JP2021160237A - Method for manufacturing heat-conductive sheet - Google Patents

Method for manufacturing heat-conductive sheet Download PDF

Info

Publication number
JP2021160237A
JP2021160237A JP2020064261A JP2020064261A JP2021160237A JP 2021160237 A JP2021160237 A JP 2021160237A JP 2020064261 A JP2020064261 A JP 2020064261A JP 2020064261 A JP2020064261 A JP 2020064261A JP 2021160237 A JP2021160237 A JP 2021160237A
Authority
JP
Japan
Prior art keywords
heat conductive
sheet
conductive resin
layer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020064261A
Other languages
Japanese (ja)
Inventor
繁憲 佐藤
Shigenori Sato
恭平 浅羽
Kyohei Asaba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taika Corp
Original Assignee
Taika Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taika Corp filed Critical Taika Corp
Priority to JP2020064261A priority Critical patent/JP2021160237A/en
Publication of JP2021160237A publication Critical patent/JP2021160237A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a method for manufacturing a heat-conductive sheet which has a non-adhesive surface composed of polyimide on one surface, and has smoothness on the non-adhesive surface, is excellent in heat conductivity and has self-adhesiveness.SOLUTION: A method for manufacturing a heat-conductive sheet having a polyimide layer on one surface of a heat-conductive resin layer includes the steps of: curing a heat-conductive resin composition in a sheet shape and forming a heat-conductive resin layer; preparing a composite sheet in which a peeling sheet is laminated on one surface of the polyimide layer; pressure-bonding and laminating the one surface of the heat-conductive resin layer and the polyimide layer of the composite sheet; and peeling the peeling sheet from the composite sheet laminated on one surface of the heat-conductive resin layer. The heat-conductive resin layer has a self-adhesive surface, and the polyimide layer is fixed to the heat-conductive resin layer with adhesive force on the self-adhesive surface.SELECTED DRAWING: Figure 3

Description

本発明は、片面にポリイミドからなる非粘着面を有する熱伝導性シートの製造方法に関する。 The present invention relates to a method for producing a thermally conductive sheet having a non-adhesive surface made of polyimide on one side.

電子機器などの熱対策として、熱伝導性シートが用いられており、その中でも柔軟な樹脂素材に熱伝導性フィラーを分散した構成の柔軟な熱伝導性シートは、熱源との密着性に優れるため特に好適である。この柔軟な熱伝導性シートは、熱源となる電子素子等とヒートシンク等の冷却部品とで挟設して使用されるが、挟設時の作業性の観点から、表面に自己粘着性を有するタイプや粘着層を備えたタイプの熱伝導性シートが用いられているが、熱伝導性シートの熱抵抗を小さくする観点から自己粘着性の熱伝導性シートがより好適である。近年、この自己粘着性を有する熱伝導性シートに対して、ハンドリング性の観点や、熱伝導性シートを組み込んだ部品の取外しやリワークなどの作業性の観点から、熱伝導性や耐熱性を有しつつ、片面が非粘着性であることが要求されている。そのため、従来からゴムの非粘着化技術をベースに様々な方法が提案されている。例えば、特許文献1には、表面処理剤でシリコーンゴム皮膜を形成する技術として、熱伝導性充填剤配合したシリコーンゲル成形シートの表面にケイ素原子に結合した水素原子を1分子中に少なくとも2個含有するオルガノハイドロジェンポリシロキサンを表面に塗布した樹脂フィルムを配置した後、2枚の樹脂フィルムで挟んだまま、少なくとも一対のロール間を通すことにより圧延した後に、連続的に加熱炉を通して、シート状物を成形し硬化させて、オルガノハイドロジェンポリシロキサンの塗布面に接したシリコーンゲル表層部のみをゴム状に硬化し、樹脂フィルムを除去することにより熱伝導性シリコーンゲルの表面にゴム状に硬化させた薄膜補強層を形成する技術が開示されている。しかし、表面処理剤によって表面を低粘着性又は非粘着性する方法は、簡易的に熱伝導性シート表面にシリコーンゴム皮膜を形成できるという長所を有する半面、シリコーンゴム皮膜の硬化が経時的に進行して、シリコーンゴム皮膜の表面亀裂(クラック)が生じ易く、また、僅かな塗布ムラにより、シリコーンゴム皮膜の硬度や厚みが変化し、シリコーンゴム皮膜の表面に皺や硬さムラが発生したり、熱伝導性シリコーンゲルの厚みが薄い場合には、裏面まで表面処理剤が浸透して熱伝導性シリコーンゲル全体が硬くなってしまうなどの問題も生じ易く、必ずしも容易で安定的な製法ではなかった。 A heat conductive sheet is used as a measure against heat in electronic devices, etc. Among them, a flexible heat conductive sheet having a structure in which a heat conductive filler is dispersed in a flexible resin material has excellent adhesion to a heat source. Especially suitable. This flexible heat conductive sheet is used by sandwiching it between an electronic element that serves as a heat source and a cooling component such as a heat sink, but from the viewpoint of workability during sandwiching, it is a type that has self-adhesiveness on the surface. Although a type of heat conductive sheet provided with an adhesive layer is used, a self-adhesive heat conductive sheet is more preferable from the viewpoint of reducing the heat resistance of the heat conductive sheet. In recent years, this self-adhesive heat conductive sheet has heat conductivity and heat resistance from the viewpoint of handleability and workability such as removal and rework of parts incorporating the heat conductive sheet. However, one side is required to be non-adhesive. Therefore, various methods have been conventionally proposed based on the non-adhesive technology of rubber. For example, in Patent Document 1, as a technique for forming a silicone rubber film with a surface treatment agent, at least two hydrogen atoms bonded to silicon atoms are contained in one molecule on the surface of a silicone gel molded sheet containing a heat conductive filler. After arranging a resin film coated with the contained organohydrogenpolysiloxane on the surface, it is rolled by passing it between at least a pair of rolls while being sandwiched between two resin films, and then continuously passed through a heating furnace to form a sheet. The material is molded and cured, and only the surface layer of the silicone gel in contact with the coated surface of the organohydrogenpolysiloxane is cured like a rubber, and the resin film is removed to make the surface of the heat conductive silicone gel rubber-like. A technique for forming a cured thin film reinforcing layer is disclosed. However, the method of making the surface low-adhesive or non-adhesive with a surface treatment agent has an advantage that a silicone rubber film can be easily formed on the surface of the heat conductive sheet, but the curing of the silicone rubber film progresses over time. As a result, surface cracks of the silicone rubber film are likely to occur, and the hardness and thickness of the silicone rubber film change due to slight coating unevenness, causing wrinkles and uneven hardness on the surface of the silicone rubber film. If the thickness of the heat-conducting silicone gel is thin, the surface treatment agent may penetrate to the back surface and the entire heat-conducting silicone gel may become hard, which is not always an easy and stable manufacturing method. rice field.

また、粘着性の表面を非粘着化する別の解決手段として、熱伝導性シートの表面に粘着性を抑制する粘着防止剤として機能する粉体(打ち粉)を付着させる方法が周知技術として用いられており、この方法を適用して熱伝導性シートの粘着性表面を非粘着化することもできるが、粘着面に付着させた粉体が摩擦や衝撃により脱落し、異物汚染の原因となる課題があった。 Further, as another solution for making the adhesive surface non-adhesive, a method of adhering a powder (dusting powder) that functions as an anti-adhesive agent that suppresses adhesiveness to the surface of the heat conductive sheet is used as a well-known technique. Although it is possible to apply this method to make the adhesive surface of the heat conductive sheet non-adhesive, the powder adhering to the adhesive surface will fall off due to friction or impact, causing foreign matter contamination. There was a challenge.

これらの課題を改善する方法として、特許文献2には、熱伝導性の充填剤が添加されたシリコーンゴム層の表面にポリイミドフィルムを積層した構造の熱圧着用熱伝導性複合シートが提案されている。この熱圧着用熱伝導性複合シートは、熱伝導性の充填剤が添加されたシリコーンゴム層を硬化させる前にポリイミドフィルムを積層して硬化させることで得られ、非粘着性のポリイミドフィルムが最表面となることで、熱圧着用熱伝導性複合シートの表面に非粘着性が付与されている。また、ポリイミドフィルムは、電気絶縁性に優れると共に樹脂の中では熱伝導性が高いため熱伝導性シートの熱伝導率の低下を抑制することができる。さらに、ポリイミドフィルムを用いるため、粉体等の脱落による異物汚染も発生しない。 As a method for improving these problems, Patent Document 2 proposes a thermocompression-bonding composite sheet having a structure in which a polyimide film is laminated on the surface of a silicone rubber layer to which a heat-conductive filler is added. There is. This heat conductive composite sheet for heat bonding is obtained by laminating and curing a polyimide film before curing the silicone rubber layer to which the heat conductive filler is added, and the non-adhesive polyimide film is the most suitable. By serving as a surface, non-adhesiveness is imparted to the surface of the heat conductive composite sheet for thermal pressure bonding. Further, since the polyimide film is excellent in electrical insulation and has high thermal conductivity among the resins, it is possible to suppress a decrease in the thermal conductivity of the thermal conductive sheet. Further, since the polyimide film is used, foreign matter contamination due to dropping of powder or the like does not occur.

