JP2005203735A - Thermally conductive composite sheet - Google Patents

Thermally conductive composite sheet Download PDF

Info

Publication number
JP2005203735A
JP2005203735A JP2004277823A JP2004277823A JP2005203735A JP 2005203735 A JP2005203735 A JP 2005203735A JP 2004277823 A JP2004277823 A JP 2004277823A JP 2004277823 A JP2004277823 A JP 2004277823A JP 2005203735 A JP2005203735 A JP 2005203735A
Authority
JP
Japan
Prior art keywords
heat
heat conductive
composite sheet
metal foil
conductive compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004277823A
Other languages
Japanese (ja)
Inventor
Hajime Funahashi
一 舟橋
Shunsuke Yamada
俊介 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Polymer Industries Co Ltd
Original Assignee
Fuji Polymer Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Polymer Industries Co Ltd filed Critical Fuji Polymer Industries Co Ltd
Priority to JP2004277823A priority Critical patent/JP2005203735A/en
Publication of JP2005203735A publication Critical patent/JP2005203735A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermally conductive composite sheet whereby a radiator or a thermal block can be easily detached from a heat generating electronic component after the heat generating electronic component and the radiator or the thermal block are mounted, and heat generated from the heat generating electronic component can be efficiently transmitted to the radiator or the thermal block. <P>SOLUTION: In the thermally conductive composite sheet, a metal foil 2 is bonded and fixed on an adhesive surface of a resin film 1 having an adhesive, and a thermally conductive compound 3 in which a thermally conductive filler is added to a base polymer is formed like a thin film on the surface of the metal foil 2. The thermally conductive compound is formed after the thin metal foil having a low mechanical strength is bonded and fixed on the resin film having the adhesive, thereby obtaining a heat dissipating sheet which can be removed with ease. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発熱性電子部品の放熱用として好適な熱伝導性複合シートに関する。   The present invention relates to a heat conductive composite sheet suitable for heat dissipation of a heat-generating electronic component.

近年、発熱体から熱を取り除くことがさまざまな分野で問題になっている。とくに電子機器やパソコンなどの電子デバイスにおいて、発熱性電子部品から熱を取り除くことが重要な課題となっている。これらの発熱性電子部品は動作時において発熱し著しく温度が上昇する。温度が上昇するにしたがって発熱性電子部品から発生する熱で誤動作を引き起こし、発熱性電子部品の特性が低下し機器の故障原因にもなっている。   In recent years, removing heat from a heating element has become a problem in various fields. In particular, in electronic devices such as electronic devices and personal computers, it is an important issue to remove heat from heat-generating electronic components. These heat-generating electronic components generate heat during operation and the temperature rises remarkably. As the temperature rises, the heat generated from the heat-generating electronic component causes a malfunction, and the characteristics of the heat-generating electronic component deteriorates, causing a failure of the device.

従来これら発熱性電子部品の放熱には、発熱性電子部品に放熱器やサーマルブロックなどを取り付け、熱を伝達し逃す方法が多くとられている。発熱性電子部品と放熱器やサーマルブロックの接触面は金属同士の接触又はプラスチックと金属の接触である為、接触面同士の密着性を補う目的で発熱性電子部品と放熱器やサーマルブロックの間にはシリコーンゴムやシリコーンオイルに熱伝導性充填材を配合した放熱シートや放熱グリースや相変化型シートがさまざまな分野で使用されている(例えば下記特許文献1)。
特開2002−329989号公報
Conventionally, for the heat dissipation of these heat-generating electronic components, a method of attaching a heat radiator or a thermal block to the heat-generating electronic components and transferring and releasing the heat is often used. Since the contact surface between the heat-generating electronic component and the radiator or thermal block is contact between metals or between plastic and metal, between the heat-generating electronic component and the radiator or thermal block for the purpose of supplementing the adhesion between the contact surfaces. Are used in various fields, such as a heat-dissipating sheet, a heat-dissipating grease, and a phase change-type sheet in which a heat conductive filler is blended with silicone rubber or silicone oil (for example, Patent Document 1 below).
JP 2002-329989 A

発熱性電子部品の発熱量は近年ますます大きくなり、シリコーンゴムやシリコーンオイルに熱伝導性充填材を配合した従来の放熱シートや放熱グリースや相変化型シートなどには、より熱伝導率の高い物が求められている。さらに放熱シートや放熱グリースや相変化型シートなどを発熱性電子部品と放熱器やサーマルブロックの間に装着した後、通電し発生した熱が原因で相互が強固に密着してしまい、発熱性電子部品から放熱器やサーマルブロックを取り外す場合、大きな力で取り外すことが必要でありしばしば発熱性電子部品が基板から外れたり、変形したり、破損したりする問題がある。   The amount of heat generated by heat-generating electronic components has been increasing in recent years. Conventional heat-dissipating sheets, heat-dissipating greases and phase-change-type sheets containing silicone rubber or silicone oil and heat-conducting fillers have higher heat conductivity. Things are sought. Furthermore, after mounting a heat-dissipating sheet, heat-dissipating grease, phase change-type sheet, etc., between the heat-generating electronic component and the heat-dissipator or thermal block, the heat generated by energization causes the two parts to adhere firmly to each other. When removing a heatsink or a thermal block from a component, it is necessary to remove it with a large force, and there is often a problem that the heat-generating electronic component is detached from the substrate, deformed, or damaged.

本発明は、前記従来の課題を解決するため、発熱性電子部品と放熱器やサーマルブロックを装着後、容易に発熱性電子部品から放熱器やサーマルブロック取り外すことができ、且つ効率良く発熱性電子部品から発生する熱を放熱器やサーマルブロックに伝達することができる熱伝導性複合シートを提供する。   In order to solve the above-described conventional problems, the present invention can easily remove the heat radiator and the thermal block from the heat generating electronic component after mounting the heat generating electronic component and the heat radiator and the thermal block, and can efficiently remove the heat generating electronic component. Provided is a thermally conductive composite sheet capable of transferring heat generated from a component to a radiator or a thermal block.

