JP2005316018A - 高分子光導波路及びその製造方法 - Google Patents

高分子光導波路及びその製造方法 Download PDF

Info

Publication number
JP2005316018A
JP2005316018A JP2004132057A JP2004132057A JP2005316018A JP 2005316018 A JP2005316018 A JP 2005316018A JP 2004132057 A JP2004132057 A JP 2004132057A JP 2004132057 A JP2004132057 A JP 2004132057A JP 2005316018 A JP2005316018 A JP 2005316018A
Authority
JP
Japan
Prior art keywords
core
stamper
pattern
photoresist layer
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004132057A
Other languages
English (en)
Inventor
Hirotaka Mizuno
寛隆 水野
Toshikuni Kaino
俊邦 戒能
Okihiro Sugihara
興浩 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsuchiya KK
Original Assignee
Tsuchiya KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsuchiya KK filed Critical Tsuchiya KK
Priority to JP2004132057A priority Critical patent/JP2005316018A/ja
Publication of JP2005316018A publication Critical patent/JP2005316018A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

【課題】 大口径のコアを有する高分子光導波路及び大口径のコアを有する高分子光導波路を簡易に製造可能な高分子光導波路の製造方法を提供する。
【解決手段】 高分子光導波路は、表面にコアパターン12が凹設されたクラッド基部11と、コアパターン12の内部に形成されたコア13と、コア13を被覆するようにクラッド基部11の表面に設けられたクラッド蓋部14とを備えており、コア13の径は100〜2000μmである。この高分子光導波路は、スタンパを製造するスタンパ製造工程、スタンパを使用した加熱エンボス加工法によってコアパターン12を凹設する転写工程、コア13及びクラッド蓋部14を設ける導波路形成工程を経て製造される。スタンパとしてのマスタスタンパは、基板の表面にフォトレジスト材料からなる転写パターンを設けることによって形成されている。
【選択図】 図1