特開平10−183110号公報Japanese Unexamined Patent Publication No. 10-183110 特開2018−016710号公報Japanese Unexamined Patent Publication No. 2018-016710

しかし、特許文献2の熱圧着用熱伝導性複合シートは、熱伝導性をより高める観点からポリイミドフィルムの厚み方向の熱抵抗を小さくする必要があり、ポリイミドフィルムの厚みを薄くする構成が求められる。しかし、ポリイミドフィルムの厚みが薄くなると、熱圧着用熱伝導性複合シートの製造工程において、熱伝導性の充填剤が添加された未硬化のシリコーンゴム層とポリイミドフィルムを積層した状態で硬化すると、上記シリコーンゴム層の硬化収縮によって、ポリイミドフィルムに皴が発生し、熱圧着用熱伝導性複合シートの実装時に装着面との密着性が低下し、装着面での熱抵抗が増加して熱伝導性が低下するため、熱伝導性とポリアミドフィルムで形成される非粘着表面の平滑性との両立に課題があった。 However, the heat conductive composite sheet for thermal pressure bonding of Patent Document 2 needs to reduce the thermal resistance in the thickness direction of the polyimide film from the viewpoint of further enhancing the heat conductivity, and a configuration for reducing the thickness of the polyimide film is required. .. However, when the thickness of the polyimide film becomes thin, in the manufacturing process of the heat conductive composite sheet for heat bonding, when the uncured silicone rubber layer to which the heat conductive filler is added and the polyimide film are laminated and cured, Due to the curing shrinkage of the silicone rubber layer, wrinkles are generated on the polyimide film, the adhesion to the mounting surface is reduced when the heat conductive composite sheet for thermal pressure bonding is mounted, and the thermal resistance on the mounting surface is increased to conduct heat. Since the property is lowered, there is a problem in achieving both thermal conductivity and smoothness of the non-adhesive surface formed of the polyamide film.

したがって、本発明は従来技術の上述した問題点を解消するものであり、その目的は、片面にポリイミドからなる平滑性に優れた非粘着性の表面を備えた、熱伝導性に優れる自己粘着性の熱伝導性シートの製造方法を提供することにある。 Therefore, the present invention solves the above-mentioned problems of the prior art, and an object thereof is self-adhesiveness having excellent thermal conductivity, having a non-adhesive surface made of polyimide and having excellent smoothness on one side. To provide a method for producing a heat conductive sheet.

上記課題を解決するため、本発明の熱伝導性シートの製造方法は、熱伝導性樹脂層の片面にポリイミド層を有する熱伝導性シートの製造方法であって、熱伝導性樹脂組成物をシート状に硬化して熱伝導性樹脂層を形成する工程と、ポリイミド層の片面に剥離シートが積層された複合シートを準備する工程と、熱伝導性樹脂層の片面と複合シートのポリイミド層とを圧着して積層する工程と、熱伝導性樹脂層の片面に積層された複合シートから剥離シートを剥離する工程と、を備えており、熱伝導性樹脂層は自己粘着性を有する自己粘着面を有し、この自己粘着面の粘着力によってポリイミド層が固定されることを特徴としている。 In order to solve the above problems, the method for producing a heat conductive sheet of the present invention is a method for producing a heat conductive sheet having a polyimide layer on one side of the heat conductive resin layer, and the heat conductive resin composition is used as a sheet. A step of hardening into a shape to form a heat conductive resin layer, a step of preparing a composite sheet in which a release sheet is laminated on one side of the polyimide layer, and a step of preparing one side of the heat conductive resin layer and the polyimide layer of the composite sheet. It includes a step of crimping and laminating and a step of peeling the release sheet from the composite sheet laminated on one side of the heat conductive resin layer, and the heat conductive resin layer has a self-adhesive surface having self-adhesiveness. It is characterized in that the polyimide layer is fixed by the adhesive force of the self-adhesive surface.

本発明の熱伝導性シートの製造方法によれば、熱伝導性樹脂組成物をシート状に硬化した自己粘着性の熱伝導性樹脂層と非粘着性のポリイミド層を積層することで、片面に粘着性の表面を、他方の片面に非粘着性の表面を形成できるとともに、熱伝導性樹脂層の硬化収縮に起因するポリイミド層の皴が発生しないため、平滑性に優れた非粘着性表面を片面に備えた自己粘着性の熱伝導性シートを得ることができる。また、熱伝導性樹脂層の自己粘着性を有する自己粘着面の粘着力によってポリイミド層が熱伝導性樹脂層に直接接触した状態で積層・固定されるため、熱抵抗が小さい積層界面が形成できるので、熱伝導性シートの熱伝導性を優れたものとすることができる。また、ポリイミド層は、ポリイミド層の片面に剥離シートが積層された複合シートの状態で硬化した熱伝導性樹脂層の表面に積層されるため、ポリイミド層が薄くてもハンドリング性に優れるので、積層作業に伴う皺や積層界面の残留気泡の発生を低減でき、より表面平滑性に優れた非粘着性表面を片面に備えた熱伝導性シートを得ることができる。 According to the method for producing a heat conductive sheet of the present invention, a self-adhesive heat conductive resin layer obtained by curing a heat conductive resin composition into a sheet and a non-adhesive polyimide layer are laminated on one side. A non-adhesive surface with excellent smoothness can be formed because an adhesive surface can be formed on one side and a non-adhesive surface can be formed on one side, and the polyimide layer does not wrinkle due to curing shrinkage of the heat conductive resin layer. A self-adhesive heat conductive sheet provided on one side can be obtained. Further, since the polyimide layer is laminated and fixed in a state of being in direct contact with the heat conductive resin layer due to the adhesive force of the self-adhesive surface of the heat conductive resin layer, a laminated interface having low thermal resistance can be formed. Therefore, the thermal conductivity of the thermally conductive sheet can be made excellent. Further, since the polyimide layer is laminated on the surface of the heat conductive resin layer cured in the state of a composite sheet in which a release sheet is laminated on one side of the polyimide layer, it is excellent in handleability even if the polyimide layer is thin. It is possible to reduce the generation of wrinkles and residual bubbles at the laminated interface due to the work, and it is possible to obtain a heat conductive sheet having a non-adhesive surface having more excellent surface smoothness on one side.

また、本発明の熱伝導性シートの製造方法は、ポリイミド層の厚みが20μm以下であることが好ましい。これにより、ポリイミド層による非粘着性の表面を形成しつつ、ポリイミド層の熱抵抗を下げることができるため、熱伝導性シートの熱伝導性をより向上させることができる。 Further, in the method for producing a heat conductive sheet of the present invention, the thickness of the polyimide layer is preferably 20 μm or less. As a result, the thermal resistance of the polyimide layer can be lowered while forming a non-adhesive surface by the polyimide layer, so that the thermal conductivity of the heat conductive sheet can be further improved.

また、本発明の熱伝導性シートの製造方法は、ポリイミド層が、芳香族ポリイミドであることも好ましい。これにより、ポリイミド層による非粘着性の表面を形成しつつ、熱抵抗を下げることができるため、熱伝導性シートの熱伝導性をより向上させることができる。 Further, in the method for producing a heat conductive sheet of the present invention, it is also preferable that the polyimide layer is an aromatic polyimide. As a result, the thermal resistance can be lowered while forming a non-adhesive surface by the polyimide layer, so that the thermal conductivity of the thermal conductive sheet can be further improved.

また、本発明の熱伝導性シートの製造方法は、熱伝導性樹脂層の自己粘着面の粘着力がJIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)のボールナンバーでNo.5以上であることも好ましい。これにより、熱伝導性樹脂層とポリイミド層とがより強固に固定された、平滑性に優れた非粘着性表面を片面に備えた自己粘着性の熱伝導性シートを得ることができる。 Further, in the method for producing a heat conductive sheet of the present invention, the adhesive strength of the self-adhesive surface of the heat conductive resin layer is No. 1 in the ball number of the inclined ball tack test (inclination angle 30 degrees) conforming to JIS Z0237. It is also preferable that it is 5 or more. As a result, it is possible to obtain a self-adhesive heat conductive sheet having a non-adhesive surface having excellent smoothness on one side, in which the heat conductive resin layer and the polyimide layer are more firmly fixed.

また、本発明の熱伝導性シートの製造方法は、熱伝導性樹脂層の厚みに対するポリイミド層の厚みの割合が0.05未満であることも好ましい。これにより、ポリイミド層による非粘着性を確保しつつ、さらに熱抵抗を下げることができ、熱伝導性シートの熱伝導性をより向上させることができる。 Further, in the method for producing a heat conductive sheet of the present invention, it is also preferable that the ratio of the thickness of the polyimide layer to the thickness of the heat conductive resin layer is less than 0.05. As a result, the thermal resistance can be further lowered while ensuring the non-adhesiveness of the polyimide layer, and the thermal conductivity of the thermal conductive sheet can be further improved.

