JP4030399B2 - Self-adhesive phase change heat dissipation member - Google Patents

Self-adhesive phase change heat dissipation member Download PDF

Info

Publication number
JP4030399B2
JP4030399B2 JP2002278479A JP2002278479A JP4030399B2 JP 4030399 B2 JP4030399 B2 JP 4030399B2 JP 2002278479 A JP2002278479 A JP 2002278479A JP 2002278479 A JP2002278479 A JP 2002278479A JP 4030399 B2 JP4030399 B2 JP 4030399B2
Authority
JP
Japan
Prior art keywords
powder
heat
volume
hot melt
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002278479A
Other languages
Japanese (ja)
Other versions
JP2004115596A (en
Inventor
敏勝 光永
正人 川野
政秀 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2002278479A priority Critical patent/JP4030399B2/en
Publication of JP2004115596A publication Critical patent/JP2004115596A/en
Application granted granted Critical
Publication of JP4030399B2 publication Critical patent/JP4030399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自己粘着性相変化型放熱部材に関する。詳しくは、コンピューター、ワードプロセッサーなどの情報処理機器におけるIC、LSI、CPU、MPU等の半導体素子より発生する熱を効率よく放出するのに用いられるものであり、自己粘着性を持ち、相変化する放熱部材に関する。
【0002】
【従来の技術】
近年、発熱性電子部品の高密度化に伴い、それに用いられる放熱部材には低熱抵抗化の要求が高まっている。また、情報処理機器は携帯用の薄型サイズのものが好まれていることも相俟って、放熱部材の低熱抵抗化には拍車がかかっている。
【0003】
従来、放熱部材としては、高熱伝導性フィラーを含有する放熱グリースや、シリコーンゴムなどの柔軟なマトリックスと高熱伝導性フィラーからなる柔軟性放熱部材(「放熱スペーサー」ともいわれている。)などがある。
【0004】
しかしながら、放熱グリースは、塗布作業性の煩雑さ、周囲部位の汚れなどの問題から敬遠される傾向にある。柔軟性放熱部材は、薄物ではハンドリング性が悪いので、比較的厚くする必要があり、発熱性電子部品と放熱フィンの間に装着した場合、放熱部材自身の熱抵抗が低くても、熱抵抗を著しく低下させることは困難である。
【0005】
そこで、今日、効率よく放熱を行うには、放熱部材自身の熱抵抗を下げること、放熱部材と発熱性電子部品及び放熱フィンとの密着性を高めて隙間発生による熱抵抗の増大を和らげること、放熱部材の厚みが装着された状態で薄化されること、が理想的であることの観点にたち、発熱性電子部品の発熱による加温によって薄くなる相変化型の放熱部材が提案(特許文献1)され、実用化されている。
【0006】
しかしながら、相変化型の放熱部材は自己粘着性を有していないので、装着時の位置ずれを防ぎ装着作業を向上させるには、放熱部材に糊等の粘着剤を塗布する必要がある。このため、作業工程が増えるなどして生産性に悪影響を及ぼし、また放熱性も損なわれた。
【0007】
【特許文献1】
日本特許第3032505号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、上記に鑑み、それ自体の熱抵抗が小さく、発熱性電子部品と放熱フィンとの間に容易に密着する自己粘着性を有し、しかも発熱性電子部品の発熱による加温によって薄化する相変化型の放熱部材を提供することである。
【0009】
【課題を解決するための手段】
すなわち、本発明は、エチレン−酢酸ビニル共重合体と、合成ゴム系ホットメルト接着剤と、窒化アルミニウム粉末及びアルミナ粉末からなる熱伝導性フィラー樹脂を含有してなり、熱伝導性フィラー100体積部に対しエチレン−酢酸ビニル共重合体と合成ゴム系ホットメルト接着剤とが合計で30〜100体積部、エチレン−酢酸ビニル共重合体と合成ゴム系ホットメルト接着剤の構成比率が、エチレン−酢酸ビニル共重合体1体積部に対し合成ゴム系ホットメルト接着剤が0.3〜0.9体積部であり、軟化温度50℃以上100℃未満、熱伝導率2W/mK以上、JIS−Z0237による90度引きはがし法による粘着力が0.1N/25mm以上であることを特徴とする自己粘着性相変化型放熱部材である。
【0010】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0011】
本発明の放熱部材の軟化温度は、50℃以上100℃未満である。軟化温度が50℃未満であると、取り付け時に軟化したりして作業性が低下する。マトリックスの融点が50℃未満、例えば40℃である場合、熱伝導性フィラーの充填量を高めると、軟化開始温度に降伏値が発生し、放熱部材全体の軟化温度を50℃以上にすることができる。軟化温度は、エチレン−酢酸ビニル共重合体合成ゴム系ホットメルト接着剤、熱伝導性フィラーの種類と構成比率によって調整することができる。これについては後述する。
【0012】
本発明の放熱部材の熱伝導率は2W/mK以上である。熱伝導率が2W/mK未満では、加温によって密着性が高められても効率的な放熱を行うことができない。熱伝導率は熱伝導性フィラーの混入量によって調整することができる。本発明の放熱部材においては、熱伝導性フィラーの混入率は50〜80体積%であることが好ましい。
【0013】
本発明の放熱部材のJIS−Z0237による90度引きはがし法による粘着力は、0.1N/25mm以上である。粘着力が0.1N/25mm未満では、放熱部材を装着する際、仮止めが困難となる。粘着力は合成ゴム系ホットメルト接着剤の混入量によって調整することができる。本発明においては、エチレン−酢酸ビニル共重合体1体積部に対し、合成ゴム系ホットメルト接着剤0.3〜0.9体積部である。