本発明は、粘着剤付き樹脂フィルムの粘着面に金属箔が粘着固定され、その表面にベースポリマーに熱伝導性フィラーを添加した熱伝導性配合物が薄膜状に成形されている熱伝導性複合シートである。   The present invention relates to a thermally conductive composite in which a metal foil is adhesively fixed to an adhesive surface of a resin film with an adhesive, and a heat conductive compound in which a heat conductive filler is added to a base polymer is formed into a thin film on the surface. It is a sheet.

本発明の熱伝導性複合シートは、熱伝導性フィラーが含まれているので熱抵抗値が低く、そのうえ、金属箔の部分で界面破壊するので、実装後、発熱性電子部品から放熱器やサーマルブロックの取り外しが容易である。   Since the heat conductive composite sheet of the present invention contains a heat conductive filler, the heat resistance value is low, and furthermore, the interface breaks at the metal foil portion. The block can be easily removed.

金属箔に熱伝導性配合物を膜状に成形する際に使用する粘着固定する粘着付き樹脂フィルムの粘着力は、6gf/25mm以下であることが好ましい。粘着付き樹脂フィルムの粘着力が強すぎると、熱伝導性複合シートを粘着付き樹脂フィルムから剥がす際に、金属箔にシワやヤブレが入り、綺麗に剥がすことができない。また粘着付き樹脂フィルムの粘着力が弱すぎると、製品を切断加工した後に、熱伝導性複合シートと粘着付き樹脂フィルムがばらばらの単品状態になってしまうので、粘着力の管理は重要である。   It is preferable that the adhesive strength of the adhesive resin film to be adhesively fixed used when the heat conductive compound is formed into a film on a metal foil is 6 gf / 25 mm or less. If the adhesive strength of the adhesive resin film is too strong, when the heat conductive composite sheet is peeled off from the adhesive resin film, the metal foil is wrinkled or blurred, and cannot be removed cleanly. Also, if the adhesive strength of the adhesive resin film is too weak, the thermal conductive composite sheet and the adhesive resin film are in a discrete single product state after the product is cut, so management of the adhesive strength is important.

粘着付き樹脂フィルムの基材となる樹脂フィルムの材質はポリプロピレン,ポリエステルなど有り、市販されているものを使用することができるが、耐熱性を考慮するとポリエチレンテレフタレートなどのポリエステルが好ましい。   There are polypropylene, polyester, and the like as the material of the resin film used as the base material of the adhesive resin film, and commercially available materials can be used. However, in consideration of heat resistance, polyester such as polyethylene terephthalate is preferable.

樹脂フィルムの表面に金属箔を粘着固定する為に塗布する粘着剤は、市販のアクリル系,シリコーン系のどれを用いてもよい。より好ましくはシリコーン系である。   Any commercially available acrylic or silicone adhesive may be used to apply and fix the metal foil to the surface of the resin film. More preferably, it is a silicone type.

金属箔の厚みは8μm以上80μm以下であることが好ましい、より好ましくは10〜40μmである。金属箔の材質は銅,アルミニウムなどの比較的軟質の金属が好ましい。金属箔の厚みが8μm未満では、圧延加工時に熱伝導性配合物が金属箔上を流動するときの力によって金属箔がヤブレたり、表面に大きなシワが入ることがあるなど取り扱い性が悪い。また金属箔が厚過ぎると、発熱性電子部品や放熱器やサーマルブロック表面の凹凸に対して柔軟性・追従性に欠けるため発熱性電子部品と放熱器やサーマルブロックとの接触状態が悪化し熱伝導性能が低下する。   The thickness of the metal foil is preferably 8 μm or more and 80 μm or less, more preferably 10 to 40 μm. The material of the metal foil is preferably a relatively soft metal such as copper or aluminum. When the thickness of the metal foil is less than 8 μm, the handleability is poor because the metal foil may be blurred or have large wrinkles on the surface due to the force when the thermally conductive compound flows on the metal foil during rolling. On the other hand, if the metal foil is too thick, the contact between the heat generating electronic component and the heat sink or thermal block deteriorates due to lack of flexibility and followability to the unevenness of the surface of the heat generating electronic component, heat sink or thermal block. Conductive performance is reduced.

粘着付き樹脂フィルムに金属箔を貼り合わせる場合には、樹脂フィルムと金属箔の互いの層間に空気だまりやシワが入らないように充分注意して貼り合わせることが必要であり、ラミネート法による双方の貼り合わせが好ましい。   When sticking a metal foil to a resin film with adhesive, it is necessary to stick together carefully so that air bubbles and wrinkles do not enter between the layers of the resin film and the metal foil. Bonding is preferred.

粘着付き樹脂フィルムに粘着固定した金属箔の片面に熱伝導性配合物を載せる方法としては、カレンダーロールによる圧延法,コーティング法,ラミネート法,プレス法などさまざまな方法がある。量産性を考慮するとコーティング法又はラミネート法で熱伝導性配合物を金属箔上に薄膜上に成形することが好ましい。   There are various methods for placing a heat conductive compound on one side of a metal foil adhesively fixed to an adhesive resin film, such as a rolling method using a calender roll, a coating method, a laminating method, and a pressing method. In consideration of mass productivity, it is preferable to form a heat conductive compound on a metal foil on a thin film by a coating method or a laminating method.

熱伝導性配合物は、樹脂,ゴム,オイルなどの高分子ベース材料に熱伝導性フィラーを添加したものが好ましい。高分子ベース材料100質量部に対して熱伝導性フィラーを100質量部添加すると、熱伝導率が約0.5W/m・K程度になる。熱伝導性フィラーの好ましい上限は3000質量部である。   The heat conductive compound is preferably a polymer base material such as resin, rubber, oil or the like to which a heat conductive filler is added. When 100 parts by mass of the thermally conductive filler is added to 100 parts by mass of the polymer base material, the thermal conductivity becomes about 0.5 W / m · K. The upper limit with preferable heat conductive filler is 3000 mass parts.

熱伝導性配合物は未加硫状態のパテ状配合物であることが好ましい。未加硫状態とは途中で意識的に加硫をとめたものも含まれる。金属箔上の熱伝導性配合物の厚みは0.05mm以上3.0mm以下であることが好ましい。   The thermally conductive compound is preferably an unvulcanized putty-like compound. The unvulcanized state includes those in which vulcanization is intentionally stopped during the process. The thickness of the heat conductive compound on the metal foil is preferably 0.05 mm or more and 3.0 mm or less.

