JP2005228955A - Heat dissipation member, its manufacturing method and application - Google Patents

Heat dissipation member, its manufacturing method and application Download PDF

Info

Publication number
JP2005228955A
JP2005228955A JP2004036830A JP2004036830A JP2005228955A JP 2005228955 A JP2005228955 A JP 2005228955A JP 2004036830 A JP2004036830 A JP 2004036830A JP 2004036830 A JP2004036830 A JP 2004036830A JP 2005228955 A JP2005228955 A JP 2005228955A
Authority
JP
Japan
Prior art keywords
heat
thermoplastic resin
layer
resin layer
silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004036830A
Other languages
Japanese (ja)
Inventor
Masato Kawano
正人 川野
Toshikatsu Mitsunaga
敏勝 光永
Yasuhiko Itabashi
康彦 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004036830A priority Critical patent/JP2005228955A/en
Publication of JP2005228955A publication Critical patent/JP2005228955A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat dissipation member excellent in shape followability and different from paste, and also to provide its manufacturing method and an electronic apparatus incorporating it. <P>SOLUTION: In the heat dissipation member, a silicone layer having E type hardness by JIS K 6253 is ≤65. The layer E and an adhesive thermoplastic resin layer are stacked one on the other putting a metal foil therebetween, and its heat conductivity is ≥2.0 W/mK. After two layers of the metal foil and the silicone layer are manufactured, the adhesive thermoplastic resin layer is formed on an aluminum foil surface on the opposite side where no silicone layer is existent. The electronic apparatus is characterized in that a silicone layer side is adapted to face a heat developable electronic component and an adhesive thermoplastic resin layer side adapted to face a heatsink to incorporate the heat dissipation member. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、放熱部材、その製造方法及び用途に関する。 The present invention relates to a heat radiating member, a manufacturing method thereof, and an application.

従来、パワートランジスタやパワーモジュール等の大きな発熱を伴う電子部品を、放熱フィン等のヒートシンクに取り付ける際に、隙間をなくし、電子部品で発生した熱を効率よくヒートシンクに伝達するため、放熱部材が使用されている。放熱部材としては、例えばシリコーン系グリースに熱伝導性無機粉末を混合したペースト(特許文献1)、シリコーン系ゴムにアルミナ、窒化窒化硼素、窒化アルミニウム等の熱伝導性粉末を混合したシート(特許文献2)などが知られている。
特開2000−63873号公報 特許第3434678号公報
Conventionally, when attaching electronic parts with large heat generation such as power transistors and power modules to heat sinks such as heat radiating fins, heat dissipation members are used to eliminate gaps and efficiently transfer heat generated in electronic parts to heat sinks Has been. Examples of the heat radiating member include a paste in which a heat conductive inorganic powder is mixed in silicone grease (Patent Document 1), and a sheet in which a heat conductive powder such as alumina, boron nitride, aluminum nitride is mixed in silicone rubber (Patent Document). 2) is known.
JP 2000-63873 A Japanese Patent No. 3434678

しかしながら、ペーストでは、それの塗布作業が必要であり、しかも塗布後にペーストが経時的に流出する欠点があった。シートでは、塗布作業がないので工程の煩雑さはないが形状追随性が悪いために部品間の隙間をなくする効果が小さかった。 However, the paste requires a coating operation, and has a drawback that the paste flows out with time after coating. In the sheet, since there is no coating operation, the process is not complicated, but the shape following property is poor, so that the effect of eliminating the gap between the parts is small.

本発明の目的は、形状追随性に優れた、ペーストとは異なる放熱部材、その製造方法及びそれが組み込まれた電子機器を提供することである。 An object of the present invention is to provide a heat dissipating member that is excellent in shape followability and different from a paste, a manufacturing method thereof, and an electronic apparatus in which the heat dissipating member is incorporated.

すなわち、本発明は、JIS K6253によるE型硬度が65以下のシリコーン層と、粘着性熱可塑性樹脂層とが、金属箔を挟んで積層されてなり、熱伝導率が2.0W/mK以上であることを特徴とする放熱部材である。この場合において、シリコーン層の熱伝導率及び厚みが、粘着性熱可塑性樹脂層の熱伝導率及び厚みよりも大きいことが好ましい。また、粘着性熱可塑性樹脂層の粘着力が、アルミニウム板に対する値として0.5N/25mm以上であることが好ましい。 That is, according to the present invention, a silicone layer having an E-type hardness of 65 or less according to JIS K6253 and an adhesive thermoplastic resin layer are laminated with a metal foil interposed therebetween, and the thermal conductivity is 2.0 W / mK or more. There is a heat radiating member. In this case, it is preferable that the thermal conductivity and thickness of the silicone layer are larger than the thermal conductivity and thickness of the adhesive thermoplastic resin layer. Moreover, it is preferable that the adhesive force of an adhesive thermoplastic resin layer is 0.5 N / 25mm or more as a value with respect to an aluminum plate.

また、本発明は、金属箔とシリコーン層の2層体を製造してから、そのシリコーン層を有しない反対側の金属箔面に粘着性熱可塑性樹脂層を形成することを特徴とする放熱部材の製造方法である。さらに、本発明は、シリコーン層側を発熱性電子部品に、粘着性熱可塑性樹脂層側をヒートシンクに接面させて、上記いずれかの放熱部材が組み込まれてなることを特徴とする電子機器である。 According to the present invention, a heat radiating member is characterized in that after manufacturing a two-layer body of a metal foil and a silicone layer, an adhesive thermoplastic resin layer is formed on the opposite metal foil surface not having the silicone layer. It is a manufacturing method. Furthermore, the present invention provides an electronic device comprising any one of the above heat dissipation members with the silicone layer side in contact with the heat-generating electronic component and the adhesive thermoplastic resin layer side in contact with the heat sink. is there.

本発明によれば、形状追随性に優れた、ペーストとは異なる放熱部材とその製造方法が提供される。また、放熱特性に優れた例えばパワーモジュール等の電子機器が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the thermal radiation member different from the paste excellent in the shape followability, and its manufacturing method are provided. In addition, an electronic device such as a power module having excellent heat dissipation characteristics is provided.

本発明のシリコーン層に使用されるシリコーン樹脂としては、難燃性の付与されたものが好適であり、その市販品を例示すれば、2液タイプのGE東芝シリコーン社製商品名「シリコーンゲルXE14−B1057」、東レ・ダウコーニング・シリコーン社製商品名「シリコーンゲルSE1886」、「シリコーンゲルSE1885」等である。 As the silicone resin used for the silicone layer of the present invention, those imparted with flame retardancy are suitable, and as an example of a commercially available product, a trade name “silicone gel XE14” manufactured by GE Toshiba Silicone Co., Ltd. -B1057 ", trade names" silicone gel SE1886 "," silicone gel SE1885 "manufactured by Toray Dow Corning Silicone Co., etc.

また、シリコーン層を熱伝導性とするために使用される熱伝導性物質としては、例えばアルミニウム、銅、銀等の金属、アルミナ、マグネシア、シリカ等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化ホウ素等の窒化物、黒鉛、炭化ホウ素等の炭化物等から選ばれた1種又は2種以上である。それらの形状は、例えば粉状、繊維状、針状、鱗片状、球状等制約はない。熱伝導性物質の市販品を例示すれば、東洋アルミニウム社製商品名「窒化アルミニウム粉末R15KS」、「アルミニウム粉AC1003」、「アルミニウム粉AC2500」、電気化学工業製商品名「球状アルミナDAM45」、住友化学社製商品名「アルミナAA05」、「AA2」等である。 Examples of the heat conductive material used to make the silicone layer thermally conductive include metals such as aluminum, copper, and silver, metal oxides such as alumina, magnesia, and silica, aluminum nitride, silicon nitride, and nitride. One or more selected from nitrides such as boron, carbides such as graphite and boron carbide, and the like. Their shape is not limited, for example, powder, fiber, needle, scale, or sphere. For example, commercial products of thermal conductive materials are trade names “Aluminum Nitride Powder R15KS”, “Aluminum Powder AC1003”, “Aluminum Powder AC2500” manufactured by Toyo Aluminum Co., Ltd., “Spherical Alumina DAM45” manufactured by Denki Kagaku Kogyo, Sumitomo The product names “Alumina AA05”, “AA2”, etc. manufactured by Kagakusha.

これらの熱伝導性物質は、シリコーン層中に70〜95質量%、特に80〜90質量%を含有していることが好ましい。これによって、シリコーン層の熱伝導率を2.0W/mK以上確保することができる。また、シリコーン層の硬化度合いを調整することによって、JIS K6253によるE型硬度を65以下とすることができる。シリコーン層のE型硬度が65をこえると、放熱部材の形状追随性が悪化するので、半導体チップ等の発熱性電子部品と直接接触させても両者の隙間を十分に埋めることが困難となり、熱をスムーズに伝達することができなくなる。また、例えば荷重に弱いボールグリッドアレイタイプのチップ等では、ハンダ付け部分の剥がれや、チップ自体を破壊する恐れがある。 These thermally conductive substances preferably contain 70 to 95% by mass, particularly 80 to 90% by mass in the silicone layer. Thereby, the thermal conductivity of the silicone layer can be secured at 2.0 W / mK or more. Also, by adjusting the degree of cure of the silicone layer, the E-type hardness according to JIS K6253 can be made 65 or less. If the E-type hardness of the silicone layer exceeds 65, the shape followability of the heat dissipating member deteriorates, so that it becomes difficult to sufficiently fill the gap between the two even when directly contacting a heat-generating electronic component such as a semiconductor chip. Cannot be transmitted smoothly. Further, for example, in a ball grid array type chip that is weak against a load, there is a possibility that a soldered part may be peeled off or the chip itself may be destroyed.

粘着性熱可塑性樹脂層は、熱可塑性樹脂と粘着付与剤とを必須成分としている。熱可塑性樹脂としては、例えばエチレン系樹脂、プロピレン系樹脂、エチレン−α−オレフィン共重合体、エチレン−酢酸ビニル共重合体等から選ばれた1種又は2種以上を用いることができる。また、粘着付与剤としては、例えば、天然物やその誘導体として、ガムロジン、トール油ロジン、ウッドロジン、水添ロジン、不均化ロジン、重合ロジン、ロジングリセリンエステル、水添ロジンペンタエリエウリトールエステル等、合成樹脂として、石油樹脂、水添石油樹脂、クマロン・インデン樹脂、スチレン系樹脂、フェノール系樹脂、キシレン系樹脂等を用いることができる。 The adhesive thermoplastic resin layer contains a thermoplastic resin and a tackifier as essential components. As the thermoplastic resin, for example, one or more selected from ethylene resins, propylene resins, ethylene-α-olefin copolymers, ethylene-vinyl acetate copolymers, and the like can be used. Examples of the tackifier include, as natural products and derivatives thereof, gum rosin, tall oil rosin, wood rosin, hydrogenated rosin, disproportionated rosin, polymerized rosin, rosin glycerin ester, hydrogenated rosin pentaerythritol ester, and the like. As the synthetic resin, petroleum resin, hydrogenated petroleum resin, coumarone / indene resin, styrene resin, phenol resin, xylene resin and the like can be used.

熱可塑性樹脂層の粘着力は、粘着性熱可塑性樹脂層を例えば放熱フィン等のヒートシンクに直接接面させて組み込む際、位置ズレが起こらないようにするため、またアルミニウム板に貼着して包装し、保管や輸送時の振動による剥がれ落ちがないようにするため、アルミニウム板への粘着力として0.5N/25mm以上であることが好ましい。この粘着力は、粘着付与剤の使用量で調整することができ、その測定はJIS Z0237「粘着テープ・粘着シート試験方法」の90°引剥し粘着力の測定に準じて行うことができる。 The adhesive strength of the thermoplastic resin layer is such that when the adhesive thermoplastic resin layer is incorporated in direct contact with a heat sink such as a heat radiating fin, it is attached to an aluminum plate and packaged to prevent displacement. In order to prevent peeling off due to vibration during storage or transportation, the adhesive strength to the aluminum plate is preferably 0.5 N / 25 mm or more. This adhesive force can be adjusted with the usage-amount of a tackifier, The measurement can be performed according to the measurement of 90 degree peeling adhesive force of JISZ0237 "adhesive tape * adhesive sheet test method".

粘着性熱可塑性樹脂層を熱伝導性とするため、上記した熱伝導性物質を粘着性熱可塑性樹脂層中、60〜90質量%、特に70〜85質量%を含有させることが好ましい。熱伝導性物質の含有率を著しく高めると粘着力が不十分となり、著しく低めると熱伝導性が不足する。 In order to make the adhesive thermoplastic resin layer thermally conductive, the above-mentioned thermally conductive substance is preferably contained in the adhesive thermoplastic resin layer in an amount of 60 to 90% by mass, particularly 70 to 85% by mass. When the content of the heat conductive substance is remarkably increased, the adhesive strength becomes insufficient, and when it is remarkably lowered, the heat conductivity is insufficient.

本発明で使用される金属箔としては、例えば銅箔、アルミニウム箔、それらの合金箔、クラッド箔等の良熱伝導性金属箔である。金属箔の厚みとしては、形状追随性を良好とするために、0.2mm以下、特に0.01〜0.05mmであることが好ましい。中でも、日本製箔社製商品名「軟質アルミニウムA1N20H−O」、「軟質アルミニウムA1N30H−O」等のアルミニウム箔が好ましい。 The metal foil used in the present invention is a highly heat conductive metal foil such as a copper foil, an aluminum foil, an alloy foil or a clad foil thereof. The thickness of the metal foil is preferably 0.2 mm or less, particularly 0.01 to 0.05 mm, in order to improve the shape followability. Among them, aluminum foils such as “Soft Aluminum A1N20H-O” and “Soft Aluminum A1N30H-O” manufactured by Nippon Foil Co., Ltd. are preferable.

本発明の放熱部材の熱伝導率は、電子機器の良好な放熱性付与を考慮し、2W/mK以上である。特に、シリコーン層の熱伝導率が粘着性熱可塑性樹脂層のそれよりも大きいことが好ましく、中でも粘着性熱可塑性樹脂層の熱伝導率は1.5W/mK以上であることが好ましい。 The heat conductivity of the heat dissipating member of the present invention is 2 W / mK or more in consideration of imparting good heat dissipating property of the electronic device. In particular, the thermal conductivity of the silicone layer is preferably larger than that of the adhesive thermoplastic resin layer, and among them, the thermal conductivity of the adhesive thermoplastic resin layer is preferably 1.5 W / mK or more.

本発明の放熱部材の全体寸法の一例を示せば、10〜50mm×10〜50mm×厚み0.5〜3mmのシート状である。なかでも、シリコーン層の厚みを粘着性熱可塑性樹脂層の厚みよりも厚くする、特にシリコーン層の厚みを粘着性熱可塑性樹脂層の厚みよりも1.5〜20倍、更には5〜15倍厚くすることによって、十分な粘着力と高柔軟性を兼ね備えさせることができる。 If an example of the whole dimension of the heat radiating member of this invention is shown, it will be a sheet form of 10-50 mm x 10-50 mm x thickness 0.5-3 mm. Especially, the thickness of the silicone layer is made thicker than the thickness of the adhesive thermoplastic resin layer, in particular, the thickness of the silicone layer is 1.5 to 20 times, more preferably 5 to 15 times, the thickness of the adhesive thermoplastic resin layer. By increasing the thickness, sufficient adhesive force and high flexibility can be provided.

本発明の放熱部材の製造方法は、まず金属箔の一方の面にシリコーン層を形成させて2層体を製造した後、シリコーン層を形成させない反対側の金属箔面に粘着性熱可塑性樹脂層を形成させる方法である。 The manufacturing method of the heat radiating member of the present invention is as follows. First, after forming a two-layer body by forming a silicone layer on one surface of a metal foil, an adhesive thermoplastic resin layer is formed on the opposite metal foil surface on which the silicone layer is not formed. Is a method of forming

上記2層体は、例えば、シリコーン樹脂とその硬化剤と熱伝導性物質とを混合し、さらに必要に応じて架橋剤や塩化白金酸等の難燃性付与剤等を混合してゲル状シリコーン樹脂組成物を調合し、それをドクターブレード法や押出法等によって金属箔の片面に積層させた後、温度120〜170℃で加熱・架橋することによって製造することができる。 The two-layered body is, for example, a mixture of a silicone resin, a curing agent thereof, and a heat conductive material, and a gel-like silicone by further mixing a flame retardant imparting agent such as a crosslinking agent or chloroplatinic acid as necessary. It can be manufactured by preparing a resin composition, laminating it on one side of a metal foil by a doctor blade method, an extrusion method or the like, and then heating and crosslinking at a temperature of 120 to 170 ° C.

また、シリコーン層を形成させない金属箔面に粘着性熱可塑性樹脂層を形成させるには、例えば粘着性熱可塑性樹脂成形体を個別に製造しておきそれを貼着するラミネート法、粘着性熱可塑性樹脂層をトルエンなどの有機溶剤に溶かし、それをドクター等のコーターで金属箔の面にコーティングしてから溶剤を揮発させ、その後、ローラー部分を粘着性熱可塑性樹脂の軟化点以上に加温したラミネーターを通過させることにより粘着性を発現させる方法などによって行うことができる。粘着性熱可塑性樹脂成形体は、例えば熱可塑性樹脂の軟化点以上の温度で各種添加剤や熱伝導性粉末を混合・混練した後、その混練物を、加熱ラミネーターを通すことによって製造することができる。 Further, in order to form an adhesive thermoplastic resin layer on a metal foil surface on which a silicone layer is not formed, for example, a laminate method in which an adhesive thermoplastic resin molded article is individually manufactured and pasted, adhesive thermoplasticity Dissolve the resin layer in an organic solvent such as toluene, coat it on the surface of the metal foil with a coater such as a doctor, volatilize the solvent, and then heat the roller part above the softening point of the adhesive thermoplastic resin. It can be carried out by a method of developing adhesiveness by passing a laminator. An adhesive thermoplastic resin molding can be produced, for example, by mixing and kneading various additives and heat conductive powder at a temperature equal to or higher than the softening point of the thermoplastic resin, and then passing the kneaded product through a heating laminator. it can.

本発明の電子機器は、上記本発明の放熱部材が、そのシリコーン層側を発熱性電子部品に、粘着性熱可塑性樹脂層側をヒートシンクに接面させて組み込まれてなるものである。その一例を示せば、発熱性電子部品を放熱部材のほぼ中央に位置させ、放熱部材の粘着性熱可塑性樹脂層側をヒートシンクに接面して貼着する。ヒートシンクは、ネジ止め若しくは固定用の板バネなどを用いチップに大きな荷重が掛からないようにして装着される。 The electronic device of the present invention is constructed by incorporating the heat radiating member of the present invention with the silicone layer side in contact with a heat-generating electronic component and the adhesive thermoplastic resin layer side in contact with a heat sink. For example, the heat-generating electronic component is positioned substantially at the center of the heat dissipating member, and the adhesive thermoplastic resin layer side of the heat dissipating member is attached to the heat sink. The heat sink is mounted so that a large load is not applied to the chip using a screw spring or a plate spring for fixing.

本発明で使用される発熱性電子部品とヒートシンクには全く制約はない。発熱性電
子部品としては、例えば家電用のスイッチング電源や駆動回路等のモジュール、画像処理やテレビ、オーディオなどに使用されるASIC等のチップ、パーソナルコンピュータのCPU等が使用される。また、ヒートシンクとしては、例えば筐体やアルミニウム製の構造材、アルミニウム板やアルミニウム製放熱フィン、更には金属又は合金製ヒートスプレッダー等の強制冷却ユニットの付いた放熱フィン、放熱器等が使用される。
There are no restrictions on heat-generating electronic components and heat sinks used in the present invention. As the heat generating electronic component, for example, a module such as a switching power supply or a drive circuit for home appliances, a chip such as an ASIC used for image processing, television, audio, or the like, a CPU of a personal computer, or the like is used. In addition, as the heat sink, for example, a housing, a structural member made of aluminum, an aluminum plate, an aluminum radiating fin, a radiating fin with a forced cooling unit such as a metal or alloy heat spreader, a radiator or the like is used. .

実施例1〜8 比較例1〜11
以下の材料を準備した。
(1)シリコーン樹脂:GE東芝シリコーン社製商品名「XE14−B1057」
(2)シリコーンオイル:信越化学工業社製商品名「KF96−100CS」
(3)EVA:三井・デュポンポリケミカル社製商品名「EV210」
(4)ポリブテン:出光石油化学社製商品名「出光ポリブテン15R」
(5)粘着付与剤(水添石油樹脂):エクソンモービル社製商品名「ESCOREZ2520」
(6)窒化アルミニウム粉末:東洋アルミニウム社製商品名「R15KS」、平均粒子径15μm
(7)アルミナ粉末A:電気化学工業製商品名「DAM45」、平均粒子径20μm
(8)アルミナ粉末B:住友化学工業社製商品名「AA2」、平均粒子径2μm
(9)アルミナ粉末C:住友化学工業社製商品名「AA05」、平均粒子径0.5μm
(10)アルミニウム粉末:東洋アルミニウム社製商品名「AC2500」、平均粒子径15μm
Examples 1-8 Comparative Examples 1-11
The following materials were prepared.
(1) Silicone resin: GE Toshiba Silicone product name “XE14-B1057”
(2) Silicone oil: Trade name “KF96-100CS” manufactured by Shin-Etsu Chemical Co., Ltd.
(3) EVA: Trade name “EV210” manufactured by Mitsui DuPont Polychemical Co., Ltd.
(4) Polybutene: Idemitsu Petrochemical's trade name “Idemitsu Polybutene 15R”
(5) Tackifier (hydrogenated petroleum resin): trade name “ESCOREZ2520” manufactured by ExxonMobil
(6) Aluminum nitride powder: Toyo Aluminum Co., Ltd. trade name “R15KS”, average particle size 15 μm
(7) Alumina powder A: trade name “DAM45” manufactured by Denki Kagaku Kogyo, average particle size of 20 μm
(8) Alumina powder B: trade name “AA2” manufactured by Sumitomo Chemical Co., Ltd., average particle diameter: 2 μm
(9) Alumina powder C: trade name “AA05” manufactured by Sumitomo Chemical Co., Ltd., average particle size 0.5 μm
(10) Aluminum powder: trade name “AC2500” manufactured by Toyo Aluminum Co., Ltd., average particle size 15 μm

上記材料を表1に示す割合で混合し、シリコーン層形成用混合物と、粘着性熱可塑性樹脂層形成用混合物を調合した。次いで、シリコーン層A〜D形成用混合物をドクターブレード法により、厚み0.03mmのアルミニウム箔(日本製箔社製商品名「軟質アルミニウムA1N30H−O」)の片面に厚みを変えて積層してから、温度150℃で加熱・架橋してシリコーン層とアルミニウム箔の2層体を製造した。シリコーン層E形成用混合物は、粘度が高いため、シート状にプレス成形した後、アルミニウム箔を張り合わせ、再度プレスして密着させ、温度150℃で加熱・架橋して2層体を製造した。得られた2層体のシリコーン層について、熱伝導率、JIS硬度(E型)及び粘着力を測定した。それらの結果を表2に示す。 The said material was mixed in the ratio shown in Table 1, and the mixture for silicone layer formation and the mixture for adhesive thermoplastic resin layer formation were prepared. Next, the silicone layer A to D forming mixture was laminated by changing the thickness on one side of a 0.03 mm thick aluminum foil (trade name “Soft Aluminum A1N30H-O” manufactured by Nihon Foil Co., Ltd.) by the doctor blade method. Then, it was heated and crosslinked at a temperature of 150 ° C. to produce a two-layer body of a silicone layer and an aluminum foil. Since the mixture for forming the silicone layer E has a high viscosity, it was press-molded into a sheet shape, and then an aluminum foil was laminated, pressed again and adhered, and heated and crosslinked at a temperature of 150 ° C. to produce a two-layer body. The obtained two-layer silicone layer was measured for thermal conductivity, JIS hardness (E type), and adhesive strength. The results are shown in Table 2.

次に、粘着性熱可塑性樹脂層形成用混合物をPET樹脂のセパレーター2枚の間に挟み、加熱・加圧してシート状乃至フィルム状の成形体を製造した。得られた成形体の熱伝導率、JIS硬度(E型)及び粘着力を測定した。それらの結果を表3に示す。この成形体を上記で製造された2層体のシリコーン層を有しない反対側のアルミニウム箔面に貼着してからラミネートし、種々の放熱部材を製造し(図1参照)、熱伝導率等を測定した。それらの結果を表4に示す。 Next, the adhesive thermoplastic resin layer-forming mixture was sandwiched between two PET resin separators, and heated and pressurized to produce a sheet-like or film-like molded body. The obtained molded product was measured for thermal conductivity, JIS hardness (E type) and adhesive strength. The results are shown in Table 3. This molded body is laminated on the opposite aluminum foil surface that does not have the two-layered silicone layer produced above, and then laminated to produce various heat radiating members (see FIG. 1). Was measured. The results are shown in Table 4.

(1)熱伝導率:シリコーン層、又は熱可塑性樹脂層、又この両層をアルミニウム箔を介して積層した放熱部材について、厚み1mm、25mm角(1辺が20mm以上)の熱伝導率試験片を準備し、これを20mm角の銅製ブロック2個に上下方向から挟み、上方のブロックに7kgfのおもりを断熱材を挟んでのせてセットした。片側の銅製ブロックはヒーターが内蔵しており、もう片側には冷却ユニットが装着している。ヒーターに20Wの電力を30分間印可したのち、2個の銅製ブロック間の熱流束(W)と熱伝導率試験片との接続部分上下の温度差(℃)算出し、熱抵抗(℃/W)を求めた。継いで、装着時のサンプル片の厚みと伝熱面積(20mm角)より熱伝導率を算出した。
(2)JIS硬度(E型):シリコーン層又は熱可塑性樹脂層については厚み約12mmの硬度試験片を作製し、放熱部材については複数枚重ねて12mm程度厚みとしたものを硬度試験片とした。JIS K6253「加硫ゴム及び熱可塑性ゴムの硬さ試験方法」準拠法にて測定した。
(3)粘着力:シリコーン層又は熱可塑性樹脂層のそれぞれについて、25mm幅の粘着力試験片を作製し、JIS Z0237「粘着テープ・粘着シート試験方法」の90°引剥し粘着力の測定方法に準拠して、アルミニウム板に対する粘着力を測定した。
(4)装着状態:表4に示す構造物について20mm角の試験片を作製し、これを40mm角のアルミニウム板のほぼ中央に装着した。試験片の装着は20℃で0.1MPaの荷重を15秒間掛けて行った。荷重を掛ける面に粘着がある場合は、必要に応じセパレートフィルム(タカラインコーポレーション社製品名「BY−13」)を被せて荷重を掛けた。比較例2〜4の単層構造の試験片は、表裏の区別がないのでそのまま装着し、それ以外についてはシリコーン層と反対側の層(ここでは熱可塑性樹脂層又はアルミニウム箔層)がアルミニウム板に接面するようにして装着した。試験片の装着されたアルミニウム板を、900mmの高さから自然落下させて、試験片の脱落を確認した。落下は、試験片の装着された面及び反対面、辺、角それぞれに3回の合計12回行い、試験片が1回でも剥がれ落ちたものを不良とした。
(1) Thermal conductivity: a thermal conductivity test piece having a thickness of 1 mm and a 25 mm square (20 mm or more on one side) with respect to a heat radiation member in which a silicone layer or a thermoplastic resin layer or both layers are laminated via an aluminum foil. This was sandwiched between two 20 mm square copper blocks from above and below, and a 7 kgf weight was placed on the upper block with a heat insulating material sandwiched between them. The copper block on one side has a built-in heater, and the cooling unit is mounted on the other side. After applying a power of 20 W to the heater for 30 minutes, the temperature difference (° C.) between the heat flux (W) between the two copper blocks and the upper and lower connecting portions of the thermal conductivity test piece is calculated, and the thermal resistance (° C./W ) Subsequently, the thermal conductivity was calculated from the thickness of the sample piece and the heat transfer area (20 mm square) at the time of mounting.
(2) JIS hardness (E type): A hardness test piece having a thickness of about 12 mm was prepared for the silicone layer or the thermoplastic resin layer, and a plurality of heat dissipation members having a thickness of about 12 mm were used as the hardness test piece. . Measured according to JIS K6253 “Testing method for hardness of vulcanized rubber and thermoplastic rubber”.
(3) Adhesive strength: For each of the silicone layer or the thermoplastic resin layer, a 25 mm wide adhesive strength test piece was prepared, and the 90 ° peel adhesive strength measurement method of JIS Z0237 “Adhesive tape / adhesive sheet test method” was used. In conformity, the adhesive strength to the aluminum plate was measured.
(4) Mounting state: A test piece of 20 mm square was prepared for the structure shown in Table 4, and this was mounted in the approximate center of a 40 mm square aluminum plate. The test piece was mounted by applying a load of 0.1 MPa at 20 ° C. for 15 seconds. When there was adhesion on the surface to which the load was applied, the load was applied with a separate film (Takaline Corporation product name “BY-13”) as necessary. The single-layered test pieces of Comparative Examples 2 to 4 are mounted as they are because there is no distinction between the front and back sides, and the other layer (here, the thermoplastic resin layer or the aluminum foil layer) is an aluminum plate. It was attached so as to be in contact with. The aluminum plate on which the test piece was mounted was naturally dropped from a height of 900 mm, and the drop of the test piece was confirmed. The test piece was dropped 12 times in total, 3 times on each of the surface on which the test piece was mounted and on the opposite surface, side, and corner, and the test piece was peeled off even once.

Figure 2005228955
Figure 2005228955

Figure 2005228955
Figure 2005228955

Figure 2005228955
Figure 2005228955

Figure 2005228955
Figure 2005228955

表2、表3、表4の対比から分かるように、シリコーン層単層では柔軟性はあるが粘着力が不足し、また粘着性熱可塑性樹脂層単層では粘着力はあるが柔軟性が不足する。これに対し、本発明の放熱部材(表4の実施例)は、シリコーン層及び粘着性熱可塑性樹脂層それぞれ単層では得られない特性を示すものであり、熱可塑性樹脂層の粘着力により、放熱フィンなどに確実に装着でき、シリコーン層の柔軟性により、形状追随性に優れた、ペーストとは異なる放熱部材とその製造方法が提供することが可能となる。 As can be seen from the comparison of Table 2, Table 3, and Table 4, the single silicone layer has flexibility but lacks adhesive strength, and the single adhesive thermoplastic resin layer has adhesive strength but lacks flexibility. To do. On the other hand, the heat radiating member of the present invention (Example of Table 4) shows characteristics that cannot be obtained by each of the silicone layer and the adhesive thermoplastic resin layer, and due to the adhesive strength of the thermoplastic resin layer, It is possible to provide a heat dissipating member different from paste and a method of manufacturing the heat dissipating member, which can be reliably attached to a heat dissipating fin and the like, and has excellent shape followability due to the flexibility of the silicone layer.

本発明の実施例1〜8で得られた放熱部材を、デジタル機器の電源回路を使って放熱試験したところ、ヒートシンクへの放熱部材の装着作業は容易であり、装着状態が安定しており剥離して落ちる心配は全くなかった。ヒートシンクをネジ止めしてから電源を入れると、回路上のチップの表面温度は放熱部材がない状態では63℃であったのに対し、ヒートシンクと放熱部材の装着により42℃であった。また、放熱部材はヒートシンクをネジ止めする際、発熱性電子部品が変形しない程度に荷重を吸収したのでそれを破損することは無く、デジタル機器は安定に作動した。 When the heat dissipation member obtained in Examples 1 to 8 of the present invention was subjected to a heat dissipation test using a power circuit of a digital device, the mounting operation of the heat dissipation member to the heatsink was easy, the mounting state was stable, and peeling There was no worry about falling. When the power was turned on after the heat sink was screwed, the surface temperature of the chip on the circuit was 63 ° C. in the absence of the heat radiating member, whereas it was 42 ° C. due to the mounting of the heat sink and the heat radiating member. In addition, when the heat radiating member was screwed to the heat sink, it absorbed the load to such an extent that the heat-generating electronic component did not deform, so that it was not damaged and the digital device operated stably.

本発明の放熱部材は、電源回路やデジタル機器の様々な発熱性電子部品の放熱部材として、ヒートシンクと発熱性電子部品との間に挟んで使用される。本発明の電子機器としては、スイッチング電源、デジタル家電と呼ばれるDVDレコーダーや、デジタルテレビ、ビデオカメラ等が挙げられる。   The heat dissipating member of the present invention is used as a heat dissipating member for various heat-generating electronic components of power supply circuits and digital devices, sandwiched between a heat sink and the heat-generating electronic components. Examples of the electronic device of the present invention include a switching power supply, a DVD recorder called a digital home appliance, a digital TV, a video camera, and the like.

実施例で製造された電子機器の一例を示す説明図Explanatory drawing which shows an example of the electronic device manufactured in the Example

符号の説明Explanation of symbols

1 ヒートシンク
2 放熱部材
21 粘着性熱可塑性樹脂層
22 アルミニウム箔
23 シリコーン層
3 発熱性電子部品
DESCRIPTION OF SYMBOLS 1 Heat sink 2 Heat radiating member 21 Adhesive thermoplastic resin layer 22 Aluminum foil 23 Silicone layer 3 Heat generating electronic component

Claims (5)

JIS K6253によるE型硬度が65以下のシリコーン層と、粘着性熱可塑性樹脂層とが、金属箔を挟んで積層されてなり、熱伝導率が2.0W/mK以上であることを特徴とする放熱部材。 A silicone layer having an E-type hardness of 65 or less according to JIS K6253 and an adhesive thermoplastic resin layer are laminated with a metal foil interposed therebetween, and the thermal conductivity is 2.0 W / mK or more. Heat dissipation member. シリコーン層の熱伝導率及び厚みが、粘着性熱可塑性樹脂層の熱伝導率及び厚みよりもいずれも大きいことを特徴とする請求項1記載の放熱部材。 2. The heat radiating member according to claim 1, wherein the silicone layer has a thermal conductivity and a thickness that are both greater than the thermal conductivity and the thickness of the adhesive thermoplastic resin layer. 粘着性熱可塑性樹脂層の粘着力が、アルミニウム板に対する値として0.5N/25mm以上であることを特徴とする請求項1又は2記載の放熱部材。 The heat radiating member according to claim 1 or 2, wherein the adhesive strength of the adhesive thermoplastic resin layer is 0.5 N / 25 mm or more as a value with respect to the aluminum plate. 金属箔とシリコーン層の2層体を製造してから、そのシリコーン層を有しない反対側の金属箔面に、粘着性熱可塑性樹脂層を形成することを特徴とする放熱部材の製造方法。 A method for producing a heat radiating member, comprising: producing a two-layer body of a metal foil and a silicone layer, and then forming an adhesive thermoplastic resin layer on the opposite metal foil surface not having the silicone layer. シリコーン層側を発熱性電子部品に、粘着性熱可塑性樹脂層側をヒートシンクに接面させて、請求項1〜3記載のいずれかの放熱部材が組み込まれてなることを特徴とする電子機器。 An electronic device comprising the heat dissipation member according to any one of claims 1 to 3, wherein the silicone layer side is in contact with the heat-generating electronic component and the adhesive thermoplastic resin layer side is in contact with the heat sink.
JP2004036830A 2004-02-13 2004-02-13 Heat dissipation member, its manufacturing method and application Pending JP2005228955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036830A JP2005228955A (en) 2004-02-13 2004-02-13 Heat dissipation member, its manufacturing method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036830A JP2005228955A (en) 2004-02-13 2004-02-13 Heat dissipation member, its manufacturing method and application

Publications (1)

Publication Number Publication Date
JP2005228955A true JP2005228955A (en) 2005-08-25

Family

ID=35003419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036830A Pending JP2005228955A (en) 2004-02-13 2004-02-13 Heat dissipation member, its manufacturing method and application

Country Status (1)

Country Link
JP (1) JP2005228955A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291220A (en) * 2007-04-24 2008-12-04 Hitachi Chem Co Ltd Thermally conductive film
JP2011023239A (en) * 2009-07-16 2011-02-03 Hitachi Maxell Ltd Nonaqueous electrolyte battery and nonaqueous electrolyte battery module
JP2013053295A (en) * 2011-08-09 2013-03-21 Sekisui Chem Co Ltd Double-sided adhesive sheet
WO2013171960A1 (en) * 2012-05-14 2013-11-21 信越化学工業株式会社 Heat conductive sheet supplying body and heat conductive sheet supplying method
US9017817B2 (en) 2008-04-30 2015-04-28 Nitto Denko Corporation Method for producing laminated porous sheet comprising polytetrafluoroethylene and carbon particles
JP2017210518A (en) * 2016-05-24 2017-11-30 信越化学工業株式会社 Thermally conductive silicone composition and cured product of the same
JPWO2018074247A1 (en) * 2016-10-18 2019-01-17 信越化学工業株式会社 Thermally conductive silicone composition
JP2021177561A (en) * 2018-05-29 2021-11-11 デンカ株式会社 Electronic device and electromagnetic wave shielding heat dissipation sheet
CN115135709A (en) * 2020-03-05 2022-09-30 陶氏环球技术有限责任公司 Shear thinning thermally conductive silicone composition

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291220A (en) * 2007-04-24 2008-12-04 Hitachi Chem Co Ltd Thermally conductive film
US9017817B2 (en) 2008-04-30 2015-04-28 Nitto Denko Corporation Method for producing laminated porous sheet comprising polytetrafluoroethylene and carbon particles
JP2011023239A (en) * 2009-07-16 2011-02-03 Hitachi Maxell Ltd Nonaqueous electrolyte battery and nonaqueous electrolyte battery module
JP2013053295A (en) * 2011-08-09 2013-03-21 Sekisui Chem Co Ltd Double-sided adhesive sheet
WO2013171960A1 (en) * 2012-05-14 2013-11-21 信越化学工業株式会社 Heat conductive sheet supplying body and heat conductive sheet supplying method
JP2013239525A (en) * 2012-05-14 2013-11-28 Shin Etsu Chem Co Ltd Heat conductive sheet supply body and method for supplying heat conductive sheets
US9385063B2 (en) 2012-05-14 2016-07-05 Shin-Etsu Chemical Co., Ltd. Thermally conductive sheet feeder and method for feeding thermally conductive sheet
US10647830B2 (en) 2016-05-24 2020-05-12 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition and cured product thereof
JP2017210518A (en) * 2016-05-24 2017-11-30 信越化学工業株式会社 Thermally conductive silicone composition and cured product of the same
KR102257273B1 (en) * 2016-05-24 2021-05-27 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition and cured product thereof
KR20190011743A (en) * 2016-05-24 2019-02-07 신에쓰 가가꾸 고교 가부시끼가이샤 Thermoconductive silicone composition and its cured product
KR20190069495A (en) * 2016-10-18 2019-06-19 신에쓰 가가꾸 고교 가부시끼가이샤 Thermoconductive silicone composition
JPWO2018074247A1 (en) * 2016-10-18 2019-01-17 信越化学工業株式会社 Thermally conductive silicone composition
US11248154B2 (en) 2016-10-18 2022-02-15 Shin-Etsu Chemical Co., Ltd. Thermoconductive silicone composition
KR102384193B1 (en) * 2016-10-18 2022-04-07 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally Conductive Silicone Composition
JP2021177561A (en) * 2018-05-29 2021-11-11 デンカ株式会社 Electronic device and electromagnetic wave shielding heat dissipation sheet
JP7351874B2 (en) 2018-05-29 2023-09-27 デンカ株式会社 Electronic equipment and electromagnetic shielding heat dissipation sheet
CN115135709A (en) * 2020-03-05 2022-09-30 陶氏环球技术有限责任公司 Shear thinning thermally conductive silicone composition
JP2023508750A (en) * 2020-03-05 2023-03-03 ダウ グローバル テクノロジーズ エルエルシー Shear-thinning thermally conductive silicone composition
US11746236B2 (en) 2020-03-05 2023-09-05 Dow Global Technologies Llc Shear thinning thermally conductive silicone compositions
CN115135709B (en) * 2020-03-05 2024-03-08 陶氏环球技术有限责任公司 Shear thinning thermally conductive silicone composition

Similar Documents

Publication Publication Date Title
US11610831B2 (en) Methods for establishing thermal joints between heat spreaders or lids and heat sources
US20160315030A1 (en) Reusable thermoplastic thermal interface materials and methods for establishing thermal joints between heat sources and heat dissipating/removal structures
EP1376689B1 (en) Radiating structural body of electronic part and radiating sheet used for the radiating structural body
KR20190062377A (en) Film-like adhesive, method of manufacturing semiconductor package using film-like adhesive
TWI717413B (en) Compositions having a matrix and encapsulated phase change materials dispersed therein, and electronic devices assembled therewith
TWI657132B (en) Compositions having a matrix and encapsulated phase change materials dispersed therein, and electronic devices assembled therewith
JP2004311577A (en) Thermally conductive composite sheet and method of manufacturing the same
JP2010149509A (en) Heat diffusion sheet and its mounting method
TWI584718B (en) A consumer electronic article of manufacture and a composition disposed on a metallic or graphite substrate
JP2011040565A (en) Thermal conductive sheet, semiconductor device using the same, and method of manufacturing the same
JPWO2020039560A1 (en) Semiconductor device manufacturing method, heat conductive sheet, and heat conductive sheet manufacturing method
JP2005228955A (en) Heat dissipation member, its manufacturing method and application
WO2014069353A1 (en) Semiconductor device
JP4749631B2 (en) Heat dissipation member
JP4030399B2 (en) Self-adhesive phase change heat dissipation member
JP7031203B2 (en) Adhesive sheet for heat dissipation, laminate for heat dissipation adhesive member, and composite member
JP3739335B2 (en) Heat dissipation member and power module
CN112602190A (en) Method for manufacturing semiconductor device and heat conductive sheet
WO2008130958A1 (en) Thermally-conductive compositions
WO2022168729A1 (en) Thermally conductive sheet laminate and electronic equipment using same
CN110098153A (en) Electric power electronic module and the method for manufacturing electric power electronic module
JP5132122B2 (en) Adhesive heat dissipation sheet
JP2019110229A (en) Heat dissipation sheet, manufacturing method thereof and method of application of heat dissipation sheet
JP2017212254A (en) Semiconductor device
TWM540741U (en) Multi-layer composite heat conduction structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721