本発明によれば、熱伝導性樹脂組成物をシート状に硬化した熱伝導性樹脂層に、ポリイミド層の片面に剥離シートが積層された複合シートの状態でポリイミド層が積層された後に剥離シートが除去されるため、厚みが薄いポリイミド層であっても皺の発生がない表面平滑性に優れた状態で積層することができるとともに、熱伝導性樹脂層の自己粘着面にポリイミド層を直接積層することによって、積層界面の熱抵抗を小さくできるため、平滑性に優れた非粘着性の表面を片面に備えた、熱伝導性に優れる自己粘着性の熱伝導性シートを製造することができる。さらに、熱伝導性樹脂層の厚みに対するポリイミド層の厚み割合を調整することによって、片面に平滑性に優れた非粘着性の表面を備えつつ、熱伝導性が良好に調整された自己粘着性の熱伝導性シートを製造することができる。 According to the present invention, the release sheet is formed by laminating the polyimide layer in the state of a composite sheet in which the release sheet is laminated on one side of the polyimide layer on the heat conductive resin layer obtained by curing the heat conductive resin composition into a sheet. Is removed, even a thin polyimide layer can be laminated in a state of excellent surface smoothness without wrinkles, and the polyimide layer is directly laminated on the self-adhesive surface of the heat conductive resin layer. By doing so, the thermal resistance of the laminated interface can be reduced, so that a self-adhesive thermally conductive sheet having excellent thermal conductivity and having a non-adhesive surface having excellent smoothness on one side can be manufactured. Further, by adjusting the thickness ratio of the polyimide layer to the thickness of the heat conductive resin layer, a self-adhesive surface having excellent smoothness and non-adhesive surface is provided on one side, and the heat conductivity is well adjusted. A heat conductive sheet can be manufactured.

本発明の熱伝導性シートの製造方法の第1の実施形態を説明する模式図である。It is a schematic diagram explaining the 1st Embodiment of the manufacturing method of the heat conductive sheet of this invention. 本発明の熱伝導性シートの製造方法の第2の実施形態を説明する模式図である。It is a schematic diagram explaining the 2nd Embodiment of the manufacturing method of the heat conductive sheet of this invention. 本発明の熱伝導性シートの構造を説明する厚み方向の断面図である。It is sectional drawing in the thickness direction explaining the structure of the heat conductive sheet of this invention.

本発明に係る熱伝導性シートの製造方法は、熱伝導性樹脂層の片面にポリイミド層を有する熱伝導性シートの製造方法であって、熱伝導性樹脂組成物をシート状に硬化して熱伝導性樹脂層を得る工程と、ポリイミド層の片面に剥離シートが積層された複合シートを準備する工程と、熱伝導性樹脂層の片面と複合シートのポリイミド層とを圧着して積層する工程と、熱伝導性樹脂層の片面に積層された複合シートから剥離シートを剥離する工程と、を備えており、熱伝導性樹脂層は自己粘着性を有する自己粘着面を備え、この自己粘着面の粘着力によってポリイミド層が固定されることを特徴としている。以下、最初に本発明の熱伝導性シートの製造方法に使用する部材について説明し、次いで製造方法について工程毎に説明する。 The method for producing a heat conductive sheet according to the present invention is a method for producing a heat conductive sheet having a polyimide layer on one side of the heat conductive resin layer, and heat is obtained by curing the heat conductive resin composition into a sheet. A step of obtaining a conductive resin layer, a step of preparing a composite sheet in which a release sheet is laminated on one side of the polyimide layer, and a step of crimping and laminating one side of the heat conductive resin layer and the polyimide layer of the composite sheet. The step of peeling the release sheet from the composite sheet laminated on one side of the heat conductive resin layer is provided, and the heat conductive resin layer has a self-adhesive surface having self-adhesiveness, and the self-adhesive surface of the heat conductive resin layer is provided. The feature is that the polyimide layer is fixed by the adhesive force. Hereinafter, the members used in the method for producing the heat conductive sheet of the present invention will be described first, and then the manufacturing method will be described for each step.

1.熱伝導樹脂組成物
本発明の熱伝導性シートの製造方法に用いられる熱伝導樹脂組成物は、熱伝導性シートを構成する自己粘着性を有する熱伝導性樹脂層を形成するための組成物であり、主成分として樹脂、熱伝導性フィラーを含み、熱またはエネルギー線照射によって硬化する。
1. 1. Heat-Conducting Resin Composition The heat-conducting resin composition used in the method for producing a heat-conducting sheet of the present invention is a composition for forming a self-adhesive heat-conducting resin layer constituting the heat-conducting sheet. Yes, it contains resin and heat conductive filler as the main components, and is cured by heat or energy ray irradiation.

樹脂としては、アクリル系、シリコーン系などが適用できるが、耐熱性、長期信頼性の観点からシリコーン系樹脂が好ましい。樹脂は、熱伝導樹脂組成物を硬化して得られる熱伝導性樹脂層に自己粘着性を発現させるために、硬化後に自身で粘着性を備えるものが好ましいが、自身で粘着性を有さない樹脂に粘着付与剤を添加することによって自己粘着性を付与してもよい。樹脂の硬化後の硬度は、熱伝導性フィラーの充填量や性状、熱伝導性シートの熱伝導性等の性状に応じて適宜設定される。 As the resin, acrylic type, silicone type and the like can be applied, but silicone type resin is preferable from the viewpoint of heat resistance and long-term reliability. The resin is preferably one that has self-adhesiveness after curing in order to develop self-adhesiveness in the heat-conductive resin layer obtained by curing the heat-conducting resin composition, but does not have self-adhesiveness by itself. Self-adhesiveness may be imparted by adding a tackifier to the resin. The hardness of the resin after curing is appropriately set according to the filling amount and properties of the heat conductive filler, the heat conductivity of the heat conductive sheet, and the like.

熱伝導性フィラーとしては、公知の熱伝導性フィラーが適用でき、例えば酸化アルミニウムや窒化ホウ素、窒化アルミニウムなどが適用できる。 As the heat conductive filler, a known heat conductive filler can be applied, and for example, aluminum oxide, boron nitride, aluminum nitride and the like can be applied.

熱伝導性フィラーの配合割合は、熱伝導性シートの所望の熱伝導特性や熱伝導性樹脂層の硬度に応じて適宜設定される。熱伝導樹脂組成物は、樹脂成分に熱伝導性フィラーを分散して得られ、分散手段は特に限定されず、ミキサー等の公知の手段を適用できる。また、熱伝導性樹脂組成物は、熱伝導性能を損なわない範囲で、さらに添加物として酸化鉄等の難燃剤や反応調整剤を添加することができる。 The blending ratio of the heat conductive filler is appropriately set according to the desired heat conductive characteristics of the heat conductive sheet and the hardness of the heat conductive resin layer. The heat conductive resin composition is obtained by dispersing the heat conductive filler in the resin component, and the dispersion means is not particularly limited, and known means such as a mixer can be applied. Further, in the heat conductive resin composition, a flame retardant such as iron oxide or a reaction modifier can be further added as an additive as long as the heat conduction performance is not impaired.

2.熱伝導性樹脂層
熱伝導樹脂組成物を硬化して得られる熱伝導性樹脂層は、表面に自己粘着性を有した自己粘着面を備えており、自己粘着面の粘着力は、自己粘着面に積層されたポリイミド層が脱落しない程度の大きさであればよいが、JIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)のボールナンバーでNo.5以上であることが好ましい。これにより、熱伝導性樹脂層とポリイミド層とがより強固に固定された熱伝導性シートを得ることができる。また、熱伝導性シートが装着される被着体に対する密着性の観点から、熱伝導性樹脂層の硬度はJIS K7312に基づくアスカーゴム硬度計C型で70以下とすることが好ましい。
2. Thermally conductive resin layer The thermally conductive resin layer obtained by curing the thermally conductive resin composition has a self-adhesive surface having self-adhesiveness on the surface, and the adhesive strength of the self-adhesive surface is the self-adhesive surface. The size of the polyimide layer laminated to the above may be such that it does not fall off, but the ball number of the inclined ball tack test (inclination angle 30 degrees) conforming to JIS Z0237 is No. It is preferably 5 or more. As a result, it is possible to obtain a heat conductive sheet in which the heat conductive resin layer and the polyimide layer are more firmly fixed. Further, from the viewpoint of adhesion to the adherend to which the heat conductive sheet is mounted, the hardness of the heat conductive resin layer is preferably 70 or less in the Asker rubber hardness tester C type based on JIS K7312.