【0014】
放熱部材の厚みは、0.15〜6mm、特に0.15〜0.5mmが一般的である。放熱部材の平面形状は、発熱性電子部品や放熱フィンと密着できる形状ないしは発熱性電子部品を埋没できる形状であれば制限はない。また、形状は、電子部品、ヒートシンクの形状に合わせ、種々の形状に切断して使用することができる。
【0015】
加温によって相変化するエチレン−酢酸ビニル共重合体と合成ゴム系ホットメルト接着剤との混合物(以下、「マトリックス」ともいう。)と、熱伝導性フィラーとの構成比率は、熱伝導性フィラー100体積部に対し、マトリックス30〜100体積部、特に35〜50体積部であることが好ましい。マトリックスが30体積部未満であると、加温されても放熱部材の軟化性を損ない、発熱性電子部品と放熱フィンとの間に容易に密着させることが困難となる。また、放熱フィンへの貼り付き性も悪くなる。一方、100体積部を超えると、熱伝導性フィラーが相対的に少なくなるため、放熱部材自身の熱抵抗を低めることが困難となる。
【0016】
マトリックスの融点は、40〜100℃であることが望ましい。融点が100℃を超えると、半導体素子に大きな熱的負荷がかかり、それが組み込まれた情報処理機器が誤作動する原因となる。また、融点が40℃未満では、放熱部材の取り付け作業時に、夏場など外気温の影響で軟化する恐れがあり不便である。マトリックスの融点は、エチレン−酢酸ビニル共重合体と合成ゴム系ホットメルト接着剤の構成比率によって調整することができる。本発明においては、エチレン−酢酸ビニル共重合体樹脂1体積部に対し、合成ゴム系ホットメルト接着剤0.3〜0.9体積部である。
【0017】
本発明で使用されるエチレン−酢酸ビニル共重合体は、融点が40〜100℃であるものが好ましい。エチレン−酢酸ビニル共重合体は低熱抵抗性である。
【0018】
本発明使用される合成ゴム系ホットメルト接着剤とは、ゴムを主成分とする常温で固形状の接着性物質である。中でも、融点が100℃超である合成ゴム系ホットメルト接着剤が好ましく、その市販品には、松村石油社製商品名「モレスコメルトTN」シリーズがある。
【0019】
本発明で使用される熱伝導性フィラーを例示すれば、アルミナ、窒化アルミニウムである。これらの中でも、窒化アルミニウム熱伝導率が大きいので好ましく、特に放熱部材には絶縁性が好まれるので、窒化アルミニウムが最適である。
【0020】
熱伝導性フィラーは、平均粒子径2μm超40μm以下の粗紛と、平均粒子径0.1〜2μmの微紛との混合粉末であることが好ましい。平均粒子径2μm超40μm未満の粗粉は、窒化アルミニウムのように、高熱伝導率を有するものが好ましく、その構成比率は40〜60体積%が好ましい。平均粒子径0.1〜2μmの微紛は、粗粉ほどの高熱伝導率は必ずしも必要ではなく、粗紛の空隙を埋める機能を有するものであればよい。例示すれば、アルミナである。熱伝導性フィラーの微紛の構成比率は60〜40体積%が好ましい。
【0021】