Description

本発明は、光情報通信において、例えば光回折路、光分波路及び光合波路、光分岐路及び光合成路、光スイッチ、光回路等のような光情報を伝搬するための高分子光導波路及びその製造方法に関するものである。
従来、上記のような高分子光導波路は、コアと、同コアを取り囲むようにその周面を被覆するクラッドとを備えている。コアは透明な合成樹脂より形成されるとともに、クラッドはコアを形成する合成樹脂よりも屈折率の低い透明な合成樹脂より形成されている。このような高分子光導波路は、主にフォトリソグラフィ法及び反応性イオンエッチング(RIE)法によりコアを所望のパターン形状となるように形成し、その後にクラッドを形成して製造されていた。しかし、このような方法は、径の大きなコアを有する高分子光導波路を製造する場合に加工速度が遅いうえ、作業が繁雑で製造コストが嵩むことから、量産化を図りにくいという問題を有する。
そこで、まずクラッドの一部を形成し、同クラッドの一部に成形型(スタンパ)を用いたプレス成形によって前記コアに対応する溝を形成した後、該溝内にコア材料を埋め込む製造方法が提案されている。この製造方法で使用する成形型として、特許文献1には、原版(マスタスタンパ)からメッキによって製造された金型が記載されている。この原版は、ポリイミド膜の表面を所定の凹凸形状(コアパターン)とすることによって得たものであり、そのコアパターンの形成はフォトリソグラフィ法及びRIE法によって行われる。他に、特許文献2には成形型として、X線リソグラフィー法によって得られた段付マイクロ構造体(マスタスタンパ)から電鋳によって製造した段付成形インサートが記載されている。
特開平9−189818号公報 特開平6−3545号公報
ところで、近年は家庭内ネットワーク、車載ネットワーク等の短距離ネットワークの普及により、合成樹脂製の光ファイバーが数多く使用される傾向にある。このような短距離ネットワークにおいては、合成樹脂製の光ファイバーを接続するため、前記高分子光導波路のコアを大口径とする必要があり、そのコアの径は、好ましくは100μm以上である。しかし、上記従来の特許文献1では原版に大きな凹凸を設けにくく、径が数十μm程度のコアを製造するに留まり(特許文献1の実施例に記載されたコアの径は6μm及び10μm)、コアの径を100μm以上とすることが難しいという問題があった。また、特許文献2では、X線リソグラフィー法で使用するX線照射装置等の製造に係る装置が大がかりで非常に高価なものであったり、成形型の製造に長時間を要したり等、製造コストの高騰、製造の長時間化等といった問題があった。
本発明は、このような従来技術に存在する問題点に着目してなされたものである。その目的とするところは、大口径のコアを有する高分子光導波路及び大口径のコアを有する高分子光導波路を簡易に製造可能な高分子光導波路の製造方法を提供することにある。
上記の目的を達成するために、請求項1に記載の高分子光導波路の発明は、表面にコアパターンが凹設された合成樹脂製のクラッド基部と、該コアパターンの内部に形成されたコアと、該コアを被覆するように前記クラッド基部の表面に設けられた合成樹脂製のクラッド蓋部とを備えており、前記コアの径が100〜2000μmであることを要旨とする。
請求項2に記載の高分子光導波路の製造方法の発明は、表面にコアパターンが凹設された合成樹脂製のクラッド基部と、該コアパターンの内部に形成されたコアと、該コアを被覆するように前記クラッド基部の表面に設けられた合成樹脂製のクラッド蓋部とを備えるとともに、前記コアの径が100〜2000μmである高分子光導波路の製造方法であって、前記コアパターンに応じた形状をなす転写パターンが設けられたスタンパを製造するスタンパ製造工程と、当該スタンパを使用した加熱エンボス加工法によって前記クラッド基部の表面に前記コアパターンを凹設する転写工程と、当該クラッド基部に前記コア及び前記クラッド蓋部を設ける導波路形成工程とを備え、前記スタンパ製造工程は、基板の表面の周縁部にスペーサを立設した状態で同基板の表面にフォトレジスト材料からなるフォトレジスト層を積層する第1段階と、該フォトレジスト層の表面を押圧部材で押圧する第2段階と、前記転写パターンに応じた形状をなすマスキングパターンが設けられたマスキング部材を使用して前記フォトレジスト層の表面を被覆する第3段階と、前記フォトレジスト層を露光及び現像してフォトレジスト材料からなる転写パターンを前記基板の表面に形成することにより前記スタンパとしてのマスタスタンパを得る第4段階とを含むことを要旨とする。
請求項3に記載の高分子光導波路の製造方法の発明は、請求項2に記載の発明において、前記フォトレジスト層の露光時に使用する光は、同フォトレジスト層に対する吸光度が1以下となるものであることを要旨とする。
請求項4に記載の高分子光導波路の製造方法の発明は、請求項2又は請求項3に記載の発明において、前記スタンパ製造工程は、前記マスタスタンパを型取りして前記転写パターンに応じた形状をなす複製パターンが設けられた複製型を製造する第5段階と、該複製型を使用して前記転写パターンを複写することにより前記スタンパとしての複製スタンパを製造する第6段階とを含むことを要旨とする。
本発明によれば、大口径のコアを有する高分子光導波路及び大口径のコアを有する高分子光導波路を簡易に製造可能な高分子光導波路の製造方法を提供することができる。
以下、本発明を具体化した一実施形態を、図面に基づいて詳細に説明する。
高分子光導波路は、光ファイバーのコネクタ、スプリッタ等のように、光情報を伝搬する際の光回折路、光分波路及び光合波路、光分岐路及び光合成路、光スイッチ、光回路等に使用されるものである。図1(a),(b)に示すように、この高分子光導波路は、クラッド基部11と、同クラッド基部11の表面に設けられたコアパターン12と、同コアパターン12の内部に設けられたコア13と、クラッド蓋部14とを有している。
クラッド基部11は、フィルム、板材等から矩形状に形成されている。コアパターン12は、スタンパを使用した加熱エンボス加工法によってクラッド基部11の表面に凹設された複数の微細な溝からなり、断面正方形状をなすよう形成されている。コア13は、コアパターン12の内部を埋めるように、断面正方形状に形成されている。クラッド蓋部14は、薄板状に形成され、コア13の露出部分を被覆するように、クラッド基部11の表面に取着されている。そして、入力された光情報は、光としてクラッド基部11又はクラッド蓋部14と、コア13との境界面で反射を繰り返しながら、コア13内を伝搬される。なお、前記クラッド基部11は、シリコン基板、金属基板、金属酸化物基板、ガラス基板等の表面に積層してもよい。