3.複合シート(ポリイミド層、剥離シート)
本発明の熱伝導性シートの製造方法に用いられる複合シートは、ポリイミド層の片面に剥離シートが積層されている。ポリイミド層は、熱伝導シートの片面に非粘着性の表面を形成するためのものであり、厚みがほぼ均一なフィルム状のものが適用される。ポリイミド層の厚みは、厚み方向の熱抵抗を小さくする観点から20μm以下とすることが好ましく、10μm以下がより好ましく、5μm以下が特に好ましい。また、熱伝導性樹脂層の厚みに対するポリイミド層の厚みの割合は0.05未満であること好ましい。この割合の範囲であるとポリイミド層の熱抵抗が熱伝導性樹脂層の熱抵抗の影響がより小さくできる。また、ポリイミド層は、非粘着性であれば公知のポリイミド及びその誘導体を適用することができるが、熱伝導性を向上する観点からポリイミドの中でも熱抵抗が小さい芳香族ポリイミドが好ましい。
3. 3. Composite sheet (polyimide layer, release sheet)
In the composite sheet used in the method for producing a heat conductive sheet of the present invention, a release sheet is laminated on one side of a polyimide layer. The polyimide layer is for forming a non-adhesive surface on one side of the heat conductive sheet, and a film-like material having a substantially uniform thickness is applied. The thickness of the polyimide layer is preferably 20 μm or less, more preferably 10 μm or less, and particularly preferably 5 μm or less, from the viewpoint of reducing the thermal resistance in the thickness direction. Further, the ratio of the thickness of the polyimide layer to the thickness of the heat conductive resin layer is preferably less than 0.05. Within this ratio range, the thermal resistance of the polyimide layer can be made smaller due to the influence of the thermal resistance of the thermally conductive resin layer. As the polyimide layer, known polyimides and derivatives thereof can be applied as long as they are non-adhesive, but aromatic polyimides having a low thermal resistance are preferable from the viewpoint of improving thermal conductivity.

複合シートを構成する剥離シートは、厚みが薄いポリイミド層のハンドリングと熱伝導性樹脂層への貼合作業性を向上させるためにポリイミド層に積層されるものである。剥離シートの厚みは、ハンドリング性と熱伝導性樹脂層への貼合作業性を阻害しない範囲で適宜設定されるが、ハンドリング性の観点から50μm以上とすることが好ましく、貼合作業時の曲げ変形容易性の観点から1mm以下とすることが好ましい。剥離シートの材質は、特に限定されず、ポリエチレンテレフタレート(PET)などの公知の樹脂フィルムを適用できる。また、剥離シートは、ポリイミド層と積層される側の面に粘着層を有しており、この粘着層によってポリイミド層が剥離可能に固定される。この粘着層の粘着力は、ポリイミド層と剥離シートの密着力が熱伝導性樹脂層とポリイミド層との密着力よりも低くなるように設定されている。 The release sheet constituting the composite sheet is laminated on the polyimide layer in order to improve the handling of the thin polyimide layer and the workability of bonding to the heat conductive resin layer. The thickness of the release sheet is appropriately set within a range that does not hinder the handleability and the workability of bonding to the heat conductive resin layer, but from the viewpoint of handleability, it is preferably 50 μm or more, and bending during the bonding work. From the viewpoint of easiness of deformation, it is preferably 1 mm or less. The material of the release sheet is not particularly limited, and a known resin film such as polyethylene terephthalate (PET) can be applied. Further, the release sheet has an adhesive layer on the surface on the side where the polyimide layer is laminated, and the polyimide layer is detachably fixed by the adhesive layer. The adhesive force of this adhesive layer is set so that the adhesive force between the polyimide layer and the release sheet is lower than the adhesive force between the heat conductive resin layer and the polyimide layer.

複合シートは、ポリイミド層と剥離シートの粘着層とを接触させて二本ロールラミネーターなどの公知の方法で貼合して得られる。また、複合シートは、熱伝導性樹脂層の自己粘着性が低い場合には、熱伝導性樹脂層とポリイミド層との積層面の密着性を高めるために、ポリイミド層の熱伝導性樹脂層と貼り合わせる面に熱抵抗が小さい粘着層や接着層を部分的に付与してもよい。 The composite sheet is obtained by bringing the polyimide layer and the adhesive layer of the release sheet into contact with each other and laminating them by a known method such as a two-roll laminator. Further, when the self-adhesiveness of the heat conductive resin layer is low, the composite sheet may be combined with the heat conductive resin layer of the polyimide layer in order to improve the adhesion of the laminated surface between the heat conductive resin layer and the polyimide layer. An adhesive layer or an adhesive layer having a small thermal resistance may be partially applied to the surface to be bonded.

次に、本発明の熱伝導性シートの製造方法について、第1の実施形態を例に図1を参照しながら工程毎に説明する。 Next, the method for producing the heat conductive sheet of the present invention will be described step by step with reference to FIG. 1 by taking the first embodiment as an example.

(1)熱伝導性樹脂層の形成工程
図1(A)に示すように、PETフィルム等の基材5の上に所定の厚さを有する型枠6を置き、熱伝導性樹脂組成物2を流し込み、図1(B)に示すように熱伝導性樹脂組成物2を掻き取り具(スキージ)7で掻き取って、図1(C)に示す均一なシート厚さに成形した後、図1(D)に示すように成形した熱伝導性樹脂組成物を加熱装置8で加熱して熱硬化反応させて、図1(E)に示す自己粘着面3aを有する熱伝導性樹脂層3を得る。
(1) Forming Step of Heat Conductive Resin Layer As shown in FIG. 1 (A), a mold 6 having a predetermined thickness is placed on a base material 5 such as a PET film, and the heat conductive resin composition 2 is placed. The heat conductive resin composition 2 is scraped off with a scraper (squeegee) 7 as shown in FIG. 1 (B), formed into a uniform sheet thickness shown in FIG. 1 (C), and then shown in FIG. The heat conductive resin composition molded as shown in 1 (D) is heated by a heating device 8 and subjected to a heat curing reaction to obtain a heat conductive resin layer 3 having a self-adhesive surface 3a shown in FIG. 1 (E). obtain.

(2)複合シート準備工程
片面に微粘着性の接着剤を塗布した剥離シート4bの粘着層にポリイミド層4aを貼合して、複合シート4を得る。
(2) Composite Sheet Preparation Step The polyimide layer 4a is attached to the adhesive layer of the release sheet 4b to which a slightly adhesive adhesive is applied to one side to obtain the composite sheet 4.

(3)積層工程
図1(F)と図1(G)に示すように、複合シート準備工程で得た複合シート4をポリイミド層4a側から、皺や気泡の噛みこみが発生しないように、熱伝導性樹脂層の形成工程で得た熱伝導性樹脂層3の表面に接触させながら積層する。このとき、熱伝導性樹脂層3が有する自己粘着面3aの粘着力によってポリイミド層4aと直接積層して固定できるので、熱抵抗が小さい状態で熱伝導性樹脂層30とポリイミド層40aとの積層界面を形成することができる。
(3) Laminating Step As shown in FIGS. 1 (F) and 1 (G), the composite sheet 4 obtained in the composite sheet preparation step is provided from the polyimide layer 4a side so that wrinkles and air bubbles do not get caught. The heat conductive resin layer 3 is laminated while being in contact with the surface of the heat conductive resin layer 3 obtained in the step of forming the heat conductive resin layer. At this time, since the heat conductive resin layer 3 can be directly laminated and fixed to the polyimide layer 4a by the adhesive force of the self-adhesive surface 3a, the heat conductive resin layer 30 and the polyimide layer 40a are laminated with low thermal resistance. An interface can be formed.

(4)剥離シート除去工程
その後、図1(H)に示すように、複合シート4の剥離シート4bを剥離除去することで、図1(I)に示した熱伝導性樹脂層3の片面にポリイミド層4aが積層された非粘着面を有する熱伝導性シート1を得る。なお、基材5は、熱伝導性シート1が形成された後に必要に応じて除去されてもよい。なお、図1(F)〜図1(H)においては、型枠6を取り外した状態で(3)積層工程と(4)剥離シート除去工程を実施しているが、必要に応じて型枠6を外さずに行ってもよい。
(4) Release Sheet Removal Step After that, as shown in FIG. 1 (H), the release sheet 4b of the composite sheet 4 is peeled off and removed to form one surface of the heat conductive resin layer 3 shown in FIG. 1 (I). A thermally conductive sheet 1 having a non-adhesive surface on which the polyimide layer 4a is laminated is obtained. The base material 5 may be removed if necessary after the heat conductive sheet 1 is formed. In FIGS. 1 (F) to 1 (H), (3) laminating step and (4) peeling sheet removing step are carried out with the mold 6 removed, but the mold is required. You may go without removing 6.

このように、硬化した熱伝導性樹脂層3に複合シート4の状態でポリイミド層4aを積層し、複合シート4の剥離シート4bを剥離除去することで、薄いポリイミド層であってもハンドリングし易く、熱伝導性樹脂層3の表面へポリイミド層4aを貼合するときの作業性も向上するので、皺や気泡の噛みこみが無い表面平坦性に優れた非粘着表面を片面に有し、熱伝導性に優れた自己粘着性の熱伝導性シートを製造することができる。 By laminating the polyimide layer 4a in the state of the composite sheet 4 on the cured heat conductive resin layer 3 and peeling off the release sheet 4b of the composite sheet 4 in this way, even a thin polyimide layer can be easily handled. Since the workability when the polyimide layer 4a is bonded to the surface of the heat conductive resin layer 3 is also improved, it has a non-adhesive surface having excellent surface flatness without wrinkles or biting of air bubbles on one side and heat. A self-adhesive heat conductive sheet having excellent conductivity can be produced.

また、本発明の熱伝導性シートの製造方法は、第2の実施形態として、図2のように熱伝導性シートを連続式に製造する構成としてもよい。 Further, the method for producing a heat conductive sheet of the present invention may have a configuration in which the heat conductive sheet is continuously manufactured as shown in FIG. 2 as the second embodiment.

第2の実施形態では、基材ロール50RからPETフィルム等の基材50が送り出され、図2の左側から右側へと連続的に移動する。この移動する基材50上に熱伝導性樹脂組成物20が供給装置90で供給され、熱伝導性樹脂組成物20は掻き取り具(スキージ)70で掻き取られて所定の厚さに形成され、加熱装置80が配置された加熱ゾーンに搬送されて硬化し、自己粘着面30aを有する熱伝導性樹脂層30が形成される。熱伝導性樹脂層30は、基材50とともに搬送され、複合シートが巻かれたロール40Rから供給される複合シート40と合流し、複合シート40のポリイミド層40aと熱伝導性樹脂層30とが熱伝導性樹脂層30の自己粘着面30aが有する粘着力によって貼合され後、複合シート40の剥離シート40bがポリイミド層40aから剥離除去されてロール40Rbに回収され、熱伝導性樹脂層30にポリイミド層40aが積層された熱伝導性シート10が得られる。なお、基材50は、熱伝導性シート10が形成された後に必要に応じて除去されてもよい。 In the second embodiment, the base material 50 such as a PET film is sent out from the base material roll 50R and continuously moves from the left side to the right side in FIG. The heat conductive resin composition 20 is supplied onto the moving base material 50 by the supply device 90, and the heat conductive resin composition 20 is scraped by a scraper (squeegee) 70 to form a predetermined thickness. , The heating device 80 is conveyed to a heating zone and cured to form a heat conductive resin layer 30 having a self-adhesive surface 30a. The heat conductive resin layer 30 is conveyed together with the base material 50 and merges with the composite sheet 40 supplied from the roll 40R on which the composite sheet is wound, and the polyimide layer 40a of the composite sheet 40 and the heat conductive resin layer 30 are formed. After being bonded by the adhesive force of the self-adhesive surface 30a of the heat conductive resin layer 30, the release sheet 40b of the composite sheet 40 is peeled off from the polyimide layer 40a and collected on the roll 40Rb, and is collected on the heat conductive resin layer 30. A thermally conductive sheet 10 on which the polyimide layer 40a is laminated can be obtained. The base material 50 may be removed if necessary after the heat conductive sheet 10 is formed.

この第2の実施形態によれば、連続的に熱伝導性樹脂層30を形成し、その表面にポリイミド層40aを複合シート40の状態で積層し、複合シート40の剥離シート40bを剥離除去することで、薄いポリイミド層40aであっても不要な変形等を発生させることなく連続供給でき、熱伝導性樹脂層30の表面へのポリイミド層40aの貼合作業を連続的に精度よく行うことができるので、皺や気泡の噛みこみが無い平坦性に優れた非粘着性表面を片面に有し、熱伝導性に優れた自己粘着性の熱伝導性シートを連続的に生産性良く製造することができる。また、熱伝導性樹脂層30が自己粘着面30aを有しており、自己粘着面30aの粘着力によってポリイミド層40aと直接積層して固定できるので、熱抵抗が小さい状態で熱伝導性樹脂層30とポリイミド層40aとの積層界面を形成することができる。 According to this second embodiment, the heat conductive resin layer 30 is continuously formed, the polyimide layer 40a is laminated on the surface of the layer 30 in the state of the composite sheet 40, and the release sheet 40b of the composite sheet 40 is peeled off and removed. As a result, even a thin polyimide layer 40a can be continuously supplied without causing unnecessary deformation or the like, and the polyimide layer 40a can be continuously and accurately bonded to the surface of the heat conductive resin layer 30. Therefore, it is possible to continuously produce a self-adhesive heat conductive sheet with excellent heat conductivity, which has a non-adhesive surface with excellent flatness on one side without wrinkles or air bubbles. Can be done. Further, since the heat conductive resin layer 30 has a self-adhesive surface 30a and can be directly laminated and fixed to the polyimide layer 40a by the adhesive force of the self-adhesive surface 30a, the heat conductive resin layer has a low thermal resistance. A laminated interface between 30 and the polyimide layer 40a can be formed.

本発明の熱伝導性シート1(10)は、上記の製造方法によって得られ、図3に示すように熱伝導性樹脂層3(30)の片面にポリイミド層4a(40a)が積層されている。この構成によってポリイミド層4a(40a)側の表面は皺が無く平滑で非粘着性を有し、熱伝導性樹脂層3側の表面は自己粘着面3b(30b)であり粘着性を有している。 The heat conductive sheet 1 (10) of the present invention is obtained by the above-mentioned manufacturing method, and as shown in FIG. 3, the polyimide layer 4a (40a) is laminated on one side of the heat conductive resin layer 3 (30). .. With this configuration, the surface on the polyimide layer 4a (40a) side is smooth and non-adhesive without wrinkles, and the surface on the heat conductive resin layer 3 side is a self-adhesive surface 3b (30b) and has adhesiveness. There is.

本発明の熱伝導性シートの製造方法で得られる熱伝導性シート1(10)は、片面が非粘着性を有しており、非粘着面を形成するポリイミド層4a(40a)は熱抵抗が小さく、厚みが薄く、皺が無い平滑な表面であるため、熱伝導性シートが装着される被着体の装着面に良好に追従して密着できるので、装着面の界面における熱抵抗が小さいため、熱伝導性シートを装着した放熱経路の良好な熱移動を実現できる。また、熱伝導性樹脂層3(30)側に粘着性を有するため、被着物への装着作業性に優れ、ポリイミド層4a(40a)側が非粘着性であることによって、リワークなどの作業において熱伝導性シート1(10)の取外しが容易である。 The heat conductive sheet 1 (10) obtained by the method for producing a heat conductive sheet of the present invention has one side having non-adhesiveness, and the polyimide layer 4a (40a) forming the non-adhesive surface has thermal resistance. Because it is small, thin, and has a smooth surface without wrinkles, it can adhere well to the mounting surface of the adherend on which the thermal conductivity sheet is mounted, so that the thermal resistance at the interface of the mounting surface is small. , It is possible to realize good heat transfer of the heat dissipation path equipped with the heat conductive sheet. Further, since the heat conductive resin layer 3 (30) side has adhesiveness, the workability of attaching to the adherend is excellent, and the polyimide layer 4a (40a) side is non-adhesive, so that heat is generated in work such as rework. The conductive sheet 1 (10) can be easily removed.

以下、本発明を実施例により具体的に説明するが、本発明は、これらの実施例に特に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not particularly limited to these Examples.

以下の実施例及び比較例における物性の測定方法及び効果の評価方法は、下記の通りである。 The method for measuring the physical properties and the method for evaluating the effect in the following Examples and Comparative Examples are as follows.

(1)熱伝導性シートのポリイミド層の表面状態(皺)
100mm×100mmの熱伝導性シートのポリイミド層の表面を目視で観察し、表面に皺が全くない状態を合格(〇)、皺があるものを不合格(×)とした。
(1) Surface condition (wrinkles) of the polyimide layer of the heat conductive sheet
The surface of the polyimide layer of the heat conductive sheet of 100 mm × 100 mm was visually observed, and the state where there was no wrinkle on the surface was regarded as acceptable (◯), and the state where there was wrinkled was regarded as rejected (×).

(2)熱伝導性シートの熱伝導性樹脂層とポリイミド層との密着力
熱伝導性シートを幅20mm、長さ100mm、厚さ0.5mmに加工して試験体とした。試験体の長尺方向の片端部から他端部に向かって20mmの位置までポリイミド層を熱伝導性樹脂層から剥離し、熱伝導性樹脂層をピール試験機固定し、ポリイミド層の剥離した部分を把持し、90°方向に50mm/sの速さで剥離したときの力を測定し、それを密着力とした。3つの試験体の密着力の平均値が0.05N/20mm以上を合格(〇)、それ未満を不合格(×)とした。ピール試験機は島津製作所製粘着テープの90°剥離試験治具を使用した。
(2) Adhesion between the heat conductive resin layer and the polyimide layer of the heat conductive sheet The heat conductive sheet was processed into a test piece having a width of 20 mm, a length of 100 mm, and a thickness of 0.5 mm. The polyimide layer was peeled from the heat conductive resin layer from one end to the other end in the long direction of the test piece to a position of 20 mm, the heat conductive resin layer was fixed to the peel tester, and the peeled part of the polyimide layer. Was grasped, and the force when the resin was peeled off at a speed of 50 mm / s in the 90 ° direction was measured, and this was taken as the adhesion force. When the average value of the adhesion of the three test specimens was 0.05 N / 20 mm or more, it was evaluated as acceptable (◯), and when it was less than that, it was evaluated as rejected (x). The peel tester used a 90 ° peeling test jig for adhesive tape manufactured by Shimadzu Corporation.

(3)熱伝導性シートの熱抵抗
熱伝導性シートを厚み方向にカットされた10mm×10mmのサイズの試験体とし、ASTM D5470に準拠し、4Nの荷重を試験体全面に印加し、ポリイミド積層側を加熱し、熱伝導性樹脂層側を冷却して、加熱側と冷却側の温度の平均値が50℃となる条件で、厚み方向の熱抵抗を測定した。3つの試験体の熱抵抗の平均値が1.5W/m・K以下を合格(〇)、1.5W/m・Kを超えたものを不合格(×)とした。測定装置は日立テクノロジーアンドサービス社製の樹脂材料熱抵抗測定装置を使用した。
(3) Thermal resistance of the heat conductive sheet The heat conductive sheet was made into a test piece having a size of 10 mm × 10 mm cut in the thickness direction, and a load of 4N was applied to the entire surface of the test piece in accordance with ASTM D5470 to laminate polyimide. The heat resistance in the thickness direction was measured under the condition that the side was heated, the heat conductive resin layer side was cooled, and the average value of the temperatures of the heating side and the cooling side was 50 ° C. When the average value of the thermal resistance of the three test specimens was 1.5 W / m · K or less, it was evaluated as acceptable (◯), and when it exceeded 1.5 W / m · K, it was rejected (×). The measuring device used was a resin material thermal resistance measuring device manufactured by Hitachi Technology and Service.

[実施例1]
二液付加反応型シリコーンゲル200g(旭化成WACKERシリコーン株式会社製 SILGEL612のA液(主液)にB液(硬化剤含有液)を重量比で50:50に配合したもの)に、熱伝導性フィラーとして酸化アルミニウム(昭和電工株式会社製 AS−400)を800g配合し、プラネタリーミキサー(愛工舎製作所社製 ACM−5LVT)で大気圧下にて150rpmで10分間混合し、さらに−0.1MPaの減圧環境下にて150rpmで10分混合した後、その混合物を減圧下で脱泡し、熱伝導性樹脂組成物を調製整した。次にPETフィルム上に配置した120mm×120mm×厚み500μmの貫通した空隙を有する型枠を準備し、この型枠内の空隙に調製した上記の熱伝導性樹脂組成物を流し込み、スキージで厚さ500μmに成形したのち、オーブン(東京理科器械株式会社製 WFO−520W)で70℃下で1時間の予備加熱した後、100℃下3時間加熱して熱伝導性樹脂組成物を硬化させ、次いで型枠を取り外し、粘着力がJIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)のボールナンバーでNo.8の自己粘着面を有する120mm×120mm×厚さ500μmの熱伝導性樹脂層を得た。次に、剥離シートとして片面に粘着層を有する厚さ75μmのPETフィルム(パナック株式会社製 パナプロテクトCT75)に、ポリイミド層として厚さ5μmの芳香族ポリイミドフィルム(東レ・デュポン株式会社製 カプトン20EN)を手加工で皺の発生と気泡の巻き込みが無いように貼り合わせて複合シートを得た。この複合シートをポリイミド層側から熱伝導性樹脂層の片側表面に、一方の端辺側から他方の端辺側に向かって皺と空気が入らないように手加工で貼合した後、貼合が完了した後に複合シートの剥離シートをポリイミド層から剥離除去し、熱伝導性樹脂層に対するポリイミド層の厚みの割合が0.01である実施例1の熱伝導性シートを得た。この実施例1の熱伝導シートについて、上記(1)〜(3)の項目を評価した。
[Example 1]
A thermally conductive filler in 200 g of a two-component addition reaction type silicone gel (a liquid A (main liquid) of SILGEL612 manufactured by Asahi Kasei WACKER Silicone Co., Ltd. mixed with a liquid B (hardener-containing liquid) at a weight ratio of 50:50). As a result, 800 g of aluminum oxide (AS-400 manufactured by Showa Denko Co., Ltd.) was blended, mixed with a planetary mixer (ACM-5LVT manufactured by Aikosha Seisakusho Co., Ltd.) at 150 rpm for 10 minutes, and further at -0.1 MPa. After mixing at 150 rpm for 10 minutes in a reduced pressure environment, the mixture was defoamed under reduced pressure to prepare a thermally conductive resin composition. Next, a mold having a penetrating void of 120 mm × 120 mm × thickness of 500 μm arranged on the PET film was prepared, the prepared heat conductive resin composition was poured into the void in the mold, and the thickness was squeezed. After molding to 500 μm, it is preheated in an oven (WFO-520W manufactured by Tokyo Science Instruments Co., Ltd.) at 70 ° C. for 1 hour, then heated at 100 ° C. for 3 hours to cure the heat conductive resin composition, and then A heat conductive resin layer of 120 mm × 120 mm × 500 μm in thickness having a self-adhesive surface of No. 8 with a ball number of an inclined ball tack test (inclination angle of 30 degrees) whose adhesive strength conforms to JIS Z0237 after removing the mold. Got Next, a 75 μm-thick PET film (Panaprotect CT75 manufactured by Panac Co., Ltd.) having an adhesive layer on one side as a release sheet and a 5 μm-thick aromatic polyimide film (Kapton 20EN manufactured by Toray DuPont Co., Ltd.) as a polyimide layer. Was hand-processed to obtain a composite sheet by laminating them so as not to generate wrinkles and entrain air bubbles. This composite sheet is manually bonded from the polyimide layer side to one side surface of the heat conductive resin layer from one end side to the other end side so that wrinkles and air do not enter, and then bonded. After the above was completed, the release sheet of the composite sheet was peeled off from the polyimide layer to obtain the heat conductive sheet of Example 1 in which the ratio of the thickness of the polyimide layer to the heat conductive resin layer was 0.01. The items (1) to (3) above were evaluated for the heat conductive sheet of Example 1.

[実施例2]
実施例1において、ポリイミド層の厚みを20μmとし、熱伝導性樹脂層に対するポリイミド層の厚みの割合を0.04とした以外は、実施例1と同様にして実施例2の熱伝導性シートを得た。この実施例2の熱伝導シートについて、上記(1)〜(3)の項目を評価した。
[Example 2]
In Example 1, the heat conductive sheet of Example 2 was prepared in the same manner as in Example 1 except that the thickness of the polyimide layer was 20 μm and the ratio of the thickness of the polyimide layer to the heat conductive resin layer was 0.04. Obtained. The items (1) to (3) above were evaluated for the heat conductive sheet of Example 2.

[実施例3]
実施例1において、ポリイミド層の厚みを25μmとし、熱伝導性樹脂層に対するポリイミド層の厚みの割合を0.05とした以外は、実施例1と同様にして実施例3の熱伝導性シートを得た。この実施例3の熱伝導シートについて、上記(1)〜(3)の項目を評価した。
[Example 3]
In Example 1, the heat conductive sheet of Example 3 was prepared in the same manner as in Example 1 except that the thickness of the polyimide layer was 25 μm and the ratio of the thickness of the polyimide layer to the heat conductive resin layer was 0.05. Obtained. The items (1) to (3) above were evaluated for the heat conductive sheet of Example 3.

[実施例4]
実施例2において、厚さ450μmの型枠を用いて熱伝導性樹脂層の厚みを450μmとして、熱伝導性樹脂層に対するポリイミド層の厚みの割合を0.044とした以外は、実施例2と同様にして実施例4の熱伝導性シートを得た。この実施例4の熱伝導シートについて、上記(1)〜(3)の項目を評価した。
[Example 4]
In Example 2, the thickness of the heat conductive resin layer was 450 μm using a mold having a thickness of 450 μm, and the ratio of the thickness of the polyimide layer to the heat conductive resin layer was 0.044. Similarly, the heat conductive sheet of Example 4 was obtained. The items (1) to (3) above were evaluated for the heat conductive sheet of Example 4.

[実施例5]
実施例2において、厚さ350μmの型枠を用いて熱伝導性樹脂層の厚みを350μmとし、熱伝導性樹脂層に対するポリイミド層の厚みの割合を0.056とした以外は、実施例2と同様にして実施例5の熱伝導性シートを得た。この実施例5の熱伝導シートについて、上記(1)〜(3)の項目を評価した。
[Example 5]
In Example 2, the thickness of the heat conductive resin layer was set to 350 μm using a mold having a thickness of 350 μm, and the ratio of the thickness of the polyimide layer to the heat conductive resin layer was set to 0.056. Similarly, the heat conductive sheet of Example 5 was obtained. The items (1) to (3) above were evaluated for the heat conductive sheet of Example 5.

[実施例6]
実施例1において、二液付加反応型シリコーンゲルを旭化成WACKERシリコーン株式会社製 SILGEL612のA液(主液)にB液(硬化剤含有液)を重量比で45:55に配合したものに変更し、熱伝導性樹脂層の粘着力をJIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)のボールナンバーでNo.5とした以外は、実施例1と同様にして実施例6の熱伝導性シートを得た。この実施例6の熱伝導シートについて、上記(1)〜(3)の項目を評価した。
[Example 6]
In Example 1, the two-component addition reaction type silicone gel was changed to one in which liquid B (hardener-containing liquid) was mixed with liquid A (main liquid) of SILGEL612 manufactured by Asahi Kasei WACKER Silicone Co., Ltd. at a weight ratio of 45:55. The heat of Example 6 is the same as that of Example 1 except that the adhesive strength of the heat conductive resin layer is No. 5 in the ball number of the inclined ball tack test (inclination angle 30 degrees) based on JIS Z0237. A conductive sheet was obtained. The items (1) to (3) above were evaluated for the heat conductive sheet of Example 6.

[実施例7]
実施例1において、熱伝導性樹脂層のポリイミド層が積層される表面をエキシマ処理(大気下、波長172nm、積算光量2000mJ/cm)して粘着力をJIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)のボールナンバーでNo.3とした以外は、実施例1と同様にして実施例7の熱伝導性シートを得た。この実施例7の熱伝導シートについて、上記(1)〜(3)の項目を評価した。
[Example 7]
In Example 1, the surface on which the polyimide layer of the heat conductive resin layer is laminated is subjected to excimer treatment (in the atmosphere, wavelength 172 nm, integrated light intensity 2000 mJ / cm 2 ), and the adhesive strength is subjected to a tilted ball tack test in accordance with JIS Z0237. No. 1 with the ball number (tilt angle 30 degrees). A heat conductive sheet of Example 7 was obtained in the same manner as in Example 1 except that the value was 3. The items (1) to (3) above were evaluated for the heat conductive sheet of Example 7.

[比較例1]
二液付加反応型シリコーンゲル200g(旭化成WACKERシリコーン株式会社製 SILGEL612のA液(主液)にB液(硬化剤含有液)を重量比で50:50に配合したもの)に熱伝導性フィラーとして酸化アルミニウム(昭和電工株式会社製 AS−400)を800g配合し、プラネタリーミキサー(愛工舎製作所社製 ACM−5LVT)で大気圧下にて150rpmで10分間混合し、さらに−0.1MPaの減圧環境下にて150rpmで10分混合した後、その混合物を減圧下で脱泡し、熱伝導性樹脂組成物を調整した。次にPETフィルム上に配置した120mm×120mm×厚み500μmの貫通した空隙を有する型枠を準備し、この型枠の内側の空隙に熱伝導性樹脂組成物を流し込み、スキージで厚さ500μmに成形して、熱伝導性樹脂組成物の成形品を得た。次に、熱伝導性樹脂組成物の成形品の表面に、ポリイミド層として厚さ5μmの芳香族ポリイミドフィルム(東レ・デュポン株式会社製 カプトン20EN)を、前記表面の一方の端辺側から他方の端辺側に向かって皺と空気が入らないように積層し、オーブン(東京理科器械株式会社製 WFO−520W)内で70℃下で1時間の予備加熱した後、100℃下で3時間加熱して熱伝導性樹脂組成物を硬化させ、熱伝導性樹脂層に対するポリイミド層の厚みの割合が0.01である比較例1の熱伝導性シートを得た。この比較例1の熱伝導シートについて、上記(1)〜(3)の項目を評価した。
[Comparative Example 1]
As a heat conductive filler in 200 g of a two-component addition reaction type silicone gel (a liquid A (main liquid) of SILGEL612 manufactured by Asahi Kasei WACKER Silicone Co., Ltd. mixed with a liquid B (hardener-containing liquid) at a weight ratio of 50:50). Mix 800 g of aluminum oxide (AS-400 manufactured by Showa Denko Co., Ltd.), mix with a planetary mixer (ACM-5LVT manufactured by Aikosha Seisakusho Co., Ltd.) at 150 rpm for 10 minutes, and further reduce the pressure by -0.1 MPa. After mixing in an environment at 150 rpm for 10 minutes, the mixture was defoamed under reduced pressure to prepare a thermally conductive resin composition. Next, a mold having a penetrating gap of 120 mm × 120 mm × thickness of 500 μm placed on the PET film was prepared, the heat conductive resin composition was poured into the gap inside the mold, and the mold was molded to a thickness of 500 μm with a squeegee. Then, a molded product of the heat conductive resin composition was obtained. Next, an aromatic polyimide film (Capton 20EN manufactured by Toray DuPont Co., Ltd.) having a thickness of 5 μm was applied as a polyimide layer on the surface of the molded product of the heat conductive resin composition from one end side of the surface to the other. Laminated so that wrinkles and air do not enter toward the edge side, preheat in an oven (WFO-520W manufactured by Tokyo Science Instruments Co., Ltd.) at 70 ° C for 1 hour, and then heat at 100 ° C for 3 hours. The heat conductive resin composition was cured to obtain a heat conductive sheet of Comparative Example 1 in which the ratio of the thickness of the polyimide layer to the heat conductive resin layer was 0.01. The items (1) to (3) above were evaluated for the heat conductive sheet of Comparative Example 1.

実施例1〜3の結果を表1に、実施例4〜7および比較例1の結果を表2に示した。なお、表1の評価欄の項目は、熱伝導性シートのポリイミド層の表面状態は「表面状態」、熱伝導性シートの熱伝導性樹脂層とポリイミド層との密着力は「密着性」、熱伝導性シートの熱抵抗は「熱抵抗」と略して記載している。 The results of Examples 1 to 3 are shown in Table 1, and the results of Examples 4 to 7 and Comparative Example 1 are shown in Table 2. The items in the evaluation column of Table 1 are that the surface state of the polyimide layer of the heat conductive sheet is "surface state", and the adhesion between the heat conductive resin layer and the polyimide layer of the heat conductive sheet is "adhesion". The thermal resistance of the heat conductive sheet is abbreviated as "thermal resistance".

Figure 2021160237
Figure 2021160237

Figure 2021160237
Figure 2021160237

実施例1〜7の熱伝導性シートの製造方法は、熱伝導性樹脂組成物を硬化した熱伝導性樹脂層にポリイミド層を複合シートの状態で積層し、複合シートの剥離シートを剥離除去するため、熱伝導性樹脂層の表面に皺が無い平滑な非粘着性のポリイミド層が形成され、熱伝導性にも優れる熱伝導性シートが得られることがわかった。一方、比較例1の熱伝導性シートの製造方法で得られた熱伝導性シートは、熱伝導性樹脂組成物にポリイミド層を積層した後に、ポリイミド層を積層した状態で熱伝導性樹脂組成物を硬化しているので、熱伝導樹脂組成物の硬化収縮によってポリイミド層に皴が発生して表面平滑性が損なわれており、本発明の効果が得られないことがわかった。なお、比較例として示してはいないが、実施例1において複合シートを用いずにポリイミド層単独で熱伝導性樹脂層の表面に貼合した場合には、ポリイミド層のハンドリング性が安定せず、熱伝導性樹脂層への積層作業時にポリイミド層の皺や気泡の巻き込みといった不具合が発生したり、このような不具合が無く積層できたとしても実施例1よりも作業時間が大幅に長く生産性に劣っていたことから、ポリイミド層に剥離シートを積層した複合シートとして熱伝導性樹脂層の表面に積層し、貼合後に剥離シートを剥離除去する工程が有効性であることがわかった。 In the method for producing the heat conductive sheet of Examples 1 to 7, the polyimide layer is laminated in the state of a composite sheet on the heat conductive resin layer obtained by curing the heat conductive resin composition, and the release sheet of the composite sheet is peeled off and removed. Therefore, it was found that a smooth non-adhesive polyimide layer without wrinkles was formed on the surface of the heat conductive resin layer, and a heat conductive sheet having excellent heat conductivity could be obtained. On the other hand, the heat conductive sheet obtained by the method for producing the heat conductive sheet of Comparative Example 1 is a heat conductive resin composition in a state where the polyimide layer is laminated on the heat conductive resin composition and then the polyimide layer is laminated. It was found that the effect of the present invention cannot be obtained because the polyimide layer is wrinkled due to the curing shrinkage of the heat conductive resin composition and the surface smoothness is impaired. Although not shown as a comparative example, when the polyimide layer alone is bonded to the surface of the heat conductive resin layer without using the composite sheet in Example 1, the handleability of the polyimide layer is not stable. Problems such as wrinkles and entrainment of air bubbles in the polyimide layer occur during the laminating work on the heat conductive resin layer, and even if laminating can be performed without such problems, the working time is significantly longer than in Example 1 and the productivity is improved. Since it was inferior, it was found that the step of laminating the release sheet on the surface of the heat conductive resin layer as a composite sheet in which the release sheet was laminated on the polyimide layer and peeling off the release sheet after bonding was effective.

また、実施例1、2と実施例3との結果の比較から、ポリイミド層の厚さは20μm以下であると、熱伝導性樹脂層の表面に皺が無い平滑な非粘着性のポリイミド層が形成されつつ、熱伝導性を向上させる観点で好ましいことがわかった。 Further, from the comparison of the results of Examples 1 and 2 and Example 3, when the thickness of the polyimide layer is 20 μm or less, a smooth non-adhesive polyimide layer having no wrinkles on the surface of the heat conductive resin layer is formed. It was found to be preferable from the viewpoint of improving thermal conductivity while being formed.

また、熱伝導性樹脂層の自己粘着力が異なる実施例1、実施例6並びに実施例7の結果から、熱伝導性樹脂層の自己粘着力がJIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)のボールナンバーでNo.3以上であると、ポリイミド層と熱伝導性樹脂層とが良好に密着して固定でき、さらに表2には具体的な密着力は記載していないが、ボールナンバーでNo.5以上であるとより確実に密着・固定できることがわかった。 Further, from the results of Examples 1, 6 and 7 in which the self-adhesive force of the heat conductive resin layer is different, the self-adhesive force of the heat conductive resin layer is an inclined ball tack test (inclination) conforming to JIS Z0237. No. with the ball number (angle 30 degrees). When it is 3 or more, the polyimide layer and the heat conductive resin layer can be well adhered and fixed, and further, although the specific adhesive force is not described in Table 2, the ball number is No. It was found that when it is 5 or more, it can be adhered and fixed more reliably.

また実施例1〜4と実施例5との結果との比較(特にポリイミド層の厚みが同じ条件で実施例2及び4と実施例5との比較)から、熱伝導性樹脂層の厚みに対するポリイミド層の厚みの割合が0.05未満であると、熱伝導性樹脂層の表面に皺が無い平滑な非粘着性のポリイミド層が形成されつつ、熱伝導性を向上させる観点で好ましいことがわかった。 Further, from the comparison between the results of Examples 1 to 4 and Example 5 (particularly, the comparison between Examples 2 and 4 and Example 5 under the same condition of the thickness of the polyimide layer), the polyimide with respect to the thickness of the heat conductive resin layer It was found that when the ratio of the thickness of the layer is less than 0.05, it is preferable from the viewpoint of improving the thermal conductivity while forming a smooth non-adhesive polyimide layer without wrinkles on the surface of the thermally conductive resin layer. rice field.

本発明の熱伝導性シートの製造方法は、片面に平滑性に優れた非粘着性の表面を有した熱伝導性に優れる自己粘着性の熱伝導性シートが得られるので、広範囲の電気・電子機器製品の熱対策用のシート部品として好適であり、特に熱伝導性シートを組み込んだ部品の取外し・交換を要する用途に有用である。 The method for producing a heat conductive sheet of the present invention provides a self-adhesive heat conductive sheet having an excellent smoothness and a non-adhesive surface on one side and having excellent heat conductivity. It is suitable as a sheet component for heat countermeasures of equipment products, and is particularly useful for applications that require removal / replacement of a component incorporating a heat conductive sheet.

1、10 熱伝導性シート
2、20 熱伝導性樹脂組成物(未硬化物)
3、30 熱伝導性樹脂層(硬化物)
3a、30a 自己粘着面
4、40 複合シート
4a、40a ポリイミド層
4b、40b 剥離シート
40R 複合シートロール
40Rb 剥離シート回収ロール
5、50 基材
50R 基材ロール
6 型枠
7、70 掻き取り具(スキージ)
8、80 加熱装置(または紫外線線照射装置)
90 熱伝導性樹脂組成物の供給装置
1,10 Thermally conductive sheet 2,20 Thermally conductive resin composition (uncured product)
3,30 Thermally conductive resin layer (cured product)
3a, 30a Self-adhesive surface 4, 40 Composite sheet 4a, 40a Polyimide layer 4b, 40b Peeling sheet 40R Composite sheet roll 40Rb Peeling sheet recovery roll 5, 50 Base material 50R Base material roll 6 Formwork 7, 70 Scraping tool (squeegee) )
8,80 heating device (or UV irradiation device)
90 Heat conductive resin composition supply device

Claims (5)

熱伝導性樹脂層の片面にポリイミド層を有する熱伝導性シートの製造方法であって、
熱伝導性樹脂組成物をシート状に硬化して前記熱伝導性樹脂層を形成する工程と、前記ポリイミド層の片面に剥離シートが積層された複合シートを準備する工程と、前記熱伝導性樹脂層の片面と前記複合シートの前記ポリイミド層とを圧着して積層する工程と、前記熱伝導性樹脂層の片面に積層された複合シートから剥離シートを剥離する工程と、を備え、
前記熱伝導性樹脂層は自己粘着性を有する自己粘着面を有し、前記自己粘着面の粘着力によって前記ポリイミド層が固定されることを特徴とする熱伝導性シートの製造方法。
A method for producing a heat conductive sheet having a polyimide layer on one side of the heat conductive resin layer.
A step of curing the heat conductive resin composition into a sheet to form the heat conductive resin layer, a step of preparing a composite sheet in which a release sheet is laminated on one side of the polyimide layer, and a step of preparing the heat conductive resin. A step of crimping and laminating one side of the layer and the polyimide layer of the composite sheet and a step of peeling the release sheet from the composite sheet laminated on one side of the heat conductive resin layer are provided.
A method for producing a heat conductive sheet, wherein the heat conductive resin layer has a self-adhesive surface having self-adhesiveness, and the polyimide layer is fixed by the adhesive force of the self-adhesive surface.
前記ポリイミド層は、厚みが20μm以下であることを特徴とする請求項1に記載の熱伝導性シートの製造方法。 The method for producing a heat conductive sheet according to claim 1, wherein the polyimide layer has a thickness of 20 μm or less. 前記ポリイミド層は、芳香族ポリイミドであることを特徴とする請求項1または請求項2のいずれか一項に記載の熱伝導性シートの製造方法。 The method for producing a heat conductive sheet according to any one of claims 1 and 2, wherein the polyimide layer is an aromatic polyimide. 前記自己粘着面の粘着力は、JIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)のボールナンバーがNo.5以上であることを特徴とする請求項1〜3のいずれか1項に記載の熱伝導性シートの製造方法。 As for the adhesive strength of the self-adhesive surface, the ball number of the inclined ball tack test (inclination angle 30 degrees) conforming to JIS Z0237 is No. The method for producing a heat conductive sheet according to any one of claims 1 to 3, wherein the number is 5 or more. 前記熱伝導性樹脂層の厚みに対する前記ポリイミド層の厚みの割合が0.05未満であることを特徴とする請求項1〜4のいずれか一項に記載の熱伝導性シートの製造方法。 The method for producing a heat conductive sheet according to any one of claims 1 to 4, wherein the ratio of the thickness of the polyimide layer to the thickness of the heat conductive resin layer is less than 0.05.
JP2020064261A 2020-03-31 2020-03-31 Method for manufacturing heat-conductive sheet Pending JP2021160237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020064261A JP2021160237A (en) 2020-03-31 2020-03-31 Method for manufacturing heat-conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064261A JP2021160237A (en) 2020-03-31 2020-03-31 Method for manufacturing heat-conductive sheet

Publications (1)

Publication Number Publication Date
JP2021160237A true JP2021160237A (en) 2021-10-11

Family

ID=78002123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064261A Pending JP2021160237A (en) 2020-03-31 2020-03-31 Method for manufacturing heat-conductive sheet

Country Status (1)

Country Link
JP (1) JP2021160237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210410272A1 (en) * 2018-12-11 2021-12-30 Tatsuta Electric Wire & Cable Co., Ltd. Method for Manufacturing Shielded Printed Wiring Board and Shielded Printed Wiring Board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210410272A1 (en) * 2018-12-11 2021-12-30 Tatsuta Electric Wire & Cable Co., Ltd. Method for Manufacturing Shielded Printed Wiring Board and Shielded Printed Wiring Board

Similar Documents

Publication Publication Date Title
KR101936449B1 (en) Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device
JP5948513B1 (en) Wafer holder and its manufacturing method
WO2015002084A1 (en) Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP2010010599A (en) Heat diffusion sheet
WO2015146349A1 (en) Method for producing heat conductive sheet
US11597196B2 (en) Method for producing thermally conductive sheet
JP2010149509A (en) Heat diffusion sheet and its mounting method
JP2005297234A (en) Silicone rubber sheet for thermocompression bonding and method for manufacturing the same
KR20020070449A (en) Heat conductive sheet and method of producing the sheet
JP6307774B2 (en) Curable heat conductive grease, heat dissipation structure, and method of manufacturing heat dissipation structure
JP2004311577A (en) Thermally conductive composite sheet and method of manufacturing the same
JP2010024371A (en) Thermoconductive sheet and its manufacturing method
JP2010219290A (en) Thermally conductive composite sheet and method of manufacturing the same
JP2009144010A (en) Adhesive film and method for producing the same
WO2020039560A1 (en) Semiconductor device production method, thermally conductive sheet, and thermally conductive sheet production method
JP2014179593A (en) Sealing sheet for semiconductor elements, semiconductor device, and method for manufacturing semiconductor device
JP2021080472A (en) Thermally conductive composition, thermally conductive member, manufacturing method of thermally conductive member, heat dissipation structure, exothermic composite member, heat dissipation composite member
JP2021160237A (en) Method for manufacturing heat-conductive sheet
JP3780603B2 (en) Heat dissipation sheet and heat dissipation plate
JP2005203735A (en) Thermally conductive composite sheet
KR101078252B1 (en) Thermal conductive and release sheet used in bonding anisotropic conductive film
JP2021134226A (en) Double-sided adhesive sheet
JP7031203B2 (en) Adhesive sheet for heat dissipation, laminate for heat dissipation adhesive member, and composite member
JP2015021025A (en) Thermally conductive sheet, and thermally conductive sheet with release sheet
JP2011056618A (en) Manufacturing method for thermally conductive sheet, and thermally conductive sheet