本発明の放熱部材は、原料の混合工程、成形工程を経て製造される。混合は、万能混合機等を用い、有機溶剤などで希釈して行われる。成形方法は、ドクターブレードによるシート化法が望ましく、シート化に際しては離型処理の施されたフィルムを用いることが好ましい。そのフィルムの一例として、シリコーンを塗布やフッ素処理したポリエチレンテレフタレートフィルムがある。また、樹脂をマトリックスの構成成分としているのでカレンダーロール等でも問題なく製造することができる。
【0022】
【実施例】
以下、実施例を、比較例をあげて更に具体的に本発明を説明する。
【0023】
実施例1〜7 比較例1〜6
樹脂(エチレン−酢酸ビニル共重合体樹脂:三井・デュポンポリケミカル社製商品名「エバフレックス210」)、流動パラフィン(松村石油社製商品名「モレスコホワイトP−350P」)、ホットメルト接着剤(合成ゴム系ホットメルト接着剤:松村石油社製商品名「モレスコメルトTN−530S」)、熱伝導性フィラー(平均粒子径30μmの窒化アルミニウム粉末、平均粒子径30μmのアルミナ粉末、平均粒子径0.5μmのアルミナ粉末)を用意し、それらを表1に示す体積百分率で混合してから、更にトルエン媒体中で混合し、粘度8N・s/mのスラリーを調整した。
【0024】
これをドクターブレード法にてシート成形(厚み0.25mm)して相変化型放熱部材を製造し、その熱伝導率、粘着性、ヒートシンクへの貼り付き性、パソコン実装時の温度、相変化温度を以下に従って測定した。それらの結果を表1、表2に示す。
【0025】
(1)熱伝導率
放熱部材をTO−3型銅製ヒーターケースと銅板の間に0.035N・mの力がかかるようにネジ止めした後、ヒーターケースと銅板が60℃になるまで加温後室温まで冷却する。ついで、ヒーターケースに電力15Wをかけて4分間保持したときに、銅製ヒーターケースと銅板の温度差を測定し、以下の式で熱伝導率を算出した。
熱抵抗(℃/W)=温度差(℃)/印加電力(W)
熱伝導率(W/mK)=厚み(m)/伝熱面積(m)/熱抵抗(℃/W)
【0026】
(2)粘着性
JIS−Z0237(粘着テープ・粘着シートの試験方法)の粘着力90度引きはがし法に準じて粘着力を測定した。
【0027】
(3)ヒートシンクへの貼り付き性
デスクトップパソコン(DELL社製商品名「Dimension4500」)のヒートシンクに貼り付ける際に以下の評価を行った。
貼り付かない ・・・×
貼り付くが、振動等を与えると落下する・・・△
貼り付く(振動を加えても落下しない)・・・○
【0028】
(4)パソコン実装時の温度
上記デスクトップパソコンのCPU(インテル社製登録商標Pentium4プロセッサ、2.53GHz)とヒートシンクの間に放熱部材(サイズ:35mm×35mm)を装着し、CPUフルパワー、30分経過後のCPU温度を熱電対で計測した。
【0029】
(5)相変化温度
上記試験において、CPU温度をモニタリングし、CPU温度上昇の変曲点を相変化温度として計測した。
【0030】
【表1】