高分子ベース材料はエチレン−酢酸ビニル共重合体,エチレン−エチルアクリレート共重合体,エチレン−メタクリレート共重合体,エポキシなどの合成樹脂、ゴムにはシリコーンゴム,ブチルゴム,スチレン−イソプレン共重合体,スチレン−ブタジエン共重合体、オイルにはシリコーンオイルなどがある。   The polymer base material is ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylate copolymer, synthetic resin such as epoxy, rubber is silicone rubber, butyl rubber, styrene-isoprene copolymer, styrene -Butadiene copolymer, oil includes silicone oil.

しかし、耐熱性の観点から考慮するとシリコーン系化合物を高分子ベース材料とすることが好ましい。   However, from the viewpoint of heat resistance, it is preferable to use a silicone compound as a polymer base material.

熱伝導性配合物に添加する熱伝導性フィラーは金属酸化物,窒化物,炭化物,フェライトなどがあり、一種類またはそれらを二種類以上、混合して使用できる。さらに熱伝導性フィラーの表面を公知の技術で表面処理を行っても良い。   Thermally conductive fillers added to the thermally conductive compound include metal oxides, nitrides, carbides, ferrites and the like, and one kind or a mixture of two or more kinds thereof can be used. Further, the surface of the heat conductive filler may be surface-treated by a known technique.

熱伝導性配合物に添加する酸化防止剤,難燃剤も公知のものを使用することができる。
熱伝導性配合物の粘着付与剤は公知のものを使用することができる。
Known antioxidants and flame retardants to be added to the heat conductive compound can also be used.
As the tackifier for the heat conductive compound, a known one can be used.

金属箔の表面には熱伝導性配合物と金属箔どうしの接着性を高める目的でプライマー処理をしてもよい。金属箔に載せる熱伝導性配合物によっては適宜プライマー処理を選択して使用することができる。   The surface of the metal foil may be subjected to a primer treatment for the purpose of enhancing the adhesion between the heat conductive compound and the metal foil. Depending on the heat conductive compound to be placed on the metal foil, primer treatment can be appropriately selected and used.

次に図面を用いて説明する。図1は本発明の一実施例の金属箔付き熱伝導性配合物シートの製造方法を示す断面図である。粘着付き樹脂フィルム1の上に金属箔2を貼り付け、その上にシリコーンオイルなどのベース樹脂に熱伝導性フィラーを混合した熱伝導性配合物コンパウンド3’を載せ、ナイフ4によりコーティングする(図1A−B)。このようにして得られた複合シート10が図1Cである。すなわち、粘着付き樹脂フィルム1の上に金属箔2を貼り付けられ、その上に熱伝導性配合物シート3が積層されている。   Next, it demonstrates using drawing. FIG. 1 is a cross-sectional view illustrating a method for producing a thermally conductive compound sheet with a metal foil according to an embodiment of the present invention. A metal foil 2 is pasted on an adhesive resin film 1, and a thermally conductive compound compound 3 'in which a thermally conductive filler is mixed with a base resin such as silicone oil is placed thereon and coated with a knife 4 (see FIG. 1A-B). The composite sheet 10 obtained in this way is shown in FIG. 1C. That is, the metal foil 2 is affixed on the adhesive resin film 1, and the heat conductive compound sheet 3 is laminated thereon.

図2は、使用状態を示す断面図である。CPUのダイ部分5の表面に熱伝導性接着剤6を介して金属箔2と熱伝導性配合物シート3が貼り付けられ、その上に放熱器7が一体化されている。放熱器7を除去するときは、矢印8の方向に引っ張ると、金属箔2の部分で容易に界面破壊を起こし、除去できる。   FIG. 2 is a cross-sectional view showing a use state. The metal foil 2 and the heat conductive compound sheet 3 are attached to the surface of the die portion 5 of the CPU via the heat conductive adhesive 6, and the radiator 7 is integrated thereon. When removing the radiator 7, if it is pulled in the direction of the arrow 8, the interface can be easily broken and removed at the portion of the metal foil 2.

以下実施例を用いて本発明をさらに具体的に説明する。下記の実施例における測定方法は次のとおりである。
(1)熱抵抗値:ASTM D5470に準じて荷重5Psi(34.5kPa)で測定した。
(2)実装後の取り外し試験:31mm×31mmの表面サイズのCPUをソケットに差込み通電後ヒートシンクを引き上げてCPUとの分離性を測定した。
Hereinafter, the present invention will be described more specifically with reference to examples. The measurement methods in the following examples are as follows.
(1) Thermal resistance value: Measured with a load of 5 Psi (34.5 kPa) according to ASTM D5470.
(2) Removal test after mounting: A CPU having a surface size of 31 mm × 31 mm was inserted into a socket, and after energization, the heat sink was pulled up to measure the separation from the CPU.

以下の実施例で使用する熱伝導シートに使用する材料は下記のとおりである。
(1)粘着付き樹脂フィルム
粘着付き樹脂フィルムは以下のようにして作製した。SD4560(東レ・ダウコーニングシリコーン社)100質量部にSRX212(東レ・ダウコーニングシリコーン社)0.9質量部,キシレン100質量部を加え撹拌して粘着剤溶液を得た。
(2)粘着剤
次に粘着剤溶液をナイフコーティング法によって厚さ100μmのポリエステルフィルムに均一に塗工し加熱炉で120℃で15分間加熱硬化させ、粘着剤層の厚みが3μmの粘着付き樹脂フィルムを得た。
The material used for the heat conductive sheet used in the following examples is as follows.
(1) Adhesive resin film The adhesive resin film was produced as follows. 0.9 parts by mass of SRX212 (Toray Dow Corning Silicone) and 100 parts by mass of xylene were added to 100 parts by mass of SD4560 (Toray Dow Corning Silicone) to obtain an adhesive solution.
(2) Adhesive Next, the adhesive solution was uniformly applied to a 100 μm thick polyester film by a knife coating method and heat cured at 120 ° C. for 15 minutes in a heating furnace, and the adhesive layer had an adhesive layer thickness of 3 μm. A film was obtained.

粘着剤層の厚みが3μmの粘着付き樹脂フィルムの粘着力はJIS−Z−0238に準じて測定したところ、ステンレス鋼SUS304板の表面に対して3gf/25mmの粘着力であった。
(3)金属箔
金属箔はアルミ箔の厚み30μm硬質材(住友軽金属工業社製)で、銅箔は厚み35μm硬質材(日本製箔社製)である、いずれの金属箔も表面に熱伝導性配合物を均一に薄膜状に成形しやすくする為にイソプロパノールで脱脂・洗浄したものを使用した。
(4)金属箔と粘着付き樹脂フィルムの貼り合わせ
金属箔と粘着付き樹脂フィルムを相互に貼り合わせる方法はラミネート法で行った。
(5)熱伝導性配合物の表面処理
次に熱伝導性配合物は次のように作製した。実施例で使用する酸化アルミニウムは、ヘキサメチルジシラザン(TSL8802 GE・東芝シリコーン社)1質量%を付与して表面処理した。
(6)熱伝導性配合物A
シリコーンオイル100質量部(SH200CV 300cs 東レ・ダウコーニングシリコーン社製)に酸化アルミニウム、900質量部(AS30 昭和電工社製),鉄黒、4質量部を均一に混練りし熱伝導性配合物Aとした。
The adhesive strength of the adhesive resin film with the thickness of the adhesive layer of 3 μm was measured according to JIS-Z-0238 and found to be 3 gf / 25 mm to the surface of the stainless steel SUS304 plate.
(3) Metal foil The metal foil is an aluminum foil 30 μm thick hard material (manufactured by Sumitomo Light Metal Industry Co., Ltd.), and the copper foil is a 35 μm thick hard material (manufactured by Nihon Foil Co., Ltd.). In order to make it easy to form a uniform composition into a thin film, a product degreased and washed with isopropanol was used.
(4) Lamination of metal foil and adhesive resin film The method of laminating metal foil and adhesive resin film to each other was performed by a laminating method.
(5) Surface treatment of heat conductive compound Next, a heat conductive compound was prepared as follows. The aluminum oxide used in the examples was surface-treated by adding 1% by mass of hexamethyldisilazane (TSL8802 GE, Toshiba Silicone).
(6) Thermally conductive compound A
100 parts by mass of silicone oil (SH200CV 300cs, manufactured by Toray Dow Corning Silicone), aluminum oxide, 900 parts by mass (AS30, manufactured by Showa Denko), iron black, and 4 parts by mass are uniformly kneaded and thermally conductive compound A did.

(実施例1)
粘着剤付き樹脂フィルムの粘着面に厚み30μmのアルミ箔を粘着固定した後、アルミ箔面に熱伝導性配合物Aを圧延法で厚み170μmのシートに形成し、アルミ箔と熱伝導性配合物Aの総厚みが0.2mmの熱伝導性複合シートを得た。
(Example 1)
After sticking and fixing 30 μm thick aluminum foil on the adhesive surface of the resin film with adhesive, heat conductive compound A is formed on the aluminum foil surface into a 170 μm thick sheet by rolling, and the aluminum foil and the heat conductive compound are formed. A heat conductive composite sheet having a total thickness of A of 0.2 mm was obtained.

(実施例2)
粘着付き樹脂フィルムの粘着面に厚み35μmの銅箔を粘着固定した後、銅箔面に熱伝導性配合物Aを圧延法で厚み165μmを載せ、銅箔と熱伝導性配合物Aの総厚みが0.2mmの熱伝導性複合シートを得た。
(Example 2)
After sticking and fixing a 35 μm thick copper foil to the adhesive surface of the adhesive resin film, a heat conductive compound A is placed on the copper foil surface by a rolling method to a thickness of 165 μm, and the total thickness of the copper foil and the heat conductive compound A A 0.2 mm heat conductive composite sheet was obtained.

(比較例1)
厚み30μmのアルミ箔に熱伝導性配合物Aを圧延法でアルミ箔の片面表面に直接載せ、アルミ箔と熱伝導性配合物Aの総厚みが0.2mmの熱伝導性複合シートを得た。この場合粘着付き樹脂フィルムは使用しなかった。
(Comparative Example 1)
The heat conductive compound A was directly placed on one surface of the aluminum foil by a rolling method on an aluminum foil having a thickness of 30 μm to obtain a heat conductive composite sheet having a total thickness of the aluminum foil and the heat conductive compound A of 0.2 mm. . In this case, an adhesive resin film was not used.

(比較例2)
厚み35μmの銅箔に熱伝導性配合物Aを圧延法で銅箔の片面表面に直接載せ、銅箔と熱伝導性配合物Aの総厚みが0.2mmの熱伝導性複合シートを得た。この場合粘着付き樹脂フィルムは使用しなかった。
(Comparative Example 2)
The heat conductive compound A was placed directly on one surface of the copper foil by a rolling method on a copper foil having a thickness of 35 μm to obtain a heat conductive composite sheet having a total thickness of the copper foil and the heat conductive compound A of 0.2 mm. . In this case, an adhesive resin film was not used.

実施例1から実施例2及び比較例1から比較例2で作成した各熱伝導性複合シートを30×30mmに切断し、熱抵抗値を測定した。その結果を表1に示す。   Each heat conductive composite sheet prepared in Example 1 to Example 2 and Comparative Example 1 to Comparative Example 2 was cut into 30 × 30 mm, and the thermal resistance value was measured. The results are shown in Table 1.

Figure 2005203735
Figure 2005203735

本発明の実施例1〜2においては、アルミ及び銅箔をそれぞれ粘着付き樹脂フィルムに粘着固定した後、熱伝導性配合物を圧延法やナイフコート法を用いて金属箔上に薄膜状に成形することによって金属箔表面に熱伝導性配合物を均一に載せ且つシワやヤブレが入らずに熱伝導性複合シートを得ることができた。   In Examples 1 and 2 of the present invention, aluminum and copper foils were each adhesively fixed to an adhesive resin film, and then a thermally conductive compound was formed into a thin film on a metal foil using a rolling method or a knife coating method. By doing so, the heat conductive compound sheet was uniformly put on the surface of the metal foil, and a heat conductive composite sheet could be obtained without wrinkles or blurring.

これに対して比較例1〜2では、アルミ箔及び銅箔をそれぞれ粘着付き樹脂フィルムに粘着固定せずに、熱伝導性配合物を圧延法やナイフコート法を用いて金属箔上に薄膜状に成形した場合、金属箔にシワやヤブレが入り所望の熱伝導性複合シートを得ることができなかった。   On the other hand, in Comparative Examples 1 and 2, the aluminum foil and the copper foil were not adhered and fixed to the adhesive resin film, respectively, and the heat conductive compound was formed into a thin film on the metal foil using a rolling method or a knife coating method. In the case of forming into a metal foil, wrinkles or jabbles entered into the metal foil, and the desired heat conductive composite sheet could not be obtained.

次に金属箔の両面に熱伝導性配合物を薄膜状に形成されて成る熱伝導性複合シートについて検討をした。実施例3から実施例4で本発明をさらに具体的に説明する。   Next, a heat conductive composite sheet formed by forming a thin film of a heat conductive compound on both sides of a metal foil was examined. The present invention will be described more specifically with reference to Examples 3 to 4.

粘着付き樹脂フィルムは以下のようにして作製した。SD4560(東レ・ダウコーニングシリコーン社)100質量部にSRX212(東レ・ダウコーニングシリコーン社)0.9質量部,キシレン100質量部を加え撹拌し粘着剤溶液を得た。   The resin film with adhesive was produced as follows. 0.9 parts by mass of SRX212 (Toray Dow Corning Silicone) and 100 parts by mass of xylene were added to 100 parts by mass of SD4560 (Toray Dow Corning Silicone) to obtain an adhesive solution.

次に粘着剤溶液をナイフコーティング法によって厚さ100μmのポリエステルフィルムに均一に塗工し加熱炉で120℃で15分間加熱硬化させ粘着剤層の厚みが3μmの粘着付き樹脂フィルムを得た。   Next, the pressure-sensitive adhesive solution was uniformly applied to a polyester film having a thickness of 100 μm by a knife coating method, and was heat-cured at 120 ° C. for 15 minutes in a heating furnace to obtain a pressure-sensitive adhesive resin film having a pressure-sensitive adhesive layer thickness of 3 μm.

粘着剤層の厚みが3μmの粘着付き樹脂フィルムの粘着力はJIS-Z-0238に準じて測定したところ、SUS304板の表面に対して3gf/25mmの粘着力であった。   The adhesive strength of the adhesive resin film having a thickness of the adhesive layer of 3 μm was measured according to JIS-Z-0238 and found to be 3 gf / 25 mm to the surface of the SUS304 plate.

金属箔はアルミ箔の厚み30μm硬質材(住友軽金属工業社製)で、銅箔は厚み35μm硬質材(日本製箔社製)である、いずれの金属箔も表面に熱伝導性配合物を均一に薄膜状に成形しやすくする為にイソプロパノールで脱脂・洗浄したものを使用した。   The metal foil is an aluminum foil 30 μm thick hard material (manufactured by Sumitomo Light Metal Industry Co., Ltd.), and the copper foil is a 35 μm thick hard material (manufactured by Nihon Foil Co., Ltd.). In order to make it easier to form a thin film, it was degreased and washed with isopropanol.

金属箔と粘着付き樹脂フィルムを相互に貼り合わせる方法はラミネート法で行った。   The method of laminating the metal foil and the adhesive resin film to each other was performed by a laminating method.

次に熱伝導性配合物は次のように作製した。実施例で使用する酸化アルミニウムは、ヘキサメチルジシラザン(TSL8802 GE・東芝シリコーン社)1質量%を付与して表面処理した。   Next, the heat conductive compound was prepared as follows. The aluminum oxide used in the examples was surface-treated by adding 1% by mass of hexamethyldisilazane (TSL8802 GE, Toshiba Silicone).

(熱伝導性配合物A)
シリコーンオイル100質量部(SH200CV 300cs 東レ・ダウコーニングシリコーン社)に酸化アルミニウム900質量部(AS30 昭和電工社),鉄黒4質量部を均一に混練りし熱伝導性配合物Aとした。
(Thermal conductive compound A)
To 100 parts by mass of silicone oil (SH200CV 300cs, Toray Dow Corning Silicone), 900 parts by mass of aluminum oxide (AS30 Showa Denko) and 4 parts by mass of iron black were uniformly kneaded to obtain a heat conductive compound A.

(熱伝導性配合物C)
シリコーンゴム100質量部(TSE3033 GE・東芝シリコーン社)に酸化アルミニウム450質量部(AL43L 昭和電工社)を添加し混合した物にキシレン100質量部を添加して熱伝導性配合物Cのディスパージョンとした。
(Thermal conductive compound C)
Addition of 450 parts by mass of aluminum oxide (AL43L Showa Denko) to 100 parts by mass of silicone rubber (TSE3033 GE / Toshiba Silicone Co., Ltd.) did.

(実施例3)
粘着付き樹脂フィルムの粘着面に厚み30μmのアルミ箔を粘着固定したアルミ箔面に熱伝導性配合物Aを圧延法で載せ、アルミ箔と熱伝導性配合物Aの総厚み0.2mmのシートを得た。
(Example 3)
A sheet with a total thickness of 0.2 mm of the aluminum foil and the heat conductive compound A is placed on the surface of the aluminum foil with a 30 μm thick aluminum film adhered to the adhesive surface of the adhesive resin film by rolling. Got.

次に熱伝導性配合物Aを薄膜状に形成した面をエンボスフィルム上に仮に固定した後、粘着付き樹脂フィルムを剥ぎ取りアルミ箔面を露出させた。   Next, after temporarily fixing the surface which formed the heat conductive compound A in the thin film shape on the embossed film, the resin film with adhesion was peeled off and the aluminum foil surface was exposed.

次に露出させたアルミ箔面へ熱伝導性配合物Cのディスパージョンをナイフコート法で載せた後、乾燥加硫してアルミ箔の片面に厚さ10μmの熱伝導性配合物Cを載せ0.21mmの熱伝導性複合シートを得た。   Next, a dispersion of the heat conductive compound C was placed on the exposed aluminum foil surface by a knife coat method, then dried and vulcanized, and a heat conductive compound C having a thickness of 10 μm was placed on one surface of the aluminum foil. A 21 mm heat conductive composite sheet was obtained.

アルミ箔を挟んで片面には熱伝導性配合物A、もう片面には加硫された熱伝導性配合物Cが載った熱伝導性複合シートを得た。   A heat conductive composite sheet on which one surface was placed with the heat conductive compound A and the other surface was vulcanized heat conductive composition C was obtained with an aluminum foil interposed therebetween.

(実施例4)
粘着付き樹脂フィルムの粘着面に35μmの銅箔を粘着固定した銅箔面に熱伝導性配合物Aを圧延法で載せ、銅箔と熱伝導性配合物Aの総厚み0.2mmのシートを得た。
Example 4
A heat conductive compound A is placed on the copper foil surface of the adhesive film of the adhesive resin film with a 35 μm copper foil adhered and fixed by rolling, and a sheet of copper foil and the heat conductive compound A having a total thickness of 0.2 mm is formed. Obtained.

次に熱伝導性配合物Aを薄膜状に形成した面をエンボスフィルム上に仮に固定した後、粘着付き樹脂フィルムを剥ぎ取り銅箔面を露出させた。   Next, after temporarily fixing the surface which formed the heat conductive compound A in the shape of a thin film on the embossed film, the adhesive-attached resin film was peeled off to expose the copper foil surface.

次に露出させた銅箔面へ熱伝導性配合物Cのディスパージョンをナイフコート法で載せた後、乾燥加硫して銅箔の片面に厚さ10μmの熱伝導性配合物Cを載せ厚み0.21mmの熱伝導性複合シートを得た。銅箔を挟んで片面には熱伝導性配合物A、もう片面には加硫された熱伝導性配合物Cが載った熱伝導性複合シートを得た。   Next, the dispersion of the heat conductive compound C was placed on the exposed copper foil surface by a knife coat method, then dried and vulcanized, and the heat conductive compound C having a thickness of 10 μm was placed on one side of the copper foil. A 0.21 mm heat conductive composite sheet was obtained. A heat conductive composite sheet with a heat conductive compound A on one side and a vulcanized heat conductive compound C on the other side was obtained with a copper foil in between.

(比較例3)
粘着付き樹脂フィルムの粘着面に30μmのアルミ箔を粘着固定したものに熱伝導性配合物Aを圧延法でアルミ箔の片面表面に直接載せ、アルミ箔と熱伝導性配合物Aの総厚み0.2mmの熱伝導性複合シートを得た。
(Comparative Example 3)
The heat conductive compound A is directly placed on the surface of one side of the aluminum foil by a rolling method on the adhesive surface of the adhesive resin film with 30 μm aluminum foil, and the total thickness of the aluminum foil and the heat conductive compound A is 0. A 2 mm heat conductive composite sheet was obtained.

(比較例4)
粘着付き樹脂フィルムの粘着面に35μmの銅箔を粘着固定したものに熱伝導性配合物Aを圧延法で銅箔の片面表面に直接載せ、銅箔と熱伝導性配合物Aの総厚み0.2mmの熱伝導性複合シートを得た。
(Comparative Example 4)
The heat conductive compound A is directly placed on one surface of the copper foil by a rolling method on the adhesive surface of the adhesive resin film having a 35 μm copper foil adhered and fixed, and the total thickness of the copper foil and the heat conductive compound A is 0. A 2 mm heat conductive composite sheet was obtained.

(比較例5)
熱伝導性配合物Aを上下2枚のポリプロピレンフィルムに挟んで圧延法で圧延し厚み0.2mmの熱伝導性配合物Aのシートを得た。
(Comparative Example 5)
The heat conductive compound A was sandwiched between two upper and lower polypropylene films and rolled by a rolling method to obtain a sheet of the heat conductive compound A having a thickness of 0.2 mm.

実施例3〜実施例4及び比較例3〜比較例5で作成したすべての熱伝導性複合シートを30×30mmに切断したものの熱抵抗値を測定した検討結果を表2に示す。   Table 2 shows the examination results obtained by measuring the thermal resistance values of all the thermally conductive composite sheets prepared in Examples 3 to 4 and Comparative Examples 3 to 5 cut to 30 × 30 mm.

Figure 2005203735
Figure 2005203735

上記結果からもわかるように、本発明の実施例においては、金属箔と一体化された熱伝導性複合シートは実装後の取り外しが容易にできた。さらに熱伝導性配合物Aが載った金属箔の反対面に熱伝導性配合物Cを載せた熱伝導性複合シートは発熱性電子部品と放熱器やサーマルブロックとの接触状態が改善され、熱抵抗値をさらに低下させることができた。   As can be seen from the above results, in the examples of the present invention, the thermally conductive composite sheet integrated with the metal foil could be easily removed after mounting. Furthermore, the heat conductive composite sheet in which the heat conductive compound C is placed on the opposite surface of the metal foil on which the heat conductive compound A is placed improves the contact state between the heat-generating electronic component and the radiator or the thermal block. The resistance value could be further reduced.

これに対して比較例3〜4のシートは、10μmの厚さの熱伝導性配合物Cがなく、金属箔面が露出しているので接触面の接触熱抵抗が高く好ましくなかった。実施例3及び4には10μmの金属箔面に熱伝導性配合物Cの層がある事によって接触面の接触熱抵抗が低下する。よって放熱シート全体の熱抵抗を下げる事が出来る。   On the other hand, the sheets of Comparative Examples 3 to 4 were not preferable because the thermal conductive compound C having a thickness of 10 μm was not present and the metal foil surface was exposed, and the contact thermal resistance of the contact surface was high. In Examples 3 and 4, the presence of the layer of the thermally conductive compound C on the 10 μm metal foil surface reduces the contact thermal resistance of the contact surface. Therefore, the thermal resistance of the entire heat dissipation sheet can be lowered.

また比較例5のシートは、発熱性電子部品と放熱器やサーマルブロックの密着性が高く、実装後に発熱性電子部品から放熱器やサーマルブロックの取り外しが容易ではなかった。   In addition, the sheet of Comparative Example 5 had high adhesion between the heat-generating electronic component and the radiator or thermal block, and it was not easy to remove the radiator or thermal block from the heat-generating electronic component after mounting.

以上説明したとおり、本発明の実施例1〜4で得られた熱伝導性複合シートは金属箔を粘着付き樹脂フィルムに貼り合わせ固定することによって、シワやヤブレや凸凹を発生させずに熱伝導性配合物を金属箔上に薄く、均一な厚みで成形することができた。その様にして得られた熱伝導性複合シートは熱抵抗値が低く、そのうえ前記の熱伝導性複合シートは実装後、発熱性電子部品から放熱器やサーマルブロックの取り外しがきわめて容易であり充分に目標を達成できた。また実施例3〜4で得られた熱伝導性複合シートは実施例1〜2に比較して発熱性電子部品と放熱器やサーマルブロックの接触熱抵抗がさらに低く、そのうえ前記の熱伝導性複合シートは放熱器やサーマルブロックの取り外しがきわめて容易であり充分に目標を達成できた。   As described above, the heat conductive composite sheets obtained in Examples 1 to 4 of the present invention are thermally conductive without causing wrinkles, blurring or unevenness by bonding and fixing a metal foil to a resin film with an adhesive. The composition was thin and evenly formed on the metal foil. The heat conductive composite sheet thus obtained has a low thermal resistance value, and furthermore, the heat conductive composite sheet is very easy to remove from the heat-generating electronic component after mounting the heat radiator and the thermal block. The goal was achieved. In addition, the heat conductive composite sheets obtained in Examples 3 to 4 have lower contact thermal resistance between the heat generating electronic component and the radiator or thermal block than those of Examples 1 and 2, and the above heat conductive composite sheet. The seat was very easy to remove the heatsink and thermal block, and the target was fully achieved.

[産業上の利用可能性]
発熱性電子部品(例えばCPU等)の冷却対策として、従来はグリース、パテを放熱材として使う場合が多く、放熱材を介して密着力や真空効果により発熱性電子部品から放熱器やサーマルブロック取り外すのにかなりの力が必要であるが、本発明は機械的強度が弱く薄い金属箔を粘着付き樹脂フィルムに粘着固定した後、均一に凹凸無く熱伝導性配合物と一体化することにより、取り外しの容易な放熱シートとすることができる。
[Industrial applicability]
Conventionally, grease and putty are often used as a heat dissipation material as a cooling measure for heat-generating electronic components (such as CPUs). Remove heatsinks and thermal blocks from heat-generating electronic components due to adhesion and vacuum effect through the heat dissipation material. However, in the present invention, a thin metal foil having a low mechanical strength is adhered and fixed to an adhesive resin film, and then uniformly removed from the heat conductive compound without unevenness. It can be set as an easy heat dissipation sheet.

本発明の一実施例の金属箔付き熱伝導性配合物シートの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the heat conductive compound sheet with a metal foil of one Example of this invention. 同、使用状態を示す断面図である。It is sectional drawing which shows a use condition same as the above.

符号の説明Explanation of symbols

1 粘着付き樹脂フィルム
2 金属箔
3 熱伝導性配合物シート
3’ 熱伝導性配合物コンパウンド
4 コーティングナイフ
5 CPUのダイ部分
6 熱伝導性接着剤
7 放熱器
10 熱伝導性複合シート

DESCRIPTION OF SYMBOLS 1 Adhesive resin film 2 Metal foil 3 Thermal conductive compound sheet 3 'Thermal conductive compound compound 4 Coating knife 5 CPU die part 6 Thermal conductive adhesive 7 Radiator 10 Thermal conductive composite sheet

Claims (6)

粘着剤付き樹脂フィルムの粘着面に金属箔が粘着固定され、その表面にベースポリマーに熱伝導性フィラーを添加した熱伝導性配合物が薄膜状に成形されている熱伝導性複合シート。   A thermally conductive composite sheet in which a metal foil is adhered and fixed to an adhesive surface of a resin film with an adhesive, and a thermally conductive compound in which a thermally conductive filler is added to a base polymer is formed into a thin film on the surface. 前記熱伝導性配合物の熱伝導率が0.5W/m・K以上である請求項1に記載の熱伝導性複合シート。   The heat conductive composite sheet according to claim 1, wherein the heat conductivity of the heat conductive compound is 0.5 W / m · K or more. 前記熱伝導性配合物が、ベースポリマー100質量部に対して、熱伝導性フィラーが100質量部以上3000質量部以下の範囲で配合されている請求項1に記載の熱伝導性複合シート。   The heat conductive composite sheet according to claim 1, wherein the heat conductive compound is compounded in a range of 100 parts by mass or more and 3000 parts by mass or less with respect to 100 parts by mass of the base polymer. 前記熱伝導性配合物の薄膜の厚みが、0.05mm以上3.0mm以下である請求項1に記載の熱伝導性複合シート。   The heat conductive composite sheet according to claim 1, wherein a thickness of the thin film of the heat conductive compound is 0.05 mm or more and 3.0 mm or less. 前記金属箔の厚みが、8μm以上80μm以下である請求項1に記載の熱伝導性複合シート。   The thermally conductive composite sheet according to claim 1, wherein the metal foil has a thickness of 8 μm or more and 80 μm or less. 前記熱伝導性複合シートが、発熱性電子部品の放熱用である請求項1に記載の熱伝導性複合シート。   The heat conductive composite sheet according to claim 1, wherein the heat conductive composite sheet is for heat dissipation of a heat-generating electronic component.
JP2004277823A 2003-12-16 2004-09-24 Thermally conductive composite sheet Pending JP2005203735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277823A JP2005203735A (en) 2003-12-16 2004-09-24 Thermally conductive composite sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003418371 2003-12-16
JP2004277823A JP2005203735A (en) 2003-12-16 2004-09-24 Thermally conductive composite sheet

Publications (1)

Publication Number Publication Date
JP2005203735A true JP2005203735A (en) 2005-07-28

Family

ID=34829187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277823A Pending JP2005203735A (en) 2003-12-16 2004-09-24 Thermally conductive composite sheet

Country Status (1)

Country Link
JP (1) JP2005203735A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048809A (en) * 2005-08-08 2007-02-22 Dainippon Printing Co Ltd Heat dissipating sheet and its manufacturing method
KR100721462B1 (en) 2004-05-31 2007-05-23 주식회사 엘지화학 Adhesive radiation sheet
KR100928548B1 (en) 2009-06-05 2009-11-24 두성산업 주식회사 Adhesive tape and producing method thereof
JP2010189505A (en) * 2009-02-17 2010-09-02 Yokohama Rubber Co Ltd:The Thermoconductive emulsion
WO2011158565A1 (en) * 2010-06-17 2011-12-22 日立化成工業株式会社 Heat transfer sheet, manufacturing method for heat transfer sheet, and heat radiation device
KR101279679B1 (en) * 2012-11-12 2013-06-27 주식회사 나노인터페이스 테크놀로지 Heat conduction sheet manufacturing method and heat conduction sheet manufactured by the same
WO2016111124A1 (en) * 2015-01-09 2016-07-14 昭和電工株式会社 Insulating heat dissipation sheet, heat spreader and electronic device
JP2016178235A (en) * 2015-03-20 2016-10-06 日本電気株式会社 Thermal conductive member, cooling structure, and device
JP2019011930A (en) * 2017-06-30 2019-01-24 三菱重工サーマルシステムズ株式会社 Composite pipe and freezer
JP2020006581A (en) * 2018-07-09 2020-01-16 日本ゼオン株式会社 Heat conductive sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0944762A (en) * 1994-12-01 1997-02-14 Miyake:Kk Production of metallic foil sheet like circuit for resonance tag or the like
JP2002234952A (en) * 2001-02-08 2002-08-23 Fuji Kobunshi Kogyo Kk Heat-softening radiating sheet
JP2002305271A (en) * 2001-04-06 2002-10-18 Shin Etsu Chem Co Ltd Heat dissipating structure of electronic component, and heat dissipating sheet used for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0944762A (en) * 1994-12-01 1997-02-14 Miyake:Kk Production of metallic foil sheet like circuit for resonance tag or the like
JP2002234952A (en) * 2001-02-08 2002-08-23 Fuji Kobunshi Kogyo Kk Heat-softening radiating sheet
JP2002305271A (en) * 2001-04-06 2002-10-18 Shin Etsu Chem Co Ltd Heat dissipating structure of electronic component, and heat dissipating sheet used for the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721462B1 (en) 2004-05-31 2007-05-23 주식회사 엘지화학 Adhesive radiation sheet
JP2007048809A (en) * 2005-08-08 2007-02-22 Dainippon Printing Co Ltd Heat dissipating sheet and its manufacturing method
JP2010189505A (en) * 2009-02-17 2010-09-02 Yokohama Rubber Co Ltd:The Thermoconductive emulsion
KR100928548B1 (en) 2009-06-05 2009-11-24 두성산업 주식회사 Adhesive tape and producing method thereof
KR101815719B1 (en) * 2010-06-17 2018-01-08 히타치가세이가부시끼가이샤 Heat transfer sheet, manufacturing method for heat transfer sheet, and heart radiation device
JP5915525B2 (en) * 2010-06-17 2016-05-11 日立化成株式会社 Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device
US9574833B2 (en) 2010-06-17 2017-02-21 Hitachi Chemical Company, Ltd. Thermal conductive sheet, method of producing thermal conductive sheet and heat releasing device
TWI577959B (en) * 2010-06-17 2017-04-11 日立化成股份有限公司 Thermal conductive sheet, method of producing thermal conductive sheet and radiator
WO2011158565A1 (en) * 2010-06-17 2011-12-22 日立化成工業株式会社 Heat transfer sheet, manufacturing method for heat transfer sheet, and heat radiation device
KR101279679B1 (en) * 2012-11-12 2013-06-27 주식회사 나노인터페이스 테크놀로지 Heat conduction sheet manufacturing method and heat conduction sheet manufactured by the same
WO2016111124A1 (en) * 2015-01-09 2016-07-14 昭和電工株式会社 Insulating heat dissipation sheet, heat spreader and electronic device
JPWO2016111124A1 (en) * 2015-01-09 2017-10-26 昭和電工株式会社 Insulating heat dissipation sheet, heat spreader and electronic equipment
JP2016178235A (en) * 2015-03-20 2016-10-06 日本電気株式会社 Thermal conductive member, cooling structure, and device
JP2019011930A (en) * 2017-06-30 2019-01-24 三菱重工サーマルシステムズ株式会社 Composite pipe and freezer
JP2020006581A (en) * 2018-07-09 2020-01-16 日本ゼオン株式会社 Heat conductive sheet
JP7218510B2 (en) 2018-07-09 2023-02-07 日本ゼオン株式会社 thermal conductive sheet

Similar Documents

Publication Publication Date Title
JP5271879B2 (en) Thermal diffusion sheet and mounting method thereof
JP6402763B2 (en) Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing the same, multilayer resin sheet with metal foil, and semiconductor device
JP3976166B2 (en) PDP panel
JP5096010B2 (en) Thermal diffusion sheet and positioning method of thermal diffusion sheet
JP2004311577A (en) Thermally conductive composite sheet and method of manufacturing the same
JP2001168246A (en) Heat conductive sheet and manufacturing method thereof
TWI331566B (en) Laminated body
JP5538739B2 (en) Thermally conductive composite sheet and method for producing the same
JP7160101B2 (en) Method for manufacturing semiconductor device, heat conductive sheet, and method for manufacturing heat conductive sheet
JP2013102180A (en) Thermal diffusion sheet
JP2005203735A (en) Thermally conductive composite sheet
US20030041442A1 (en) Method of applying phase change thermal interface materials
TW202016197A (en) Method of producing semiconductor device, and thermoconductive sheet
JP7031203B2 (en) Adhesive sheet for heat dissipation, laminate for heat dissipation adhesive member, and composite member
JP4225945B2 (en) Thermally conductive sheet
JP2003236988A (en) Thermally conductive rubber member
JP4027807B2 (en) Phase change type multilayer sheet
JP2021160237A (en) Method for manufacturing heat-conductive sheet
TWM540741U (en) Multi-layer composite heat conduction structure
JP2013058611A (en) Wiring board lamination body, component mounting wiring board lamination body, and electronic component
JP7338738B2 (en) Method for manufacturing semiconductor device, heat conductive sheet, and method for manufacturing heat conductive sheet
TW200522310A (en) Thermal conductivity composite sheet materials
JP2005183474A (en) Thermally conductive compound sheet
JP2013159097A (en) Laminated structure
KR20230026038A (en) Thermal Conductive Interface Sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111