前記クラッド基部11、コア13及びクラッド蓋部14は、全て透明な合成樹脂から形成されている。クラッド基部11及びクラッド蓋部14に使用する合成樹脂としては、ポリメタクリル酸メチル(PMMA)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスチレン(PS)等の熱可塑性樹脂、紫外線硬化型エポキシ樹脂、紫外線硬化型アクリル樹脂、紫外線硬化型ビニル樹脂等の紫外線硬化樹脂、フッ素樹脂等が挙げられる。クラッド基部11においては、前記コアパターン12の形成が容易になるという観点から、熱可塑性樹脂を使用することが好ましい。一方、コア13は、クラッド基部11又はクラッド蓋部14との境界面で光を反射させるため、クラッド基部11及びクラッド蓋部14で使用する合成樹脂よりも屈折率の高い合成樹脂が使用される。コア13に使用する合成樹脂の具体例として、クラッド基部11及びクラッド蓋部14の材料として前に挙げた熱可塑性樹脂、紫外線硬化樹脂、フッ素樹脂等の他、ポリイミド等の熱硬化性樹脂等が挙げられる。
ここで、クラッド基部11、クラッド蓋部14及びコア13に使用する合成樹脂について、透明とは、高分子光導波路によって伝搬される光の波長域で透明、つまりは伝搬される光を吸収しない色調であることを示す。従って、無色透明の合成樹脂に限らず、伝搬される光を吸収しなければ、有色透明の合成樹脂を使用してもよい。具体的に、伝搬される光には400〜1600nmの波長域のものが使用され、主に650nm、850nm、1300nm及び1550nmの波長域の光が用途に応じて選択して使用される。このため、クラッド基部11、クラッド蓋部14及びコア13に使用する材料には、これらの波長域の光を吸収しない色調で透明な合成樹脂が使用される。
コアパターン12において、その内面の粗さは、使用する光の波長域の好ましくは10分の1以下であり、より好ましくは20分の1以下である。具体的には、JIS B0601−1994に規定される算術平均粗さ(Ra)が、好ましくは0.2μm以下であり、より好ましくは0.1μm以下である。Raが0.2μmを超える場合、コア13内で光の乱反射を生じ、ノイズが発生する等して光情報を正確に伝搬することができなくなるおそれがある。なお、算術平均粗さ(Ra)が小さくなるに従い、光の乱反射は生じにくくなり、光情報を正確に伝搬することができるようになる。しかし、算術平均粗さ(Ra)を過剰に小さくすれば、製造の長時間化、煩雑化等を招き、製造コストが高騰することから、算術平均粗さ(Ra)は、好ましくは0.01μm以上である。
コア13の径(一辺の長さ)は、100〜2000μmである。すなわち、光ファイバーからの光を高分子光導波路に入射したり、高分子光導波路からの出射光を光ファイバーに入射したりする場合、高分子光導波路のコア13の径と、光ファイバーのコア径とを同程度とする必要がある。これは、いずれか一方の径が他方の径と大きく異なる場合、多くの光が高分子光導波路に入射されなくなったり、光ファイバーで受光できない光が多くなって接続損失が増大したり等してしまうためである。そこで、種々の光ファイバーに対し、それぞれのコア径と同程度に合わせることができるよう、コア13の径を100〜2000μmとした。なお、当該高分子光導波路は、合成樹脂製の光ファイバーを接続することを主な目的としており、その合成樹脂製の光ファイバーのコア径は、一般に3〜2000μmである。
次に、高分子光導波路を形成するためのスタンパについて説明する。
図4(a),(b)及び図5(a)に示すように、スタンパは、原版であるマスタスタンパ21と、該マスタスタンパ21から複製型31を使用して複製された複製スタンパ41とから構成されている。
マスタスタンパ21は、基板22と、その基板22の表面に設けられた転写パターン23とを有している。この基板22には、シリコン基板、金属基板、金属酸化物基板、ガラス基板等が使用されている。転写パターン23は、フォトレジスト材料から形成された複数の微細な凸条からなり、断面正方形状をなしている。この転写パターン23は、前記コアパターン12に応じた形状、換言すればコアパターン12を逆転させた形状とされており、転写パターン23とコアパターン12とは所謂ネガ・ポジの関係にある。
また、転写パターン23は、その表面の荒れがコアパターン12の内面に転写されるおそれがあることから、表面の粗さが高分子光導波路で使用する光の波長域の好ましくは10分の1以下、より好ましくは20分の1以下とされている。具体的には、当該表面の算術平均粗さ(Ra)が、好ましくは0.2μm以下、より好ましくは0.1μm以下とされている。Raが0.2μmを超える場合、前記コアパターン12の内面のRaが0.2μmを超えてしまうおそれがある。なお、転写パターン23の表面の算術平均粗さ(Ra)が小さくなるに従い、コアパターン12の内面も平滑なものとなるが、Raを過剰に小さくすれば、製造の長時間化、煩雑化等を招き、製造コストが高騰する。このため、転写パターン23の表面の算術平均粗さ(Ra)は、好ましくは0.01μm以上である。
複製型31は、前記マスタスタンパ21の表面部分、つまりは転写パターン23を型取りして製造されている。この複製型31は、シリコーンゴムから形成されている。複製型31の表面(図5(a)中で上面)には複製パターン32が設けられている。この複製パターン32は、転写パターン23に応じた形状、換言すれば転写パターン23を逆転させた形状とされており、複製パターン32と転写パターン23とは所謂ネガ・ポジの関係にある。従って、複製パターン32は、前記コアパターン12と同一の形状をなしている。
前記複製スタンパ41は、基材42と、その基材42の表面(図5(a)中で底面)に設けられた転写部43とを有している。この基材42には、ガラス基板が使用されている。転写部43は、その表面(図5(a)中で底面)に前記転写パターン23が複写されている。この転写部43は、紫外線硬化型エポキシ樹脂、紫外線硬化型アクリル樹脂、紫外線硬化型ビニル樹脂等の紫外線硬化樹脂から形成されている。
この実施形態では、スタンパのうち、複製スタンパ41を使用して加熱エンボス加工法が行われている。これは、紫外線硬化樹脂からなる転写部43は、フォトレジスト材料からなる前記転写パターン23に比べ、加熱、加圧に対する強度を向上させやすく、加熱エンボス加工法を行う際にスタンパとして使用可能な回数の増加を図ることができるためである。従って、高分子光導波路を少量のみ製造する等、使用可能な回数の増加を図ることを目的としなければ、前記マスタスタンパ21を使用して加熱エンボス加工法を行ってもよい。なお、転写部43を形成する紫外線硬化樹脂には、加熱エンボス加工法で使用されることから、クラッド基部11の材料である合成樹脂よりもガラス転移点(Tg)が高いものを使用することが好ましく、より好ましくはカチオン重合タイプの紫外線硬化型エポキシ樹脂が使用される。
次に、上記構成の高分子光導波路の製造方法について説明する。
実施形態における高分子光導波路の製造方法は、スタンパ製造工程と、転写工程と、導波路形成工程とを備えている。スタンパ製造工程は、前記マスタスタンパ21及び前記複製スタンパ41を製造する工程である。このスタンパ製造工程は、大きく分けて前記マスタスタンパ21を製造する段階と、前記複製スタンパ41を製造する段階との2つに分けられる。転写工程は、前記複製スタンパ41を使用して加熱エンボス加工法を行うことにより、前記クラッド基部11の表面にコアパターン12を形成する工程である。導波路形成工程は、コアパターン12が形成されたクラッド基部11の表面において、コアパターン12の内部にコア13を形成し、その後にクラッド蓋部14を形成する工程である。
まず、前記スタンパ製造工程で、マスタスタンパ21を製造する段階を説明する。
図2(a)に示すように、第1段階では、まずマスタスタンパ21を構成することとなる前記基板22の表面で、その周縁部にスペーサ51が載せられることにより、同周縁部にスペーサ51が立設される。このスペーサ51は、その高さが所望するコア13の径と同じ長さとされている。そして、基板22の表面に液状のフォトレジスト材料がキャスト(注入)された後、フォトレジスト材料を加熱乾燥して溶媒成分を除去することにより、前記転写パターン23を形成することとなるフォトレジスト層23aが基板22の表面に積層される。なお、このフォトレジスト層23aは、その表面がスペーサ51の表面よりも盛り上がるように形成される。
図2(b)に示すように、第2段階では、まずフォトレジスト層23aの表面に押圧部材52が載置される。その後、フォトレジスト層23aを加熱しつつ、押圧部材52が上方から図中矢印方向へ向かって押圧されることにより、フォトレジスト層23aの表面がスペーサ51の表面よりも盛り上がった状態から平坦な状態とされる。また、フォトレジスト層23aを押圧する際、押圧部材52が前記スペーサ51へ接触されることにより、フォトレジスト層23aは、その厚みが前記スペーサ51の高さと同一とされる。
図3(a)に示すように、第3段階では、前記押圧部材52がフォトレジスト層23aの表面から取り除かれた後、フォトレジスト層23aの表面にマスキング部材53が載置される。このマスキング部材53は、薄板状をなし、前記転写パターン23に応じた形状をなす開口パターン54が透設されている。この開口パターン54の開口幅(図中で横方向の長さ)は、所望するコア13の径と同じ長さとされている。そして、フォトレジスト層23aは、当該マスキング部材53の開口パターン54が設けられた以外の箇所、つまりは遮光パターン55によって表面を被覆される。
図3(a)及び図4(a)に示すように、第4段階では、前記マスキング部材53を介してフォトレジスト層23aに光が照射され、該フォトレジスト層23aが露光される。そして、該フォトレジスト層23aを現像する。すると、フォトレジスト層23aの一部が除去され、基板22の表面には、転写パターン23が残り、マスタスタンパ21が形成される。
上記第1〜第4段階によるマスタスタンパ21の製造においては、エッチング等の方法によらずとも、スペーサ51の厚み及び開口パターン54の開口幅を設定することにより、コア13の径を所望する長さとすることが可能である。また、転写パターン23の形成は、フォトレジスト層23aの平坦化と、フォトレジスト層23aの露光及び現像とによってなされており、短時間で、かつ簡易に行うことが可能である。
ここで、前記コア13の径を均一なものとするには、前記転写パターン23を正確に形成する必要があり、このため前記第2段階ではフォトレジスト層23aを均一な厚みとする必要がある。従って、第2段階で押圧部材52は、フォトレジスト層23aを押圧する面が前記基板22の表面と平行になるように載置され、フォトレジスト層23aの表面を均一に押圧するよう工夫がなされている。また、基板22及び押圧部材52は、フォトレジスト層23aの表面を平坦な状態とすることで同フォトレジスト層23aを均一な厚みとするため、表面に存在する凹凸の大きさが、好ましくは所望するコア13の径の10%以下、より好ましくは5%以下に抑えられている。加えて、スペーサ51は、フォトレジスト層23aを均一な厚みとするため、その高さばらつきが、好ましくは所望するコア13の径の10%以下、より好ましくは5%以下に抑えられている。
さらに、押圧部材52は、前記転写パターン23の表面となるフォトレジスト層23aの表面を平滑化するため、表面の粗さが高分子光導波路で使用する光の波長域の好ましくは10分の1以下、より好ましくは20分の1以下とされている。具体的には、押圧部材52の表面の算術平均粗さ(Ra)が、好ましくは0.2μm以下、より好ましくは0.1μm以下とされている。Raが0.2μmを超える場合、押圧部材52の表面の荒れが転写パターン23の表面に転写され、転写パターン23の表面のRaが0.2μmを超えてしまうおそれがある。なお、転写パターン23の表面の算術平均粗さ(Ra)が小さくなるに従い、コアパターン12の内面も平滑なものとなるが、Raを過剰に小さくすれば、製造の長時間化、煩雑化等を招き、製造コストが高騰する。このため、転写パターン23の表面の算術平均粗さ(Ra)は、好ましくは0.01μm以上である。
前記フォトレジスト材料としては、ネガ型のものと、ポジ型のものとがある。ネガ型フォトレジストは、露光部分が不溶性となることによって、現像時に未露光部分が除去されるものである。上記のフォトレジスト材料にはネガ型のものが使用されている。従って、前記マスキング部材53には、開口パターン54が所望する転写パターン23と同一形状であり、遮光パターン55が転写パターン23と反転した形状のものが使用される。一方、ポジ型フォトレジストは、露光部分が可溶性となることによって、現像時に露光部分が除去されるものである。このため、図3(b)に示すように、ポジ型のフォトレジスト材料を使用する場合、前記マスキング部材53には、遮光パターン55が所望する転写パターン23と同一形状であり、開口パターン54が転写パターン23と反転した形状のものが使用される。
また、前記フォトレジスト材料には、前記第2段階において、押圧部材52による押圧時の温度でフォトレジスト層23aを変形できるものが使用される。なお、当該押圧時において、押圧部材52、フォトレジスト層23a及び基板22は、未露光状態にあるフォトレジスト材料のガラス転移点(Tg)以上の温度となるように加熱される。
フォトレジスト層23aの厚みは、前記コア13の径と同じであり、100〜2000μmである。このようにフォトレジスト層23aを厚く形成した場合、露光時に使用する光によっては、フォトレジスト層23aの表面部と底部(基板22の表面)とで最適な露光条件が異なったり、露光不足となって転写パターン23が正確に形成されなくなるおそれがある。従って、フォトレジスト層23aの露光時に使用する光は、同フォトレジスト層23aに対する吸光度が、1以下となるものが好ましく、0.02〜1となるものがより好ましい。なお、吸光度が1以下となる光とは、フォトレジスト層23aを所望の厚み(所望とするコア13の径と同じ長さ)に形成した状態で、自記分光光度計(島津製作所製のUV−3100PC)を用いて同フォトレジスト層23aの吸光度を測定したとき、その吸光度が1以下となる光を示すものとする。
フォトレジスト層23aは、その吸光度が1を超える波長域の光で露光した場合、多くの光が該フォトレジスト層23aの表面部で吸収されてしまい、その底部まで光が達しない可能性が高くなる。この場合、表面部と底部とで光強度の差が大きくなり、表面部と底部とで最適な露光条件が異なってしまう。例えば、底部に最適な露光条件となる波長域の光を使用すれば、表面部では露光過多となるため、転写パターンは表面部と底部とで幅の異なるものとなってしまう。具体例として、ネガ型のフォトレジスト層23aで転写パターンを形成しようとした場合、当該転写パターンの表面部が底部に比べて幅広となる。これに対し、表面部に最適な露光条件となる波長域の光を使用すれば、底部では露光不足となり、前例のように転写パターンは表面部と底部とで幅の異なるものとなってしまう。さらには、ポジ型のフォトレジスト材料を使用した場合には所望の厚みまで現像できなかったり、ネガ型のフォトレジスト材料を使用した場合には現像時に転写パターンが基板から剥離してしまったり等の不具合を生じるおそれがある。
なお、露光時に使用する光の光源には、特定の波長域でのみ発光するものを用いてもよく、また、高圧水銀灯やキセノン灯などの多波長の光を発光するものを用いてもよい。但し、特定の波長域でのみ発光する光源を使用する場合には、吸光度が0.02未満となるような波長域の光のみ発光するものは避けることが好ましい。フォトレジスト層23aは、その吸光度が0.02未満の波長域の光のみで露光した場合、フォトレジスト層23aに吸収される光量が少なくなり、転写パターン23を形成できなくなるおそれがある。一方、多波長の光を発光する光源を使用する場合には、吸光度が0.02未満となるような波長域の光が含まれていてもよいが、吸光度が1を超えるような波長域の光は遮蔽することができるようにフィルター等を併用することが好ましい。
次いで、前記スタンパ製造工程で、複製スタンパ41を製造する段階を説明する。
図4(b)に示すように、まず第5段階では、マスタスタンパ21の表面に液状のシリコーンゴムが塗布され、同シリコーンゴムが硬化することにより、複製型31が形成される。このとき、複製型31には、マスタスタンパ21の転写パターン23が型取りされることにより、複製パターン32が形成される。その後、複製型31はマスタスタンパ21の表面から剥離され、複製スタンパ41を作製するために使用される。なお、シリコーンゴムには、縮合反応型のものと、付加反応型のものとがあり、何れを使用してもよいが、付加反応型のシリコーンゴムを使用することがより好ましい。これは、付加反応型のものは、その硬化時に副生成物が発生せず、また硬化時の体積収縮率も小さいため、転写パターン23をより精密な寸法精度で型取りすることができるためである。
図5(a)に示すように、第6段階では、複製型31の表面に紫外線硬化樹脂が塗布されるとともに、同紫外線硬化樹脂に接触するように基材42が載置される。この後、図中に矢印で示すように、基材42を介して上方から紫外線が照射される。すると、紫外線硬化樹脂が硬化して前記転写部43が形成される。そして、複製型31から転写部43を剥離することにより、その表面に前記マスタスタンパ21と同様の転写パターン23が複写された複製スタンパ41が得られる。
続いて、前記転写工程について説明する。
この転写工程は、加熱エンボス加工法で行われる。すなわち、まず前記複製スタンパ41及び前記クラッド基部11が加熱され、クラッド基部11を形成する合成樹脂のガラス転移点(Tg)以上の温度とされる。次いで、図6(a)に示すように、加熱された複製スタンパ41がクラッド基部11の表面に押し付けられた後、複製スタンパ41及びクラッド基部11がガラス転移点(Tg)以下となるまで冷却され、同複製スタンパ41がクラッド基部11から剥離される。すると、図6(b)に示すように、クラッド基部11の表面に複製スタンパ41の転写パターン23が転写されることにより、前記コアパターン12が形成される。
最後に、前記導波路形成工程について説明する。
図1(a)に示すように、導波路形成工程においては、まずコアパターン12の内部にコア13が形成される。コア13の形成は、コアパターン12内に前述の紫外線硬化樹脂を充填した後、紫外線を照射することによって行われる。この他に、溶剤に溶解する等して液状とした合成樹脂をコアパターン12内に充填し、減圧雰囲気下又はクラッド基部11の材料である合成樹脂のTg以下の温度雰囲気下で溶剤を揮発させ、合成樹脂を硬化させる等してコア13の形成を行ってもよい。
その後、図1(b)に示すように、クラッド基部11の表面にクラッド蓋部14が形成され、高分子光導波路が製造される。同クラッド蓋部14の形成は、フィルムを貼着する、クラッド基部11の表面に紫外線硬化樹脂を塗布し、紫外線の照射により硬化させる、スピンコート法等で液状とした合成樹脂を塗布し、硬化させる等の方法で行われる。
前記の実施形態によって発揮される効果について、以下に記載する。
・ 実施形態の高分子光導波路によれば、その径が100〜2000μmと、大口径のコア13を有するものを提供することができる。
・ 実施形態の高分子光導波路の製造方法によれば、マスタスタンパ21の製造において、エッチング等の方法によらずとも、マスキング部材53の開口パターン54の開口幅又は遮光パターン55の幅とスペーサ51の厚みとを設定することにより、コア13の径を所望する長さとすることが可能である。また、転写パターン23の形成は、フォトレジスト層23aの平坦化と、露光及び現像とによってなされており、短時間で、かつ簡易に行うことが可能である。
・ また、フォトレジスト層23aを平坦化する際、押圧部材52と基板22との間にスペーサ51を挟み込むことにより、大口径のコア13を成形するためにフォトレジスト層23aを厚くしても、その厚みを均一なものとすることが可能である。従って、該フォトレジスト層23aから形成される転写パターン23を、均一な径を有するコア13を形成するのに好適な形状とすることが可能である。
・ また、フォトレジスト層23aを露光させる光には、該フォトレジスト層23aの吸光度が1以下となるような波長域のものを使用している。これにより、フォトレジスト層23aの表面部と底部とで最適な露光条件に差が生じたり、露光不足になったりすることを抑制することができ、フォトレジスト層23aから形成される転写パターン23を好適な形状とすることが可能である。
・ また、マスタスタンパ21から複製スタンパ41を複製し、該複製スタンパ41を加熱エンボス加工に用いることにより、原版であるマスタスタンパ21を長期間維持することが可能であり、製造効率の向上を図ることができる。
なお、本実施形態は、次のように変更して具体化することも可能である。
・ 前記複製スタンパ41は、実施形態で示したものに限らず、例えば図5(b)に示すように、複製型31の表面に電鋳法等の方法でニッケル(Ni)等の金属元素を堆積させる等の方法で製造してもよい。このように複製スタンパ41を金属製とした場合、樹脂製のものに比べ、強度及び耐久性を向上させることができる。
・ また、複製スタンパ41は、転写部43のみで構成してもよい。或いは、基材42には、ガラス基板に限らず、前記基板22と同様の材料を使用してもよい。なお、例えば、基材42にシリコン基板等を使用した場合、転写部43の材料に熱硬化性樹脂を使用し、マスタスタンパ21を加熱することにより、当該熱硬化性樹脂を硬化させるように構成してもよい。
・ 複製型31は、必ずしもシリコーンゴムによって形成されることに限らず、例えば前述の紫外線硬化樹脂、熱可塑性樹脂、フッ素樹脂、熱硬化性樹脂等の合成樹脂、熱可塑性エラストマー等より形成してもよい。また、マスタスタンパ21を使用した加熱エンボス加工法により、合成樹脂製のフィルム、基板等から複製型31を製造してもよい。
・ 前記クラッド蓋部14は、コア13で使用する合成樹脂よりも屈折率が低く、クラッド基部11と屈折率が同程度の合成樹脂であれば、何れの合成樹脂で形成してもよい。例えば、クラッド基部11を熱可塑性合成樹脂で形成するとともに、クラッド蓋部14を紫外線硬化樹脂で形成してもよい。あるいは、クラッド蓋部14をポリイミド等の熱硬化性樹脂で形成してもよい。また、クラッド蓋部14は、液状の熱可塑性樹脂、熱硬化性樹脂、紫外線硬化樹脂等をスピンコート法等の方法でクラッド基部11の表面に塗布し、硬化させて形成してもよい。
・ マスタスタンパ21は、図4(a)に示したような凸型のものに限らず、凹型のものとしてもよい。なお、凹型のマスタスタンパは、その転写パターンがコアパターン12と同一形状とされる。このような凹型のマスタスタンパは、例えば図3(a)に示した状態でポジ型のフォトレジストを使用したり、図3(b)に示した状態でネガ型のフォトレジストを使用したり等して製造される。また、凹型のマスタスタンパを使用する場合には、電鋳、紫外線硬化樹脂の塗布等といった方法で凸型の複製スタンパを得ることも可能である。
・ 例えば、マスタスタンパ21から複製型31を離型する際、転写パターン23の傷つき、破損等を抑制し、離型性を向上させるため、シリコーンゴムを塗布する前に該マスタスタンパ21の表面に離型剤を予め塗布する等の離型向上処理を施してもよい。或いは、フォトレジスト層23aから押圧部材52を取り除く、複製型31から複製スタンパ41を離型する等の際において、離型向上処理を施してもよい。さらには、マスタスタンパ21又は複製スタンパ41からクラッド基部11を離型する等の際において、離型向上処理を施してもよい。このような離型向上処理としては、フッ素樹脂、フッ素化合物、シリコーン樹脂、シリコーン化合物等の離型剤を塗布する湿式処理、フッ素含有ガス等を用いるCVD処理、無機化合物をスパッタリングしたり、金属を真空蒸着したり等する乾式処理等が挙げられる。
さらに、前記実施形態より把握できる技術的思想について以下に記載する。
(1)前記コアパターンの内面の粗さは、算術平均粗さ(Ra)で0.2μm以下であることを特徴とする請求項1に記載の高分子光導波路。
(a)はコアパターン内にコアが形成された状態のクラッド基部を示す断面図、(b)は実施形態の高分子光導波路を示す断面図。 (a)はスペーサが立設された基板の表面にフォトレジスト材料がキャストされた状態を示す断面図、(b)はフォトレジスト材料を押圧する状態を示す断面図。 (a)及び(b)は、フォトレジスト材料を露光させる状態を示す断面図。 (a)はマスタスタンパを示す断面図、(b)は複製型を製造する状態を示す断面図。 (a)及び(b)は複製型から複製スタンパを製造する状態を示す断面図。 (a)は複製スタンパを使用してクラッド基部を成形する状態を示す断面図、(b)は成形されたクラッド基部を示す断面図。
符号の説明
11…クラッド基部、12…コアパターン、13…コア、14…クラッド蓋部、21…マスタスタンパ、22…基板、23…転写パターン、23a…フォトレジスト層、31…複製型、32…複製パターン、41…複製スタンパ、51…スペーサ、52…押圧部材、53…マスキング部材、54…開口パターン、55…遮光パターン。

Claims (4)

  1. 表面にコアパターンが凹設された合成樹脂製のクラッド基部と、該コアパターンの内部に形成されたコアと、該コアを被覆するように前記クラッド基部の表面に設けられた合成樹脂製のクラッド蓋部とを備えており、前記コアの径が100〜2000μmであることを特徴とする高分子光導波路。
  2. 表面にコアパターンが凹設された合成樹脂製のクラッド基部と、該コアパターンの内部に形成されたコアと、該コアを被覆するように前記クラッド基部の表面に設けられた合成樹脂製のクラッド蓋部とを備えるとともに、前記コアの径が100〜2000μmである高分子光導波路の製造方法であって、
    前記コアパターンに応じた形状をなす転写パターンが設けられたスタンパを製造するスタンパ製造工程と、当該スタンパを使用した加熱エンボス加工法によって前記クラッド基部の表面に前記コアパターンを凹設する転写工程と、当該クラッド基部に前記コア及び前記クラッド蓋部を設ける導波路形成工程とを備え、
    前記スタンパ製造工程は、基板の表面の周縁部にスペーサを立設した状態で同基板の表面にフォトレジスト材料からなるフォトレジスト層を積層する第1段階と、該フォトレジスト層の表面を押圧部材で押圧する第2段階と、前記転写パターンに応じた形状をなす開口パターン又は遮光パターンが設けられたマスキング部材を使用して前記フォトレジスト層の表面を被覆する第3段階と、前記フォトレジスト層を露光及び現像してフォトレジスト材料からなる転写パターンを前記基板の表面に形成することにより前記スタンパとしてのマスタスタンパを得る第4段階とを含むことを特徴とする高分子光導波路の製造方法。
  3. 前記フォトレジスト層の露光時に使用する光は、同フォトレジスト層に対する吸光度が1以下となるものであることを特徴とする請求項2に記載の高分子光導波路の製造方法。
  4. 前記スタンパ製造工程は、前記マスタスタンパを型取りして前記転写パターンに応じた形状をなす複製パターンが設けられた複製型を製造する第5段階と、該複製型を使用して前記転写パターンを複写することにより前記スタンパとしての複製スタンパを製造する第6段階とを含むことを特徴とする請求項2又は請求項3に記載の高分子光導波路の製造方法。
JP2004132057A 2004-04-27 2004-04-27 高分子光導波路及びその製造方法 Pending JP2005316018A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132057A JP2005316018A (ja) 2004-04-27 2004-04-27 高分子光導波路及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132057A JP2005316018A (ja) 2004-04-27 2004-04-27 高分子光導波路及びその製造方法

Publications (1)

Publication Number Publication Date
JP2005316018A true JP2005316018A (ja) 2005-11-10

Family

ID=35443547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132057A Pending JP2005316018A (ja) 2004-04-27 2004-04-27 高分子光導波路及びその製造方法

Country Status (1)

Country Link
JP (1) JP2005316018A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244714A (ja) * 2008-03-31 2009-10-22 Nec Corp 光導波路とその製造方法
JP2013526729A (ja) * 2010-05-24 2013-06-24 プサン ナショナル ユニバーシティー インダストリー−ユニバーシティー コーオペレイション ファンデーション 2次元高分子光導波路の製造方法
WO2014038474A1 (ja) 2012-09-07 2014-03-13 日東電工株式会社 ポリマー光導波路の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244714A (ja) * 2008-03-31 2009-10-22 Nec Corp 光導波路とその製造方法
JP2013526729A (ja) * 2010-05-24 2013-06-24 プサン ナショナル ユニバーシティー インダストリー−ユニバーシティー コーオペレイション ファンデーション 2次元高分子光導波路の製造方法
EP2579077A4 (en) * 2010-05-24 2016-11-30 Pusan Nat Univ Ind Coop Found METHOD FOR PRODUCING A POLYMER TWO-DIMENSIONAL LIGHT WAVEGUIDE
WO2014038474A1 (ja) 2012-09-07 2014-03-13 日東電工株式会社 ポリマー光導波路の製造方法

Similar Documents

Publication Publication Date Title
JP4401383B2 (ja) 構造化された素子の製造
US5298366A (en) Method for producing a microlens array
CN101801652B (zh) 微光学器件的批量制造、相应的工具、以及最终结构
US5230990A (en) Method for producing an optical waveguide array using a resist master
KR101020634B1 (ko) 기능성 나노패턴을 갖는 렌즈의 제조방법
TWI510820B (zh) 具微光柵的電子裝置、分光裝置及其製造方法
JPH11505625A (ja) 微小レリーフ要素およびその作製方法
JP2004012856A (ja) 光学素子、光学素子の成形型および光学素子の製造方法
JPH11305055A (ja) 光導波路の製造方法及び光導波路製造のためのマスタ原板の製造方法
JP5503804B2 (ja) 2次元高分子光導波路の製造方法
JP4641835B2 (ja) 位相シフター光学素子の製造方法及び得られる素子
JPH07174902A (ja) マイクロレンズアレイおよびその製造方法
JP2005316018A (ja) 高分子光導波路及びその製造方法
JPH09281351A (ja) 高分子光導波路の製造方法
JP2007017980A (ja) 屈折特性および回折特性を備えた光学デバイス
JP4373885B2 (ja) 高分子光導波路の製造方法
KR101086784B1 (ko) 평면 광회로 소자의 광연결 방법
KR101937555B1 (ko) 마이크로 나노 복합체, 이의 제조 방법 및 이를 포함하는 광 디바이스
JP2012164787A (ja) インプリント用モールド、およびインプリント方法
JP4279772B2 (ja) 光導波路の製造方法
JP2001264557A (ja) 光メモリ素子
JPH10307226A (ja) 高分子光導波路の製造方法
JPH04165310A (ja) 光導波路の製造方法
JP2004157470A (ja) 光導波路の製造方法
JPH04329503A (ja) 光学素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216