Figure 0004030399
【0031】
【表2】
Figure 0004030399
【0032】
【発明の効果】
本発明によれば、熱抵抗が小さく、発熱性電子部品と放熱フィンとの間に容易に密着する自己粘着性を有し、しかも発熱性電子部品の発熱による加温によって薄化する相変化型の放熱部材を提供することができる。本発明の放熱部材は、実装時にも電子部品温度が上昇しないため、安定的に情報処理機器に使用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a self-adhesive phase change heat dissipation member. Specifically, it is used to efficiently release heat generated from semiconductor elements such as ICs, LSIs, CPUs, and MPUs in information processing equipment such as computers and word processors, and has self-adhesiveness and phase change heat dissipation. It relates to members.
[0002]
[Prior art]
In recent years, with the increase in the density of heat-generating electronic components, there is an increasing demand for a low heat resistance for the heat dissipating member used therefor. Moreover, coupled with the fact that portable information processing devices are preferred, it has been spurred to lower the heat resistance of the heat dissipating members.
[0003]
Conventionally, as a heat radiating member, there are a heat radiating grease containing a high heat conductive filler, a flexible heat radiating member (also referred to as a “heat radiating spacer”) made of a flexible matrix such as silicone rubber and a high heat conductive filler. .
[0004]
However, the heat dissipating grease tends to be avoided from problems such as complicated application workability and contamination of surrounding parts. Flexible heat dissipation members have poor handling properties when they are thin, so it is necessary to make them relatively thick.When mounted between heat-generating electronic components and heat dissipation fins, the heat dissipation resistance is low even if the heat resistance of the heat dissipation member itself is low. It is difficult to reduce significantly.
[0005]
Therefore, in order to efficiently dissipate heat today, lower the thermal resistance of the heat radiating member itself, increase the adhesion between the heat radiating member and the heat-generating electronic components and the heat radiating fins, and ease the increase in thermal resistance due to the occurrence of gaps. Proposed a phase change type heat dissipation member that is thinned by heating due to heat generation of heat-generating electronic components, because it is ideal that the thickness of the heat dissipation member is reduced in the mounted state (patent document) 1) has been put into practical use.
[0006]
However, since the phase change type heat radiating member does not have self-adhesiveness, it is necessary to apply adhesive such as glue to the heat radiating member in order to prevent misalignment during mounting and improve the mounting operation. For this reason, productivity was adversely affected by an increase in work processes, and heat dissipation was also impaired.
[0007]
[Patent Document 1]
Japanese Patent No. 30325505 [0008]
[Problems to be solved by the invention]
In view of the above, an object of the present invention is to provide a self-adhesive property that has a small thermal resistance and that easily adheres between a heat-generating electronic component and a heat-dissipating fin. It is to provide a phase change type heat radiation member that is thinned by the above.
[0009]
[Means for Solving the Problems]
That is, the present invention contains an ethylene-vinyl acetate copolymer, a synthetic rubber-based hot melt adhesive, a heat conductive filler resin made of aluminum nitride powder and alumina powder, and 100 parts by volume of the heat conductive filler. The ethylene-vinyl acetate copolymer and the synthetic rubber-based hot melt adhesive are 30 to 100 parts by volume in total, and the constituent ratio of the ethylene-vinyl acetate copolymer and the synthetic rubber-based hot melt adhesive is ethylene-acetic acid. The synthetic rubber-based hot melt adhesive is 0.3 to 0.9 parts by volume with respect to 1 part by volume of the vinyl copolymer, the softening temperature is 50 ° C. or more and less than 100 ° C., the thermal conductivity is 2 W / mK or more, according to JIS-Z0237 It is a self-adhesive phase change type heat radiating member characterized in that the adhesive strength by the 90-degree peeling method is 0.1 N / 25 mm or more.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0011]
The softening temperature of the heat radiating member of the present invention is 50 ° C. or higher and lower than 100 ° C. When the softening temperature is less than 50 ° C., the workability is lowered due to softening during mounting. When the melting point of the matrix is less than 50 ° C., for example, 40 ° C., increasing the filling amount of the heat conductive filler generates a yield value at the softening start temperature, and the softening temperature of the entire heat radiating member may be 50 ° C. or higher. it can. The softening temperature can be adjusted by the type and the composition ratio of the ethylene-vinyl acetate copolymer , the synthetic rubber-based hot melt adhesive, and the heat conductive filler. This will be described later.
[0012]
The heat conductivity of the heat dissipating member of the present invention is 2 W / mK or more. When the thermal conductivity is less than 2 W / mK, efficient heat dissipation cannot be performed even if the adhesion is improved by heating. The thermal conductivity can be adjusted by the mixing amount of the thermal conductive filler. In the heat radiating member of this invention, it is preferable that the mixing rate of a heat conductive filler is 50-80 volume%.
[0013]
The adhesive force by 90 degree peeling method by JIS-Z0237 of the heat radiating member of this invention is 0.1 N / 25mm or more. When the adhesive strength is less than 0.1 N / 25 mm, it is difficult to temporarily fix the heat radiating member. The adhesive strength can be adjusted by the mixing amount of the synthetic rubber hot melt adhesive. In this invention, it is 0.3-0.9 volume part of synthetic rubber type hot melt adhesives with respect to 1 volume part of ethylene-vinyl acetate copolymer .

[0014]
The thickness of the heat dissipating member is generally 0.15 to 6 mm, particularly 0.15 to 0.5 mm. The planar shape of the heat dissipating member is not limited as long as the heat dissipating electronic component and the heat dissipating fin can be in close contact with each other or the heat dissipating electronic component can be buried. The shape can be cut into various shapes according to the shape of the electronic component and the heat sink.
[0015]
The composition ratio of the mixture of the ethylene-vinyl acetate copolymer and the synthetic rubber-based hot melt adhesive (hereinafter also referred to as “matrix”) that changes phase by heating and the heat conductive filler is the heat conductive filler. It is preferable that it is 30-100 volume parts of matrices with respect to 100 volume parts, especially 35-50 volume parts. When the matrix is less than 30 parts by volume, even if heated, the softening property of the heat dissipating member is impaired, and it becomes difficult to easily adhere the heat generating electronic component and the heat dissipating fin. Moreover, the sticking property to a radiation fin also worsens. On the other hand, when the volume exceeds 100 parts by volume, the heat conductive filler is relatively reduced, so that it is difficult to reduce the thermal resistance of the heat radiating member itself.
[0016]
The melting point of the matrix is desirably 40 to 100 ° C. When the melting point exceeds 100 ° C., a large thermal load is applied to the semiconductor element, which causes a malfunction of an information processing device in which the semiconductor element is incorporated. Moreover, if melting | fusing point is less than 40 degreeC, at the time of the attachment operation | work of a heat radiating member, there exists a possibility of softening by the influence of external temperature, such as summer, and it is inconvenient. The melting point of the matrix can be adjusted by the constituent ratio of the ethylene-vinyl acetate copolymer and the synthetic rubber hot melt adhesive. In this invention, it is 0.3-0.9 volume part of synthetic rubber type hot melt adhesives with respect to 1 volume part of ethylene-vinyl acetate copolymer resin .
[0017]
Ethylene is used in the present invention - vinyl acetate copolymer, things have preferably a melting point of 40 to 100 ° C.. The ethylene-vinyl acetate copolymer has a low heat resistance.
[0018]
The synthetic rubber-based hot melt adhesive used in the present invention is an adhesive substance that is solid at room temperature and mainly contains rubber . Among, there is preferably a synthetic rubber-based hot melt adhesive is a 100 ℃ than the melting point, in its commercial products, there is a Matsumura Oil Co., Ltd. trade name "Moresukomeruto TN" series.
[0019]
Examples of the thermally conductive filler used in the present invention are alumina and aluminum nitride. Among these, aluminum nitride is preferable because of its high thermal conductivity, and aluminum nitride is most suitable because the heat dissipation member is particularly preferable for insulation.
[0020]
The thermally conductive filler is preferably a mixed powder of coarse powder having an average particle diameter of more than 2 μm and 40 μm or less and fine powder having an average particle diameter of 0.1 to 2 μm. The coarse powder having an average particle diameter of more than 2 μm and less than 40 μm preferably has a high thermal conductivity like aluminum nitride , and its constituent ratio is preferably 40 to 60% by volume. The fine powder having an average particle size of 0.1 to 2 μm is not necessarily required to have the high thermal conductivity as that of the coarse powder, and any fine powder having a function of filling the voids of the coarse powder may be used. An example is alumina . The composition ratio of the fine particles of the heat conductive filler is preferably 60 to 40% by volume.
[0021]
The heat dissipation member of the present invention is manufactured through a raw material mixing step and a molding step. Mixing is performed by diluting with an organic solvent using a universal mixer or the like. The forming method is preferably a sheet forming method using a doctor blade, and it is preferable to use a film that has been subjected to a release treatment when forming a sheet. As an example of the film, there is a polyethylene terephthalate film in which silicone is applied or fluorine-treated. In addition, since the resin is used as a constituent component of the matrix, it can be produced even with a calender roll or the like.
[0022]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0023]
Examples 1-7 Comparative Examples 1-6
Resin (ethylene-vinyl acetate copolymer resin: trade name “Evaflex 210” manufactured by Mitsui DuPont Polychemical Co., Ltd.), liquid paraffin (trade name “Moresco White P-350P” manufactured by Matsumura Oil Co., Ltd.), hot melt adhesive (Synthetic rubber-based hot melt adhesive: trade name “MORESCOME MELT TN-530S” manufactured by Matsumura Oil Co., Ltd.), thermal conductive filler (aluminum nitride powder having an average particle size of 30 μm, alumina powder having an average particle size of 30 μm, average particle size of 0. 5 μm alumina powder) was prepared and mixed at a volume percentage shown in Table 1, and further mixed in a toluene medium to prepare a slurry having a viscosity of 8 N · s / m 2 .
[0024]
This is sheet-formed by a doctor blade method (thickness 0.25 mm) to produce a phase change type heat radiating member, its thermal conductivity, adhesiveness, adhesion to a heat sink, temperature when mounted on a PC, phase change temperature Was measured according to the following. The results are shown in Tables 1 and 2.
[0025]
(1) After screwing the heat conductivity heat dissipation member so that a force of 0.035 N · m is applied between the TO-3 type copper heater case and the copper plate, the heater case and the copper plate are heated until the temperature reaches 60 ° C. Cool to room temperature. Next, when the heater case was applied with electric power of 15 W and held for 4 minutes, the temperature difference between the copper heater case and the copper plate was measured, and the thermal conductivity was calculated by the following equation.
Thermal resistance (° C / W) = temperature difference (° C) / applied power (W)
Thermal conductivity (W / mK) = thickness (m) / heat transfer area (m 2 ) / thermal resistance (° C./W)
[0026]
(2) Adhesive strength JIS-Z0237 (adhesive tape / adhesive sheet test method) was measured for adhesive strength according to the 90-degree peeling method.
[0027]
(3) Adhesiveness to heat sink The following evaluation was performed when adhering to a heat sink of a desktop personal computer (trade name “Dimension 4500” manufactured by DELL).
Does not stick ... ×
Sticks, but drops when vibration is applied ... △
Stick (does not drop even when vibration is applied) ... ○
[0028]
(4) Temperature at the time of personal computer mounting A heat radiation member (size: 35 mm x 35 mm) is mounted between the CPU of the above desktop personal computer (registered trademark Pentium 4 processor, 2.53 GHz, manufactured by Intel Corporation) and the heat sink, and CPU full power, 30 minutes The CPU temperature after the lapse was measured with a thermocouple.
[0029]
(5) Phase change temperature In the said test, CPU temperature was monitored and the inflection point of CPU temperature rise was measured as phase change temperature.
[0030]
[Table 1]
Figure 0004030399
[0031]
[Table 2]
Figure 0004030399
[0032]
【The invention's effect】
According to the present invention, the phase change type has low thermal resistance, has self-adhesiveness that easily adheres between the heat-generating electronic component and the heat radiation fin, and thins by heating due to heat generation of the heat-generating electronic component. The heat radiating member can be provided. Since the heat dissipation member of the present invention does not increase the temperature of electronic components even during mounting, it can be used stably in information processing equipment.

Claims (2)

エチレン−酢酸ビニル共重合体と、合成ゴム系ホットメルト接着剤と、窒化アルミニウム粉末及びアルミナ粉末からなる熱伝導性フィラーを含有してなり、熱伝導性フィラー100体積部に対しエチレン−酢酸ビニル共重合体と合成ゴム系ホットメルト接着剤とが合計で30〜100体積部、エチレン−酢酸ビニル共重合体と合成ゴム系ホットメルト接着剤の構成比率が、エチレン−酢酸ビニル共重合体1体積部に対し合成ゴム系ホットメルト接着剤が0.3〜0.9体積部であり、軟化温度50℃以上100℃未満、熱伝導率2W/mK以上、JIS−Z0237による90度引きはがし法による粘着力が0.1N/25mm以上であることを特徴とする自己粘着性相変化型放熱部材。 Ethylene - vinyl acetate copolymer, a synthetic rubber based hot melt adhesives, and also contains a thermally conductive filler consisting of aluminum powder and alumina nitride powder, the ethylene to the thermally conductive filler 100 parts by volume - vinyl acetate copolymer 30-100 parts by volume in total of the polymer and the synthetic rubber-based hot melt adhesive, and the composition ratio of the ethylene-vinyl acetate copolymer and the synthetic rubber-based hot melt adhesive is 1 part by volume of the ethylene-vinyl acetate copolymer. On the other hand, the synthetic rubber-based hot melt adhesive is 0.3 to 0.9 parts by volume, the softening temperature is 50 ° C. or more and less than 100 ° C., the thermal conductivity is 2 W / mK or more, and the adhesion by 90 degree peeling method according to JIS-Z0237 A self-adhesive phase change type heat radiating member having a force of 0.1 N / 25 mm or more. 熱伝導性フィラーが、平均粒子径が2μm超40μm以下の粗粉40〜60体積%と平均粒子径が0.1〜2μmの微粉60〜40体積%からなり、粗粉が窒化アルミニウム粉末、又は窒化アルミニウム粉末とアルミナ粉末の混合粉末であり、微粉がアルミナ粉末であることを特徴とする請求項1記載の自己粘着性相変化型放熱部材。The thermally conductive filler is composed of 40 to 60% by volume of coarse powder having an average particle diameter of more than 2 μm and 40 μm or less and 60 to 40% by volume of fine powder having an average particle diameter of 0.1 to 2 μm, and the coarse powder is aluminum nitride powder, or The self-adhesive phase change type heat radiating member according to claim 1, wherein the powder is a mixed powder of aluminum nitride powder and alumina powder, and the fine powder is alumina powder.
JP2002278479A 2002-09-25 2002-09-25 Self-adhesive phase change heat dissipation member Expired - Fee Related JP4030399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278479A JP4030399B2 (en) 2002-09-25 2002-09-25 Self-adhesive phase change heat dissipation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278479A JP4030399B2 (en) 2002-09-25 2002-09-25 Self-adhesive phase change heat dissipation member

Publications (2)

Publication Number Publication Date
JP2004115596A JP2004115596A (en) 2004-04-15
JP4030399B2 true JP4030399B2 (en) 2008-01-09

Family

ID=32273747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278479A Expired - Fee Related JP4030399B2 (en) 2002-09-25 2002-09-25 Self-adhesive phase change heat dissipation member

Country Status (1)

Country Link
JP (1) JP4030399B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223226B2 (en) * 2007-04-12 2013-06-26 パナソニック株式会社 Thermally conductive resin paste and optical disk apparatus using the same
CN101720407A (en) * 2007-06-25 2010-06-02 陈振贤 A light-emitting diode lighting device
JP4496438B2 (en) * 2007-11-19 2010-07-07 ヤスハラケミカル株式会社 Thermally conductive hot melt composition
JP5695378B2 (en) * 2010-09-24 2015-04-01 積水化学工業株式会社 Vinyl-based resin composition molded body and flame-resistant sheet
FI124314B (en) * 2012-09-28 2014-06-30 Carbodeon Ltd Oy Nanodiamonds containing thermoplastic heat composite
US10068830B2 (en) * 2014-02-13 2018-09-04 Honeywell International Inc. Compressible thermal interface materials
CN105670550B (en) 2016-03-31 2017-11-14 东莞新能源科技有限公司 A kind of heat-conducting glue and the secondary cell containing the heat-conducting glue
CN108003406A (en) * 2017-12-20 2018-05-08 深圳德邦界面材料有限公司 A kind of heatproof heat conduction phase-change material and preparation method thereof
CN113534525B (en) * 2021-07-08 2024-02-09 深圳亿成光电科技有限公司 Vehicle-mounted LED high-brightness backlight source

Also Published As

Publication number Publication date
JP2004115596A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US10964617B2 (en) Methods for establishing thermal joints between heat spreaders or lids and heat sources
EP1376689B1 (en) Radiating structural body of electronic part and radiating sheet used for the radiating structural body
US20160315030A1 (en) Reusable thermoplastic thermal interface materials and methods for establishing thermal joints between heat sources and heat dissipating/removal structures
US20140368992A1 (en) Methods For Establishing Thermal Joints Between Heat Spreaders and Heat Generating Components Using Thermoplastic and/or Self-Healing Thermal Interface Materials
US20030207064A1 (en) Conformal thermal interface material for electronic components
TW200303166A (en) Thermal management materials having a phase change dispersion
JP3957596B2 (en) Thermally conductive grease
JP4030399B2 (en) Self-adhesive phase change heat dissipation member
JP3891969B2 (en) Thermally conductive grease
WO2014069353A1 (en) Semiconductor device
JP2002003830A (en) Highly heat conductive composition and its application
JP4749631B2 (en) Heat dissipation member
JP2004075760A (en) Heat-conductive resin composition and phase-change type heat radiation member
JP2005228955A (en) Heat dissipation member, its manufacturing method and application
JP4119287B2 (en) Heat dissipation member and connection structure
JP3739335B2 (en) Heat dissipation member and power module
JP4027807B2 (en) Phase change type multilayer sheet
JP2003292908A (en) Heat-curable adhesive sheet having electroconductivity and thermal conductivity
TW201134934A (en) Thermal interface material with phenyl ester
JP3978056B2 (en) Heat dissipation member and connection structure
JP5132122B2 (en) Adhesive heat dissipation sheet
JP3976642B2 (en) Heat dissipation member and connection structure
WO2008053785A1 (en) Phase-change heat dissipating member
JP2003023127A (en) Granular material for forming heat sink member of electronic equipment and application thereof
JP2003309386A (en) Heat radiating member and electronics apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071016

R150 Certificate of patent or registration of utility model

Ref document number: 4030399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees