipating member and joined structure
JP2003152147A (en) Heat conductive composite, heat conductive pressure sensitive adhesive sheet as well as jointing structure of heat generating body and heat dissipation body
JP2003100969A (en) Heat radiation member
JP4027807B2 (en) Phase change type multilayer sheet
JP2002194232A (en) Thermally conductive material
JP2004079641A (en) Heat radiating member and connection structure
JP2002194339A (en) Thermally conductive material
JP2009120841A (en) Acrylic thermally conductive composition and article including the same
JP4729266B2 (en) Thermally conductive composition and thermal conductive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees