TWM540741U - Multi-layer composite heat conduction structure - Google Patents
Multi-layer composite heat conduction structure Download PDFInfo
- Publication number
- TWM540741U TWM540741U TW105219236U TW105219236U TWM540741U TW M540741 U TWM540741 U TW M540741U TW 105219236 U TW105219236 U TW 105219236U TW 105219236 U TW105219236 U TW 105219236U TW M540741 U TWM540741 U TW M540741U
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- heat
- thermal
- thermally conductive
- flexible
- Prior art date
Links
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Description
本創作有關一種多層複合熱傳導結構體,特別是指一種具有三維立體方向高效能熱傳導之多層複合熱傳導結構體。 The present invention relates to a multilayer composite heat conduction structure, and more particularly to a multilayer composite heat conduction structure having high-efficiency heat conduction in a three-dimensional direction.
按,許多電子元件,尤其是大型的積體電路、微處理器等,在運作中通常無可避免地會伴隨著產生高熱。而這種高熱若無法及時排除,不僅會減損電子零件的運作效率及使用壽命,更甚者將會導致電子元件的故障而喪失功能。特別是現今電子產品為了符合輕薄短巧的時代趨勢,相關微處理器大都逐漸採用高積合度(degree of integration)的設計方式,使元件之每單位面積所釋放的熱量倍增,因此不足的冷卻所導致的不良影響或損害,也將益形嚴重。 According to the introduction, many electronic components, especially large integrated circuits, microprocessors, etc., are inevitably accompanied by high heat during operation. If this high heat cannot be eliminated in time, it will not only detract from the operational efficiency and service life of electronic components, but will also cause malfunction of electronic components and lose function. Especially in today's electronic products in order to meet the trend of thin and light, most of the related microprocessors gradually adopt a high degree of integration design method, so that the heat released per unit area of the components is doubled, so the cooling room is insufficient. The adverse effects or damages caused will also be serious.
習知用以促進電器產品散熱效能的手段,通常是藉由在會發熱的電器元件與散熱器之間配置散熱介質,例如導熱矽膠片、導熱膏、導熱雙面膠帶及固態轉液態導熱相變化材,以便有效地將會發熱電子元件所產生熱量轉移至散熱器上,以達冷卻電器設備之目的。 Conventional means for promoting the heat dissipation performance of electrical products are generally provided by disposing a heat dissipating medium between a heat generating electrical component and a heat sink, such as a thermal conductive film, a thermal conductive paste, a thermally conductive double-sided tape, and a solid-state liquid heat conduction phase change. In order to effectively transfer the heat generated by the heat-generating electronic components to the heat sink for the purpose of cooling the electrical equipment.
但這種散熱介質的界面材料著重於將電子元件的熱量做上下垂直轉移至散熱器上,再藉由散熱器進行散熱。惟此技術當電子電器機構(外殼)不是良好的散熱材料時(如塑料),或在有限機構空間暨狹隘密閉空間內無法使用其他散熱器時,就不能有效達到冷卻電子元件或電子電器設備之目的。 However, the interface material of the heat dissipating medium focuses on transferring the heat of the electronic component vertically to the heat sink, and then dissipating heat through the heat sink. However, when the electronic and electrical equipment (housing) is not a good heat-dissipating material (such as plastic), or when other radiators cannot be used in a limited space and in a narrow confined space, it is impossible to effectively cool electronic components or electronic appliances. purpose.
有鑑於上述習知技術之問題,本創作之其中之一目的在於提供一種多層複合熱傳導結構體,主要形成三維立體方向高效能熱傳導,兼具高撓曲特性,並且可實施絕緣構造,適合配置在電子元件發熱表面與散熱器之間,以及高度撓曲設置在電子電器機構的有限空間或狹隘密閉空間內,能夠作三維方向性傳導移轉熱量,達到全面性擴散迅速散熱效能,以確實傳導排除電子元件所產生的高熱,供確保電子元件的運作效率及使用壽命,具備產業利用價值。 In view of the above-mentioned problems of the prior art, one of the objects of the present invention is to provide a multi-layer composite heat-conducting structure, which mainly forms high-efficiency heat conduction in a three-dimensional direction, has high flexural characteristics, and can be constructed with an insulating structure, and is suitable for being disposed in Between the heat-generating surface of the electronic component and the heat sink, and the high deflection in the limited space or narrow confined space of the electronic and electrical mechanism, the three-dimensional directional conduction heat can be transferred to achieve comprehensive diffusion and rapid heat dissipation performance, so as to eliminate conduction. The high heat generated by electronic components is used to ensure the operational efficiency and service life of electronic components, and has industrial utilization value.
緣是,為達上述目的,本創作提出一種多層複合熱傳導結構體,其包含:至少一撓性導熱膠層,具有均勻分佈結合的熱傳導粉體,其中撓性導熱膠層,配置接觸於電子元件的表面;以及至少一熱傳導熱層,至少由金屬層及非金屬層相疊結合構成,金屬層及非金屬層之熱傳導係數高於撓性導熱膠層;其中至少一撓性導熱膠層及至少一熱傳導熱層彼此相疊結合。 Therefore, in order to achieve the above object, the present invention proposes a multi-layer composite heat-conducting structure comprising: at least one flexible thermal conductive adhesive layer having uniformly distributed thermal conductive powder, wherein the flexible thermal conductive adhesive layer is disposed in contact with the electronic component And a surface of the at least one heat conduction layer formed by at least one of a metal layer and a non-metal layer, wherein the metal layer and the non-metal layer have a higher thermal conductivity than the flexible thermal conductive layer; wherein at least one flexible thermal conductive layer and at least A heat conducting thermal layer is stacked on top of each other.
較佳地,可進一步包含膠體,係使金屬層與非金屬層彼此相疊結合。 Preferably, the colloid may be further included such that the metal layer and the non-metal layer are stacked on each other.
較佳地,金屬層之材料可包含銅箔、鋁箔或錫箔,及非金屬層之材料可包含石墨或石墨纖維。 Preferably, the material of the metal layer may comprise copper foil, aluminum foil or tin foil, and the material of the non-metal layer may comprise graphite or graphite fibers.
較佳地,熱傳導結構體可由複數個撓性導熱膠層與複數個熱傳導熱層互相交錯相疊結合構成。 Preferably, the thermally conductive structure may be formed by a plurality of flexible thermal conductive adhesive layers and a plurality of thermally conductive thermal layers interdigitated.
較佳地,至少一熱傳導熱層可由複數個金屬層與複數個非金屬層互相交錯相疊結合構成。 Preferably, the at least one heat conduction heat layer may be formed by a plurality of metal layers and a plurality of non-metal layers interdigitated.
較佳地,熱傳導結構體可由二相隔撓性導熱膠層結合熱傳導熱層。 Preferably, the heat conducting structure may be combined with a thermally conductive thermal layer by a two-phase flexible thermal conductive adhesive layer.
較佳地,至少一熱傳導熱層可由二相隔非金屬層結合金屬層。 Preferably, the at least one thermally conductive layer may be bonded to the metal layer by a two-phase non-metallic layer.
較佳地,至少一熱傳導熱層其中之一遠離該發熱電子元件的熱傳導熱層可結合另一撓性導熱膠層。 Preferably, one of the at least one thermally conductive thermal layer away from the heat conductive thermal layer of the heat generating electronic component may be combined with another flexible thermal conductive adhesive layer.
較佳地,至少一撓性導熱膠層其中之一遠離該發熱電子元件的撓性導熱膠層可結合另一熱傳導熱層。 Preferably, one of the at least one flexible thermally conductive adhesive layer away from the flexible thermal conductive layer of the heat-generating electronic component may be combined with another thermally conductive thermal layer.
較佳地,至少一撓性導熱膠層可與至少一熱傳導熱層相疊膠合固定。 Preferably, at least one flexible thermal conductive adhesive layer can be glued and fixed to at least one heat conductive thermal layer.
較佳地,至少一撓性導熱膠層可塗設結合於至少一熱傳導熱層。 Preferably, at least one flexible thermal conductive adhesive layer can be applied to at least one thermally conductive thermal layer.
承上所述,依據本創作其可具有一或多個下述優點: As stated above, it may have one or more of the following advantages in accordance with the present creation:
1.本創作之熱傳導結構體,能形成三維立體方向高效能熱傳導,適合配置在電子元件發熱表面與散熱器之間作三維方向性傳導移轉熱量,達到全面性擴散迅速散熱效能,以確實傳導排除電子元件所產生的高熱,供確保電子元件的運作效率及使用壽命,具備產業利用價值。 1. The heat conduction structure of the creation can form high-efficiency heat conduction in three-dimensional direction, and is suitable for three-dimensional directional conduction heat transfer between the heating surface of the electronic component and the heat sink, and achieves comprehensive diffusion and rapid heat dissipation performance, so as to be surely conducted. Eliminate the high heat generated by electronic components, to ensure the operating efficiency and service life of electronic components, and to have industrial value.
2.本創作之熱傳導結構體具高撓曲特性,高度撓曲設置在電子電器機構的有限空間或狹隘密閉空間內。 2. The heat-conducting structure of the creation has high flexural characteristics, and the high deflection is set in a limited space of the electronic and electrical mechanism or in a narrow confined space.
10、11、12、13‧‧‧撓性導熱膠層 10,11,12,13‧‧‧Flexible thermal adhesive layer
20、21、22‧‧‧熱傳導熱層 20, 21, 22‧‧‧ Thermal Conductive Thermal Layer
201、204、211、214、221‧‧‧非金屬層 201, 204, 211, 214, 221‧‧‧ non-metallic layers
202、205、212、222‧‧‧金屬層 202, 205, 212, 222‧‧‧ metal layers
203、213、223‧‧‧膠體 203, 213, 223‧‧ ‧ colloid
30‧‧‧電子元件 30‧‧‧Electronic components
40‧‧‧散熱器 40‧‧‧heatsink
50‧‧‧電子電器機構 50‧‧‧Electronic and electrical institutions
第1圖係本創作第一實施例複合熱傳導結構體之斷面放大圖;第2圖係本創作第二實施例之斷面放大圖; 第3圖係本創作第三實施例之結構圖;第4圖係本創作第四實施例之使用狀態圖;第5圖係本創作第五實施例之使用狀態圖;第6圖係本創作第六實施例之使用狀態圖;以及第7圖係本創作第七實施例之使用狀態圖。 1 is an enlarged cross-sectional view showing a composite heat-conducting structure of a first embodiment of the present invention; and FIG. 2 is an enlarged cross-sectional view showing a second embodiment of the present invention; 3 is a structural diagram of a third embodiment of the present creation; FIG. 4 is a use state diagram of the fourth embodiment of the present creation; FIG. 5 is a state diagram of use of the fifth embodiment of the present creation; The use state diagram of the sixth embodiment; and the seventh diagram is a use state diagram of the seventh embodiment of the present creation.
本創作之優點、特徵以及達到之技術方法將參照例示性實施例及所附圖式進行更詳細地描述而更容易理解,且本創作可以不同形式來實現,故不應被理解僅限於此處所陳述的實施例,相反地,對所屬技術領域具有通常知識者而言,所提供的實施例將使本揭露更加透徹與全面且完整地傳達本創作的範疇,且本創作將僅為所附加的申請專利範圍所定義。 The advantages, features, and technical methods of the present invention will be more readily understood by referring to the exemplary embodiments and the accompanying drawings, and the present invention can be implemented in various forms and should not be construed as being limited to The stated embodiments, to the contrary, the embodiments of the present invention will provide a more thorough and complete and complete disclosure of the scope of the present invention, and the present invention will only be attached. The scope of the patent application is defined.
本創作下述一或多個實施方式係揭露一種多層複合熱傳導結構體,並且配合圖式說明如下:首先,請參閱第1至3圖,本創作多層複合熱傳導結構體具備三維立體方向熱傳導效能,如圖所示之熱傳導結構體實施例中,至少包含一撓性導熱膠層10及一熱傳導熱層20,撓性導熱膠層10可選用如導熱矽膠片、導熱膠體,或使用具固態轉液態相變化之高分子材料的導熱相變化材等導熱材,而熱傳導熱層20,係至少由一金屬層202及一非金屬層201藉由膠體203來彼此相疊結合構成,金屬層201可選用具高熱傳導係數及垂直方向導熱性佳之金屬材料,如銅箔、鋁箔或錫箔材料等,而非金屬層201可選用具高熱傳導係數及平面方向導熱性佳之非金屬材料,如石墨或石墨纖維材料等。本實施例撓性導熱膠層10與熱傳導熱層20厚度可各選用0.01mm~15mm,使各材料層之間彼此疊置密接結合,以形成一多層複合熱傳導結構體。 One or more embodiments of the present invention disclose a multilayer composite heat-conducting structure, and the following description is as follows: First, referring to Figures 1 to 3, the multilayer composite heat-conducting structure of the present invention has three-dimensional solid heat conduction performance. In the embodiment of the thermally conductive structure shown in the figure, at least one flexible thermal conductive adhesive layer 10 and a heat conductive thermal layer 20 are included, and the flexible thermal conductive adhesive layer 10 can be selected from a thermal conductive film, a thermal conductive colloid, or a solid-state liquid. The thermally conductive layer 20 of the phase change polymer material is thermally conductive, and the heat conducting layer 20 is formed by at least one metal layer 202 and a non-metal layer 201 laminated by a colloid 203. The metal layer 201 is optional. A metal material with high thermal conductivity and high thermal conductivity in the vertical direction, such as copper foil, aluminum foil or tin foil material, instead of metal layer 201, non-metallic materials with high thermal conductivity and good thermal conductivity in the planar direction, such as graphite or graphite fiber materials. Wait. In this embodiment, the thickness of the flexible thermal conductive adhesive layer 10 and the heat conductive thermal layer 20 can be selected from 0.01 mm to 15 mm, so that the material layers are superposed on each other to form a multilayer composite heat conducting structure.
於第1至3圖所示之較佳實施例中,可選擇以單一撓性導熱膠層10或複數個撓性導熱膠層10、11、12配合單一熱傳導熱層20或複數個熱傳導熱層20、21,其彼此之間以交互層疊組成多層複合材料,再加上熱傳導熱層20、21,可選擇以單一非金屬層201或複數個非金屬層201、204、211、214配合單一金屬層202或複數個金屬層202、205、212,其彼此之間以膠體203、213交互層疊組成熱傳導熱層20、21,據以獲得具備三維熱傳導效能之複合結構體;又本形式的多層複合材料具有質地柔韌及可撓的材料特性,因此可被密貼於會產生熱源的電子元件30上,以有效率地將電子元件30的熱量導出傳送到散熱器40上,或者傳送到電子電器機構(外殼)50,避免在電子元件30上累積熱量,造成故障;從而一舉解決電子(電器)元件30運作時的散熱問題。 In the preferred embodiment shown in FIGS. 1 to 3, a single flexible thermal conductive adhesive layer 10 or a plurality of flexible thermal conductive adhesive layers 10, 11, 12 may be combined with a single thermally conductive thermal layer 20 or a plurality of thermally conductive thermal layers. 20, 21, which are alternately laminated with each other to form a multilayer composite material, together with the heat conductive thermal layers 20, 21, may be selected as a single non-metal layer 201 or a plurality of non-metal layers 201, 204, 211, 214 with a single metal a layer 202 or a plurality of metal layers 202, 205, 212, which are alternately laminated with each other with colloids 203, 213 to form a thermally conductive thermal layer 20, 21, to obtain a composite structure having three-dimensional heat conduction efficiency; The material has a texture-flexible and flexible material property, and thus can be adhered to the electronic component 30 that generates a heat source to efficiently transfer the heat of the electronic component 30 to the heat sink 40 or to the electronic device. The (outer case) 50 avoids accumulation of heat on the electronic component 30, causing malfunction; thereby solving the heat dissipation problem when the electronic (electrical) component 30 operates.
上述多層複合材料中的撓性導熱膠層10及膠體203、213係包含有熱傳導粉體,以及用來結合前述熱傳導粉體微粒子的膠材,並利用混鍊製程使該熱傳導粉體均勻分佈於膠材中,然後固定成型。其中,該熱傳導粉體可選用如:氧化鋁、氮化鋁、氮化硼、石墨、鋁粉、銅粉、氧化銅、氧化鋅......等,該熱傳導粉體可能是前述材料之一或是由二種以上材料混合而成者。而熱傳導粉體材料為不規則型顆粒,選用適宜的平均粒度約0.1μm~100μm。 The flexible thermal conductive adhesive layer 10 and the colloids 203 and 213 in the above multilayer composite material comprise a heat conductive powder, and a rubber material for combining the heat conductive powder fine particles, and the heat conductive powder is uniformly distributed by a mixed chain process. In the glue, it is then fixed. Wherein, the heat conductive powder may be selected from the group consisting of alumina, aluminum nitride, boron nitride, graphite, aluminum powder, copper powder, copper oxide, zinc oxide, etc., and the heat conductive powder may be the foregoing material. One of them is a mixture of two or more materials. The heat conductive powder material is irregular particles, and a suitable average particle size is selected from about 0.1 μm to 100 μm.
而該膠材則可選用如:環氧樹脂、壓克力樹脂、酚醛樹脂、聚酯樹脂、聚醋酸乙酯樹脂(PVAC)、矽膠(Silicon)或合成橡膠......等,又,該膠材可以是前述材料之一或是由二種以上材料混合而成。 The glue can be selected, for example, epoxy resin, acrylic resin, phenolic resin, polyester resin, polyvinyl acetate resin (PVAC), silicone or synthetic rubber, etc. The glue may be one of the foregoing materials or a mixture of two or more materials.
上述環氧樹脂、壓克力樹脂、酚醛樹脂、聚酯樹脂、聚醋酸乙酯樹脂(PVAC)、矽膠(Silicon)或合成橡膠......等,皆屬於高分子量材料,但每種不同之膠材(樹脂)等皆有其最適當之溶解稀釋(SP)劑(低分子量)之分解、包覆、融合,取得(低分子量)控制膠材(高分子量)的最低之共軛玻璃軟化點,這樣則可得到分子量從1000~1000000之分子量之膠材,此膠材會因分子量大小再不同的溫 度下做固液相之變化,在玻璃軟化點不會產生氣相或碳化之變化,此種膠材我們稱為低溫相變膠體,低溫相變膠體從35℃~105℃。 The above epoxy resin, acrylic resin, phenolic resin, polyester resin, polyvinyl acetate resin (PVAC), silicone or synthetic rubber, etc., are all high molecular weight materials, but each Different rubber materials (resins), etc., have the most suitable dissolution and dilution (SP) agent (low molecular weight) decomposition, coating, fusion, and obtain the lowest conjugate glass of (low molecular weight) control rubber (high molecular weight) Softening point, so that the molecular weight of the molecular weight of 1000~1000000 can be obtained, and the temperature of the rubber will be different due to the molecular weight. Under the degree of solid-liquid phase change, there will be no change in gas phase or carbonization at the softening point of the glass. This kind of rubber is called low-temperature phase-change colloid, and the low-temperature phase-change colloid is from 35 °C to 105 °C.
前述撓性導熱膠層10通常被製成0.02~15mm厚度之面狀或板片狀,且由於撓性導熱膠層10之材料質地柔韌,具備可撓性及塑性變形的特性,因此可緊密、服貼的配置在發熱電子元件30的表面,以降低界面之接觸熱阻,從而迅速將電子元件30所產生的熱量傳導排除。 The flexible thermal conductive adhesive layer 10 is usually formed into a surface shape or a sheet shape having a thickness of 0.02 to 15 mm, and since the material of the flexible thermal conductive adhesive layer 10 is flexible and has flexibility and plastic deformation characteristics, it can be tightly and closely The conformation is disposed on the surface of the heat-generating electronic component 30 to reduce the contact thermal resistance of the interface, thereby quickly eliminating heat conduction generated by the electronic component 30.
再者,撓性導熱膠層10及膠體203、213可藉由膠材與熱傳導粉體的不同比例混合,以獲得所欲的熱傳性及其他材料物性:一般性的原則,當混合材料中的熱傳導粉體佔有比例越高,其傳熱效能越佳,然而材料的撓性與塑性等物性則較差。反之,當膠材佔有的比例越多,傳熱效能較差,而材料的撓性與塑性等物性則較佳。通常係選用10%~70%之間的膠材與90%~30%之間的熱傳導粉體搭配,使撓性導熱膠層10及膠體203、213可獲得約0.5W/mk~12W/mk熱傳導係數。除此之外,於選用氮化鋁、氧化鋁或氮化硼等高電阻抗粉體時,可使撓性導熱膠層10及膠體203、213具有高絕緣之電阻抗(106~1019Ω.cm)。 Furthermore, the flexible thermally conductive adhesive layer 10 and the colloids 203, 213 can be mixed by different ratios of the rubber and the thermally conductive powder to obtain desired heat transfer properties and other material properties: general principle, when mixed materials The higher the proportion of the heat-conducting powder, the better the heat transfer performance, but the physical properties such as flexibility and plasticity of the material are poor. On the contrary, the more the proportion of the rubber material is occupied, the heat transfer performance is poor, and the physical properties such as flexibility and plasticity of the material are better. Usually, 10%~70% of the rubber material is used in combination with 90%~30% of the heat conductive powder, so that the flexible thermal conductive adhesive layer 10 and the colloids 203, 213 can obtain about 0.5 W/mk~12 W/mk. Heat transfer coefficient. In addition, when a high-resistance powder such as aluminum nitride, aluminum oxide or boron nitride is used, the flexible thermal conductive adhesive layer 10 and the colloids 203 and 213 have high electrical resistance (10 6 to 10 19 Ω.cm).
本實施例撓性導熱膠層10的混合材料能夠以熱壓成型方式製成板片狀,並且施作表面處理,再膠合貼著於熱傳導熱層20之金屬層202或非金屬層201的相對表面上。除此之外,亦可採用塗佈(噴塗或刮塗等)方式或網版印刷方式,於熱傳導熱層20之金屬層202或非金屬層201表面施作一厚度約為0.02~0.3mm的撓性導熱膠層10,且藉由其膠材的分子結構以結合定位該等均勻分佈的熱傳導粉體。類似地,膠體203的混合材料亦能夠以熱壓成型方式製成板片狀,並且施作表面處理,再膠合貼著於熱傳導熱層20之金屬層202或非金屬層201的相對表面上。除此之外,亦可採用塗佈(噴塗或刮塗等)方式或網版印刷方式,於熱傳導熱層20之金屬層202或非金屬層201表面施作一厚度約為0.01mm的膠體203,來使金屬層202及非金屬層201彼此相疊結合。 The mixed material of the flexible thermal conductive adhesive layer 10 of the present embodiment can be formed into a sheet shape by hot press forming, and is subjected to surface treatment, and is then adhered to the opposite of the metal layer 202 or the non-metal layer 201 of the heat conductive heat layer 20. On the surface. In addition, coating (spraying or doctor coating, etc.) or screen printing may be applied to the surface of the metal layer 202 or the non-metal layer 201 of the heat conductive layer 20 to a thickness of about 0.02 to 0.3 mm. The flexible thermally conductive adhesive layer 10 is bonded to the uniformly distributed thermally conductive powder by the molecular structure of the rubber. Similarly, the mixed material of the colloid 203 can also be formed into a sheet shape by hot press forming, and applied as a surface treatment, and glued to the opposite surface of the metal layer 202 or the non-metal layer 201 of the heat conductive layer 20. In addition, a coating body (such as a spray coating or a doctor coating method) or a screen printing method may be used to apply a colloid 203 having a thickness of about 0.01 mm to the surface of the metal layer 202 or the non-metal layer 201 of the heat conductive layer 20 . The metal layer 202 and the non-metal layer 201 are stacked one on another.
於第1圖所示之撓性導熱膠層10密貼於電子元件30的發熱表面上,能夠有效傳導移轉熱量至熱傳導熱層20之金屬層202及非金屬層201,以進行全面擴散性散熱,同時將熱量高效率導出傳送到散熱器40上。除此之外,亦可如第2圖所示,由該熱傳導熱層20之金屬層202及非金屬層201全面擴散傳導熱量至另一相對撓性導熱膠層11,以絕緣方式導出傳送到電子電器機構(外殼)50。 The flexible thermal conductive adhesive layer 10 shown in FIG. 1 is adhered to the heat generating surface of the electronic component 30, and can effectively transfer the heat transferred to the metal layer 202 and the non-metal layer 201 of the heat conductive heat layer 20 for overall diffusion. The heat is dissipated while the heat is efficiently discharged to the heat sink 40. In addition, as shown in FIG. 2, the metal layer 202 and the non-metal layer 201 of the heat conductive layer 20 are fully diffused and transferred to another relatively flexible thermal conductive adhesive layer 11, and are inductively transferred to Electronic and electrical mechanism (housing) 50.
本實施例複合熱傳導結構體的撓性導熱膠層10及熱傳導熱層20之金屬層202、非金屬層201及膠體203具備可撓曲特性,因此可如第4及5圖所示進行任意撓曲,以將熱源作三維方向性傳導移轉至適當位置進行熱擴散及均溫。 In the present embodiment, the flexible thermally conductive adhesive layer 10 and the metal layer 202, the non-metallic layer 201, and the colloid 203 of the thermally conductive thermal layer 20 have flexible properties, so that they can be flexed as shown in FIGS. 4 and 5. The music is used to transfer the heat source into a three-dimensional directional conduction to a proper position for thermal diffusion and temperature uniformity.
於第4、5圖所示之實施例中,撓性導熱膠層10密貼於電子元件30的發熱表面上,而熱傳導熱層20之金屬層202、非金屬層201及膠體203層疊於撓性導熱膠層10上並可撓曲成C字形(如第4圖)或S字形(如第5圖),而在遠離電子元件30的熱傳導熱層20之伸出部結合另一撓性導熱膠層13,以將熱源作三維方向性傳導移轉至適當位置進行熱擴散及均溫。除此之外,亦可如第6、7圖所示撓性導熱膠層10密貼於電子元件30的發熱表面上,而於撓性導熱膠層10上層疊熱傳導熱層20,再於熱傳導熱層20上層疊撓性導熱膠層11,而撓性導熱膠層11可撓曲成C字形(如第6圖)或S字形(如第7圖),而在遠離電子元件30的撓性導熱膠層11的伸出部結合另一熱傳導熱層22之金屬層222、非金屬層221及膠體223。因此本創作之撓性導熱膠層及熱傳導熱層能高度撓曲設置在電子電器機構的有限空間或狹隘密閉空間內,能夠作三維方向性傳導移轉熱量,達到全面性擴散迅速散熱效能。 In the embodiment shown in FIGS. 4 and 5, the flexible thermal conductive adhesive layer 10 is adhered to the heat generating surface of the electronic component 30, and the metal layer 202, the non-metal layer 201 and the colloid 203 of the heat conductive thermal layer 20 are laminated on the flexible surface. The thermal conductive adhesive layer 10 can be flexed into a C-shape (as shown in FIG. 4) or an S-shape (as shown in FIG. 5), and the extension of the thermally conductive thermal layer 20 away from the electronic component 30 combines another flexible thermal conduction. The glue layer 13 transfers the heat source to the appropriate position for three-dimensional directional conduction for thermal diffusion and temperature uniformity. In addition, as shown in FIGS. 6 and 7, the flexible thermal conductive adhesive layer 10 is adhered to the heat generating surface of the electronic component 30, and the thermally conductive thermal layer 20 is laminated on the flexible thermal conductive adhesive layer 10, and then thermally conductive. The flexible thermal conductive adhesive layer 11 is laminated on the thermal layer 20, and the flexible thermal conductive adhesive layer 11 can be flexed into a C-shape (as shown in FIG. 6) or an S-shape (as shown in FIG. 7) while being flexible away from the electronic component 30. The protruding portion of the thermal conductive adhesive layer 11 is combined with the metal layer 222 of the other heat conductive layer 22, the non-metal layer 221, and the colloid 223. Therefore, the flexible thermal conductive adhesive layer and the heat conductive thermal layer of the present invention can be highly flexed and disposed in a limited space or a narrow confined space of the electronic and electrical mechanism, and can perform three-dimensional directional conduction transfer heat to achieve comprehensive diffusion and rapid heat dissipation performance.
本創作多層複合熱傳導結構體主要形成三維立體方向高效能熱傳導,兼具高撓曲特性,並且可實施絕緣構造,適合配置在電子元件發熱表面 與散熱器之間,以及高度撓曲設置在電子電器機構的有限空間或狹隘密閉空間內,能夠作三維方向性傳導移轉熱量,達到全面性擴散迅速散熱效能,以確實傳導排除電子元件所產生的高熱,供確保電子元件的運作效率及使用壽命,具備產業利用價值,爰依法提出新型專利申請。 The multi-layer composite heat conduction structure of the present invention mainly forms high-efficiency heat conduction in a three-dimensional direction, has high flexural characteristics, and can be insulated, and is suitable for being disposed on a heating surface of an electronic component. Between the heat sink and the high-deflection deflection in the limited space or narrow confined space of the electronic and electrical mechanism, the three-dimensional directional conduction heat can be transferred to achieve comprehensive diffusion and rapid heat dissipation performance, so as to accurately conduct and exclude electronic components. The high heat is used to ensure the operational efficiency and service life of electronic components, and has the industrial use value.
以上所舉實施例僅用為方便說明本創作,而並非加以限制,在不離本創作精神範疇,熟悉此一行業技藝人士所可作之各種簡易變化與修飾,均仍應含括於以下申請專利範圍中。 The above embodiments are only used to facilitate the description of the present invention, and are not intended to be limiting, and all kinds of simple changes and modifications that can be made by those skilled in the art without departing from the spirit of the present invention should still be included in the following patent applications. In the scope.
10‧‧‧撓性導熱膠層 10‧‧‧Flexible thermal adhesive layer
20‧‧‧熱傳導熱層 20‧‧‧thermal conduction thermal layer
201‧‧‧非金屬層 201‧‧‧Non-metal layer
202‧‧‧金屬層 202‧‧‧metal layer
203‧‧‧膠體 203‧‧‧colloid
30‧‧‧電子元件 30‧‧‧Electronic components
40‧‧‧散熱器 40‧‧‧heatsink
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105219236U TWM540741U (en) | 2016-12-16 | 2016-12-16 | Multi-layer composite heat conduction structure |
JP2017005379U JP3216215U (en) | 2016-12-16 | 2017-11-27 | Multi-layer composite heat conduction structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105219236U TWM540741U (en) | 2016-12-16 | 2016-12-16 | Multi-layer composite heat conduction structure |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM540741U true TWM540741U (en) | 2017-05-01 |
Family
ID=59370533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105219236U TWM540741U (en) | 2016-12-16 | 2016-12-16 | Multi-layer composite heat conduction structure |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3216215U (en) |
TW (1) | TWM540741U (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108738284B (en) * | 2018-06-28 | 2024-06-07 | 深圳中讯源科技有限公司 | Graphene composite heat dissipation lamination structure and manufacturing method thereof |
CN110060828B (en) * | 2019-05-15 | 2024-09-20 | 西安美频电子科技有限公司 | High-performance radar heat conduction insulating sheet |
CN111439008A (en) * | 2019-12-10 | 2020-07-24 | 华北水利水电大学 | High-temperature-resistant rubber material and preparation method thereof |
-
2016
- 2016-12-16 TW TW105219236U patent/TWM540741U/en unknown
-
2017
- 2017-11-27 JP JP2017005379U patent/JP3216215U/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP3216215U (en) | 2018-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3255969B1 (en) | Heat-conducting sheet and electronic device | |
JP5384522B2 (en) | Heat sink and heat sink forming method using wedge locking system | |
US9795059B2 (en) | Thermal interface materials with thin film or metallization | |
US20100326645A1 (en) | Thermal pyrolytic graphite laminates with vias | |
WO2015179056A1 (en) | Thermal interface materials with thin film sealants | |
TW201535807A (en) | Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same | |
JP2010149509A (en) | Heat diffusion sheet and its mounting method | |
TW201535806A (en) | Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same | |
WO2002084735A1 (en) | Radiating structural body of electronic part and radiating sheet used for the radiating structural body | |
CN115516570B (en) | Thermal interface material | |
JP2019510380A (en) | Thermal interface material | |
JP3208275U (en) | Curable heat conductive interface material and heat dissipation device | |
KR101796206B1 (en) | thermal dissipation pad | |
US10568544B2 (en) | 2-dimensional thermal conductive materials and their use | |
TWM540741U (en) | Multi-layer composite heat conduction structure | |
JP2014187233A (en) | Heat radiation sheet and heat radiation structure using the same | |
JP2015046557A (en) | Radiator | |
US10117355B2 (en) | Heat dissipation foil and methods of heat dissipation | |
JP2013120814A (en) | Heat radiation structure | |
JP2005203735A (en) | Thermally conductive composite sheet | |
JP2020109790A (en) | Thermal conductive structure and thermal diffusion device | |
JP5495429B2 (en) | Heat dissipation composite sheet | |
TWM519879U (en) | Improved heat dissipation structure of electronic device | |
TWM312189U (en) | Multi-layer composite heat conduction structure | |
JP2003152371A (en) | Heat conductive material and manufacturing method thereof |